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Abstract
A sufficiently strong Coulomb interaction may open an excitonic fermion gap and thus drive a
semimetal–insulator transition in graphene. In this paper, we study the Eliashberg theory of
excitonic transition by coupling the fermion gap equation self-consistently to the equation of the
vacuum polarization function. Including the fermion gap into the polarization function
increases the effective strength of the Coulomb interaction because it reduces the screening
effects due to the collective particle–hole excitations. Although this procedure does not change
the critical point, it leads to a significant enhancement of the dynamical fermion gap in the
excitonic insulating phase. The validity of the Eliashberg theory is justified by showing that the
vertex corrections are suppressed at the large N limit.

(Some figures in this article are in colour only in the electronic version)

The low-energy elementary excitations of graphene are known
to be massless Dirac fermions with linear dispersion [1, 2].
When Dirac fermions are strictly massless, the system has
a semimetal ground state and its Hamiltonian possesses a
continuous chiral symmetry. However, when the Coulomb
interaction is sufficiently strong, the massless fermion
(particle) may combine with an anti-fermion (hole) to form
a stable excitonic pair [3, 4]. As a consequence, the Dirac
fermion acquires a finite mass gap, which dynamically breaks
the chiral symmetry, and the system undergoes a semimetal–
insulator transition. In recent years, this excitonic transition
has been investigated by several tools, including the Dyson–
Schwinger gap equation [3–7], Monte Carlo simulation [8, 9]
and renormalization group [10]. In most of these research
works, it was found that such a transition can take place when
the Coulomb interaction strength parameter λ is larger than
a certain critical value λc. The opening of a fermion gap
can result in important changes in the low-energy properties
[4, 11–14].

Currently, there is still no compelling experimental
evidence for the existence of an excitonic insulating transition
in graphene. In general, there are three possible reasons

3 Author to whom any correspondence should be addressed.

why the excitonic transition has not yet been unambiguously
observed in experiments. First, the Coulomb interaction may
be too weak to induce excitonic pair formation. Second, the
Coulomb interaction is sufficiently strong in certain graphene
materials, but the excitonic transition is suppressed by various
fluctuations and perturbations. Actually, we have recently
examined this possibility and showed [5, 6] that even for a
sufficiently strong Coulomb interaction the excitonic transition
can be destroyed by thermal fluctuations, finite doping,
disorder scattering and the finite lattice effect. Third, the
excitonic transition does happen in some graphene, but the
fermion gap is too small in magnitude to be clearly resolved
by any experimental instruments. At present, it is not possible
to judge what exactly the reason is. In order to examine this
third possibility, it is necessary to determine the magnitude of
the fermion gap precisely.

Most previous research efforts focused on an accurate
determination of the critical point λc [3–9, 14]. However, an
accurate determination of the dynamical fermion gap should be
equally important. As discussed above, the predicted excitonic
insulator is experimentally detectable only when the fermion
gap is sufficiently large. On the other hand, the graphene with
a large gap will have many technological advantages [14]. As
emphasized by Castro Neto [14], if the fermion gap is too
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Figure 1. The bubble Feynman diagram for the polarization
function. The solid line is the free fermion propagator and the wavy
line is the Coulomb interaction function.

small, the interest in the excitonic insulating transition would
be purely academic. Therefore, an exact determination of the
dynamical fermion gap is very important both experimentally
and technologically.

In most previous gap equation analyses of the excitonic
transition, the vacuum polarization function appearing in the
Coulomb interaction function was calculated using the free
propagator of a massless Dirac fermion, which amounts to
assuming the random phase approximation (RPA). Thus the
feedback effect of the dynamical fermion gap on the Coulomb
interaction was simply ignored. The importance of such a
feedback effect can be seen by making a simple qualitative
analysis. As shown in previous works [5, 6], the screening
of the Coulomb interaction due to the collective particle–
hole excitations can have a very important influence on the
excitonic transition because it reduces the effective interaction
strength. Technically, the screening of the Coulomb interaction
is described by the polarization function �(q). At the level of
RPA, �(q) ∝ |q|, so the Coulomb interaction is weakened
due to dynamical screening. Once a finite fermion gap m
is included in the polarization function, we have �(q) ∝
q2/m. This term is much smaller than the term ∝ |q| in the
low momentum regime, so the effective Coulomb interaction
becomes much stronger. From this qualitative analysis, we
know that the feedback effect of the dynamical fermion gap
may play an important role in the gap equation analysis of the
excitonic transition.

In order to compute the dynamical fermion gap more
accurately, it is crucial to study the equations of the
fermion gap and polarization function in a self-consistent
manner. This formalism corresponds to the Eliashberg
theory [15], which was originally developed to describe
the unusual properties of conventional superconductors with
strong electron–phonon coupling [15]. Apart from its
remarkable success in studying electron–phonon interaction-
induced superconductors [15], the Eliashberg theory is also
useful in many other condensed matter problems. In particular,
it is widely adopted when studying the non-Fermi liquid
behaviors in some correlated electron systems with singular
fermion–boson interactions [16–22].

In this paper, we study the Eliashberg theory of the
excitonic gap generation in graphene. To make a general
analysis, we include both finite temperature and finite chemical
potential. After solving the self-consistent equations of the
fermion gap function and polarization function, we found that
the critical point does not change, which is reasonable because
bifurcation theory ensures that the fermion gap can be safely
taken to be zero near the critical point. However, the size of the
dynamical fermion gap is significantly enhanced compared to

that obtained using the RPA polarization function. This implies
that the self-consistent Eliashberg theory plays a crucial role in
an accurate computation of the dynamical fermion gap. The
Eliashberg theory is justified only when the vertex corrections
are unimportant. Within the 1/N expansion, we show that the
vertex corrections are suppressed in the large N limit.

The Hamiltonian for interacting Dirac fermions is

H = vF

N∑

i=1

∫

r
ψ̄i (r)iγ · ∇ψi (r)

+ 1

4π

N∑

i, j

∫

r,r′
ψ̄i (r)γ0ψi (r)

e2

|r − r′| ψ̄ j (r′)γ0ψ j (r′). (1)

As usual, we adopt the four-component spinor field ψ to
describe the Dirac fermion and define the conjugate spinor field
as ψ̄ = ψ†γ0. The 4 ×4γ matrices satisfy the Clifford algebra
[3, 4]. The physical flavor of the Dirac fermion is N = 2.
The total Hamiltonian possesses a continuous chiral symmetry
ψ → eiθγ5ψ , where γ5 anticommutes with γμ, which will be
dynamically broken once a nonzero fermion gap is generated.

The free propagator for a massless Dirac fermion is
G−1

0 (p0,p) = γ0 p0 − vFγ · p. After including the interaction
effect, it is modified to

G−1(p0,p) = A0 p0γ0 − vF A1γ · p − m(p0,p), (2)

where A0,1(p0,p) is the wavefunction renormalization and
m(p0,p) is the fermion gap function. These quantities can,
in principle, be obtained by solving the following complete
Dyson–Schwinger equation:

G−1(p) = G−1
0 (p)+

∫
d3k

(2π)3
γ0G(k)�0V (p − k), (3)

where �0 is the vertex function and V (q) is the Coulomb
interaction function. The bare Coulomb interaction is V0(q) =

e2

2ε0vF|q| , which is clearly long-ranged. After taking into account
the dynamical screening effect from collective particle–hole
excitations, the effective Coulomb interaction function is
modified to

V (q) = 1

V −1
0 (q)+�(q)

, (4)

with �(q) being the vacuum polarization function. The above
gap equation has been studied extensively in recent years
and dynamical gap generation was found when the Coulomb
interaction is sufficiently strong [3–7]. In most of these
treatments, only the leading order of 1/N expansion was
kept. In particular, both wavefunction renormalization and
vertex corrections were neglected [3–7], so that A0,1 = 1 and
�0 = γ0. Moreover, the massless fermion propagator is
widely used when calculating the polarization function shown
in figure 1, and the feedback effect of fermion mass is simply
ignored. Within this approximation, the polarization function
has the form

�(q) = N

8

q2

√
q2

0 + v2
F|q|2

. (5)

The aim of this work is to go beyond the popular RPA
calculation and include the dynamical fermion gap back into
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Figure 2. The polarization operator with the vertex correction, but
without self-energy correction to intermediate fermions.

the polarization function shown in figure 1. The importance
of this treatment can be readily seen by making a simple
qualitative analysis. Generally, the effective strength of
the Coulomb interaction is characterized by two ingredients:
the interaction parameter λ = e2 N/16vFε0, with ε0 being
the dielectric constant, and static/dynamical screening due
to collective particle–hole excitations. While the former is
determined by the substrate of the graphene sample, the latter
is reflected in the polarization function. Within the RPA, the
polarization function (5) behaves as ∝ q in the static limit
q0 = 0. It vanishes linearly as q → 0, so the Coulomb
interaction remains long-ranged. However, the effective
Coulomb interaction is weakened by the dynamical screening
term ∝ q, which arises from particle–hole excitations. In the
chiral symmetry broken phase, the Dirac fermion has a finite
mass. Assuming a constant mass m, the polarization function
becomes

�(q) = N

π
q2

(
m

2q2
+ q2 − 4m2

4q3
arcsin

q√
q2 + 4m2

)
. (6)

In the limit q � m, it is simplified to

�(q) ∝ q2

m
. (7)

In the low-energy regime, this contribution is much less than
the term ∝ q of the polarization function obtained using the
massless fermion propagator (RPA). Physically, this reflects
the fact that a finite fermion gap reduces the dynamical
screening effect. Because of this reduction, the effective
Coulomb interaction becomes much stronger.

In general, the fermion mass gap is not a constant, but
depends explicitly on momentum. To examine the feedback
effect of the fermion gap on excitonic transition, we will utilize
the Eliashberg formalism and couple the fermion gap equation
to the equation of the polarization function self-consistently.

In the Eliashberg formalism, the vertex corrections are
usually ignored. This approximation is well justified in the
electron–phonon interacting systems as the Migdal theorem
ensures that the vertex corrections are suppressed by a small
factor m/M , where m is the electron mass and M is the nuclei
mass [15]. In the present problem, we still have a small
suppressing factor in the vertex corrections based on the 1/N
expansion. This can be explained by considering the vertex
correction diagram for polarization shown in figure 2. In the
large N limit, it is found (details are presented in the appendix)
to have the form

�v(q) = − 8

π2

ln(N e2

8ε0vF
) ln(
q )

N
�(q). (8)

Apparently, we know that

�v(q)

�(q)
∝ ln(N e2

8ε0vF
)

N
, (9)

so the polarization function with vertex correction �v(q)
is suppressed by a small factor ln(N)/N comparing with
the leading polarization function �(q) and therefore can be
neglected in the large N limit. One can verify in a similar
way that the same is also true with the vertex correction
diagram for the fermion self-energy. Similar arguments for
the suppression of vertex corrections are extensively used in
the Eliashberg theories of many physical problems, including
fermion-gauge systems [16, 17], quantum critical points
in itinerant electron systems [18–21], and electron-doped
cuprate superconductors [22]. Moreover, the wavefunction
renormalization A0,1(p0,p) also contain certain powers of
1/N . Therefore, in this paper we will ignore both vertex
corrections and wavefunction renormalizations.

In order to make a more general analysis, we consider the
problem at finite temperature T and finite chemical potentialμ,
and study how the static screening of the Coulomb interaction
due to finite T and μ is affected by fermion mass. We will
work in the Matsubara formalism and replace the fermion
energy p0 by an imaginary frequency, p0 → iωn = i(2n +
1)πT . At finite T , it is convenient to adopt an instantaneous
approximation [3, 4] and ignore the energy dependence of the
interaction function. At finite μ, the frequency iωn appearing
in the fermion propagator should be replaced by iωn − μ.
The instantaneous approximation allows us to perform the
frequency summation over k0 analytically, leading to the gap
equation

m(p) = 1

4N

∑

α=±1

∫
d2k
(2π)2

m(k)√
k2 + m2(k)

× tanh

(√
k2 + m2(k)+ αμ

2T

)
1

|q|
8λ + 1

N�(q, T )
, (10)

where q = p − k. We need to compute the polarization
function �(q, T ) that contains the dynamical fermion mass
function m(q). Within the instantaneous approximation, the
polarization function is defined as

�(q) = − N

β

∑

n

∫
d2k
(2π)2

Tr[G(ωn,k)γ0G(ωn,k + q)γ0],

where the Dirac fermion propagator G(ωn,k) contains the
dynamical fermion mass m(p). Following the procedure
presented in a previous work [5], we can sum over imaginary
frequency ωn and then obtain

�(q, T ) = N

2

∑

α=±1

∫ 1

0
dx

∫
d2k

(2π)2
1

t2

×
[

t ′

t
tanh

(
t + αμ

2T

)
+ t ′′

2T

1

cosh2( t+αμ
2T )

]
, (11)

where we defined three parameters:

t = [k2 + x2q2 + 2xk · q + (1 − x)m2(k)

+ xm2(k + q)+ x(1 − x)q2]1/2,

3
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Figure 3. The λ dependence of dynamical fermion gap at zero
momentum and zero temperature. At physical flavor N = 2, the
critical strength is given by 1/λc = 0.356. When λ < λc, the
excitonic insulating transition cannot happen.

t ′ = xq2 + (2x − 1)k · q + (1 − x)m2(k)

+ xm2(k + q)− m(k)m(k + q),

t ′′ = 2k2 + xq2 + (2x + 1)k · q + (1 − x)m2(k)

+ xm2(k + q)+ m(k)m(k + q).

Now we obtain the self-consistent equations (10) and (11)
for the dynamical fermion mass function and polarization
function. The dynamical fermion mass can be obtained by
solving them numerically.

Here, we would like to make some remarks on the
instantaneous approximation. This approximation was
originally proposed in the study of dynamical fermion
gap generation at finite temperature in QED3 [23, 24].
Technically, when calculating the fermion gap equation and
polarization function, it is possible to sum over the imaginary
frequencies in the Matsubara formalism only when the
energy (frequency) dependence of the polarization function is
neglected. Otherwise, there will be infinitely many coupled
gap equations [23, 24]. Moreover, in order to make a
qualitative analysis of the screening effects, we need to
obtain an (semi)analytical expression for the polarization
function, as equation (11), which can be derived only within
the instantaneous approximation. At zero temperature and
zero chemical potential, it is formally viable to include the
energy dependence of the polarization function. Indeed,
we have solved the fermion gap equation without assuming
the instantaneous approximation [5], but using the RPA
polarization function (5). The effects of the dynamical part of
the RPA polarization function was also investigated in a recent
paper of Gamayun et al [7]. Due to the non-relativistic nature
of the present Coulomb-interacting system, the integrations
over energy and momenta have to be performed separately,
which substantially increases the time needed to perform
numerical computations. In the Eliashberg formalism, we need
to go beyond the RPA level and solve the self-consistently
coupled equations for the fermion gap and the polarization
function. This requires much more computer time and would

significantly reduce the precision of the numerical output. In
order to retain the necessary numerical precision, we use the
instantaneous approximation even at zero temperature and zero
chemical potential.

Before performing the numerical computation, it is helpful
to first qualitatively analyze the effect of the finite fermion
gap on the static screening of the Coulomb interaction. As
an example, we consider the case of finite chemical potential
at zero temperature. At T = 0, the fermion gap equation is
simplified to

m(p) = 1

N

∫
d2k
8π2

m(k)√
k2 + m2(k)

θ(
√

k2 + m2(k)− μ)
|p−k|

8λ + 1
N�(p − k)

,

which couples to the polarization function

�(q) = N
∫ 1

0
dx

∫
d2k
(2π)2

[
t ′

t3
θ(t − μ)+ t ′′

t2
δ(t − μ)

]
.

Now we assume a constant fermion mass gap m. Then the
integration over momentum k in these equations can be carried
out exactly. When μ >

√
m2 + q2/4, the polarization function

behaves as �(q) = Nμ/π . This expression implies that the
Coulomb interaction is now statically screened by the finite
chemical potential and thus becomes short-ranged. Such a
static screening effect will rapidly destroy the excitonic pairing
instability [5]. However, when the fermion gap is relatively
large, m > μ, we have �(q) ∝ q2/m in the low momentum
regime, so the Coulomb interaction remains long-ranged and
is only poorly screened. From this qualitative analysis we
know that, once the feedback effect of the fermion gap is
included, the static screening may be suppressed and the
effective Coulomb interaction may still be strong even at finite
chemical potential. Besides the chemical potential, thermal
fluctuation can also induce static screening [5]. The effect of
the fermion gap on static screening at finite temperature can be
qualitatively analyzed similarly. To gain a more quantitative
understanding on the feedback effect of the fermion gap, we
have to perform a numerical computation.

We have numerically solved the coupled equations of the
dynamical fermion gap and polarization function by means
of a straightforward iterative method. When T = 0, the
fermion gap of zero momentum is shown in figure 3, where
the lower blue (upper red) curve represents the results obtained
using the perturbative (self-consistent) polarization function.
From the numerical results, we know that the critical Coulomb
interaction parameter λc takes the same value in these two
cases (1/λc = 0.356 for physical flavor N = 2). This
fact is easy to understand since the bifurcation theory requires
that the fermion gap should vanish near the critical point
between gapless and gapped phases. However, away from the
critical point in the insulating phase, the fermion gap obtained
using different polarization functions is no longer the same.
The momentum dependence of the fermion gap at T = 0
is shown in figure 4 for different values of λ. The solid
(dashed) lines are the results obtained using a perturbative
(self-consistent) polarization function. The blue, red and green
lines correspond to 1/λ = 0.1, 0.2 and 0.3, respectively. From
both figures 3 and 4, it is easy to see that the dynamical fermion
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Figure 4. Dynamical fermion gap at zero temperature.

Figure 5. Dynamical fermion gap at finite temperature and zero
chemical potential, with 1/λ = 0.2.

gap is significantly enhanced in the Eliashberg formalism.
Specifically, for graphene suspended in the vacuum with 1/λ =
0.295 [14], the fermion gap calculated by the Eliashberg theory
is greater by two orders of magnitude than that calculated using
perturbative polarization.

It is not hard to include the effects of temperature and
chemical potential. The dynamical fermion gap at finite T
and zero μ is shown in figure 5 and the fermion gap at finite
μ with T/
 = 10−7 is shown in figure 6. In both of these
diagrams, the solid (dashed) lines are the results obtained using
a perturbative (self-consistent) polarization function. The
interaction strength is fixed at 1/λ = 0.2. The blue, red, green
and black lines are the results at T/
 = 10−6, 5 × 10−6, 10−5

and 2 × 10−5, respectively, in figure 5 and are the results at
μ/
 = 10−6, 5 × 10−6, 10−5 and 2 × 10−5, respectively,
in figure 6. Here, 
 is the ultraviolet cutoff for momenta.
Apparently, there are substantial enhancement effects of the
dynamical fermion gap in both cases of finite temperature
and finite chemical potential. In the Eliashberg theory, the
static screening effects caused by finite temperature and finite
chemical potential are suppressed, so the fermion gap is nearly
independent of T (see figure 5) and μ (see figure 6).

Figure 6. Dynamical fermion gap at finite chemical potential with
T/
 = 10−7 and 1/λ = 0.2.

The fermion gap enhancement can be understood as
follows. It is well known that the screening of the Coulomb
interaction is determined by the density of states of fermions.
Once the feedback of the dynamical fermion gap is taken
into account, the density of states of fermions is significantly
reduced and the static or dynamical screening effect becomes
less important. As a consequence, the effective Coulomb
interaction becomes stronger, which in turn leads to a larger
fermion gap.

In summary, we have studied the Eliashberg theory
of excitonic phase transition in graphene. After solving
the coupled equations for the dynamical fermion gap and
polarization function in a self-consistent manner, we found
a significant enhancement of the dynamical fermion gap
in the excitonic insulating phase. The enhancement found
within the Eliashberg formalism is due to the suppression
of static or dynamical screening of the Coulomb interaction
by a dynamical fermion gap. Therefore, the self-consistent
treatment of the polarization function should be used in the
accurate computation of the dynamically generated fermion
gap. The validity of the Eliashberg theory is justified by
showing that the vertex corrections are suppressed by a small
factor in the large N limit.
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Appendix

The polarization function�v(q) shown in figure 2 is defined as

�v(q) = −N
∫

d3k

(2π)3

∫
d3 p

(2π)3

× Tr[γ0G0(k + q)γ0G0(k + p + q)γ0

× G0(k + p)γ0 D(p)G0(k)]. (12)

5
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To calculate this function, we will follow the method of Franz
et al [25]. We are mainly interested in the leading behavior of
�v(q) in the q → 0 limit. In this limit, the above integral
has singularities as k → 0 and k → −p. Thus, we may
evaluate the whole integral by expanding the regular parts of
the integrand near these two singular points. Keeping only the
leading terms, we have

�v(q) = −N
∫

d3k

(2π)3

∫
d3 p

(2π)3
Tr[γ0G0(k + q)

× γ0G0(p + q)γ0G0(p)γ0 D(p)G0(k)]
− N

∫
d3k

(2π)3

∫
d3 p

(2π)3
Tr[γ0G0(−p + q)

× γ0G0(k + p + q)γ0G0(k + p)γ0 D(p)G0(−p)]. (13)

Performing a variable shift, k → k − p, for the second term,
then

�v(q) = 2N Tr

[
X (q)

∫
d3k

(2π)3
G0(k)γ0G0(k + q)

]
, (14)

where

X (q) = −
∫

d3 p

(2π)3
γ0G0(p + q)γ0G0(p)γ0 D(p). (15)

The most leading term is found to be

X (q) = − γ0

4π2
ln

(



q

)(
e2

2ε0vF

) ∫ π

0
dθ

cos2 θ − sin2 θ

1 + Ne2

16ε0vF
sin θ

.

(16)
In the large N limit, it is possible to use the approximation

∫ π

0
dθ

cos2 θ − sin2 θ

1 + Ne2

16ε0vF
sin θ

≈ 32ε0vF

Ne2
ln

(
N

e2

8ε0vF

)
, (17)

so that

X (q) = −4γ0

π2

ln(N e2

8ε0vF
) ln(
q )

N
. (18)

After substituting equation (18) into (14), we finally get

�v(q) = − 8

π2

ln(N e2

8ε0vF
) ln(
q )

N
�(q). (19)
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