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Abstract
A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-
frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to
create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews
the type and character of these adiabatic traps and the applications which include atom
interferometry and the study of low-dimensional quantum systems. We introduce the main
concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is
discussed in the context of the Landau–Zener model. The first bubble trap experiment is
reviewed together with the method used for loading it. Experiments based on atom chips show
the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled
with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the
adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are
discussed, including those based on atom chips, time-averaged adiabatic potentials and induction
methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

Keywords: cold atoms, rf traps, manipulating atoms, atom traps, atom chips, dressed states,
adiabatic potentials

(Some figures may appear in colour only in the online journal)

1. Introduction

As the field of ultra-cold atomic physics develops, it becomes
increasingly important to be able to trap and manipulate
atoms in potentials that are more complex than the standard,
well established harmonic potential. For example, quantum
correlations between atoms are greatly enhanced in low-
dimensional systems and in lattices [1]. Flexibility and control

of atomic potentials is also required in the context of matter
wave interferometry, as recently demonstrated in experiments
using double-well and annular potentials [2–4]. Adiabatic
potentials provide a way to make increasingly flexible,
complex, smooth and controllable potentials to meet these
requirements.

In this Topical Review we aim to understand recent
experiments with adiabatic potentials for ultracold atoms. We
start in section 1 with an introduction to radio-frequency (RF)
dressing [5, 6] (i.e. using an adiabatic basis), and we will see
how the first RF ‘dressed’ atom traps (see [7, 3]) worked, and
the significance of the resonant and off-resonant modes of
operation. These early experiments, which are described in
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section 2, made flattened, quasi-two-dimensional clouds of
atoms and were also responsible for the first successful
coherent splitting of a condensate on an atom chip; we will
look at both these configurations. In section 3 we show how a
second RF field can be used both for characterising the
potentials by spectroscopy and for carrying out evaporative
cooling of adiabatically trapped atoms [8–10]. The dressed
atom approach has been very successful as an approach to
making ring traps for atoms [11–16], both theoretically and
experimentally, and we will explore some of the possible
configurations in section 4. We will also see how several
types of cold-atom lattice potentials can be made in section 5
[17, 18]. Finally, in section 6, we present an overview of
recent developments of adiabatic trapping using induction and
the fields generated by induced currents [19].

1.1. Magnetic traps

Before looking at ‘dressing’ [20], we examine the individual
components required: magnetic traps and magnetic resonance.
The basic trapping of atoms with dressed states requires two
components: a static magnetic field and a RF field. The
Zeeman effect shows that spectral lines are split by the pre-
sence of a magnetic field. More importantly here, this means
that the energy of a cold atom in a magnetic field depends on
the field’s absolute value. Figure 1 shows these energies as a
function of the static field strength B0. It is clear that if we
have a magnetic field that varies in space, B r0 ( ), we will have
a potential that varies in space, too. Thus, pure magnetic
trapping simply requires a magnetic field strength that varies
in space; by arranging for a minimum in field strength, we
obtain a trap for so-called weak field seeking states.

To express this mathematically, we first note that the
standard expression for the energy of the atomic dipole with a
magnetic dipole moment m in a static magnetic field B0 is

given by

m= -U r B r . 10( ) · ( ) ( )

The magnetic dipole moment results from the electronic and
nuclear contributions. For most of this review, we focus on
the weak field part of figure 1 where there is a linear
dependence of energy on magnetic field as given in
equation (1). In this situation the projection of the angular
momentum F is a good quantum number, and the atom has a
magnetic dipole moment m m= -g FF B where gF is the
Landé g-factor, and mB is the Bohr magneton. Taking the
direction of the magnetic field B r0 ( ) at a location r as the
local quantisation axis, the projection of the angular
momentum of the sub-state labelled mF is mF , and its
energy in the weak-field regime reads

m=U m gr B r . 2F F B 0( ) ∣ ( )∣ ( )

As an example, a static 3D quadrupole field, produced by
a pair of coils with opposite currents, is described by a field

= ¢ + -b x y zB r e e e2 , 3x y z0( ) ( ˆ ˆ ˆ ) ( )

which has a gradient ¢b in the x–y plane. This magnetic field
configuration provides atom trapping at the origin with a
potential a= + +U m x y zr 4F

2 2 2( ) from
equation (2) with a m= ¢g bF B . Such a quadrupole trap
gives rise to losses by spin flips near the centre where the
magnetic field vanishes (see e.g. [21–23]). A typical magnetic
trap which avoids this problem is the Ioffe-Pritchard (IP) trap
which has a non-zero magnetic field at its centre (typically
produced by an additional coil). Its potentials will be found
from equation (2) and are illustrated for F = 1 in figure 2.

1.2. Dressed trap basics

Dressed traps can be formed for sufficiently strong RF fields
near a region of magnetic resonance. (We will discuss off-
resonant dressed trapping in section 2.2.) In basic magnetic
resonance, the RF radiation couples to an atom through the
interaction (1) involving a static magnetic field B r0 ( ) and an
oscillating magnetic field tB r,rf ( ) from a RF source. For the
typical RF fields used, the electric dipole interaction is neg-
ligible. The location of the magnetic resonance is determined
by when the RF photon energy wrf matches the Zeeman
splitting given by equation (2) (see also figure 1), i.e. reso-
nance occurs in the linear regime when


w

m
w= =

g B r
r , 4F

rf
B 0

L
∣ ∣ ∣ ( )∣

( ) ( )

where wL is the local Larmor frequency. The Larmor
frequency, with a factor of ÿ, is the separation between the
magnetic states. The case of a IP trap is illustrated in figure 2,
with a potential minimum for the upper state. For the case of a
region with a linear gradient of magnetic field in the x-
direction, we see a Larmor frequency which varies linearly in
x in figure 3(a). At any position r, we can define a local

Figure 1. The energies of Zeeman split states of rubidium 87 as a
function of magnetic field strength =B B0 0∣ ∣. The red arrows
indicate typical RF transitions between magnetic sub-levels at
moderate magnetic fields and the blue arrow indicates a typical
microwave transition (to be discussed in section 6). Most
experiments are conducted in the ‘weak’-field, linear regime on the
left side of the figure.

2

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 172001 Topical Review



detuning from resonance

d w w= -r r . 5rf L( ) ( ) ( )

We can suppose that B r0 ( ) defines the local quantisation
direction, i.e. the local spin z-direction such that the
Hamiltonian for a stationary atom in the presence of static
and oscillating fields is

m= +H g F tr B r B r F, .F zB 0 rf( ) ( )(∣ ( )∣ ˆ ( ) · ˆ )

Here tB r,rf ( ) is the RF magnetic field, oscillating with
angular frequency wrf , and potentially varying in space
according to the antenna and way the signal is generated. In
the case of linearly polarised RF radiation, the Hamiltonian
for the interaction of the RF field, assumed to be a cosine
oscillation, with the spin is

 

m m
w

w

= +

+ 

^
+

-

H
g

F
g

F t

F t

r B r B r
2

exp i

exp i ,

6

F
z

FB
0

B
rf rf

rf

( ) ∣ ( )∣ ˆ ∣ ( )∣[ ˆ ( )

ˆ ( )]
( )

where ^B rrf ( ) is defined as the component of tB r,rf ( )
perpendicular to B r0 ( ), and F̂ are the angular momentum
raising and lowering operators: = F F Fix y

ˆ ˆ ˆ . The presence
of ^B rrf ( ), F̂ , and the factor two arise from the rotating wave
approximation (RWA) where the counter-rotating terms are
dropped [24]. The ‘±’ and ‘ ’ signs in equation (6) depend
on whether gF is positive or negative, respectively. If we
follow the standard treatment and change to an appropriate
frame rotating at frequency wrf in the same local basis, we

obtain

d=  - + WH F Fr r r , 7z x0( ) ( ( ) ˆ ( ) ˆ ) ( )

where the ‘±’ sign again depends on the sign of gF, and the
Rabi frequency is



m
W = ^g

r r
2

B . 8F
0

B
rf( ) ∣ ( )∣ ( )

The dressed state potentials, or adiabatic potentials, are
obtained by diagonalising equation (7) in the local basis (z in
the direction of B r0 ( )) to obtain, without further approx-
imation

W ¢H Fr r , 9z( ) ⟶ ( ) ˆ ( )

where the ¢z label indicates the new, local basis, direction and
we introduce the generalised Rabi frequency

dW = + Wr r r , 102
0
2( ) ( ) ( ) ( )

Figure 2. Schematic illustration of the energy levels in a magnetic
trap for a total angular momentum F = 1 where there are three sub-
levels. Only the = -m 1F state is a trapping state in this
configuration (corresponding to the F= 1 ground-state in rubidium
where a negative gF reverses the order of levels compared to a
positive gF). The filled circles indicate the location of atoms in the
magnetic trap. Real numbers of atoms could typically reach 109

depending on trap type and preparation. The magnetic potentials
shown are a 1D section through a typical Ioffe-Pritchard magn-
etic trap.

Figure 3. Schematic representation of trapping in adiabatic potentials
in one-dimension from the point-of-view of the bare and adiabatic
states. (Upper panel): bare, undressed Zeeman energies shown as a
function of position for a magnetic field with uniform gradient
(compare with figure 1 where the x-axis is magnetic field strength).
Magnetic resonance with RF radiation takes place at the location
marked x0. An atom starting in the = +m 1F state and moving from
left to right would undergo a resonant transition at point x0 and end
up in the = -m 1F state, following the thick lines. Example shown
schematically for F = 1 in rubidium. (Lower panel): thick line: upper
adiabatic potential shown for ¢ =m 1F corresponding to the thick
lines of the upper panel. In this case the resonance at x0 shows itself
as a minimum in the adiabatic potential (with the Rabi frequency
W r0 ( ) taken to be constant in this illustration). At the location of the
minimum, the separation of the adiabatic potentials is given by
 W r0 ( ), as in equation (11). Dashed lines: the other two, non
trapping adiabatic potentials ¢ =m 0F and ¢ = -m 1F . Note that in the
dressed atom picture, the adiabatic potentials in the lower panel
belong to a manifold of dressed states [20].
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which should not be confused with the resonant value W r0 ( ).
In this way the dressed potentials are found to be

 

 

d

w w m

= ¢ W = ¢ + W

= ¢ - + ^

U m m

m g

r r r r

r B r 2 ,

11

F F

F F

2
0
2

rf L
2

B rf
2

( ) ( ) ( ) ( )

[ ( )] [ ∣ ( )∣ ]
( )

where ¢mF is, by analogy with mF, a label for the states in the
adiabatic basis (the diagonal basis of equation (9), rather than
the bare basis of equation (7)). As with mF, ¢mF has +F2 1
values from -F to F. These potentials are shown, for
¢ = -m 1, 0, 1F , for a uniform magnetic field gradient in

figure 3 where there is a minimum in the upper adiabatic
potential at the position given by d =x 0( ) in this case.

The diagonalisation of equation (7) corresponds, geo-
metrically, to a rotation about the local y-axis by an angle q r( )
given by

q
d

q p= -
W

Îr
r
r

cos , 0, . 12( ) ( )
( )

( ) ( )

It should be emphasised that the validity of the potentials (11)
depend greatly on the underlying quantities changing slowly
in space, and the full dynamics should include a kinetic term
in the Hamiltonian which produces small velocity dependent
terms in the adiabatic basis of (9): the validity of the
approximation will be partially quantified in section 1.3. Not
only can the detuning d r( ) change in space, but the Rabi
frequency W r0 ( ) can, and the quantisation axis defined by the
direction of B r0 ( ) can also change direction. The rate of
relative change in all these quantities should be small
compared to the generalised Rabi frequency W r( ) for the
dressed potentials (11) to be valid. That is, we require

dW¢ W0
3∣ ∣ and dW ¢ W0

3∣ ∣ for time-dependent motion in
the potentials (see e.g. [25, 26]).

We make a remark about the restriction to linear polar-
isation in equation (7). An equivalent description of the linear
polarisation case is obtained by considering the oscillation to
be divided into two circular components: one which rotates in
the correct sense for magnetic resonance (which is anti-
clockwise about z for a positive gF), and a term which rotates
in the other sense and which is neglected in the RWA. Thus,
if circularly polarised RF is directly applied with the same
amplitude, correct alignment and in the resonant sense, the
Rabi frequency is effectively doubled compared to
equation (8). If the circularly polarised RF has the opposite
sense and good alignment to B r0 ( ), the Rabi frequency is zero
and if the polarisation axis of a circularly polarised field is at
an angle ϑ to z, the Rabi frequency is J+ W r1 cos 20( ) ( ) . As
mentioned above, the correct sense of rotation for good
coupling depends on the sign of gF and this can be used to
modify potentials in a state selective way (e.g. between F= 1
and F= 2 in rubidium 87 [27].) In the general unaligned
elliptical case one needs to compute the projection of the RF
field onto an aligned circular component [28] within
the RWA.

Figure 3 illustrates a situation where, in one dimension,
there is a linear gradient of the magnetic field strength in
space with magnetic resonance at a particular point (x0). If, for

a moment, we view an ultracold atom as a classical particle,
we can see that if it is initially positioned on the lowest sub-
level, to the left of x0 with little or no kinetic energy, it will
subsequently roll down the slope until it reaches the region of
resonance. At the resonance point, and provided the RF field
is sufficiently strong, the atom will be adiabatically trans-
ferred to the upper state. However, if it continues moving
rightwards on the upper state, it will slowly lose the kinetic
energy it gained until it turns around and goes back through
the magnetic resonance region. In this way the atom is trap-
ped around a region defined by the location of the resonance:
the net effect on the atom is to be confined in the adiabatic
potential seen in the lower part of figure 3.

1.3. Semi-classical description with the Landau–Zener model

To get more insight into the concept of adiabatic trapping, it is
useful to recall the Landau–Zener model [29, 30]. The model
was initially defined for two-state (spin-1/2) systems where
the time dependent potential has a linear dependence on time,
i.e.

⎡
⎣⎢

⎤
⎦⎥

l
l

=
-

H t
t V

V t
, 130

0
( ) ( )

where the constant λ describes the rate of change of potential
with time and the coupling V0 is assumed to be a constant. For
an atom moving at an approximately constant speed u, the 1D
constant λ is given by ¶

¶
u U x

x

( ) where U(x) is the potential at
distance x along the direction of motion.

The Landau–Zener model is one of the simplest two-state
models with a non-trivial time dependent Hamiltonian. The
model Hamiltonian does not contain a kinetic term but
nevertheless it still accurately reproduces many aspects of the
dynamics of an atom passing through the resonance region
with a constant velocity. The model has been successfully
used to study the dynamics of wave-packets in molecular
potentials, (see for example [31]). The dressed state quasi-
energies  are found by diagonalising the Hamiltonian (13)
at each space point so that

 l=  + t V t , Landau Zener case. 140
2 2( ) ( ) – ( )

Note that we recover the spin-1/2 Hamiltonian (7) and
energies (11) written for the basic spatial adiabatic energies in
the previous section. The adiabatic energies  are shown
together with the bare (or diabatic) model energies l t in
figure 4(a). Provided the coupling is sufficiently strong, or the
speed of the atom is sufficiently slow, the atom will follow the
adiabatic path. Because the model is analytically solvable
[29–31], we can quantify the non-adiabatic behaviour. In the
limit ¥t ⟶ , the probability P of remaining in the adiabatic
state (a ‘red’ path in figure 4(a)) is

p= - - LP 1 exp , 15( ) ( )

where the adiabaticity parameter Λ plays a central role and is
given by

lL = V . 160
2 ( )
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We note in particular that the probability P above depends
exponentially on the square of the coupling V0. This means that
the adiabatic approximation is extremely good when Λ is rather
larger than unity (e.g. for L > 3). Finally, note that the result
(15) for a two-level system has been generalised to N equally
spaced levels (e.g. when = +N F2 1) [32], where the
modified result is -PN 1 for the probability of remaining in
the adiabatic state. Further, in moving from the Landau–Zener
model to realistic situations with cold atoms we change from a
prescribed time-dependence (lt) to one that is determined by
the dynamics of the atomic motion. This means that an atom
can accelerate to the Landau–Zener crossing point, or it can
change its speed during the crossing, or it may not reach a
crossing at all if it decelerates on an upwards potential.
Nevertheless, we have found that when a crossing takes place,
the Landau–Zener expression (15) works well, for a single
crossing, provided that the classical velocity on the un-dressed
potential is used at the crossing point [33]. However, for a
more complete treatment of non-adiabatic effects for extended
systems, this semi-classical trajectory-based approach should
be replaced by a quantum model [22, 23, 28, 34] which, for
simplicity, we will not consider here. In the following we will
assume that the coupling is strong enough for the probability
(15) to be very close to 1 and for the adiabatic potentials to
describe correctly the dynamics.

1.4. Adiabatic potentials: from RF-induced evaporative cooling
to an atom trap

As an example of how adiabatic following can be viewed in
the dressed atom picture, consider the situation of evaporative

cooling. The standard method used to evaporatively cool
atoms in a magnetic trap involves a RF field which is resonant
at a location away from most of the trapped atoms, but still
within range of the most energetic atoms [35]. The conven-
tional picture is shown in figure 5(a) for an F = 1 case. Only
the atoms reaching the resonance region are transferred to
other sub-levels and lost from the trap (at A or ¢A in
figure 5(a)). Because the most energetic atoms are removed
from the magnetic trap, the overall temperature of the trap is
reduced when it rethermalises, provided the RF frequency
change is slow enough. In figure 5(b) we view the same
process from the dressed picture. Here the RF resonances are
turned into avoided crossings when the Hamiltonian is diag-
onalised. The mapping of the result for the time-dependent
Landau–Zener system onto a spatially varying system results
from considering equations (11) to form the adiabatic
potential. Provided the adiabatic picture is valid, and the
atoms follow their adiabatic potential, evaporative cooling
now clearly results from the finite depth of the lower adiabatic
potential. Adiabatic following implies here that the kinetic
coupling induced between the dressed states by the kinetic
operator can be neglected. The energetic atoms which reach
the top of the lower potential at A (or ¢A ) will thus escape the
magnetic trap, bringing about the desired cooling. Should the
potentials not be sufficiently adiabatic (see e.g. the analysis of
[36]), the efficiency of adiabatic cooling is much reduced as,
ultimately, energetic atoms are not out-coupled from the
magnetic trap. Atoms would also make transitions to other ¢mF

states and subsequently cause losses from the magnetic trap
through collisions. We note that the same potentials seen in
figure 5(b) play an important role in the efficient outcoupling

Figure 4. Features of the Landau–Zener model in the regime where the adiabatic following is imperfect. This is used as a guide to estimate the
requirements for adiabatic following in dressed traps. (a) Time-dependent energies in the Landau–Zener model: the diabatic energies l t are
given by the diagonal elements of equation (13), i.e. H t11( ) and H t22 ( ), and are shown in blue. The adiabatic energies given by equation (14)
are shown in red and make an avoided crossing at time zero similar to a dressed atom trap with its avoided crossing, figure 3, lower panel, at
location x0. (b) The time dependent behaviour for L = 1 (and time scaled with l = 1). We show the bare state probability P t2 ( ), in the case
where the system started in bare state 1. Thus, for -¥t ⟶ the probability P 02 ⟶ , and for ¥t ⟶ the probability in the model
approaches the value given by equation (15) which is indicated by the horizontal line ‘LZ’ for L = 1. For adiabatic trapping this probability
should attain a value exponentially close to unity after the crossing region.
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of an atom laser [37], where one wants to control the height of
the barrier at A or ¢A , allowing atoms to escape with the aid of
gravity.

Thus adiabatic potentials can be useful as a way to
visualise evaporative cooling. If we consider now the upper
adiabatic potential, the same picture in figure 5(b) can be used
to examine our first resonant dressed atom trap. In principle
the location marked B (or ¢B ) in the upper adiabatic potential
is a trap for atoms (in 1D), provided the atoms obey adiabatic
following.

1.5. Adiabatic potentials: a simple example of loading the
atoms into a trap

There are now many configurations for dressed atom traps
but, when proposing new types of trap, one question to be
borne in mind is that of loading the new trap from a standard
source of cold atoms, such as the original magnetic trap. In
figure 5(b) this amounts to requiring the atoms to move from
the minimum in the lower adiabatic potential to the minima in
the upper adiabatic potential: a transfer requiring displace-
ment in both position and energy. One solution [5–7] is
shown in figure 6. The atoms start in a trap with weak,
negatively (red) detuned RF which is ramped up in amplitude
to create an off-resonant adiabatic trap (figure 6(b)). We note
that this kind of negatively-detuned adiabatic trap was created
with microwaves in [38, 39]. Once the trap is created, the
frequency is steadily chirped, so that we pass through the
resonance at the centre of the magnetic trap and extend the
resonance points outwards (figures 6(c) and (d)). At the end of
this procedure, figure 6(d), the atoms are loaded into the
upper adiabatic traps at B and ¢B in figure 5(b) (for details of
this scheme see [6]). A weak point of this approach is that
there is a moment between figures 6(b) and (c) where the
potential is approximately quartic at the minimum leading to
vibrational heating as the potentials evolve. We note that at
this delicate point, in a situation when gravity goes in the x-
direction shown in figure 6, the gravitational field prevents the
appearance of a quartic potential, as in the case of the first
experimental demonstration of a dressed RF trap [7, 40] (see
section 2). In practice one can go a little faster here, and

accept some non-adiabatic heating of the vibrational states of
the trap with possible later cooling (see section 3 and [9]).

2. First experiments

2.1. First experiments: bubble traps for atoms

In moving to the experimental realisation of resonant RF atom
trapping, several important considerations need to be added.
These considerations have some generality across the many
different types of dressed trap and include the three-dimen-
sional nature of the system involving vector fields, the effects
of gravity, collisions and current noise. We describe these
below, in the context of the first experiment, demonstrating
trapping in RF adiabatic potentials.

First, the description in section 1.2 was essentially one-
dimensional. However, in the context of magnetic traps there
is a minimum of the magnetic field strength which means that,
if the chosen RF frequency is higher than this minimum
Larmor frequency, the location of the resonance will be a
closed surface surrounding the minimum point. The effect is
to rotate the one-dimensional picture of figure 5(b) in 3D
resulting in a shell trap for the atoms: an egg-shell-like
trapping surface, or bubble trap, as shown in figure 7. For the

Figure 5. Different ways of looking at evaporative cooling in a
magnetic trap. (a) Bare state picture: magnetic resonance takes place
at A and ¢A and removes the most energetic atoms. (b) Adiabatic
state picture: the labels ‘A’ and ¢A‘ ’ now mark the top of the lower
adiabatic potential. In evaporative cooling atoms with sufficient
energy reach this point and bring about a cooling process. The points
B and ¢B indicate where a resonant dressed atom trap appears in the
adiabatic potential.

Figure 6. An illustrative sequence for loading atoms from bare states
into dressed states, as proposed in [6]. (a) The blue dashed line
shows adiabatic potentials with a very weak coupling and below
resonance at the centre of the trap (F= 1). When the coupling is
increased to its full value, the adiabatic potentials (solid line) show
hardly any change because the RF is very off-resonant over the
region shown in the figure. The black dots at the bottom of the trap
symbolically represent the presence of the atoms. (b) The RF
frequency is increased which moves the adiabatic levels closer
together. This is because d r( ) is reduced in equation (11). (c) The RF
frequency is further increased so that the bottom of the trap goes
through resonance. (d) With further increases in frequency, a clear
double-well potential appears. Note that if gravity were to act along
the x-direction, the double-well structure may become slightly tilted.
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IP trap of figure 7 this shell is a prolate ellipsoidal surface; if
the trap had been formed from the quadrupole field of
equation (3), it would be an oblate ellipsoidal surface.

The second important consideration is that, although
atoms are in principle confined to the surface shown in
figure 7, the vector nature of the electromagnetic fields also
has to be taken into account. In the case of linearly polarised
RF, the maximum interaction occurs when the vector B rrf ( ) is
perpendicular to the static vector field B r0 ( ). Thus, if the
static field changes direction around the egg-shell surface
seen in figure 7, the adiabatic trap will be stronger or weaker
(in adiabatic terms), depending on location. Since the mini-
mum energy of the trap depends on the Rabi frequency (see
equation (11) for W r0 ( ), and the gap in figure 5(b)), an effect
of this coupling inhomogeneity is that the potential energy of
the bottom of the egg-shell varies around the surface of the
shell. In the case shown in figure 7, based on a IP trap with a
strong bias field, the relative direction of the RF and static
magnetic fields changes little and the egg-shell has a fairly
uniform minimum potential. However, in other situations, e.g.
the quadrupole field distribution, there can be dramatic
changes in direction which have to be considered (most
especially during any loading sequence when the atoms may
occupy relatively unusual locations).

The third important consideration is gravity. While atoms
may be confined to an egg-shell such as figure 7, in the
presence of gravity, only the lower part of the egg-shell may
be occupied. An estimate of the importance can be gained by
considering the thermal energy k TB in comparison to Mgh,
where h is the height of the trap and M is the mass of the
atom. For extremely small egg-shells, atoms might be dis-
tributed around the egg-shell, depending on the level of

coupling inhomogeneity mentioned above. More typically,
for ellipsoidal surface traps with larger radii, the atoms fall to
the bottom, as can be seen in figure 8. This figure shows the
first experimental demonstration of dressed RF trapping [7]
and the first adiabatic trapping in the resonant regime. It is
clearly seen that, as the RF frequency is increased to the
highest value shown (bottom panel in figure 8), the atoms
occupy the lower portion of an ellipsoidal surface with larger
radii, resulting in less curvature and a downward shift of the
atomic cloud. The loading scheme used was similar to that
described in section 1.5 and [6]. Systematic results for the
downward shift of the cloud, due to the increasing distance
where magnetic resonance is located, were presented in [7]
and [41].

The dressed atom can be regarded as being in a super-
position of all the bare states (see figure 5(b)), as presented in
[41]. This means that when two dressed atoms collide in an
adiabatic trap, it is arguable that the spin states will change in
a way that selects untrapped adiabatic states, resulting in rapid
trap loss [42]. In practice this does not happen; the dressed RF
traps in [7] had lifetimes for atoms as long as 30 s. The reason
is that, to a good approximation, it is the local basis that
matters for the colliding atoms. In the local basis the loading
process ensures that ¢mF , equation (11), has an extreme value
(it is a maximum stretch state) and, as a result, ¢mF can not
change when two such atoms collide [43]. The validity of this
approach is assured for atomic speeds such that the collisions
take less time than the RF period.

Our final practical consideration is the current noise
leading to fluctuations in both the static magnetic field and the
RF field. Current noise in a simple magnetic trap is known to
lead to heating of the atoms [44]. For a dressed trap, this kind

Figure 7. An ‘egg-shell’ surface for trapping atoms based on a
typical Ioffe-Pritchard magnetic trap. The gold, three-dimensional
ellipsoidal surface shows the location of magnetic resonance points,
i.e. those locations where the strength of the magnetic field matches
the RF frequency through equation (4). The vectors near the surface
indicate the direction of the static magnetic from a typical Ioffe-
Pritchard magnetic trap. In this example, because the static magnetic
field has a dominant direction, a uniform field of linearly polarised
RF radiation from an external antenna of axis y will have a
polarisation approximately orthogonal to the static field (maximal
coupling) over the surface of the ellipsoid. The ellipsoid shown has
dimensions 100 μm × 10 μm × 10 μm and parameters of 100
G cm−1 for the gradient, 100 G cm−2 for the curvature along x, and a
bias field of 1 G. The RF frequency is 703.5 kHz, corresponding to a
resonant isomagnetic surface at 1.005 G.

Figure 8. Images from the first realisation of a resonant dressed RF
atom trap. Taken with permission from [7]. The images show a
sideways view of atoms at approximately 5 μK in a Ioffe–Pritchard
type of trap with RF dressing in the two lower panels. The Rabi
frequency is pW =2 180 kHz. (Top) Initial distribution in the trap,
without dressing; (middle) RF dressing field with frequency 3 MHz;
and (bottom) dressed trap with RF frequency of 8 MHz. In the lower
two panels the atoms are seen in the bottom of a shell (or
bubble) trap.
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of current noise can shift the location and affect the harmonic
frequency of the dressed trap. The resulting dipolar heating
was investigated for dressed RF traps in [45], where it is
found that DC current supplies and RF synthesisers generally
meet the needed requirements. Heating rates below 2 nK s−1

per RF antenna and trap lifetimes longer than two minutes
were observed in [46], which allowed the preparation of a
quasi-two-dimensional quantum gas in a dressed trap and the
study of its dynamics [46–48].

Current noise, and rather fast loading of the dressed trap
both lead to some heating of the atoms. In section 3 we will
examine two approaches that can be used to cool the dressed
atom traps to counteract these effects where necessary.

2.2. First experiments: atom chips and double-wells for
interferometry

RF dressed atom traps have played an important role within
the framework of atom chips [49, 50]. In 2005 it was shown
that a Bose–Einstein condensate (BEC) could be coherently
split under an atom chip by using RF-induced adiabatic
potentials [3]. Later this was followed by other experiments
splitting condensates and observing interference effects with
RF double-well potentials [51–56] or microwave double-well
potentials [57]. Historically, atomic ensembles were first split
apart on atom chips with magnetic hexapole fields [58, 59].
However, there were difficulties in atom chip development for
matter–wave interference because the condensates used in
matter–wave interference are located very close (tens of
micrometres) to the chip surface and thus to the current car-
rying conductors. The currents in those conductors do not, in
reality, take idealised straight-line paths, but actually meander
on a microscopic scale [60]. In addition there is Johnson noise
from the electrons [61] which can have a component resonant
with trap excitations. The overall effect of these issues is,
firstly, to cause a spatial break up of a BEC into pieces, and
secondly to destroy the coherence of a BEC. The dressed-RF
atom trap provides a controllable way of splitting the con-
densate into two coherent pieces in a way which strongly
eases these two problems through its use of superposition
states which protect the condensate [3]. The related issue of
smoothing wire roughness with alternating currents is dis-
cussed in [62, 63].

Many of the atom chip experiments used dressed
potentials in a resonant configuration, as described for the
ellipsoidal surface traps above, or in an off-resonant config-
uration, or both. In the off-resonant configuration, the spatial
dependence of the adiabatic potential comes about from the
spatial variation of tB r,rf ( ), B r0 ( ) and the spatially depen-
dent angle between them, resulting in ^B rrf ( ) in equation (11).
For the production of double-well potentials, the resonant
case can lead to a practical separation of tens of microns, and
the non-resonant case allows separations of a few microns
only, which is useful for atomic interference experiments.
(We note that the non-resonant case has also been used to
create anharmonic distortions in magnetic traps, to manipulate
the vibrational states and have coherent control of trapped
atoms [64–67].) The typical configuration starts with a Z-wire

(or similar) magnetic trap [49], which typically results in a
very elongated magnetic trap. There are many variants of this
type of trap design (see e.g. [49, 68]) of which the Z-wire case
is just one simple example where a current carrying wire is
laid out on the surface of a chip in the shape of an opened out
‘Z’, i.e. as In figure 9(a) we see the long DC wire in cross-
section through the centre of the ‘Z’, i.e. the current I is
flowing into the drawing (in the negative z-direction). An
approximate (2D) magnetic quadrupole field is set up by
means of a bias field at 45◦ to the chip surface, as shown in
figure 9(a). This bias field cancels the field from the wire at
the centre of the quadrupole. There would be a ‘hole’ in the
trap at the centre of the quadrupole, where spin-flip losses
could take place, but an additional uniform bias field (not
shown) is applied in the z-direction, which plugs this ‘hole’
and results in an elongated magnetic trap. Then the dressing
field can be applied to this magnetic trap with additional wires
supplied with RF current: the example set-up, shown in
figure 9(a), has a single RF wire for this purpose. At the
location of the quadrupole, the RF field appears to be along x
and parallel to the component of the static field in the x–y
plane, but the coupling never vanishes because of the long-
itudinal z component of the bias field. In the non-resonant
configuration a double well potential with a separation of a
few micrometres is created because of the inhomogeneity of
the coupling with the linearly polarised tB r,rf ( ) [69]. Note
that in this non-resonant situation, the non-zero value of the
detuning increases the generalised Rabi frequency, see
equation (10), which helps to satisfy the adiabatic condition
with respect to the resonant case.

In this way, by ramping up the Rabi frequency, a con-
densate can be coherently split into two pieces. To show that
this splitting is done coherently, the two pieces could be put
back together again. In [53] a split condensate is recombined
by reducing the RF frequency to change a double-well
potential back to a single-well, and in [70] a recombination is
made with a sudden dip in Rabi frequency. However, to
simply demonstrate coherence in splitting, it is straightfor-
ward to turn off the trapping fields and let the two con-
densates expand until they overlap. An example is shown in
figure 9(b) where the expansion of the atom cloud reaches
length scales rather larger than the initial separation. With the
two clouds overlapping, imaging will show interference
fringes which will be in the same location when the experi-
ment is repeated [3, 51, 54].

Note that a larger separation can also be obtained by
ramping up wrf to frequencies larger than the Larmor fre-
quency at the trap bottom, in a resonant adiabatic potential
configuration [3]. Atom chips can also be used with dressed
microwave potentials to create double-wells and to split
waveguides [57, 71, 72].

3. Spectroscopy, evaporative cooling and holes in
dressed RF atom traps

In this section we consider the effect of a second RF field in
the presence of adiabatically trapped atoms involved with a
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first RF field. There are two purposes for the second RF
mentioned here. Firstly, a weak field can be used as a spec-
troscopic probe of the dressed atom trap: it can quantify the
Rabi frequency and provide location information on the
atoms. Secondly, as remarked above (section 1.5), we note
that the process of loading an adiabatic trap can be one that
creates excitations in the trap (although they could be mini-
mised in some cases through optimal control techniques [73]).
For this reason it may be better to load and then complete
cooling, rather than trying to keep everything cold during a
loading process. The standard technique for final stage cool-
ing is evaporative cooling, which is often done with RF
radiation in a magnetic trap as described in section 1.4. So it
seems natural to try and use RF radiation to cool a dressed-
atom trap. However, RF radiation is already used to form the
dressed RF atom trap and it has to be understood how a
second, cooling RF field might interfere with a dressing
RF field.

In the next section we discuss the structure of the
potentials with two RF fields, based on the work of [9], fol-
lowed in section 3.2 by a discussion of spectroscopy in an RF
trap. Then in section 3.3 we discuss evaporative cooling of
dressed traps (both by using the second RF field and by using
the spatially dependent Rabi frequency, without any second
RF field). Also, in the following sections 3.1–3.3, to avoid
confusion, w1 (and not wrf) and w2 refer to the RF frequencies
of the first and second RF fields, and W r1( ) and W r2 ( ) refer to
their respective Rabi frequencies.

3.1. Resonant surfaces with a second RF field

To gain some insight into the features introduced by a second
RF field, we start by looking at the situation with a first RF
field (w1) in the bare basis, such as used in figure 3 for a linear
magnetic field (top figure for bare state picture ) or figure 5(a)
for a quadrupolar or IP type of field. Figure 10(a) shows the
latter case in 1D with this first RF resonance indicated with

the grey arrows. This first field is resonant at two locations
because the magnetic trap potentials separate from a mini-
mum in the centre of the figure. These two ‘grey’ resonances
actually result from a section through the egg-shell of reso-
nance in figure 7. Taking the case of w w>2 1 for the second
RF (blue arrow in figure 10(a)), it is perfectly arguable, that
for a strong enough Rabi frequency and very different RF
frequencies, separate RF induced adiabatic potentials should
be formed at (two) different locations to the w1 resonance,
defined by positions w wrL res 2( ) .

However, if we look at the same situation in the dressed
basis, figure 10(b), and now consider the second RF photon
energy, it seems remarkable that in this picture the resonance
with the second RF is only on one side of the dressed RF trap.
That is, in this picture we might expect to see blue arrows at
four locations. The dashed blue line in figure 10(b) shows the
alternate resonance for the right-hand adiabatic potential well.
Understanding this is important as figure 10(b) shows exactly
the situation required for understanding a trap spectroscopy,
or RF evaporative cooling, of a dressed RF trap.

This situation of ‘extra’ resonances was explored in [9]
through the use of a ‘doubly-dressed’ basis. This approach is
particularly effective when the picture given in figure 10(b) is
valid, i.e. when the second dressing field is rather weaker than
the first dressing field. In that case an approximate, effective
adiabatic Hamiltonian is found which determines the coupling
and energy of the second dressing field coupling to the first
dressed system. If we denote, as in equation (5),
d w w= -r r1 L( ) ( ) as being the first RF field detuning at

location r, and dW = + Wr r r2
1
2( ) ( ) ( ) as the generalised

Rabi frequency for the first RF field as in equation (10), then
the resonance conditions are given by

w w w w= + W = - Wr rand , 172 1 2 1( ) ( ) ( )

Figure 9. Figures taken from [3] for an atom-chip experiment that produces a double-well potential and matter–wave interference fringes. (a)
The atom-chip set-up with just two wires (one RF and one DC). The bias field at 45◦ forms a local quadrupole field at the location shown
under the RF wire. A double well potential is formed due to the spatial variation in strength and direction of the RF field. (b) Image of
interference fringes from the overlap of the two expanded clouds, i.e. from the release of the atoms from the two potential wells. (Reprinted
by permission from Macmillan Publishers Ltd: [3], copyright (2005).)
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with respective effective Rabi couplings [9]
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We have used the angle θ given by equation (12),
i.e. q d= - Wr r rcos ( ) ( ) ( ).

For each resonance condition, there are in fact two
resonant points on either side of the w1 resonance [9], shown
as coloured solid and dashed arrows around the dressed
minimum in figure 10(b).

At a large detuning w w-2 1 from the first dressing field,
w w- W r2 1 1∣ ∣ ( ), we find that the resonance points are
approximately given by
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with the respective couplings [10]
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In this limit, the first coupling given in equation (20) above is
the expected Rabi frequency W r2 res( ) seen with the solid
coloured arrows in figures 10(a) and (b) (being either red, or
blue, depending on whether w w<2 1, or w w<1 2, respec-
tively). However, for the second coupling in equation (20) we
see that, because we are in the limit w w- W2 1 1∣ ∣ , this
second coupling is much reduced. This agrees with the picture
given in figure 10(a), where the second resonance is not

visible. In fact, though, as w2 approaches w1, the two
couplings become less unequal and also approach each other,
in agreement with figure 10(b) [9].

The last condition for resonance in equation (19) is
suggestive of the multiphoton interpretation of resonances,
illustrated in figure 10(c). Looking first at the right-hand side
of figure 10(c), there is a set of three resonances indicated in
the bare basis (i.e. as in figure 10(a)). Left of the main
resonance is a process involving the absorption of two w1 RF
‘dressing photons’ and the emission of an w2 photon. This
higher order process seen in figure 10(c) corresponds to the
location of the blue dashed line in figure 10(b) and is, of
course, in addition to the first order processes seen in
figure 10(a). A similar argument applies to the red-dashed
resonance which can be decomposed as the third order pro-
cess, involving the emission of two w1 RF ‘photons’ and the
absorption of an w2 photon for the case w w<2 1, seen at the
far right of figure 10(c).

Finally, we draw the reader’s attention to the short black
arrows indicated on the left side of figures 10(b) and (c).
These arrows indicate the locations of a low frequency
resonance at w = W r2 ( ) where transitions are directly stimu-
lated between adiabatic states in the same manifold
(figure 10(b)). The low frequency resonance can also be
viewed in the bare basis as occurring via multiphoton pro-
cesses (figure 10(c)) i.e. from a dressing photon w1 plus, or
minus, the low frequency photon energy. The low frequency

Figure 10. RF resonances with two RF fields. The horizontal axis represents position and the vertical axis indicates potential energy for the
atoms. The effect of gravity is not included for generality and simplicity. (a) Bare magnetic trap potentials for a 87Rb F = 1 atom in a model
Ioffe-Pritchard trap (adapted from [9]). The model potentials are harmonic at the trap bottom, but become linear for larger distance. The
frequency w1 is the main dressing frequency (grey), and the states connected to the trapping adiabatic potential are underlined in bold. An
additional RF field is added with frequency w2 either below w1 (red) or above w1 (blue). For clarity only one of the four possible arrows
indicating resonance is shown in the red and blue arrow cases: the full picture would have couplings just as shown by the grey arrows. (b)
Adiabatic dressed potentials with three selected manifolds are shown for the first dressing field w1, with the locations rres of the w2 resonance
indicated. As explained in [9], additional resonances (with different couplings) appear at new positions ¢r res with a Larmor frequency
w w w¢ = -r r2L res 1 L res( ) ( ) symmetric with respect to w1. The additional resonances are shown by the dashed lines for the two cases w w<2 1

(red dash) and w w>2 1 (blue dash). A direct resonance at position w = W r2 ( ) corresponding to the adiabatic level splitting also appears, as
indicated by the short black arrows. (c) Bare potentials, but with the new resonances of (b) decomposed into multi-photon processes
involving one or two dressing photons. The dressing photons are shown in grey as in (a), but with a single arrowhead indicating absorption or
stimulated emission.
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resonance has been experimentally observed with dressed
atoms [8, 10]; see the next section.

3.2. Spectroscopy of the dressed trap

In practice, the 3D situation makes the simple picture given
above incomplete. We will explore this with figure 11 for the
case of a dressed quadrupole trap shown in 2D cross-section.
In figure 11(a) we see two resonant surfaces either side of the
main trapping surface (marked with a dashed line). Only very
energetic atoms will reach these two surfaces because of the
tight trapping transverse to the trapping surface. For w w>2 1

(w w<2 1), the dominant surface with stronger coupling is the
outer (inner) surface. In off-resonant spectroscopic probing
we start to pick up a tail of the distribution of the atoms, see
figure 11(e). We could also perform evaporative cooling in
this regime. As the frequency w2 approaches w1, the surfaces
eventually meet at the bottom of the dressed trap in
figure 11(b). This is because the Rabi frequency is stronger at
the bottom of the trap in a quadrupole trap with linear and
horizontal RF polarisation in the y-direction. For figure 11(b)
the condition w w- = W2 1 1∣ ∣ is met at the trap bottom. At this
point, in a spectroscopy measurement, the trap will be quickly
emptied, indicating that the bottom of the trap has been
located. This method can be used to determine accurately the
local Rabi frequency in the trap. The Rabi frequency is
slightly reduced as one climbs the sides of the atom trap and,
for this reason, the surfaces meet on the sides of the trap,
figure 11(c), only when the RF frequency w2 is closer to w1

than the value of W1 at the trap bottom, to match the Rabi
frequency at those locations. In a spectroscopic measurement
there is still some atom loss (i.e. a signal) as some thermally
excited atoms can reach the bottom of the second RF reso-
nance surfaces. However, this is typically a narrow regime in
w2, as seen in figure 11(e).

3.3. Evaporation via high and low frequency resonances and
via ‘holes’

For evaporative cooling it is generally desirable to start with a
RF frequency resulting in resonances away from the location
of the atoms, as in figure 11(a) or (c), and then adjust the
frequency so that the evaporation resonance surface approa-
ches the atoms. The second RF can then remove the most
energetic atoms and cool the gas to very low temperatures:
see for example [14, 46].

One can also directly address the gap between the dres-
sed states with a low frequency field. At the minimum point,
this means applying a second RF field with a frequency equal
to the Rabi frequency of the first RF field. In this situation, the
minimum point of the trap is addressed and the atoms will
empty out. However, if the low RF frequency is somewhat
above the Rabi frequency, evaporative cooling can be per-
formed, as demonstrated in [10] and reported in [8, 74].
Evaporation can be maintained by reducing the RF frequency
to approach the Rabi frequency.

The low frequency resonance can be used for
spectroscopy, as outlined in section 3.2 above. However, for

evaporative cooling, rather than spectroscopy, it can be
desirable to use a fairly strong second field to ensure the hot
atoms are out-coupled adiabatically. Non-adiabatic transitions
lead to the population of different ¢mF states which either are
not trapped or lead to collisional losses [36, 43]. For the direct
transition, where w ~ W2 1, the Rabi frequency W r1( ) is
modified by an approximate factor wW2 2 [10]: thus the
coupling is somewhat reduced and we note it is also optimal
for aligned RF and static fields.

Finally, we note that it is possible to perform evaporative
cooling without a second RF field [75]. In this case we can use
the fact that for a quadrupole field, and for RF linearly polar-
ised in a horizontal direction, the Rabi frequency varies hugely
around the resonant ellipsoid: there will always be locations
around the circumference of the ellipsoidal surface where the
Rabi-frequency vanishes. These locations are places where the
dressed trap ‘leaks’, i.e. atoms can escape. But since these
‘holes’ are located high up on the sides of the ellipsoid, at the
equator for a horizontal linear polarisation, only the most
excited atoms can reach the hole and escape. Thus, we can
implement evaporative cooling using this feature, as was
reported in [75], although this evaporation through two holes is
expected to be less efficient than an evaporation through a
whole resonant surface [76]. To adjust the cooling and reduce
temperature the holes can be lowered by controlling the RF
polarisation (using elliptically polarised RF).

(We note briefly that the holes could also be closed by
using a rotating circular polarisation [77] which is a variant of
a TAAP, a time-averaged adiabatic potential, see section 4.3.)
This same kind of evaporation was used in a double well
TAAP in [78].

4. Dressed ring traps

Ring traps for atoms have considerable interest, for example,
as a geometry for excitations and solitons in quantum gases
[79], as a way of pinning a vortex [80], and as an instrument
for Sagnac interferometry [81]. In this context atom chips are
of interest because they may lead to the creation of compact
devices. However, a conventional atom chip approach would
be to create a circular waveguide based on steady currents and
magnetic fields such as in [82]. This is based on the idea that
with current flowing down several long parallel wires on a
chip surface, a magnetic 2D quadrupole field can be created
away from the chip surface [83]. To trap atoms in a circular
waveguide, one simply bends the parallel current carrying
wires into concentric loops. However, a weakness of the
single circular magnetic waveguide is the end effects asso-
ciated with how the currents are brought into and out of the
waveguide loop [84]. The potential issues, where currents
enter and exit a waveguide ring, include distortion of the
circular symmetry and the introduction of local bumps or dips
in the waveguide potential.

In this section, and in section 6, we will see a number of
techniques using dressed atom traps that avoid this problem and
create smooth and symmetric ring traps for ultra-cold atoms.
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4.1. RF egg-shell with optical assist

In 2006 Morizot et al [11] published a proposal for a ring trap
for atoms based on the intersection of two types of potential
for ultra-cold atoms. First, an ‘egg-shell’ potential from a 3D
quadrupole magnetic field dressed to resonance is used. Since
3D quadrupole fields have an axis with higher gradient
(because of Maxwell’s equations3), this steeper gradient is
arranged to be vertical, so that in the x–y plane a circular
cross-section is obtained. Then the egg-shell system is over-
laid with a blue-detuned optical potential formed from vertical
standing waves of light (a 1D optical lattice). The intersection
of these two potentials forms a set of ring potentials, stacked

above each other, with different radii, see figure 12(a). Blue-
detuned light was proposed to exclude atoms from regions of
light and reduce photon scattering in the trap. For practical
values of parameters [11], the trapping frequency in the
vertical direction (optical confinement) is higher than in the
horizontal direction (RF confinement). For example, in [11] a
430 μm diameter ring had a radial frequency of 1.1 kHz and a
vertical frequency of 43 kHz. Indeed, the frequencies can be
sufficiently high to reach a low-dimensional regime for a 1D,
or 2D, quantum gas. A simple loading scheme was proposed
which involved starting with the dressed RF atoms in the egg-
shell trap, applying the blue-detuned standing wave of light to
trap the atoms in a plane at the bottom of the egg-shell, and
then shifting the RF trap downwards in position to open out
the ring [11]. (This latter step can be accomplished by
applying a bias field to shift the quadrupole field downwards.)

Figure 11. Figure showing resonances, or evaporation surfaces for a dressed quadrupole atom trap, with a linear RF polarisation along the y-
axis. In (a)–(c) the dashed line indicates the location of the first dressing field resonance in this 2D section through the magnetic trap. The
solid lines indicate the location of the second RF resonance in three situations: (a) second RF frequency w2 above resonance at the dressed
trap bottom as in figure 10; (b) second RF frequency coincident with the first dressed RF trap bottom; (c) second RF frequency too low for the
first RF trap bottom, but still resonant at higher locations because of the reduced Rabi frequency in the trap when z is increased. In all cases
(a)–(c), both surfaces contribute to the spectroscopy signal. (d) Visualisation in 3D of the outer evaporation surface shown in (c). (e)
Corresponding second RF spectrum (inset shows the full spectrum). The two peaks appear around w w=  W2 1 1. The minima occur at
resonance at the trap bottom. The low (high) frequency wing of the lowest (highest) frequency spectrum correspond to the case (a), the
central wing corresponds to the case (c). For all these plots, the magnetic gradient of the quadrupole trap is ¢ =b 55.4 G cm−1 in the
horizontal directions, the dressing frequency is w p= ´2 400 kHz1 and the Rabi frequency at the trap bottom is pW = ´2 42 kHz1 , as
deduced from the spectra. Data from LPL.

3 This is because the 3D quadrupole field is cylindrically symmetric, which
means the axial field gradient must be twice the radial field gradient to satisfy
the Maxwell equation  =B 0· .
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The scheme was realised in [12], but with the standing wave
of light replaced by two sheets of light. Reference [12] also
demonstrated a novel variation of the loading scheme in
which a blue detuned sheet is applied first before the RF
radiation. This is used to push the atoms away from the zero
region of the quadrupole trap as the RF is turned on. The ring
trapping scheme of [11] has also been realised with light
sheets in [85].

4.2. Atom chip approach to ring traps

At the start of section 4, we mentioned that conventional
atom-chip ring traps, based on purely magnetic waveguides
(without dressing), can have issues with their circular sym-
metry and local bumps or dips in the waveguide potential
where currents enter and exit the waveguide structure. One
approach to resolve this is to use induction methods (see
section 6). Another approach uses two-phase RF currents
[15, 69] to make 2D rings (or tubes in 3D). Figure 13(a)
shows the chip with two RF wires on the underside. By
adjusting the phase difference between the currents of the
wires, the character of the proposed dressed trap can be
changed significantly. The underlying magnetic trap is
formed from DC currents in all three wires shown in
figure 13(a) with appropriate bias fields in the z and vertical
directions. The bias field in the z-direction ensures a func-
tional magnetic trap in all three directions. The bias field in
the vertical direction shifts the magnetic trap to the correct
vertical position. Then, as the lower panel of figure 13(a)
shows, RF currents which are equal amplitude, but in-phase,
or π out of phase create a double-well potential in the 2D
plane shown. When the currents are p 2 out of phase, there
is either a trap not unlike the original magnetic trap, or a ring-
trap in the 2D plane shown. In this latter case, the conven-
tional orientation of atom chips (horizontally, with the atoms
underneath) means that the ‘ring’ belongs to a vertical plane,
a bit like a car tyre, i.e. with a horizontal azimuthal axis. So,
for the ring to be fully populated with atoms, it should either
be very small, or there should be compensation of gravity
from a Rabi coupling gradient [16], or an additional potential,
such as an optical gradient (or a tilt of the chip). The depth of
the ring in the (horizontal) z-direction in figure 13(a) is

determined by the length of the current carrying wires on the
chip and the method used to confine the atoms in the z-
direction. In [15] the confinement was proposed to be formed
by shaping the RF wires and the width was just a micrometre
or so. In general, there are limitations to this approach
because large rings will require large currents to place the
magnetic linear quadrupole away from the chip surface; the
part of the ring near the chip surface may be influenced by
significant deviations from quadrupolar due to the proximity
of the three wires and the finite width of the nearest current
carrying wire, changing the local magnetic field direction.

Figure 13(b) shows a different approach taken from [27].
In this case the ring potential will lie in a horizontal plane and
the underlying magnetic trap is formed from two ring-shaped
and concentric permanent magnets that provide a ‘linear’-type
quadrupole field with a zero that runs around the path of the
ring trap. As a magnetic waveguide this trap would leak
atoms from the centre but, by turning on the dressing field, the
degeneracy at the bottom of the trap is lifted. In the simplest
case, the RF field is generated by a pair of external Helmholtz
coils which are operated out of phase to generate, in general,
an elliptically polarised RF field. In the plane of the trap, the
field can be arranged to be circularly polarised with respect to
a quantisation axis which varies around the circle at the centre
of the quadrupole field so that it is tangent to the ring
(see figure 13(b) (right panel)). This creates a uniform cou-
pling around the ring. Then a dressed-RF trap minimum
occurs when magnetic resonance takes place away from the
centre of the ring quadrupole and around a surface following
the zero field centre: i.e. trapping takes place on the surface of
a torus. By deliberately creating an imbalance in the
currents in the external coils, an elliptical polarisation can
be generated which results in a double-well potential around
the ring: i.e. two ring traps are formed which, for the correct
RF current parameters, can be above each other [27].
A Sagnac interferometer is proposed using this scheme
in [86].

4.3. Time averaged adiabatic potentials (TAAPs)

The technique of obtaining new potentials by means of fast
oscillations of other potentials is well established. The Paul

Figure 12. (a) Schematic showing the original concept of the hybrid RF/optical ring-trap. A ring of atoms is confined by the RF egg-shell
potential radially (with minimum marked in green), and vertically by a blue-detuned optical standing wave (shown in blue). Figure adapted
from [11]. (b) Images, taken from above, from the experimental realisation of the system shown in (a), but with just two sheets of blue-
detuned light [12]. The different cases show different vertical bias fields which have the effect of moving the eggshell potential vertically,
thus changing the ring diameter. (Figure 12(b) reproduced from [12] under a CC-BY 3.0 license.)
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trap for ions [87] works by periodically inverting an unstable
saddle-point potential to obtain a stable trapping potential for
certain trajectories. The TOP trap [88] (time-orbiting poten-
tial) is a magnetic trap for neutral atoms where a lossy field-
zero point which is vulnerable to spin-flips is time-averaged
away to make a well-behaved atom trap. The general principle
is that the time-dependent motion, or oscillation, should be
much faster than the mechanical motion of the atom or par-
ticle in the time-averaged potential. The same approach can
be used with adiabatic potentials to create an even greater
variety of trapping geometries [13]. The proposal to make a
ring trap this way involved the time-dependent motion of an
ellipsoidal surface trap (or more specifically, a dressed 3D
quadrupole field with the strongest field gradient to the ver-
tical). If a uniform vertical bias field is applied, the centre of
the quadrupole field is simply shifted and, as a result, the
surface potential is also shifted vertically. By applying an
oscillating bias field, i.e. a bias field oscillating at a frequency
much less than the RF frequency, or the Rabi frequency of the
dressing field, the ellipsoid is essentially shaken vertically up
and down. Two extrema of the motion, labelled t1 and t2 are
depicted in figure 14(a) with dashed lines indicating the
ellipsoidal surface trap location. The time-averaged potential

minimum is dominated by the time spent in these extremal
locations, and especially at their intersection. Thus, the time-
averaged potential minimum is close to the intersection, and
the full calculations show that a ring trap is formed (with an
isopotential surface shown in figure 14(b)).

These time-averaged adiabatic potentials (or TAAPs)
have considerable potential for variable geometry and one can
drive the trap in several directions as a function of time [13],
as well as modulating the RF amplitude and frequency [89].
One should bear in mind that the driving has to be faster than
the mechanical motion of the atoms (i.e. faster than the
vibrational frequencies) and yet it should also, as mentioned
above, be less than the Rabi frequency and the RF frequency.
In addition, care has to be taken with exotic geometries to
avoid any RF holes due to polarisation (section 3) where
atoms could be lost.

The TAAP was first realised experimentally in [14] with
some quite large and well defined rings (see figure 14(c)), and
in [89], even larger, mm scale rings were formed for Sagnac
interferometry. In addition to rings, we note here that a
double-well potential was experimentally formed with a
TAAP in [78, 90], and the versatility of TAAPs was
demonstrated in [78] where, as well as demonstrating

Figure 13. (a) Atom chip scheme from [15] with the capability to produce a ring trap with its (x–y) plane perpendicular to the chip surface. An
approximate linear quadrupole field is formed from DC currents in all three chip wires. RF currents with a phase difference δ flow down the
outer chip wires. In the case d p= 2, a ring trap is produced. The cases d p= 0, produce double-well potentials in the x–y plane and the
case d p= - 2 produces a single potential well in the x–y plane. This scheme was realised in [16]. (b) Atom chip scheme from [27] which
can produce a ring trap with its plane parallel to the chip surface. A ‘ring’ quadrupole is formed from ring-shaped permanent magnets ((b),
left). It is not necessary to plug the centre of the quadrupole field because, under the right conditions, the dressing forms a trapping region
away from the circular path of the quadrupole centre. The RF is applied from two circular coils (panel (b) right) which can have RF currents
with amplitude and phase differences. Double ring traps and toroidal traps can be formed from this set-up. (Figure 13(a) reprinted with
permission from [15], Copyright (2006) by the American Physical Society. Figure 13(b) reprinted with permission from [27], Copyright
(2007) by the American Physical Society.)
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evaporative cooling, a vortex array was created in the TAAP.
The whole vortex creation process in [78] was engineered
with time-dependent adiabatic potentials.

5. Dressed lattice traps

Artificial lattices have been of importance in atomic physics
for some time [91]. They have allowed the investigation of
previously unseen condensed matter models and play an

important role in the development of atomic clocks [92]. To
date the lattices investigated have been optical lattices; typi-
cally a retro-reflected beam creates standing waves with
periodic light shifts of energy levels.

RF dressed lattices offer different parameter ranges, such
as the possibility for sub-optical-wavelength lattices. The first
theoretical proposal is essentially an extension of the trapping
concept of figure 3 to multiple RF frequencies [18], and even
beyond the two frequencies considered for spectroscopy or
direct evaporative cooling of an RF trap (section 3).

Figure 14. (a) Concept of a TAAP ring trap (time-averaged adiabatic potential ring trap). The trap is formed by time-averaging a vertically
oscillating RF shell trap which is seen in (a) in a section across a diameter of the ring with contours showing the time-averaged potential. (b)
A 3D isopotential surface for the time averaged potential produced by the vertical oscillations of the bubble shown as dashed lines in (a). (c)
Experimental results for atoms trapped in a TAAP ring trap. The atoms are viewed from above in (c) with an absorption image. (Figures 14(a)
and (b) reprinted with permission from [13], Copyright (2007) by the American Physical Society. Figure 14(c) reprinted with permission
from [14], Copyright (2011) by the American Physical Society.)

Figure 15. (a) Lattice trap schematic using multiple RF frequencies in the spirit of figure 3. Detailed calculations include ‘light’ shifts where
one RF resonance shifts the location of another. (b) Taking the coupling into account, the lattice proposal of [18]. (Figure 15(b) taken with
permission from [18].)
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Figure 15(a) shows how the lattice is built by having multiple
magnetic resonances with many RF fields. In fact we can see
from figure 15(a) that every lattice site generated requires two
unique RF frequencies. Provided the underlying magnetic
fields were linear in the one-dimensional space, the RF fre-
quencies would approximately belong to a frequency comb if
a regular lattice is desired. In that case, the lattice spacing is
approximately determined by the frequency comb spacing
and the magnetic field gradient. That is, for a lattice spacing d
and field gradient ¢b , the frequency spacing of RF fields is

mD ~ ¢f g b d h2F B∣ ∣ ( ). The result of a detailed calculation of
the potential (which has to account for the cumulative off-
resonant shifts of the multiple RF fields on each other’s
resonance points), is shown in figure 15(b). One notes,
however, that many RF fields are required to make a long
lattice and that the lattice described is a 1D lattice. In the
proposed variant of [93], a RF square wave produces the
harmonics, but the decreasing amplitudes of those harmonics
means that the 1D lattice is less effective as one travels out
from the centre. In [94] three 1D potential wells are proposed
to be produced with six RF frequencies. The potential wells
are moved in space by controlling the RF frequencies in time.
In this way it was possible to modify the tunelling rates
between the wells for the controlled and efficient transfer of
population between them.

In our second example of rf dressed lattice physics the
dressing field is applied to atoms already in an optical lattice.
This results in a 2D dressed lattice which has been observed
experimentally [17]. The optical field is necessarily off-
resonant, as shown in figure 16(a), and has a well chosen laser
wavelength between the D1 and D2 lines of

87Rb.

The light shifts in the F = 1 ground state of rubidium are
very roughly equal and opposite in the = m 1F sub-levels
with only small shifts in the mF = 0 state (see figure 16(c),
top). The resultant 2D optical lattices are depicted in
figure 16(b) (top). For the RF interaction, the bias field B r0 ( )
and the RF field tB r,rf ( ) are uniform in space and the bias
field is sufficiently strong that we enter the nonlinear Zeeman
effect regime and, in this case, the RF effectively forms a two-
photon transition between = -m 1F and mF = 1 (figure 16(a),
bottom, shown exaggerated). By mixing these optical poten-
tials it is possible to form new structures on a sub-wavelength
scale, as shown in figure 16(c) (bottom). These potential
structures include lattices of ring traps [17]. RF dressed
optical potentials have been further studied in [95, 96] (and
we note a scheme for optically dressed sub-wavelength lat-
tices was proposed in [97]).

Finally, we mention the proposal for lattices to be created
with arrays of wires on an atom chip. In [98] an array of
current carrying wires produced a 1D diffraction grating for
atoms where magnetic-field zeros were plugged with RF
potentials. However, a 2D RF dressed lattice which can trap
atoms has also been proposed in [99, 100] (see figure 17). It is
based on a double-layer atom chip with two perpendicular
sets of parallel wires. A DC current is snaked backwards and
forwards across one set of wires, and an AC current is
similarly sent through the perpendicular set of wires. Because
the currents in adjacent wires go in opposite directions, it is
clear that a system of periodic magnetic fields is created with
a period governed by the wire spacings on the chips. The RF
frequency is chosen to ensure that the lattice is located away
from the surface of the chip. To avoid all the potential ‘holes’,

Figure 16. Hybrid dressed optical-RF 2D lattice in the experiment of [17]. (a) Relevant energy levels of 87Rb involving the off-resonant
coupling of the F = 1 ground state to the D1 and D2 lines. The 35.90 MHz RF is only resonant with the = m 1F states because of the
nonlinear Zeeman effect. (b) 2D lattice potentials for = m 1F (top) and for the upper adiabatic state (bottom) at two Rabi frequencies: 20
and 205 kHz. (c) RF dressed state potentials for Rabi frequencies of zero, 20 and 205 kHz. (Figure 16 is taken with permission from [17].)
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an additional uniform RF field, with the same frequency, has
to be added at an angle in the x–y plane: for details see [99].
By tuning the field amplitudes and phases, a variety of lattices
can be made, including ladder lattices and dipolar lattices; for
examples, see figures 17(b)–(e) and [99].

6. Dressed induction traps

As discussed already in section 4.2, a major issue in the
production of waveguides for ring traps in an atom-chip
realisation is that there are ‘end-effects’ caused by the
necessity of getting currents in and out of the ring. For the
dressed traps of section 4.2 this is circumvented by essentially
using a tube geometry (either a short tube [15], making a ring,
or a tube with two local minima as in [27]). However, another
approach is to create circular currents in conducting loops by
induction. In the original proposal, which does not use dres-
sing, a low frequency EM field couples to a macroscopic
conducting loop of metal [101]. The induced circuital current
creates its own local oscillating field, which has a phase
dependent on resistance and inductance and which varies in
amplitude hugely near the metal loop surface. The combined
original and induced oscillating magnetic field vanishes
around a circle in the plane of the ring. This circle sweeps
back and forth across the induction ring itself during a cycle
of field oscillation. By adding a bias field we can obtain a
situation, reminiscent of the TOP trap, where the circle of
zero field travels around the location where the atoms are
trapped in a time-averaged potential [101, 102].

A dressed variant of the induction trap was proposed in
[19], which operates at higher frequency. There are two
versions involving different arrangements of coils for the
static field B r0 ( ) and RF field tB r, ;rf ( ) see figures 18(a) and
(b). In both cases the RF field is applied to the metal loop and,
because of induction, it produces a spatially varying RF field
which is strong near the surface of the loop. Because of
cancellation between the induced and applied field, the net RF
field is reduced around an approximately circular loop close
to the metallic ring. The loop is inhomogeneous because the
direction of the horizontal bias field breaks the circular
symmetry. However, by rotating the bias field in the hor-
izontal plane, the inhomogeneity in the adiabatic potential is
averaged out (as in a TAAP), and the resulting ring trap is
circular [19]. The minimum of the time-averaged ring trap is
indicated by the white cross in figure 18(c). It is possible to
use the induction method without time-averaging the poten-
tials: for this we can consider the scheme of figure 18(b). In
this case the two bias coils are in an anti-Helmholtz config-
uration, i.e. they produce a 3D quadrupole field at the location
of the ring. With an appropriate RF frequency, a ring trap
(and even a double ring trap) can be produced.

An approach to inductive dressed trapping that avoids
both using a TAAP and precision alignment issues involves a
switch to microwaves [103]. This proposal uses an off-reso-
nant inductive microwave field, as shown in figure 19(a). Off-
resonant microwaves have been used to trap atoms in
[38, 39, 71], and proposed for quantum information proces-
sing in [104]. In [103] the combination of applied and
induced microwave fields creates a circular quadrupole
structure near the inner surface of the metal ring which gives

Figure 17. (a) Figure showing proposed RF lattice construction based on a double-layer atom chip. To create the RF dressed lattice, a DC
current is sent through one set of wires, and an RF current is sent down a perpendicular set of wires. In addition, a uniform external RF field is
applied in the x–y plane. (b)–(e) Resulting examples of 2D lattice potentials calculated for a trapping plane parallel to the chip surface. The
different lattices are obtained by changing the amplitude and phase of the two RF fields: for details of parameters see [99]. (Figures taken
with permission from [99].)
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the spatial dependence of the dressed potentials. The uniform
bias field in this case can be perpendicular to the metal
induction loop because of the different selection rules for
microwave transitions. The field zero in the centre of the
quadrupole guide does not cause atom loss from the dressed

trap because the microwave field is detuned. An interesting
possibility for this geometry is that different planar shapes for
the conductor can be considered (as in figure 19(b)). This is
because the waveguide structure formed does not depend on
modest curvature and, with the vertical bias field, the shape

Figure 18. (a), (b) Arrangements of coils (orange, blue) and conducting metal ring (red) for dressed induction ring traps. The RF coils are
shown in orange and other coils in light and dark blue. In both cases the RF coils are arranged to get an oscillating magnetic flux through the
metal ring. In (a) the blue coils are used to produce a rotating bias field, while in (b) the blue coils produce a static quadrupolar magnetic field.
(c) Radial-vertical section through the time-averaged potentials generated by the configuration (a). The black arc indicates the locus of the
weakest point of adiabaticity as the bias field is rotated [19]. (Figures taken with permission from [19].)

Figure 19. Atomic structure (a) and chip design (b) for a variable shape atomic waveguide for cold atoms from [103]. In (a) we see the F = 1
and F = 2 hyperfine structure of 87Rb with an off-resonant microwave field that forms the basis of the trapping potential. (b) Chip structure
with a conductor (gold colour) in which currents are induced and an induced field created. The resulting fields, with the bias field BDC, creates
a waveguide for atoms (red) near the conductor. As a result the shape of the conductor determines the path of the waveguide. (Figures taken
from [103].)
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can be flexibly changed in the x–y plane. There are limits to
the flexibility: in [103] the approach to a double loop was
considered which showed out-of-plane structures emerging as
the waveguides became very close.

7. Conclusion

Future directions in the trapping and manipulation of atoms
with adiabatic potentials may involve developments in
quantum technology. The ring traps offer various opportu-
nities for Sagnac interferometry and rotation sensing. In this
respect the improvement of atom chips and compact devices
goes in the direction of advances in quantum technology.
Those same atom chips can also create high field gradients
and quite strong magnetic fields. In that respect the nonlinear
Zeeman effect can play a role, as already seen in the dressed
lattice experiment of Lundblad et al [17]. Dressing in the
nonlinear Zeeman regime was investigated more generally in
[105] where weaker and tighter RF trapping was theoretically
predicted. Nonlinear corrections to the Zeeman effect in atom
dressing have already played a role in proposed developments
of improved atomic clocks [106, 107] and may also be
important in situations where there is breakdown of the RWA.

Two or more stacked rings of atoms can be made by
many of the ring trap methods described here, for example, by
sheets of light [11], by using a TAAP [13], permanent magnet
rings [27], or by dressing with an induction ring [19]. These
systems are promising for atom interferometry and measure-
ments of gravity. In the absence of gravity, or rather in the
presence of micro-gravity, it may be possible to observe RF
egg-shells, or bubbles with atoms, or a BEC, spread around
the whole shell. This can be achieved for small bubbles with
the compensation of gravity [5]. For large bubbles and short
times, the experiment could be dropped in a tower [108, 109].
However, for long interaction times the experiment can be
placed into orbit, as should be possible with the NASA Cold
Atom Laboratory, currently under construction [110, 111].

Finally, the relatively new field of atomtronics [112–115]
concentrates on the manipulation of atomic systems in a
modular way which has some analogies with electronics. The
flexible and highly configurable nature of dressed atom
potentials may have a role to play here (for example, dressed
potentials have already been used to make a flexible lens for
atoms [116]). Generally, adiabatic potentials are so versatile
and varied in geometry that we think there may be significant
applications in the future.
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