Laser slowing of CaF molecules to near the capture velocity of a molecular MOT

View the article online for updates and enhancements.

Related content
- Characteristics of a magneto-optical trap of molecules
 H J Williams, S Truppe, M Hambach et al.
- An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing
 S Truppe, H J Williams, N J Fitch et al.
- One-dimensional magneto-optical compression of a cold CaF molecular beam
 Eunmi Chae, Loic Anderegg, Benjamin L Augenbraun et al.

Recent citations
- Quantitative simulation of a magneto-optical trap operating near the photon recoil limit
 Ryan K. Hanley et al
- A buffer gas beam source for short, intense and slow molecular pulses
 S. Truppe et al
- Colloquium: Strong optical forces on atoms in multifrequency light
 Harold Metcalf
Laser slowing of CaF molecules to near the capture velocity of a molecular MOT

Boerge Hemmerling1,2,7,8, Eunmi Chae1,2,8, Aakash Ravi1,2, Loic Anderegg1,2, Garrett K Drayna2,3, Nicholas R Hutzler1,2, Alejandro L Colloly4,5, Jun Ye4,5, Wolfgang Ketterle2,6 and John M Doyle1,2

1 Department of Physics, Harvard University, Cambridge, MA 02138, USA
2 Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
4 JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
5 Department of Physics, University of Colorado, Boulder, CO 80309, USA
6 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7 Present address: Department of Physics, University of California, Berkeley, California 94720, USA.
8 These authors contributed equally to this work.

E-mail: eunmi@cua.harvard.edu

Received 8 March 2016, revised 6 June 2016
Accepted for publication 16 June 2016
Published 10 August 2016

Abstract
Laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap for molecules is achieved. Starting from a two-stage buffer gas beam source, we apply frequency-broadened ‘white-light’ slowing and observe approximately 6×10^4 CaF molecules in a single pulse with velocities 10 ± 4 m.s$^{-1}$. CaF is a candidate for collisional studies in the mK regime. This work represents a significant step towards magneto-optical trapping of CaF.

Keywords: laser slowing of molecules, molecular magneto-optical trap, white-light slowing, cryogenic buffer-gas beam source

(Some figures may appear in colour only in the online journal)

The creation and control of samples of ultracold atoms enabled many milestones in atomic physics, such as Bose–Einstein condensation [1, 2], quantum simulations of many-body systems [3, 4], development of quantum information systems [5], precision measurements and atomic clocks [6, 7]. Ultracold polar molecules may advance these and other areas of science even further, owing to the molecules’ additional degrees of freedom, large electric dipole moments, and chemical characteristics. These properties are at the core of many proposals and experiments [8], including quantum simulation of strongly correlated systems [9–11], precision measurements and tests of fundamental physics [12, 13], quantum information processing [14–16], studies of ultracold collisions [17, 18], and control of ultracold chemical reactions [19–21]. However, a basic requirement for many proposed experiments is trapped molecules at temperatures around 1 mK or below.

Coherent association of ultracold atoms has been successful in generating ultracold ground state molecules at high phase-space densities [22–26]. However, this approach so far is restricted to atomic species with easily accessible laser cooling transitions. This method is not yet applicable to a large variety of molecules, including free radicals such as calcium monofluoride (CaF). An alternative approach is the direct cooling of molecules. A direct cooling scheme typically starts with slowing of molecules to load a trap, where further cooling can take place to reach ultracold temperatures.

Various approaches have been pursued for trapping molecules, including electrostatic traps [27–31], magnetic traps [18, 32–38], and magneto-optical traps (MOTs) [39–42]. These traps are typically $\lesssim 1$ K deep, and therefore a source of cold molecules is necessary. The highest intensity source of cold and slow molecules is the buffer gas beam [43–46], which utilizes collisions with an inert, cryogenic gas. However, even these slow sources still typically inhibit direct loading of traps like a MOT since the vast majority of molecules have velocities above the trap’s capture velocity.
Hence, an initial slowing stage is required to provide a significant fraction of molecules that can be trapped. At present, several groups have managed to slow molecules in various ways [27, 38, 47–49], including laser cooling and radiation pressure slowing [50–52]. Here, we present laser slowing of CaF molecules, originating from a two-stage cryogenic buffer-gas beam (CBGB) source [44, 45], to velocities around 10 m s\(^{-1}\), which is below the expected capture velocity of \(\sim 14\) m s\(^{-1}\) of a molecular MOT for CaF using the \(A(v' = i) - X(v'' = j)\) transition and the laser cooling scheme employed [53, 54].

The complex internal structure of molecules renders the use of a Zeeman slower difficult. Instead, ‘white-light’ slowing is used, in which spectrally broadened lasers counter-propagate with respect to the molecular beam to address a range of velocity classes and the internal hyperfine structure of the molecules, as the molecules decelerate [50, 52]. Due to the divergence of the molecular beam, a significant fraction of the molecules do not reach the MOT capture volume. As a result, the total number of molecules inside a molecular MOT has never surpassed 2000 in recent experiments [40–42]. To realize many of the proposed applications of trapped molecules, such as evaporation of the trapped sample in a sub-solid state, we need to slow the molecules to velocities below 1 m s\(^{-1}\), more than a factor of two slower than a single-stage buffer-gas beam source, and has a flux of \(\sim 10^6\) molecules/steradian/state/pulse [45].

CaF is a favorable candidate for laser cooling due to its highly diagonal Franck–Condon factors (with a measured \(A(v' = 0) - X(v'' = 0)\) branching ratio of \(f_{00} = 0.987\) [55, 56]). It is a \(^2\Sigma^+\) molecule which has a free electron in its outermost orbital. This electron’s spin degree of freedom makes CaF attractive and distinct from bi-alkali molecules. It also has a large electric dipole moment of 3 Debye. The relevant energy levels of CaF are shown in figure 1. The lowest electronic excited state \((A^2\Pi_{1/2})\) has a lifetime of 19.2 ns [56].

We follow the laser cooling scheme reported in [50]. A CaF molecule can scatter about \(10^5\) photons with the \(X(v'' = 0) - A(v' = 0)\) (main) laser and the two vibrational repump lasers (figure 1) before decaying into the higher vibrational states. Rotational branching within each vibrational manifold is avoided by driving a \(P(1)\) rotational transition [57]. Due to the interaction of the electron spin \(S = 1/2\) and the fluorine’s nuclear spin \(I = 1/2\), the rotational state splits into four hyperfine states. Each of these states need to be addressed with laser radiation to keep the molecules in the optical cycle (figure 1 inset). All slowing lasers are spectrally broadened to cover the hyperfine splittings in the ground states and to compensate the changing Doppler shift as the molecules are decelerated. The maximum starting velocity of a molecule that can be addressed in this configuration is then determined by the total width of the spectra of the slowing lasers and their interaction time with the molecules. While a broad spectrum allows for addressing high velocities, the resulting lower power density limits the scattering rate which, in turn, limits the deceleration rate. An alternative approach that would maintain a higher power density is chirped slowing, which was successfully implemented with YO [52]. This latter approach was not employed by us as frequency chirping of the slowing laser pulses is limited by the finite bandwidth of the laser servos (<100 Hz).

Figure 2 shows the spectrum of the main slowing laser. The spectrum is broadened by two sequential phase-modulating electro-optic modulators (EOMs): one covers the hyperfine splitting of the ground state with a 24.8 MHz modulation frequency with a modulation index of \(\approx 4\). The second EOM is driven at a frequency of 4.5 MHz with a modulation index of \(\approx 17\). This drive frequency is chosen to be about half the excited state linewidth of 8.29 MHz to maintain the resonance condition throughout the slowing
Figure 2. Spectrum of the broadened main slowing laser. The zero of the x-axis is set as the center of the broadened spectrum. The first and the second repump lasers are broadened to approximately the same width.

Figure 3. Experimental setup (not to scale). A two-stage cell at around 2 K produces a slow molecular beam with a peak forward velocity as low as 60 m s⁻¹. The X → A laser orthogonal to the molecular beam and the A → C laser at 45° relative to the molecular beam intersect at 50 cm downstream where the molecules are detected. UV photons that are emitted when the molecules decay from the C state to the X state are detected by a photomultiplier tube. The slowing laser is sent in a direction counter-propagating with respect to the molecular beam. Field coils to remix the dark magnetic substates are placed between the cell and the detection region.

The total broadening spans about 400 MHz, which covers all the hyperfine splittings and the velocity change.

The overall experimental setup is depicted in figure 3. CaF molecules are produced inside a 2 K cell by ablation of a vacuum hot-pressed CaF₂ target with 7 mJ, 4 ns long pulses from a frequency-doubled Nd:YAG laser at 532 nm. The resulting CaF molecules are cooled by collisions with cold ⁴He buffer gas and extracted toward the detection region, which is 50 cm downstream from the cell. The molecules travel freely for about 30 cm and are then decelerated by the counter-propagating slowing lasers for the remaining 20 cm. The laser light at 606 and 628.5 nm is generated by two ring dye lasers. An external cavity diode laser, which is set up in a master-slave configuration to injection lock a second diode laser at 628 nm, is used as the 2nd repump laser. Four milliseconds after the molecules are generated, the main slowing laser is applied for a duration of 13 ms. The timing of the sequence is chosen to prevent molecules from being slowed too early to maximize the flux of molecules that reach the detection region in spite of their finite transverse velocity. The 1st and 2nd repump lasers are applied from 2 to 20 ms after the ablation pulse. The intensities of the main, the 1st repump, and the 2nd repump lasers are 260, 260, and 18 mW cm⁻², respectively. Dark magnetic substates generated by optical pumping process about an applied transverse magnetic field (10 Gauss) and are returned to the optical cycle [50, 58].

A two-photon transition is used to detect the molecules. Laser light at 606 nm is sent orthogonally to the molecular beam in the detection region, exciting molecules from the \(X^{2}Σ(v'' = 0, N = 1, J = 1/2, F = 1) \) state to the \(A^{2}Π_{1/2}(v' = 0, J = 3/2, +) \) state. Velocity-selective detection is performed with 729.5 nm light intersecting the molecular beam at a 45° angle in the detection region (the center of our MOT chamber). This light excites molecules in the \(A^{2}Π_{1/2}(v' = 0, J = 3/2, +) \) state to the \(C^{2}Π_{1/2}(v'' = 0, J = 1/2, -) \) state. UV photons are emitted at 331 nm when the molecules decay from the \(C^{2}Π_{1/2} \) state to the \(X^{2}Σ \) state-manifold. These photons are detected by a photomultiplier tube. Due to the parity selection rule, molecules decay from the \(C^{2}Π_{1/2} \) state to the \(X^{2}Σ \) state-manifold. The time-integrated signal (figure 5(a)) shows that slowing lasers modify the velocity distribution of the beam: the number of molecules with speeds \(>80 \) m s⁻¹ has decreased and that of molecules with speeds \(<80 \) m s⁻¹ has increased. It should be noted that the white-light slowing process mainly shifts the velocity of the molecules and does not bunch them up at a final velocity due to the soft edge of our broadened light spectrum. This together with the initial velocity distribution and transverse spreading determines the final velocity distribution.

The signal from the slowest molecules is shown in figure 5(b). Molecules with velocities between 10 \(± \) 4 m s⁻¹ (which is near the expected capture velocity of a MOT for CaF) are observed. They arrive ahead of the predicted time from time-of-flight, indicating that they have been slowed down from a higher initial velocity. The time-integrated signal (figure 5(a)) shows that slowing lasers increase the number of slowed molecules in future experiments, we plan to implement a chirped slowing scheme where the laser detuning is dynamically adjusted such that the...
slowing laser stays resonant while the molecules are being slowed, similar to [51, 59].

In summary, we have demonstrated laser slowing of CaF molecules from a two-stage buffer-gas beam. The slow initial velocity of our source allows slowing over a shorter distance (>20 cm); this, in turn, could lead to an overall increase in the number of molecules captured by a MOT. Once the molecular MOT is achieved, we plan to co-trap an atomic species to study atom-molecule collisions and the possibility of sympathetic cooling of CaF. A promising coolant atom for this endeavor is Li, where the ratio of elastic-to-inelastic scattering rates is predicted to be favorable [60, 61]. We expect the co-loading of an atomic species to be straightforward since it has been demonstrated that an atomic MOT can be loaded directly from our buffer-gas source without additional laser slowing [62]. Generalization of such methods to molecules may pave the way to using ultracold molecules for probing new physics, such as the study of exotic phases of matter using the spin degree of freedom and long-range dipole–dipole interactions of polar molecules [11].

Acknowledgments

We thank Benjamin Augenbraun for proofreading the manuscript. We acknowledge funding support from ARO and NSF.

References

[22] Park J W, Will S A and Zwierlein W M 2015 Ultracold dipolar gas of fermionic 2Na40K molecules in their absolute ground state Phys. Rev. Lett. 114 205302

[40] Patterson D and Doyle J M 2007 Bright, guided molecular beam with hydrodynamic enhancement J. Chem. Phys. 126 154307

[55] Pelegrini M, Vivacqua C S, Roberto-Neto O, Ornellas F R and Machado F B C 2005 Radiative transition probabilities and lifetimes for the band systems $A^1\Pi - X^3\Sigma^+$ of the isovalent molecules BeF, MgF and CaF Braz. J. Phys. 35 950

[58] Shuman E S, Barry J F and Demille D 2010 Laser cooling of a diatomic molecule Nature 467 820

