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Abstract
We present a general theory of phononic heat transfer between two solids (or a solid and a fluid)
in contact at a flat interface. We present simple analytical results which can be used to estimate
the heat transfer coefficient (the inverse of which is usually called the ‘thermal boundary
resistance’ or ‘Kapitza resistance’). We present numerical results for the heat transfer across
solid–solid and solid–liquid He contacts, and between a membrane (graphene) and a solid
substrate (amorphous SiO2). The latter system involves the heat transfer between weakly
coupled systems, and the calculated value of the heat transfer coefficient is in good agreement
with the value deduced from experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Almost all surfaces in nature and technology have roughness
on many different length scales [1]. When two macroscopic
solids are brought into contact, even if the applied force is very
small, e.g., just the weight of the upper solid block, the pressure
in the asperity contact regions can be very high, usually close
to the yield stress of the (plastically) softer solid. As a
result good thermal contact may occur within each microscopic
contact region, but owing to the small area of real contact the
(macroscopic) heat transfer coefficient may still be small. In
fact, recent studies have shown that in the case of surfaces with
roughness on many different length scales, the heat transfer is
independent of the area of real contact [2]. We emphasize that
this remarkable and counter-intuitive result is only valid when
roughness occurs over several decades in length scale.

For nanoscale systems the situation may be very different.
Often the surfaces are very smooth with typically nanometer
(or less) roughness on micrometer-sized surface areas, and
because of adhesion the solids often make contact over a
large fraction of the nominal contact area. The heat transfer
between solids in perfect contact is usually calculated using
the so called acoustic and diffusive mismatch models [3, 4],
where it is assumed that all phonons scatter elastically at the
interface between two materials. In these models there is no

4 www.MultiscaleConsulting.com.

direct reference to the nature of the solid–solid interaction
across the interface, and the models cannot describe the heat
flow between weakly interacting solids. An acoustic mismatch
model for the thermal contact resistance of the van der Waals
contacts has been developed by Prasher [5].

Here we will discuss the heat transfer across interfaces.
We focus mainly on perfectly flat interfaces, but we also
give some comments on the role of surface roughness. The
theory we present is general, valid for solid–solid, solid–
liquid or solid–membrane systems with arbitrary strength of
the interaction across the contacting interface. We present
simple analytical results which can be used to estimate the heat
transfer coefficient. We present numerical results for the heat
transfer for solid–solid, solid–liquid He and solid–membrane
contacts. We consider in detail the heat transfer between
graphene and amorphous SiO2. For this system the calculated
value of the heat transfer coefficient is in good agreement with
the value deduced from experimental data. A brief summary of
some of the results obtained below has been presented in [6].

2. Theory

Consider the interface between two solids, and assume that
local thermal equilibrium occurs everywhere except close to
the interface. For weakly coupled systems this should be
an excellent approximation up to atomic distances from the
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Figure 1. Two solids 0 and 1 in contact. The interfacial surface
separation is the sum of the equilibrium separation deq and the
difference in the surface displacements u0 − u1, due to thermal
movements, where both u0 and u1 are positive when the
displacement points along the z-axis towards the interior of solid 1.
Due to interaction between the solids a perpendicular stress (or
pressure) ±K (u0(x, t)− u1(x, t)) will act on the (interfacial)
surfaces of the solid.

interface, but for strongly coupled systems one cannot expect
full local thermal equilibrium within one phonon mean free
path from the interface. The energy flow (per unit area) through
the interface is given by [2]

J = α(T0 − T1),

where T0 and T1 are the local temperatures at the interface in
solids 0 and 1, respectively. The stress or pressure acting on
the surface of solid 1 from solid 0 can be written as

σ(x, t) = K [u0(x, t)− u1(x, t)],

where u0 and u1 are the (perpendicular) surface displacements
of solids 0 and 1 (see figure 1) (x = (x, y) is a coordinate
system in the interfacial plane), respectively, and where K is
a spring constant per unit area characterizing the interaction
between the two solids. For weakly interacting solids the
parallel interfacial spring constant K‖ is usually much smaller
than the perpendicular spring constant K⊥ = K , and we
will neglect the heat transfer resulting from the tangential
interfacial stress associated with thermal vibrations (phonons).

If we define

u(q, ω) = 1

(2π)3

∫
d2x dt u(x, t)e−i(q·x−ωt),

we obtain

σ(q, ω) = K [u0(q, ω)− u1(q, ω)]. (1)

Within linear elasticity theory [8]

u1(q, ω) = M1(q, ω)σ (q, ω), (2)

where M1(q, ω) is determined by the elastic properties of solid
1. We consider the heat transfer from solid 0 to solid 1. The
displacement of an atom in solid 0 is the sum of a contribution
derived from the applied stress −σ , and a stochastic fluctuating
contribution u0f due to the thermal movement of the atoms in
the solid in the absence of interaction between the solids:

u0(q, ω) = u0f(q, ω)− M0(q, ω)σ (q, ω). (3)

Combining (1)–(3) gives

u1(q, ω) = K M1(q, ω)
1 + K [M0(q, ω)+ M1(q, ω)]u0f(q, ω), (4)

u0(q, ω) = 1 + K M1(q, ω)
1 + K [M0(q, ω) + M1(q, ω)]u0f(q, ω). (5)

The energy transferred to solid 1 from solid 0 during the
time period t0 can be written as

�E =
∫

d2x dt u̇1(x, t)σ (x, t),

where u̇ = ∂u/∂ t , and where the time integral is over −t0/2 <
t < t0/2 and the spatial integral over the interfacial surface
area A0 = L2

0 (−L0/2 < x < L0/2, −L0/2 < y < L0/2).
One can also write

�E = (2π)3
∫

d2q dω (−iω)u1(q, ω)σ (−q,−ω).

Using (1), (4) and (5) we obtain

�E = (2π)3
∫

d2q dω

× ωK 2 Im M1(q, ω)
|1 + K [M0(q, ω) + M1(q, ω)]|2 〈|u0f(q, ω)|2〉, (6)

where we have performed an ensemble (or thermal) average
denoted by 〈· · ·〉. Next, note that (see appendix A)

〈|u0f(q, ω)|2〉 = A0t0
(2π)3

Cuu(q, ω), (7)

where A0 is the surface area, and

Cuu(q, ω) = 1

(2π)3

∫
d2x dt 〈u0f(x, t)u0f(0, 0)〉ei(q·x−ωt)

is the displacement correlation function. Using the fluctuation-
dissipation theorem [7] we have (see also appendices B and C)

Cuu(q, ω) = 2

(2π)3
�(ω)

ω
Im M0(q, ω) (8)

where �(ω) = h̄ω[exp(h̄ω/kBT0) − 1]−1. Substituting (7)
in (6) and using (8) gives the heat current J0→1 = �E/A0t0
from solid 0 to solid 1:

J0→1 = 4

(2π)3

∫
d2q

∫ ∞

0
dω �(ω)

× K Im M0(q, ω)K Im M1(q, ω)
|1 + K [M0(q, ω) + M1(q, ω)]|2 .

A similar equation with T0 replaced by T1 gives the energy
transfer from solid 1 to solid 0, and the net energy flow J =
J0→1 − J1→0. The heat transfer coefficient α = (J0→1 −
J1→0)/(T0 − T1) in the limit (T0 − T1) → 0 gives:

α = 4

(2π)3

∫
d2q

∫ ∞

0
dω

∂�(ω)

∂T

× K Im M0(q, ω)K Im M1(q, ω)
|1 + K [M0(q, ω) + M1(q, ω)]|2 . (9)

To proceed we need expressions for M0(q, ω) and
M1(q, ω). Here we give the M-function for (a) solids,
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(b) liquids and (c) membranes. In what follows we do not
account for the atomistic nature of matter but use a continuum
description so that all vibrational modes of 3D solids have
linear dispersion relation, and the bending mode of the (2D)
membrane quadratic dispersion.

2.1. Solids

Within the elastic continuum model, for an elastic solid with
isotropic elastic properties we have [8, 9]

M = i

ρc2
T

pL(q, ω)

S(q, ω)

(
ω

cT

)2

, (10)

where

S =
[(

ω

cT

)2

− 2q2

]2

+ 4q2 pT pL,

pL =
[(

ω

cL

)2

− q2 + i0

]1/2

,

pT =
[(

ω

cT

)2

− q2 + i0

]1/2

,

where cL, cT and ρ are the longitudinal and transverse sound
velocities, and the mass density, respectively.

2.2. Liquids

Since the shear modulus vanishes for liquids, only longitudinal
sound waves can propagate in liquids. The M-function of
liquids can be obtained directly from the solid case by letting
cT → 0:

M = ipL

ρω2
= i

ρω2

[(
ω

cL

)2

− q2 + i0

]1/2

. (11)

2.3. Membranes

We assume that the out-of-plane displacement u(x, t) satisfies

ρ0
∂2u

∂ t2
= −κ∇2∇2u + σ, (12)

where ρ0 = n0m0 is the mass density per unit area of
the 2D system (m0 is the atom mass and n0 the number of
atoms per unit area), κ is the bending elasticity (for graphene,
κ ≈ 1 eV [10]), and σ(x, t) is an external stress acting
perpendicular to the membrane (or xy plane). Using the
definition M(q, ω) = u(q, ω)/σ(q, ω) from (12) we get

M = 1

κq4 − ρ0ω2 − i0+ . (13)

3. Some limiting cases

Assuming weak coupling between the solids (i.e., K is so small
that K [M0(q, ω)+ M1(q, ω)] 
 1), (9) reduces to

α = 4K 2

(2π)3

∫
d2q

∫ ∞

0
dω

∂�(ω)

∂T
Im M1(q, ω) Im M0(q, ω).

(14)

In the opposite limit of strong coupling (K [M0(q, ω) +
M1(q, ω)] � 1) we get

α = 4

(2π)3

∫
d2q

∫ ∞

0
dω

∂�(ω)

∂T

Im M0(q, ω) Im M1(q, ω)
|M0(q, ω)+ M1(q, ω)|2 ,

(15)
which does not depend on K . Note also that for very
low temperatures only very low frequency phonons will
be thermally excited. Assuming a semi-infinite solid, as
ω ∼ q → 0, from (10) we have |M| ≈ 1/(ρcω) → ∞
(where c is the sound velocity and ρ the mass density). Thus,
at low enough temperature (9) reduces to (15) i.e., for very low
temperatures the heat transfer is independent of the strength
of the interaction across the interface. The physical reason
for this is that at very low temperature the wavelength of
the phonons becomes very long and the interfacial interaction
becomes irrelevant. The transition between the two regions of
behavior occurs when K |M| ≈ 1. Since |M| ≈ 1/(ρcω) we
get K ≈ ρcω. But h̄ω ≈ kBT and defining the thermal length
λT = c/ω = ch̄/kBT we get the condition K ≈ ρc2/λT.
Since the elastic modulus E ≈ ρc2 we get K ≈ E/λT. We
can define a spring constant between the atoms in the solid via
k ′ = Ea, where a is the lattice constant. Since K = k/a2 we
get k ≈ (a/λT)k ′ as the condition for the transition between
the two different regimes in the heat transfer behavior. For
most solids at room temperature λT ≈ a, but at very low
temperatures λT � a which means that even a very weak
(soft) interface (for which k is small), will appear as very strong
(stiff) with respect to the heat transfer at low temperatures (this
result has also been obtained by Prasher [5]).

Let us consider the case where the two solids are identical,
and assume strong coupling where (15) holds. For this case
we do not expect that the interface will restrict the energy
flow. If we consider high temperature the kinetic energy
per atom in solid 0 will be ∼kBT0 so the energy density
Q ≈ kBT0/a3

0 (where a0 is the lattice constant). Thus if solid
1 is at zero temperature we expect the energy flow current
across the interface to be of order J ≈ Qc/4 (the factor of 1/4
results from the fact that only half the phonons propagate in the
positive z-direction and the average velocity of these phonons
in the z-direction is c/2). Thus we expect α ≈ kBc/(4a3

0). This
result follows also from (15) if we notice that for M0 = M1 and
high temperatures

α ≈ kB

(2π)3

∫
d2q

∫ ∞

0
dω

[
Im M0(q, ω)
|M0(q, ω)|

]2

. (16)

If we assume for simplicity that M0 is given by (11) (but the
same qualitative result is obtained for solids) then the factor
involving M0 is equal to unity for ω > cLq and zero otherwise.
Thus (16) reduces to

α ≈ kB

(2π)2

∫ cLqc

0
dω

∫ ω/cL

0
dq q = πcLkB

24a3
0

,

where we have used qc ≈ π/a0. Thus for identical materials
and strong coupling (9) reduces to the expected result.

Let us now briefly discuss the temperature dependence of
the heat transfer coefficient for high and low temperatures. For
very low temperatures α is given by (15). Consider first a solid

3
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in contact with a solid or liquid. For these cases it follows that
M ∼ 1/ω (where we have used that ω ∼ q) so the temperature
dependence of the heat transfer coefficient is determined by the
term

α ∼
∫ ∞

0
dω

∂�(ω)

∂T
ω2,

where we also have used d2q ∼ ω2. Thus we get

α ∼
∫ ∞

0
dω

exp(h̄ω/kBT )[
exp(h̄ω/kBT )− 1

]2

(
h̄ω

kBT

)2

ω2 ∼ T 3

which agrees with the low temperature dependence predicted
by the acoustic mismatch model [3]. For high temperatures,
and assuming weak coupling, one obtains in the same way
from (14) that α is temperature independent. However,
the spring constant (per unit area) K may depend on
the temperature, e.g., as a result of thermally induced
rearrangement of the atoms at the contacting interface or
thermally induced increase in the separation of the two surfaces
at the interface which may be particularly important for weakly
interacting systems. The temperature dependence of α for
the case of solid–solid and solid–membrane contacts will be
discussed in section 5.

4. Phonon heat transfer at disordered interfaces:
friction model

At high temperature and for atomically disordered interfaces,
the interfacial atoms will perform very irregular, stochastic
motion. In this case the heat transfer coefficient α can be
obtained (approximately) from a classical ‘friction’ model.
This treatment does not take into account in a detailed
way the restrictions on the energy transfer process by the
conservation of parallel momentum, which arises for periodic
(or homogeneous) solids. See also appendix D.

Let us assume that solid 0 has a lower maximal phonon
frequency than solid 1. In this case, most elastic waves
(phonons) in solid 0 can in principle propagate into solid 1,
while the opposite is not true, since a phonon in solid 1 with
higher energy than the maximum phonon energy in solid 0
will, because of energy conservation, be totally reflected at the
interface between the solids.

Consider an atom in solid 0 (with mass m0) vibrating with
the velocity (v‖, v⊥). The atom will exert a fluctuating force
on solid 1 which will result in elastic waves (phonons) being
excited in solid 1. The emitted waves give rise to a friction
force acting on the atom in solid 0 (from solid 1), which we
can write as [9]

F f = −m0η‖v‖ − m0η⊥v⊥,

and the power transfer to solid 1 will be

P = −〈F f · v〉 = m0η‖〈v2
‖〉 + m0η⊥〈v2

⊥〉.

At high temperatures

m0〈v2
‖〉 = 2kBT0, m0〈v2

⊥〉 = kBT0.

Hence
P = (2η‖ + η⊥)kBT0.

A similar formula (with T0 replaced by T1) gives the power
transfer from solid 1 to solid 0. Hence

J = n0(2η‖ + η⊥)kB(T0 − T1),

where n0 = 1/a2
0 is the number of interfacial atoms per unit

area in solid 0. Thus we get

α = n0(2η‖ + η⊥)kB. (17)

For weak interfacial coupling we expect η⊥ � η‖, and we can
neglect the η‖-term in (17).

The damping or friction coefficient η⊥ due to phonon
emission was calculated within elastic continuum mechanics
in [9]. We have

η⊥ ≈ k2ξ ′

ρ1m0c3
T

= K 2a4
0ξ

′

ρ1m0c3
T

, (18)

where5 ξ ′ ≈ 0.13. Using n0 = 1/a2
0 and substituting (18)

in (17) gives

α = kB K 2ξ ′

ρ0ρ1c3
T

, (19)

where

ξ ′ = 1

8π
Re

∫ ∞

0
dx

2 (γ − x)1/2

(1 − 2x)2 + 4 (1 − x)1/2 (γ − x)1/2
,

where γ = (cT/cL)
2, and ρ0 = n0m0 is the (one atomic

layer) mass per unit surface area of solid 0. There are two
contributions to the integral ξ ′. One is derived from the region
x < 1 where the integral clearly has a non-vanishing real
part. This contribution corresponds to excitation of transverse
and longitudinal acoustic phonons. The second contribution
arises from the vicinity of the point (for x > 1) where the
denominator vanishes. This pole contribution corresponds to
excitation of surface (Rayleigh) waves. As shown in [9], about
65% of the radiated energy is due to the surface (Rayleigh)
phonons, and the rest to bulk acoustic phonons.

We emphasize that (19) is only valid for high temperatures
and weak coupling. A more general equation for the heat
transfer between solids when the phonon emission occurs
incoherently is derived in appendix D:

α ≈ 4A∗

(2π)3

∫ ∞

0
dω

∂�(ω)

∂T

K Im M0(ω)K Im M1(ω)

|1 + K [M0(ω)+ M1(ω)]|2 ,
(20)

where

M(ω) = 1

A∗

∫
q<qc

d2q M(q, ω),

and the integral is over |q| < qc, where πq2
c = A∗. The

cut-off wavevector qc is the smallest of q1 and q2, where

5 In [9] we have calculated ξ ′ = ξ⊥/8π within the elastic continuum model.
It only depends on the ratio λ = cT/cL. For λ = 0.5 the contribution to
ξ⊥ from emission of surface phonons is 2.10 and the contribution from bulk
longitudinal and transverse phonons is 1.19, giving ξ ′ = (2.10 + 1.19)/8π ≈
0.13.

4
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Figure 2. The logarithm (with 10 as basis) of the heat transfer
coefficient as a function of the logarithm of the temperature for
weakly interacting solids (soft) with K = 2.52 × 1019 N m−3, and
for solids which interact more strongly (stiff) with ten times larger
K . The solid lines are for coherent phonon transmission, and the
dashed lines for incoherent phonon transmission. The initial slope
(for low temperature) of the curves is 3, corresponding to a ∼T 3

temperature dependence.

πq2
1 = (2π)2/a2

0 (a0 is the lattice constant) and q2 = kBT/h̄c0

(c0 is the smallest sound velocity of solid 0) is the thermal
wavevector. For high temperatures and weak coupling, for
an Einstein model of solid 0, (20) reduces to (19) (see
appendix E).

5. Numerical results

We now present some numerical results to illustrate the theory
presented above. We consider solid–solid, solid–liquid and
solid–membrane systems.

5.1. Solid–solid

We consider the heat transfer between two solids with perfectly
flat contacting surfaces. We take the sound velocities and the
mass density and the (average) lattice constant to be those of
SiO2. We consider two cases: weakly interacting solids (soft
interface) with K = 2.52 × 1019 N m−3 (see figure 4), and
solids with stronger interaction (stiff interface), with ten times
larger K . In figure 2 we show the heat transfer coefficient as
a function of temperature. Note that for high temperatures α
is nearly 100 times larger for the stiff case as compared to
the soft case. This result is expected based on equation (9)
which shows that α ∼ K 2 as long as K is not too large or the
temperature too low. For low temperatures both cases give very
similar results, and for T < 3 K the heat transfer coefficient
α ∼ T 3. The reason why at low temperatures the heat transfer
is independent of the strength of the interfacial interaction was
explained in section 3, and it is due to the long wavelength of
the thermally excited phonons at low temperature.

For incoherent phonon transmission, using (20) we obtain
the result shown by dashed curves in figure 2. For both the soft
and stiff interfaces the results obtained assuming coherent and
incoherent phonon transmission are similar.

Figure 3. The calculated contact resistance (multiplied by T 3)
between liquid 4He and a-SiO2 as a function of the temperature, with
K = 1.18 × 1019 N m−3.

Figure 4. The calculated graphene–a-SiO2 interaction energy, U(d),
per graphene carbon atom, as a function of the separation d (in nm)
between the center of a graphene carbon atom and the center of the
first layer of substrate atoms. See text for details.

5.2. Solid–liquid

Heat transfer between liquid 4He and solids was studied by
Kapitza [11] about 60 years ago, and R = 1/α is usually
denoted as the Kapitza resistance [3, 12]. Let us apply the
theory above to the heat transfer between liquid 4He and a-
SiO2. In the calculation we use a He–substrate potential with
well depth of 10.2 meV and 4He–substrate equilibrium bond
distance deq = 2.2 Å which agree with the model parameters
used in [17]. With these parameters we get the perpendicular
He–substrate vibration frequency ω⊥ ≈ 91 cm−1 and the
spring constant K = 1.18 × 1019 N m−3. In figure 3 we
show the calculated contact resistance R (multiplied by T 3),
as a function of the temperature T . In this calculation we have
assumed that all the parameters (e.g., 4He sound velocity c0

and mass density ρ0) characterizing the system are temperature
independent6. The Kapitza resistance has been measured
(for T > 1 K) for liquid 4He in contact with quartz [14]
and sapphire [13] and scales roughly with temperature as
T −3, and the magnitude for T = 1 K is roughly ten
times smaller than our calculated result assuming incoherent
phonon transfer. Experiment shows that for T < 0.5 K

6 In the calculation we have used sound velocity and mass density of 4He:
cL0 = 238 m s−1 and ρ0 = 150 kg m−3; sound velocity and mass density of
a-SiO2: cT 1 = 3743 m s−1, cL1 = 5953 m s−1, and ρ1 = 2200 kg m−3.

5
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the Kapitza resistance increases much faster with decreasing
temperature than expected from the R ∼ T −3-dependence
predicted by our theory and most other theories. It is not
clear what the origin of this discrepancy may be, but it
has been suggested to be associated with surface roughness.
Unfortunately, most measurements of the Kapitza resistance
were performed before recent advances in surface science,
and many of the studied systems are likely to have oxide and
unknown contamination layers, which may explain the large
fluctuations in the measured contact resistance for nominally
identical systems.

5.3. Solid–membrane

Recently it has been found that the heat generation in graphene
field-effect transistors can result in high temperature and
device failure [16]. Thus, it is important to understand the
mechanisms which influence the heat flow. Graphene can be
considered as a 2D system (membrane). In this case, from (13)
we get

Im M0(q, ω) = πδ(κq4 − ρ0ω
2) = π

2ρ0ω1
δ(ω − ω1), (21)

where ω1 = (κ/ρ0)
1/2q2 = c(q)q . We have defined

the velocity c(q) = (κ/ρ0)
1/2q . Substituting (21) in (9)

and assuming high temperatures (kBT0 � h̄ω1) so that
�(ω) ≈ kBT0 gives

J0→1 = kBT0

2πρ0

∫ ∞

0
dq

q

ω1
K 2 Im M1(q, ω1).

The heat transfer coefficient α = (J0→1 − J1→0)/(T0 − T1) is
given by

α = kB

2πρ0

∫ ∞

0
dq

q

ω1
K 2 Im M1(q, ω1). (22)

Using the expression for M1(q, ω) derived in [8, 9] and
ω1 = c(q)q gives

α = kB K 2ξ

ρ0ρ1c3
T

, (23)

where

ξ = 1

2π

∫ qc

0
dq

1

q

c(q)

cT

× Re

⎛
⎝

[ c2(q)
c2

L
− 1

]1/2

[ c2(q)
c2

T
− 2

]2 + 4
[ c2(q)

c2
T

− 1
]1/2[ c2(q)

c2
L

− 1
]1/2

⎞
⎠ .

cL, cT and ρ1 are the longitudinal and transverse sound
velocities, and the mass density, respectively, of solid 1. The
cut-off wavevector qc ≈ π/a1 (a1 is the lattice constant, or the
average distance between two nearby atoms) of solid 1.

There are two contributions to the integral ξ . One is
derived from c(q) > cL, but for graphene on a-SiO2 this
gives only ∼10% of the contribution to the integral. For
c(q) < cL the term after the Re operator is purely imaginary
(and will therefore not contribute to the integral), except for
the case where the denominator vanishes. It is found that
this pole contribution gives the main contribution (∼90%) to

the integral, and corresponds to the excitation of a Rayleigh
surface (acoustic) phonon of solid 1. This process involves
energy exchange between a bending vibrational mode of the
graphene and a Rayleigh surface phonon mode of solid 1. The
denominator vanishes when c(q) = cR, where

[
c2

R

c2
T

− 2

]2

− 4

[
1 − c2

R

c2
T

]1/2 [
1 − c2

R

c2
L

]1/2

= 0.

Note that the Rayleigh velocity cR < cT but close to cT.
For example, when cL/cT = 2, cR ≈ 0.93cT, and the pole
contribution to the integral in ξ is 0.083. Note that (23) is of
the same form as (19), and since ξ ′ ≈ 0.13 ≈ ξ they give very
similar results.

In the model above the heat transfer between the solids
involves a single bending mode of the membrane or 2D
system. Because of the weak interaction (and large separation)
between the graphene and the substrate, it is likely that the
coupling between the in-plane vibrational modes of graphene
and the substrate is negligible. However, in reality there will
always be some roughness at the interface which will blur the
wavevector conservation rule. We therefore expect a narrow
band of bending modes to be involved in the energy transfer,
rather than a single mode. The model study above assumes
implicitly that, due to lattice nonlinearity (and defects), there
exist phonon scattering processes which rapidly transfer energy
to the bending mode involved in the heat exchange with the
substrate. This requires very weak coupling to the substrate,
so that the energy transfer to the substrate is so slow that
the bending mode can be repopulated by phonon scattering
processes in the 2D system, e.g., from the in-plane phonon
modes, in such a way that its population is always close to what
would be the case if complete thermal equilibrium occurred in
the 2D system. This may require high temperature in order
for multi-phonon scattering processes to occur with sufficient
rates.

We now consider graphene on amorphous SiO2. Graphene,
the recently isolated 2D carbon material with unique properties
due to its linear electronic dispersion, is being actively explored
for electronic applications [15]. Important properties are the
high mobilities reported especially in suspended graphene, the
fact that graphene is the ultimately thin material, the stability
of the carbon–carbon bond, the ability to induce a band gap by
electron confinement in graphene nanoribbons, and its planar
nature, which allows established patterning and etching tech-
niques to be applied. Recently it has been found that the heat
generation in graphene field-effect transistors can result in high
temperature and device failure [16]. Thus, it is important to un-
derstand the mechanisms which influence the heat flow.

The graphene–a-SiO2 interaction is probably of the
van der Waals type. In [18] the interaction between the
graphene C atoms and the substrate Si and O atoms was
assumed to be described by Lennard-Jones (LJ) pair-potentials.
Here we use a simplified picture where the substrate atoms
form a simple cubic lattice with the lattice constant determined
by a1 = (m̄/ρ1)

1/3 ≈ 0.25 nm, where m̄ = (mSi + 2mO)/3 ≈
3.32 × 10−26 kg is the average substrate atomic mass, and
ρ1 ≈ 2200 kg m−3 the mass density of a-SiO2. We also use the
effective LJ energy parameter ε = (εSi + 2εO)/3 ≈ 5.3 meV,

6
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Figure 5. The logarithm of the contact resistance for graphene on
a-SiO2 as a function of the logarithm of the temperature. Square
symbols: measured data from [21]. Solid lines: the calculated
contact resistance using equation (24) with h̄ω0 = 11 meV (upper
curve) and h̄ω0 = 7 meV (lower curve).

and the bond-length parameter σ = (σSi + 2σO)/3 ≈ 0.31 nm.
With these parameters we can calculate the graphene–a-SiO2

interaction energy, U(d), per graphene carbon atom, as a
function of the separation d between the center of a graphene
carbon atom and the center of the first layer of substrate atoms.
We find (see figure 4) the graphene–a-SiO2 binding energy
Eb = −U(deq) ≈ 35 meV per carbon atom, and the force
constant k = U ′′(deq) (where deq ≈ 0.32 nm is the equilibrium
separation), k = K a2

0 = 2.4 N m−1 per carbon atom. This
gives the perpendicular graphene–a-SiO2 (uniform) vibration
frequency ω⊥ ≈ (k/m0)

1/2 ≈ 55 cm−1, which is similar
to what is observed for the perpendicular vibrations of linear
alkane molecules on many surfaces (e.g., about 50–60 cm−1

for alkanes on metals and on hydrogen terminated diamond
C(111) [19]). Using K = k/a2

0 = 1.82 × 1020 N m−3,
and the transverse and longitudinal sound velocities of solid 1
(cT = 3743 m s−1 and cL = 5953 m s−1), from (19) we obtain
α ≈ 3 × 108 W K−1 m−2.

The heat transfer coefficient between graphene and
a perfectly flat a-SiO2 substrate has not been measured
directly, but measurements of the heat transfer between carbon
nanotubes and sapphire by Maune et al [20] indicate that it may
be of order α ≈ 8 × 108 W m−2 K−1. This value was deduced
indirectly by measuring the breakdown voltage of carbon
nanotubes, which could be related to the temperature increase
in the nanotubes. Molecular dynamics calculations [18] for
nanotubes on a-SiO2 give α ≈ 3×108 W m−2 K−1 (here it has
been assumed that the contact width between the nanotube and
the substrate is 1/5 of the diameter of the nanotube). Finally,
using a so called 3ω method, Chen et al [21] have measured
the heat transfer coefficient α ≈ 2 × 108 W m−2 K−1.

We now discuss the temperature dependence of the heat
transfer coefficient. If we assume that most of the heat transfer
is via a substrate phonon mode at the frequency ω0, then the
temperature dependence of α should be given by

d�(ω0)

dT
= x2ex

(ex − 1)2
, (24)

where x = h̄ω0/kBT . In figure 5 we show the temperature
dependence of the heat transfer coefficient measured by Chen

Figure 6. The frequency of the graphene bending mode becomes
equal to the frequency of the Rayleigh mode when
ωbend(q) = ωR(q). The Rayleigh mode dispersion was measured for
α-quartz (0001) [26] and the bending mode dispersion was
calculated using ωbend = (κ/ρ0)

1/2q2 with bending stiffness
κ = 1.1 eV as obtained in [10].

et al [21] for 42 K < T < 310 K. The solid lines have been
calculated using (24) with h̄ω0 = 11 meV (upper curve) and
7 meV (lower curve). In our model all the substrate vibrational
modes have linear dispersion relation, e.g., h̄ω = cRq for
the Rayleigh mode, and since the measured phonon frequency
ω(q) falls below the line obtained by extending the initial
linear dispersion to higher frequencies, it follows that the
frequency where the graphene bending mode becomes equal
to the frequency of the Rayleigh mode will occur at higher
frequency than expected using the measured Rayleigh mode
dispersion relation. This is illustrated in figure 6, where we
show the measured Rayleigh mode dispersion for α-quartz
(0001) [26]. Note that the frequencies of the bending mode
and the Rayleigh mode become equal when h̄ω ≈ 7 meV.
However, using this excitation energy in (24) gives too weak
temperature dependence. There are two possible explanations
for this.

(a) In an improved calculation using the measured
dispersion relations for the substrate phonon modes, emission
of bulk phonons may become more important than in the
present study where we assumed the linear phonon dispersion
is valid for all wavevectors q . This would make higher
excitation energies more important and could lead to the
effective (or average) excitation energy 11 meV necessary to
fit the observed temperature dependence.

(b) As pointed out in section 3, the model developed above
for the heat transfer involves a single, or a narrow band of,
bending modes of the membrane or 2D system. In order for this
model to be valid, the coupling to the substrate must be so weak
that the energy transfer to the substrate from the bending mode
occurs so slowly that the mode can be repopulated by phonon
scattering processes, in such a way that its population is always
close to what is expected if full thermal equilibrium would
occur within the 2D system. This may require high temperature
in order for multi-phonon scattering processes to occur with
high enough rates. This may contribute to the decrease in
the heat transfer coefficient observed for the graphene–a-SiO2

system below room temperature [21].

7
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Finally, we note that recently it has been sug-
gested [16, 24] that the heat transfer between graphene and
a-SiO2 may involve photon tunneling [25]. That is, coupling
via the electromagnetic field between electron–hole pair exci-
tations in graphene and optical phonons in a-SiO2. However,
our calculations indicate that for graphene adsorbed on a-SiO2

the field coupling gives a negligible contribution to the heat
transfer [22, 23].

6. Role of surface roughness

Surfaces of engineering interest are never perfectly smooth
and this must always be taken into account when analyzing
interfacial heat transfer between contacting solids. As
discussed above, surface roughness and interfacial disorder on
the same length scale as the phonon wavelength may result in
strong diffusive-like phonon scattering which may drastically
affect the interfacial heat transfer. In addition, for elastically
hard solids the area of real (atomic) contact A is usually a
very small fraction of the apparent contact area A0, which
has a strong influence on the heat transfer [2], and in many
cases most of the heat may flow in the air film separating
the non-contact region. The heat transfer via the area of real
contact is determined not just by the heat transfer resistance
across the contacting interface (of atomic scale thickness) as
studied above, but often most of the heat flow resistance is
caused by the so called spreading resistance, related to the
interaction between the heat flow filaments which emerge from
the areas of real contact. This latter contribution depends on
the wide (fractal-like) distribution of surface roughness length
scales exhibited by most surfaces of macroscopic solids, see
figure 7. One can show that the total heat transfer resistance is
(approximately) the sum of the two mentioned contributions:

1

α
≈ 1

αspred
+ 1

αc
,

where 1/αspred is the spreading resistance studied in [2], and
1/αc the resistance which determines the temperature jump (on
atomistic length scale) across the area of real contact. One can
show that (see appendix F)

1

αc
≈ 1

αb

1

A0 J 2
0

∫
d2x J 2

z (x),

where Jz(x) is the heat current at the interface, J0 the average
heat current, and αb the (boundary) heat transfer coefficient
studied above (see section 2). If the heat current were to be
constant through the area of real contact, then Jz = (A0/A)J0,
where A is the area of real contact. In this case we get
αc ≈ (A/A0)αb and

1

α
≈ 1

αspred
+ 1

αb

A0

A
. (25)

For most hard macroscopic solids the local pressure in the
contact regions is very high, which may result in ‘cold welded’
contact regions with good thermal contact, in which case
the contribution from the spreading resistance dominates the
contact resistance. However, for weakly coupled microscopic

Figure 7. Heat flow in the contact region between a rigid block with
a flat surface (bottom) and an elastic solid with a randomly rough
surface (top). The orange lines denote the heat current flux lines in
the upper solid. The heat current filaments expand laterally until the
filaments from the different contact regions touch each other. The
‘interaction’ between the filaments gives rise to the spreading
resistance. Because of the fractal nature of most surfaces the
interaction between the heat flow filaments occurs on many different
length scales.

solids the contribution from the second term in (25) may be
very important.

In [16] the temperature profile in graphene under
current was studied experimentally. The heat transfer
coefficient between graphene and the a-SiO2 substrate was
determined by modeling the heat flow using the standard
heat flow equation with the heat transfer coefficient as the
only unknown quantity. The authors found that using a
constant (temperature independent) heat transfer coefficient
α ≈ 2.5 × 107 W m−2 K−1 the calculated temperature profiles
in graphene are in good agreement with experiment. This α is
about ten times smaller than expected for perfectly flat surfaces
(see section 5.3). In [22, 23] we studied the heat transfer
between graphene and a-SiO2. We assumed that because of
surface roughness the graphene only makes partial contact
with the SiO2 substrate, which will reduce the heat transfer
coefficient as compared to the perfect contact case. The
analysis indicated that the spreading resistance contribution
in (25) may be very important, and could explain the magnitude
of the observed heat contact resistance. However, assuming
that (due to the roughness) A/A0 ≈ 0.1, the second term
in (25) becomes of the same order of magnitude as the
measured heat contact resistance. Thus, in this particular
application it is not clear which term in (25) dominates the heat
resistance, and probably both terms are important.

7. Summary

To summarize, we have studied the heat transfer between
coupled systems with flat interfaces. We have presented
simple analytical results which can be used to estimate the
heat transfer coefficient. The interaction between the solids
is characterized by a spring constant (per unit area) K . The
formalism developed is general and valid both for strongly
interacting (K → ∞) and weakly interacting (K → 0)
solids. We have shown that at low enough temperatures, even

8
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a very weak interfacial interaction will appear strong, and the
heat transfer is then given by the limiting formula obtained as
K → ∞. Earlier analytical theories of heat transfer [3] do not
account for the strength of the interaction between the solids,
but correspond to the limiting case K → ∞. However, we
have shown that at room temperature (or higher temperatures)
the heat transfer between weakly interacting solids may be
100 times (or more) slower than between strongly interacting
solids.

Detailed results were presented for the heat transfer
between a membrane (graphene) and a semi-infinite solid (a-
SiO2). For this case the energy transfer is dominated by energy
exchange between a bending vibrational mode of the graphene,
and a Rayleigh surface phonon mode of the substrate. This
model assumes implicitly that, due to the lattice nonlinearity
(and defects), there exist phonon scattering processes which
rapidly transfer energy to the bending mode involved in the
heat exchange with the substrate. This may require high
temperature in order for multi-phonon scattering processes to
occur at high enough rate. The calculated value of the heat
transfer coefficient was found to be in good agreement with
the value deduced from the experimental data.
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Appendix A

Here we prove equation (7). We get

〈|u0f(q, ω)|2〉 = 1

(2π)6

∫
d2x dt d2x ′ dt ′

× 〈u0f(x, t)u0f(x′, t ′)〉ei[q·(x−x′)−ω(t−t ′)]

= 1

(2π)6

∫
d2x dt d2x ′ dt ′

× 〈u0f(x − x′, t − t ′)u0f(0, 0)〉ei[q·(x−x′)−ω(t−t ′)]

= 1

(2π)6

∫
d2x dt d2x ′ dt ′ 〈u0f(x, t)u0f(0, 0)〉ei[q·x−iωt]

= A0t0
(2π)3

Cuu(q, ω).

Appendix B

Here we present an alternative derivation of equation (8).
Assume that the two solids interact weakly. In this case the

energy transfer from solid 0 to solid 1 is given by (6) with
K → 0:

�E = (2π)3
∫

d2q dωωK 2 Im M1(q, ω)〈|u0f(q, ω)|2〉.
(B.1)

At thermal equilibrium this must equal the energy transfer from
solid 1 to solid 0 given by

�E = (2π)3
∫

d2q dω ωK 2 Im M0(q, ω)〈|u1f(q, ω)|2〉.
(B.2)

From (B.1) and (B.2) we get

Im M1(q, ω)〈|u0f(q, ω)|2〉 = Im M0(q, ω)〈|u1f(q, ω)|2〉.
(B.3)

We now assume that solid 1 is a layer of non-interacting
harmonic oscillators. Thus if ρ1 is the mass per unit area we
have

ρ1ü1 + ω2
1u1 = σ

or

u1(q, ω) = σ(q, ω)

ρ1(ω
2
1 − ω2)− i0+ .

Thus

M1(q, ω) = 1

ρ1(ω
2
1 − ω2)− i0+

and for ω > 0

Im M1(q, ω) = π

2ρ1ω1
δ(ω − ω1). (B.4)

We write u1 in the standard form:

u1 = 1

(2π)2

∫
d2q

(
h̄

2ρ1ω1

)1/2

× (
bqei(q·x−ω1t) + b+

q e−i(q·x−ω1t)
)
,

so that for ω > 0

u1(q, ω) = 1

(2π)2

(
h̄

2ρ1ω1

)1/2

bqδ(ω − ω1).

Thus we get

〈|u1(q, ω)|2〉 = t0
(2π)5

h̄

2ρ1ω1

1

2
〈bqb+

q + b+
q bq〉δ(ω − ω1)

where we have used

[δ(ω − ω1)]
2 = δ(ω − ω1)

1

2π

∫
dt = δ(ω − ω1)

t0
2π
.

Using

〈bqb+
q +b+

q bq〉 = [2n(ω1)+1](2π)2δ(q−q) = [2n(ω1)+1]A0

we get

〈|u1f(q, ω)|2〉 = A0t0
(2π)5

h̄

2ρ1ω1

(
n(ω)+ 1

2

)
δ(ω − ω1).

(B.5)
Combining (B.3)–(B.5) gives

〈|u0f(q, ω)|2〉 = 2A0t0h̄

(2π)6

(
n(ω)+ 1

2

)
Im M0(q, ω). (B.6)
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Appendix C

Equation (8) is a standard result but the derivation is repeated
here for the reader’s convenience. Let us write the Hamiltonian
as

H = H0 +
∫

d2x u(x, t)σ (x, t),

where σ(x, t) is an external stress acting on the surface z = 0
of the solid. We first derive a formal expression for M(q, ω)
defined by the linear response formula

〈u(q, ω)〉 = M(q, ω)σ (q, ω).

We write 〈u〉 = Tr(ρu) where the density operator satisfies

ih̄
∂ρ

∂ t
= [H, ρ].

We write ρ = ρ0 + ρ1 and get

ρ1 = 1

ih̄

∫ t

−∞
dt ′e−iH0(t−t ′)/h̄[V (t ′), ρ0]eiH0(t−t ′)/h̄ .

Thus, using 〈u〉 = Tr(ρ1u) we obtain

〈u〉 = 1

ih̄

∫
d2x ′ dt ′ θ(t − t ′)〈[u(x, t), u(x′, t ′)]〉σ(x′, t ′)

= 1

ih̄

∫
d2x ′ dt ′ θ(t−t ′)〈[u(x−x′, t − t ′), u(0, 0)]〉σ(x′, t ′).

Thus

M(q, ω) = 1

ih̄

∫
d2x dt θ(t)〈[u(x, t), u(0, 0)]〉e−i(q·x−ωt),

(C.1)
where

u(x, t) = e−iH0t/h̄u(x, 0)eiH0t/h̄ .

Let |n〉 be an eigenstate of H0 corresponding to the energy
En. Using (C.1) we get

M(q, ω) = 1

ih̄

∫
d2x dt θ(t)

∑
nm

Z−1e−βEn e−i(q·x−ωt)

× (〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉e−i(En−Em )t/h̄

− 〈n|u(0, 0)|m〉〈m|u(x, 0)|n〉ei(En−Em )t/h̄
)

= 1

ih̄

∫
d2x

∑
nm

Z−1e−βEn e−iq·x

×
( 〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉

i(En − Em)/h̄ − iω + 0+

+ 〈n|u(0, 0)|m〉〈m|u(x, 0)|n〉
i(En − Em)/h̄ + iω − 0+

)
, (C.2)

where β = 1/kBT and Z = ∑
n exp(−βEn). From (C.2) we

get

Im M(q, ω) = π

h̄

∫
d2x

∑
nm

Z−1e−βEn e−iq·x

× (〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉(−δ[ω − (En − Em)/h̄])
+ 〈n|u(0, 0)|m〉〈m|u(x, 0)|n〉δ[ω + (En − Em)/h̄]).

(C.3)

Changing summation index from (n,m) → (m, n) the (m, n)-
dependent part of the second term in (C.3) can be rewritten as

∑
nm

e−βEm 〈m|u(0, 0)|n〉〈n|u(x, 0)|m〉
× δ[ω − (En − Em)/h̄]

=
∑
nm

e−βEn e−β(Em−En)〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉
× δ[ω − (En − Em)/h̄]

= eβω
∑
nm

e−βEn 〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉
× δ[ω − (En − Em)/h̄].
Replacing the second term in (C.3) with this expression

gives

Im M(q, ω) = 1

2h̄

(
eβh̄ω − 1

)

×
∫

d2x dt e−i(q·x−iωt)〈u(x, t)u(0, 0)〉

= 1

2h̄

(
eβh̄ω − 1

)
(2π)3Cuu(q, ω).

The fluctuation-dissipation theorem follows from the last
equation:

Cuu(q, ω) = 1

(2π)3
2h̄

eβh̄ω − 1
Im M(q, ω).

Appendix D

We assume high temperatures and interfacial disorder. In this
case the elastic waves generated by the stochastic pulsating
forces between the atoms at the interface give rise to (nearly)
incoherent emission of sound waves (or phonons). Thus,
we can obtain the total energy transfer by just adding up
the contributions from the elastic waves emitted from each
interfacial atom. Assume for simplicity that the interfacial
atoms of solid 0 form a simple square lattice with lattice
constant a0. Consider the atom at x = 0 and let u0(t) denote
the vertical displacement of the atom. The force

F(t) = k[u0(t)− u1(t)]

or

F(ω) = k[u0(ω)− u1(ω)] (D.1)

is acting on solid 1 at x = 0. We can write k = K a2
0 , where

K is the force constant per unit area (see section 2). The force
F(t) gives a stress

σ(x, t) = F(t)δ(x)

acting on solid 1. We can also write

σ(q, ω) = (2π)−2 F(ω).

10
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Note that

u1(ω) = u1(x = 0, ω) =
∫

d2q u1(q, ω)

=
∫

d2q M1(q, ω)σ (q, ω)

= 1

(2π)2

∫
d2q M1(q, ω)F(ω)

= M̄1(ω)F(ω), (D.2)

where

M̄1(ω) = 1

(2π)2

∫
d2q M1(q, ω).

In a similar way one can get

u0(ω) = u0f(ω)− M̄0(ω)F(ω). (D.3)

Combining (D.1)–(D.3) gives

u1(ω) = kM̄1(ω)

1 + k[M̄0(ω)+ M̄1(ω)]
u0f(ω), (D.4)

u0(ω) = 1 + kM̄1(ω)

1 + k[M̄0(ω)+ M̄1(ω)]
u0f(ω). (D.5)

The energy transferred to solid 1 from solid 0 during the time
period t0 can be written as

�E = N
∫

dt u̇1(t)F(t),

where N = A0/a2
0 is the number of interfacial atoms of solid

0. One can also write

�E = 2πN
∫

dω (−iω)u1(ω)F(−ω).

Using (D.1), (D.4) and (D.5) we obtain

�E = 2πN
∫

dω
ωk2 Im M̄1(ω)

|1 + k[M̄0(ω)+ M̄1(ω)]|2
〈|u0f(ω)|2〉,

(D.6)
where we have performed an ensemble (or thermal) average
denoted by 〈· · ·〉. Next, note that

〈|u0f(ω)|2〉 = 1

(2π)2

∫
dt dt ′ 〈u0f(t)u0f(t

′)〉e−iω(t−t ′)

= 1

(2π)2

∫
dt dt ′〈u0f(t − t ′)u0f(0)〉e−iω(t−t ′ )

= 1

(2π)2

∫
dt dt ′〈u0f(t)u0f(0)〉eiωt = 2t0

2π
C̄uu(ω), (D.7)

where

C̄uu(ω) = 1

2π

∫
dt 〈u0f(t)u0f(0)〉e−iωt

is the displacement correlation function. Note that

C̄uu(ω) =
∫

d2q Cuu(q, ω).

Thus, using (8) we get

C̄uu(ω) = 2

(2π)3
�(ω)

ω
Im

∫
d2q M0(q, ω)

= 2

2π

�(ω)

ω
Im M̄0(ω). (D.8)

Substituting (D.7) in (D.6) and using (D.8) gives the heat
current J0→1 = �E/A0t0 from solid 0 to solid 1:

J0→1 = 4A∗

(2π)3

∫ ∞

0
dω�(ω)

K Im M0(ω)K Im M1(ω)

|1 + K [M0(ω)+ M1(ω)]|2 ,

where A∗ = (2π)2/a2
0 is the area of the Brillouin zone and

where we have defined

M(ω) = a2
0 M̄(ω) = 1

A∗

∫
q<qc

d2q M(q, ω),

where the q-integral is over |q| < qc with πq2
c = A∗. A similar

equation with T0 replaced by T1 gives the energy transfer from
solid 1 to solid 0, and the net energy flow J = J0→1 − J1→0.
The heat transfer coefficient α = (J0→1 − J1→0)/(T0 − T1) in
the limit (T0 − T1) → 0 gives

α = 4A∗

(2π)3

∫ ∞

0
dω

∂�(ω)

∂T

K Im M0(ω)K Im M1(ω)

|1 + K [M0(ω)+ M1(ω)]|2 .
(D.9)

The derivation above is only valid for high temperature where
kBT > h̄ω0, where h̄ω0 is the highest phonon energy of solid
0. However, we can apply the theory (approximately) to all
temperatures if we take the cut-off wavevector qc to be the
smallest of q1 and q2, where πq2

1 = (2π)2/a2
0 (a0 is the lattice

constant) and q2 = kBT/h̄c0 (c0 is the smallest sound velocity
of solid 0) is the thermal wavevector.

Appendix E

Here we show that (20) reduces to (19) for high temperatures
and when solid 0 is described by an Einstein model. At high
temperatures and weak interfacial coupling, (20) becomes

α = 4kB A∗

(2π)3

∫ ∞

0
dω K 2 Im M0(ω) Im M1(ω). (E.1)

We assume for solid 0 that

M0(ω) = 1

ρ0(ω
2
0 − ω2)− i0+ ,

where ρ0 = m0/a2
0 is the mass per unit area. Thus

Im M0(ω) = π

2ρ0ω0
δ(ω0 − ω).

Substituting this in (E.1) gives

α = 4kBK 2 A∗

(2π)3
π

2ρ0ω0
Im M1(ω0)

= kB K 2

(2π)2
1

ρ0ω0

∫
d2q Im M1(q, ω0).

Substituting (10) into this equation and letting
q = (ω0/cT)x1/2 gives

α = kBK 2

ρ0ρ1c3
T

× 1

8π
Re

∫ ∞

0
dx

2 (γ − x)1/2

(1 − 2x)2 + 4 (1 − x)1/2 (γ − x)1/2
,

(E.2)

where γ = (cT/cL)
2, which agrees with (19).
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Appendix F

Let 1/αc be the interfacial contact resistance associated with
the jump in the temperature (on an atomistic scale) in the
contact area between two solids, and let 1/αspred be the
spreading resistance associated with the interaction between
the heat filaments emerging from all the contact regions. Since
these two resistances act in series one expects the total contact
resistance to be the sum of the two contributions, i.e.,

1

α
≈ 1

αspred
+ 1

αc
.

We can prove this equation and equation (24) using the
formalism developed in [2]. We assume that all the heat energy
flows via the area of real contact. In this case the interfacial
heat current Jz(x) vanishes in the non-contact area. In the area
of real contact the temperature T (x, z) changes abruptly (on
an atomistic scale) when z increases from z = −0+ (in solid
0) to z = 0+ (in solid 1), and the jump determines the heat
current: Jz(x) = αb[T (x,−0) − T (x,+0)]. If we denote
ψ(x) = T (x,−0)− T (x,+0) the equation

Jz(x)[Jz(x)− αbψ(x)] = 0

will be valid everywhere at the interface. From this equation
we get

∫
d2q ′ Jz(q − q′)[Jz(q′)− αbψ(q′)] = 0.

Following the derivation in section 2.2.1 in [2] we get instead
of equation (20) in [2] the equation

1

α
= (2π)2

κ

1

A0 J 2
0

∫
d2q

1

q
〈|�Jz(q)|2〉

+ 1

αb

1

A0 J 2
0

∫
d2x J 2

z (x) = 1

αspred
+ 1

αc
. (F.1)

Here J0 is the average or nominal heat current,
�Jz(x) = Jz(x) − J0, and κ is an effective heat

conductivity, κ−1 = κ−1
0 + κ−1

1 . The first term in (F.1) is the
spreading resistance studied in [2] while the second term is the
contribution from the temperature jump on the atomistic scale
across the area of real contact.
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