

View the article online for updates and enhancements.

M T Yamashita¹, F F Bellotti²,³,⁴, T Frederico², D V Fedorov³, A S Jensen³ and N T Zinner³

¹ Instituto de Física Teórica, UNESP—Univ Estadual Paulista, C.P. 70532-2, CEP 01156-970, São Paulo, SP, Brazil
² Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, SP, Brazil
³ Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
⁴ Instituto de Fomento e Coordenação Industrial, 12228-901, São José dos Campos, SP, Brazil

There is a missing R in equation (8) of [1] which should read:

$$f (q_x, n) = 2 \tau_R \left(E_3 - \frac{3}{4} \left(q_x^2 + \frac{n^2}{R^2} \right) \right) \sum_m$$

$$\times \int \frac{d^2 \hat{p}_x}{R \left(E_3 - q_x^2 - p_x^2 \right)} \left(\hat{p}_x - \frac{n^2}{R^2} - n \frac{m}{R^2} \right) \right) \right) \sum_m$$

A factor 2 is missing in equations (12)–(14) in [1]. These equations should read:

$$\tau_R (E) = -R \left(2 \pi \ln \left(\frac{\sinh \pi \sqrt{-E} R}{\sinh \pi \sqrt{-E_2} R} \right) \right)^{-1},$$ (12)

$$\tau_{2D} (E) = \lim_{R \to 0} R^{-1} \tau_R (E) = -\left(2 \pi \ln \left(\frac{\sqrt{-E}}{\sqrt{|E_2|}} \right) \right)^{-1},$$ (13)

$$\tau_{3D} (E) = \lim_{R \to \infty} \tau_R (E) = \frac{1}{2 \pi} \left[\sqrt{E_2} + \sqrt{-E} \right]^{-1}.$$ (14)

These typos do not affect the results and conclusions of [1].

Reference