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Abstract

The recent advances in developing compact laser plasma accelerators that deliver high quality
electron beams in a more reliable way offer the possibility to consider their use in designing a
compact free electron laser (FEL). Because of the particularity of these beams (especially

concerning the divergence and the energy spread), specific electron beam handling is proposed in

order to achieve FEL. amplification.

Keywords: laser wakefield acceleration, free electron laser, seeding, undulator

Introduction

Third generation light provides tuneable light sources from
infra-red to x-ray with a high average brightness [1] and high
repetition rate. Without considering the solutions enabling us
to shorten the bunch [2-4], the pulse duration stands in the
picosecond range due to recirculation, and the peak power
thus remains limited. Our quest is oriented towards shorter
pulse duration and higher intensities for probing matter with
greater temporal and spatial resolution. Presently, the highest
peak intensities in the x-ray range are reached on fourth
generation light sources, thanks to the free electron laser
(FEL) process, enabling short pulses (femtosecond range),
GW power, and longitudinal and transverse coherence.

Free electron lasers [5], as with conventional lasers, rely
on the amplification of a light pulse in a gain medium, the
medium being a relativistic electron bunch produced in an
accelerator. For the amplification process to occur, the elec-
tron beam wiggles in the periodic magnetic field of an
undulator under a resonance condition linking the beam
energy to the undulator field period and strength. The light
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pulse to be amplified can be either provided by the sponta-
neous synchrotron radiation of the beam in the undulator or
by an external source. The gain of an FEL is strongly related
to the electron beam quality, which is determined by its
current, transverse size, divergence (i.e., emittance), charge,
energy, and energy spread. The undulator [6] is characterized
in terms of magnetic field period and strength—the higher the
gain, the shorter the undulator length required to reach
saturation, and the higher the beam quality, the higher the
final output power.

FEL-based x-ray sources have already produced major
breakthroughs because of their ability to study ultrafast phe-
nomena in different domains of science [7]. The advent of
these x-ray FELs also results from the high gains that are
achievable, thanks to the development of radio frequency
linear accelerators (LINACs), which now provide extremely
good beam quality in terms of emittance, energy spread, and
brightness. These facilities being in the km scale, new
directions investigate how to make these FELs become more
compact and more accessible to a larger number of users.

Using plasma acceleration fields of a hundred GV/m
[8, 9], instead of the tens of MV/m in conventional RF ones,
could enable the delivery of GeV electron beams within a few
cm with a compact and high repetition rate laser system. This
opens the possibility of a new class of compact FELs working
at 10 Hz [10, 11]. Electron beams from plasmas have already

© 2014 I0P Publishing Ltd  Printed in the UK
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Figure 1. Free electron laser configurations: (a) oscillator case with an optical cavity enabling storage of the spontaneous emission; (b) self-
amplified spontaneous emission (SASE), where the spontaneous emission emitted in the beginning of the undulator is amplified in one single
pass; (c) seeding, where a coherent source tuned to the resonant wavelength of the undulator enables us to perform efficiently the energy
exchange leading to the density modulation; (d) high gain harmonic generation; and (e) echo enabled harmonic generation (EEHG).

been successfully transported to an undulator and have pro-
duced spontaneous emissions [12—-14]. But achieving FEL
amplification remains to be demonstrated: the difficulty
comes from the intrinsic properties of the electron beam.
Indeed, for an energy of a few hundreds of MeV, while
LINAC beams exhibit typically 1 mm transverse size, 1 urad
divergence with 1 mm longitudinal size, and 0.01% energy
spread, plasma beams are more likely 1 ym transverse size,
I mrad divergence with 1yum longitudinal size, and 1%
energy spread.

We report here on the recent progress that will allow us,
with realistic electron beam parameters that will be shortly
produced by laser plasma accelerators, to demonstrate FEL
amplification.

1. Free electron lasers

1.1. Free electron laser physics

The FEL was proposed in 1971 [5]. The FEL starts from the
spontaneous emission, which is the synchrotron radiation
generated by a relativistic electron beam wiggling in an
undulator, creating a permanent periodic (period 4,,) magnetic
field B,. Synchrotron radiation from an undulator source
consists of a series of harmonics or order n, according to the
so-called resonance condition: 1= A,(1 +K?/2)/2nY? with the
deflexion parameter K,=0.941, (cm)B, (T) and Y, the nor-
malized electron beam energy to its rest energy. The light
wave of wavelength 4 interacts with the electron bunch in the
undulator, inducing an energy modulation of the electrons
that is gradually transformed into density modulation at 4,,
enabling phased electrons to produce emission coherently at
Ay and its harmonics of order n. The light wave—electron
interaction can lead to a light amplification to the detriment of
the kinetic energy of the electrons. The small signal gain is
proportional to the electronic density and varies as the inverse
of the cube of the electron beam energy, depending on the

undulator length. Operation at short wavelengths requires
high beam energies for reaching the resonant wavelength and
thus long undulators (100 m—1 km for 1 A) and high electron
beam density (small emittance and short bunches) for ensur-
ing a sufficient gain. After the light amplification, the electron
energy spread is enlarged, its average energy being reduced
so that the gain decreases and/or the resonance condition is no
longer fulfilled: the FEL saturates [15]. Besides, the light
travels slightly faster than the electrons (it slips over one
wavelength for one undulator period (slippage)), and the
undulator is limited to a length that does not allow the light to
substantially escape from the electron bunch distribution. The
FEL wavelength is simply changed by modifying the mag-
netic field of the undulator in a given spectral range set by the
electron beam energy. The polarization depends on the
undulator configuration.

Various configurations are used (see figure 1). In the
oscillator, the spontaneous emission is stored in an optical
cavity, enabling multiple interactions between the electron
beam and the light wave. An external laser can also be
superimposed on the electron beam in the undulator that is
tuned on the laser wavelength, and it allows for an efficient
energy exchange and harmonic generation. The use of a
coherent external source tuned on the undulator resonance
wavelength is referred to as seeding in the high gain context.
Because of the limited performance of mirrors, high gain
short wavelength FELs are usually operated in the so-called
self-amplified spontaneous emission (SASE) setup, where the
spontaneous emission at the input of the FEL amplifier is
amplified, typically up to saturation in a single pass after a
regime of exponential growth. Once the saturation is reached,
the amplification process is replaced by a cyclic energy
exchange between the electrons and the radiated field.

So far, FELs have been installed on different types of
accelerators [16]. Storage rings provide rather long electron
bunches (10-30 ps) because of the electron beam recircula-
tion. Linear accelerators provide a very short bunch of 10 fs—
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10 ps duration, of interest for ultrashort pulse source pro-
duction and for high electron beam densities. An energy
recovery LINAC (ERL) combines advantages of both types,
with short pulses, few recirculation turns, and energy recov-
ery for power consumption savings. For LINAC-based FELs
and ERL, RF photo-injectors are currently used.

1.2. Infrared to VUV FELs with FEL oscillators and coherent
harmonic generation

The FEL was first experimentally demonstrated in 1977 in
Stanford (USA) in the infrared, using the MARK-III linear
accelerator [17] in the oscillator configuration on a super-
conducting linear accelerator. The second FEL in the visible
range was then achieved in 1983 on a storage ring [18] in
Orsay, France. Very quickly afterwards, the ultraviolet (UV)
and VUV were reached with harmonic generation [19-21].
FEL oscillators in the UV have then been developed in dif-
ferent places such as VEPP3 [22], Super-ACO [23], Teras
[24], NIJI-IV [25], UVSOR [26], DELTA [27], DUKE [28],
and ELETTRA [29] on storage rings and on LINACs at FELI
[30], Jefferson Lab [31], and Jaeri [32]. Oscillator-based
FELs intrinsically present a very good transverse coherence,
as it is mainly determined by the optical cavity [33].

The Super-ACO FEL was first employed for users in the
UV [34] in association with synchrotron radiation for pump-
probe two color experiments [35, 36]. The use of the gamma-
ray generated by Compton backscattering has been exten-
sively developed in the DUKE FEL [37]. Industrial applica-
tions of kW UV FELs have been developed at Jefferson
Lab [38].

The record of the shortest FEL oscillator has been
achieved on the ELETTRA storage ring at 193 nm [39].
Indeed, besides the value of the reflectivity in the specific
spectral range, mirror degradation can occur because of the
synchrotron radiation harmonic content hitting the optics
[40-42].

1.3. Single-pass FEL in the x-ray range

The most usual configuration for an x-ray FEL is the SASE
one [43-45]. The output power follows [46]: P(z) =P, x exp
(z/Lg), with Py the initial synchrotron input power and L, the
gain length characterizing the efficiency of the amplification.
Saturation is reached typically after 20xL, [47], and the
power is orders of magnitude higher than the simple undulator
spontaneous emission. Thanks to recent accelerator advances
(high peak current, small energy spread, low emittance) and
long undulator LINAC-based single-pass SASE, FELs are
blooming worldwide. They now provide tunable coherent
sub-ps pulses in the UV/x-ray region, with record peak
powers (typically GW) and a substantial gain in peak and
average brilliance. After LEULT (Argonne, USA) [48] SASE
achievement in the VUV, FLASH I and II (Germany)
(30-4.5nm) [49, 50] operates for users, the SCSS Test
Accelerator (Japan), (40-60 nm) [51] is presently upgraded
after serving users. In the Angstrom (A) region, the first
tunable fs x-ray FEL has been achieved with 1.5A

(1-10 keV) wavelength and several mJ output energy at the
Linear Coherent Light Source (LCLS, Stanford, USA)
[52, 53] in 2009, using one part of the existing next linear
collider test accelerator (SLAC) room-temperature LINAC at
14 GeV. LCLS 1II is under construction, with a super-
conducting LINAC and flexible polarization [54]. The
Spring-8 Angstrom Compact free electron LAser (SACLA),
the second worldwide x-ray FEL extending the radiation
down to 0.06 nm, has operated since June 2011 [55] (Japan,
8GeV). SACLA (5-20keV) operates with a thermo-ionic
gun, a C band compact linear accelerator of 8§ GeV, 18 five-
meter long in-vacuum undulators of 18 mm period length
with adjustable gaps. Fifty years after the laser discovery [56],
these x-ray FELs constitute the brightest x-ray photon beams
ever produced without competing conventional lasers. They
have already successfully enabled various user applications,
opening a new era for the investigation of matter [57-65],
especially for pump/resonant x-ray probe experiments in
combination with synchronized lasers or for imaging. This
major breakthrough arises from the joint accelerator and FEL
developments. Additional x-ray FEL facilities are forth-
coming, such as the European XFEL [66] on a high repetition
rate superconducting linear accelerator, the Korean XFEL
[67], and the Swiss FEL [68]. The present trend is to provide
a higher availability of the x-ray pulses with high repetition
rate operation through the use of superconducting linear
accelerators. These x-ray FELs, of a typical km length,
typically use 100 m of undulators.

In the SASE regime, the emission usually presents poor
longitudinal coherence properties, with temporally and spec-
trally spiky emissions resulting from non-correlated trains of
pulses [69]. It is possible to suppress the spikes, to improve
the longitudinal coherence, and to reduce the intensity fluc-
tuations and the jitter when the FEL amplifier is seeded with
an external coherent light source that possesses the required
coherence properties [70]. The seed can be an external laser
wave or a short wavelength coherent light source, such as
high order harmonics generated in gas (HHG) [71, 72], which
is injected in order to interact with the electron beam in the
undulator. Saturation is also more rapidly reached than in the
SASE case, which makes the system more compact. In the
high gain harmonic generation scheme (HGHG) [73], a first
laser tuned on the first undulator induces the modulation in
density of the electron bunch, and the radiation is produced in
the second undulator tuned on the harmonic of the injected
wavelength. The FEL pulse temporal and spectral distribu-
tions result from the seed and the FEL intrinsic dynamics. In a
variant, the so-called harmonic cascade configuration, the
wavelength ratio of the two stages is a ratio of integers [74].
In particular cases, super-radiant modes exhibit further pulse
duration narrowing and intensity increase [74]. HHG seeding
was first performed on the SCSS Test Accelerator at 160 nm
[75] and at 60 nm [76], at SPARC with cascading demon-
stration [77], and at 30 nm at s-FLASH [78]. The only seeded
FEL users’ facility is FERMI@ELLETRA (Trieste, Italy)
[79], which uses a conventional laser as a seed. The combi-
nation of HGHG, the fresh bunch technique—where the light
interacts in the second undulator in a non-heated part of the
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electron bunch [80]—and harmonic cascade has recently
enabled a frequency up conversion by a 192 factor [81].
FERMI equipped with APPLE-II undulators [82] also pro-
vides circular polarization to users. The seed level should
overcome the shot-noise [83], and this can become critical for
a short wavelength seed. Seeding enables us as well to get
harmonics up-conversion to a higher order than in the SASE
case [84].

Efficient up-frequency conversion can also be performed
with two successive electron—laser interactions in two
undulators in the EEHG [85] scheme, in imprinting a ‘sheet-
like structure’ in phase space. A conceptual breakthrough in
up-frequency conversion, it has been experimentally demon-
strated first up to the seventh harmonic [86] and up to the
fifteenth [87] on the SLAC and on the Shanghai FEL Test
Facility [88]. Schemes derived from EEHG, such as the triple
mode chicane [89], open perspectives for very short wave-
length (A) and short duration at moderate cost.

There are alternative solutions to handle the spiky spec-
tral and temporal structure of the SASE besides seeding with
laser and HHG. The simplest solution is to operate with low
charge short electron bunches, providing a single spike
regime [90] with a slightly reduced intensity, as was recently
achieved at LCLS [91]. Alternatively, an electron beam
energy chirp (electron energy dependence along the bunch
position) combined with undulator taper (variation of the peak
field along the longitudinal direction) can also efficiently lead
to a single-spike FEL, as experimentally demonstrated at
SPARC [92]. Proper combinations of chicanes and undulator
segments can enable us to phase-lock the radiation [93] (e.g.,
improved SASE and purified SASE). In addition, after the
proposal of seeding directly with the FEL [94], self-seeding
emerged rapidly with the idea of using a single crystal
monochromator [95] for the spectral selection, with the self-
seeding operation both at LCLS [96] and at SACLA [97].

FELs generally present a good transverse coherence [98]
and wavefront [99].

Following the first results achieved in the infrared on an
oscillator [100, 101], single-pass FELs at short wavelength
can also provide two simultaneous colors with adjustable
delay. In the SASE case, with a sufficient margin of undulator
length, two colors are generated in tuning the two series of
undulators at different wavelengths with the delay adjusted by
a chicane, such as the one that can be installed for self-
seeding [102]. In the seeding case, one can fruitfully take
advantage of the pulse splitting effect that can occur for a
particular seed pulse duration with respect to the electron
bunch length [103], as shown at FERMI@ELETTRA with a
chirped seed [104].

One present trend in FEL development focuses on the
improvement of performance in a wide spectral range,with
versatile properties and flexibility for users. One aspect con-
cerns the multiple user operation for reducing the operating
cost per experiment. By enhancing the repetition rate of the
accelerator, thanks to the superconducting technology, suc-
cessive electron bunches or trains can be kicked toward dif-
ferent FEL lines, which then operate simultaneously
[50, 105]. Additionally, with a proper setting of the phase of

the accelerating sections, bunches of various beam energies
can be kicked to different FEL lines to enable a widening of
the spectral range [106]. The other trend aims at reducing the
size, either by exploring further seeding and/or by replacing
the conventional linear accelerator with a compact alternative
one. One can consider laser wakefield accelerators (LWFA)
[9, 10], dielectric accelerators [107, 108], and inverse FELs
[109, 110]. Combining a superconducting LINAC, an LWFA,
and advanced seed schemes is also the key concept of the
LUNEXS (a free electron Laser Using a New accelerator for
the Exploitation of x-ray radiation of 5th generation)
demonstrator project [111, 112]. Indeed, it aims to investigate
the production of short, intense, and coherent pulses in the
soft x-ray region (4—40 nm). The LWFA will be qualified in
view of FEL application. The single FEL line will be com-
posed of the most advanced seeding configurations (HHG
seeding and EEHG) and will be completed by pilot user
experiments to characterize and evaluate performance of these
sources from a user perspective.

2. Progress on laser plasma accelerators

Since the accelerating field in superconducting radio fre-
quency cavities is limited to about 100 MV m™", the length of
accelerators has to increase in order to achieve higher energy
gain. To overcome this size issue, the use of an ionized
medium (a plasma) that can sustain extreme electric fields
naturally appears. The pioneering theoretical work performed
in 1979 [8] showed how an intense laser pulse excites a wake
of plasma oscillations through the non-linear ponderomotive
force associated with the laser pulse. In this scheme, relati-
vistic electrons were injected externally and were accelerated
through the very high electric field sustained by relativistic
plasma waves driven by lasers. The recent development of
laser plasma wakefield accelerators [113, 114] opens a new
path towards compact FELs. In this approach, an intense laser
pulse can drive plasma density wakes to produce, by charge
separation, strong longitudinal electric fields. The accelerating
gradient could reach a few hundreds of GV/m [115]. Since
then, plasmas have been recognized as a promising accel-
erating media. Thanks to the continuing efforts of the com-
munity, major breakthroughs have shown the possibility to
produce stable and high quality electron beams with con-
trollable parameters. Controlled injection is crucial for pro-
ducing high quality electron beams. It is particularly
challenging in laser plasma accelerators, because the length of
the injected bunch has to be a fraction of the plasma wave-
length, with typical values in the 10—-100 microns range. In
this case, electrons experience the same accelerating field,
leading to the acceleration of a ‘monoenergetic’ and high
quality bunch. Electrons can be injected if they are located at
the appropriate phase of the wake and/or if they have suffi-
cient initial kinetic energy. Different schemes (the colliding
laser pulse scheme is shown on figure 2) have been demon-
strated and allow for the control of the phase of injected
electrons [116-126].
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Figure 2. Principle of injection by colliding laser pulses: (a) in the ‘hot’ injection scheme, injection is achieved thanks to momentum (red)
gained by electrons from the plasma wave (green) during the collision, which allows them to cross the separatrix (blue); (b) in the ‘cold’
injection scheme, electrons are injected by being dephased from the front of the main pulse to its back without momentum gain (black); (c)
principle of electron dephasing in a standing wave (dotted line) generated by the collision between two counter-propagating circular laser

pulses.

The recent demonstration of the colliding laser pulses
scheme [116] (with a moderate laser energy—0.7J laser
energy for the pump laser and 0.2 for the injection laser
pulse) has allowed the production of a high quality electron
beam with parameters that still need to be improved for the
demonstration of FEL gain. With the increase of the laser
energy (two laser beams of 2 J each), new injection schemes
are proposed in order to reach the objective.

In 2006, stable and tunable ‘quasi-monoenergetic’ elec-
tron beams were measured by using two counter-propagating
laser beams in the colliding pulse scheme [116]. The use of
two laser beams instead of one offers more flexibility and
enables one to separate the injection from the acceleration
process. The first laser pulse (the pump pulse) is used to
excite the wakefield, while the second pulse (the injection
pulse) is used to heat electrons during its collision with the
pump pulse. After the collision has occurred, electrons are
trapped and further accelerated in the wakefield. As the
overlapping of the lasers is short in time, the electrons are
injected in a very short distance and can be accelerated to an
almost ‘monoenergetic’ beam. This concept was validated in
an experiment using two counter-propagating pulses. It was
shown that the colliding pulse approach allows control of the
electron beam energy, which is done simply by changing the
delay between the two laser pulses and control of the charge
and energy spread by changing the injection laser intensity,
the electron density, or the relative polarization of the two
laser pulses. The robustness of this scheme also permits us to
carry out very accurate studies of the dynamics of the electric
field in the presence of a high current electron beam. Indeed,
in addition to the wakefield produced by the laser pulse, a
high current electron beam can also drive its own wakefield.
This beam loading effect was used to reduce the relative
energy spread of the electron beam to the 1% level [127]. The
existence of an optimal load was observed experimentally and
supported by full three-dimensional particle-in-cell (PIC)
simulations, and it corresponds to a peak current in the
20-40 kA range. To improve the electron beam quality, new
ideas regarding injection control with two laser pulses, such

as the cold injection scheme or transverse colliding laser
pulses scheme, will be addressed experimentally here.

2.1. Cold injection scheme

In the cold injection scheme [128], two laser pulses with
circular polarization collide in the plasma and produce a
standing wave that freezes electrons at the collision point, as
shown in figure 2. After the collision, these electrons are
accelerated in the plasma wakefield, driven by the pump
beam. In this case, no heating is needed, and electrons cross
the separatrix because they keep a constant longitudinal
momentum.

With reasonable laser and plasma parameters, such as for
the main laser pulse parameters ag =4, wo=18 um, 7=30fs,
for counter-propagating laser pulse a;=0.1, w;=15pum,
71=301fs (w is the focal spot size, the index O and 1 refer,
respectively, to the pump and to the injection laser pulses),
and for the plasma, a density is constant at n,=2.5x 10~ n,.
Simulations show that a 62 MeV beam could be produced
with an energy spread of about 1% with a few tens of pC of
charge. Therefore, the energy spread can still be improved by
injecting a lower charge or by shaping temporally the injected
electron bunch.

2.2. Transverse injection in colliding laser pulses scheme

Transverse injection with colliding laser pulses [129] is a new
mechanism that we have observed in PIC simulations. This
mechanism contrasts with previously observed optical injec-
tion mechanisms, which were essentially longitudinal. This
transverse injection is caused by a transient expansion of the
accelerating bubble, which is itself a consequence of the
electron dynamics during the pulse collision. In this process,
good-quality electron bunches (50 pC, 3% energy spread)
having emittance lower than 0.15 mm.mrad should be pro-
duced. Simulations show that in a proper parameters regime,
the bubble as a whole is strongly affected. This deformation is
essential for injection. As shown below, right after the colli-
sion, the bubble transiently shrinks and re-expands, and this
re-expansion triggers the injection of off-axis electrons.
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Figure 3. Snapshots of the electron density during the colliding pulse simulation. Labels indicate the time with respect to the moment of the
collision. The red line represents the trajectory of a typical transversely injected electron in the moving window. The green line depicts the

trajectory of an electron representative of cold injection.

Three consecutive snapshots of this simulation are shown
in figure 3. As mentioned before, the bubble transiently
shrinks (between t=70fs and 7r=100fs) and re-expands
(between t=100fs and r=1501s), the rear of the bubble
moving forth and then back. A first injected bunch with a low
amount of charge (13 pC) is observed at r=99 fs (i.e., before
the bubble starts re-expanding) and at the position
z—ct=-23 ym. It has all the characteristics of cold injection,
and, in particular, it is composed of electrons that were
initially near-axis, as can be seen from the green trajectory. A
second bunch appears after the bubble expands at
z—ct=-25 ym. It contains a much larger amount of charge
(50pC). As can be seen from the plotted trajectory, these
electrons come from a large initial radius and arrive at the rear
of the bubble exactly at the moment that it re-expands. No
further injection occurs once the bubble stops expanding. All
these features are consistent with the theory of injection in an
evolving bubble [129]. The physical explanation for this
phenomenon is that these electrons would normally slip out of
the bubble if it were static, but since the bubble expands as
they arrive at its rear, they remain a little longer inside it and
are accelerated a little more, providing them enough speed to
be injected. The bunch has a good quality: its duration is as
short as 3 fs, and its absolute energy spread is 1 MeV (3%
relative energy spread at 27 MeV). The most remarkable
feature of this injection, and its main advantage over other
optical injection methods, is its very low normalized trans-
verse emittance. For the electrons from transverse injection,
we obtained &,~&,<0.15 mm.mrad. By comparison, the
emittance of the electrons from cold injection is 1.9 mm.mrad.

In consequence, LWFAs can nowadays produce electron
beams in the few hundreds of MeV to 1 GeV range [130-133]
with a typical current of a few kA [134] with reasonable beam
characteristics (relative energy spread of the order of 1%
[127] and a normalized emittance of ~z.mm.mrad [135-137].

3. Strategies towards LWFA-based FELs

Following the recent development of LWFA exposed in the
previous section, one can here consider electron beams with a
typical current of a few kA, bunch length of a few fs, energy
in the few hundreds of MeV to 1GeV range, electron

Transverse Longitudinal

1 pm* 1 mrad lum*1%

1 mm * 1 prad 1 mm*0.01 %

Figure 4. Simplified sketch of transverse (left) and longitudinal
(right) phase space comparison between conventional LINAC (blue)
and LWFA (red) beams.

divergence of typically 1 mrad, an energy spread of the order
of 1%, and normalized emittance (product of transverse beam
size and divergence) of the order of z.mm.mrad for studying
the FEL amplification. For comparison, standard LINACs
with gradients of a few tens of MV/m deliver for x-ray FEL
beams 1nC charge, 1 z.mm.mrad emittance, and 0.01%
energy spread at several GeV. LWFA has still a much larger
energy spread. They so far enable us to observe undulator
spontaneous emission [12-14]. Experiments aiming at
achieving FEL amplification are under way in various places
(LOASIS (Berkeley) [138, 139], Strathclyde University
[140], MPQ [141], LOA /SOLEIL in the frame of the
LUNEXS project [142], et al).

However, using electron beams with the presently
achieved performance in terms of energy spread and diver-
gence does not lead to direct FEL amplification. Typically,
more than one order of magnitude has to be gained in the
energy spread value, the large divergence has to be handled,
and daily operation should be more reliable for achieving
proper FEL saturation. An adequate beam manipulation
through the transport to the undulator is required for FEL
amplification.

3.1. LWFA electron beam properties

With respect to conventional accelerators, LWFA beams
present very different characteristics of phase space: in
longitudinal, short bunch duration, and large relative energy
spread and in transverse, large divergence, and micrometer
size. Indeed, LWFA beams somehow exhibit orthogonal
characteristics as compared to conventional accelerators (see
figure 4). With a typical divergence of 1mrad, bunch
lengthening induced by the slowed large diverging particles
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Figure 5. Transverse and longitudinal phase space calculated with tracking homemade simulation starting from a 400 MeV electron beam
with 1 mm.mrad normalized emittances with a size of 1 um and a divergence of 1.25 mrad, a 1% energy spread for a 2 fs RMS pulse, and a
20 pC charge leading at the exit of the first step, with a triplet of 150 Tm™" located 5 cm from the source: 2.2 kA, 20 pC, large up to 20
(horizontal) and 70 (vertical) mm.mrad emittance with correlation with position, 1% slice energy spread.

can easily occur. In addition, there might also be an increase
of the chromatic total emittance because of the large diver-
gence. The initial short bunch (or high peak current) and
emittance may then be rapidly spoiled.

3.2. Handling of the divergence

To preserve the emittance and the bunch length, the beam has
to be refocused just after the gas cell of electron generation
[143—-146]. One assumes a six-dimensional (6D) Gaussian
distribution without any correlations, analytical estimations
that can be derived up to the second order, and a short
duration low emittance electron bunch with large initial
divergence propagation in free space. One considers a strong
magnet quadrupole, located at a distance L, from the source;
its integrated normalized strength K, has to equal 1/L, to
cancel the divergence.

The RMS bunch length o after the quadrupole is given
by 6§=6§0+36li()]_4[21/2, and the total normalized emittance
after the quadrupole ¢, is expressed as 8ﬁ=£ﬁ0+a’iOprY2,
with L, the quadrupole position from the source, oy, ¢'xo,
oYy, and &, the initial rms bunch length, divergence, energy
spread, and normalized total emittance.

To limit the emittance and bunch duration growth, the
quadrupole should be located as close as possible to the
source, which implies the need to install very strong and
compact quadrupoles [146]. This is illustrated in the case of
the LUNEXS parameters: a 6D Gaussian bunch without any
correlations at 400 MeV, having a total normalized rms
emittance of 1 z.mm.rad (1 m 1.25 mrad), a 1% rms relative
energy spread with an rms bunch length of 2 fs, and a mod-
erate charge of 20 pC, leading to 4 kA peak current. The beam
divergence induces second order bunch lengthening and an
achromatic total emittance increase, leading to a butterfly-like
transverse phase space, as shown in figure 5. These second
order effects are contained for small values of L, ie., in
locating the quadrupole close to the source (here 5 cm), thus
requiring a compact and very strong permanent triplet of
quadrupole magnets of a few hundred T/m [147]. We found
almost no amplification with 3D analytic expression of the
FEL gain [148] and GENESIS [149] simulations, mainly
because of the too-large value of the slice energy spread. The

slippage (difference in speed between electrons and emitted
light (CK§/4}/2), i.e., NA, with N the number of the undulator
period) also limits the possible FEL amplification, since the
light is rapidly escaping the electron bunch’s longitudinal
distribution (lasting only a few fs) after only few periods (six
for 200 nm and 4 fs). At minimum, a reduction of the energy
spread by a factor 10 down to 0.1% is mandatory to start the
FEL process.

3.3. Handling of the energy spread

A spread in the average electron beam energies will lead to a
spread of the resonant condition and degrade the FEL gain.
There are different strategies for handling the energy spread.

The first one consists of implementing a chicane [150-
152] composed of four identical dipole magnets of length Ly,
deviation 64, and separation Lg4; between first and second
dipole and L4, between second and third dipole. It creates a
linear strength r;. given by 1. =2 6% (Lg1 +2 Lg4/3). The bunch
can be easily lengthened for slippage handling by playing on
the chicane strength according to 62 =020+ (e o,,O/y)z. Slice
peak current drops as I = Iy o50/0;, but the slice energy spread
is accordingly reduced as o,,=0, 0y /os and electrons are
sorted per slice in energy, as illustrated in figures 6(a) and (b).
The chromatic emittance also drops. The bunch lengthening
dramatically reduces all the downstream collective effects, as
confirmed by additional simulations, including 3D space
charge and coherent synchrotron radiation. Resistive wall and
beam pipe geometry should also be considered. The slice
energy spread of the beam is reduced from 1% to 0.1% with a
bunch lengthened from 2fs to 20fs, leading to a large
increase of the radiation peak power. Figure 6(c) shows full
tracking through the transport, including expected FEL output
power estimated with the 3D analytic model, together with
GENESIS simulations. This figure shows that the longitudinal
demixing manipulation enables the FEL power to grow sig-
nificantly and to achieve efficient lasing, even in the
50-10 nm spectral range. The bunch length is increased from
4 up to 50 fs by the chicane, relaxing the slippage constraints.
A good agreement is found between the analytic model and
the GENESIS simulations, though somehow limited by the
growth of several transverse modes. The chicane can be used
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as a knob to trade off between the energy spread reduction,
the peak current decrease, and the slice emittance recovery,
with a rather smooth optimum.

In fact, the chicane also introduces a linear energy chirp y
(s)=s/t., and the light pulse slips along the electronic dis-
tribution because of the speed difference so that the light falls
out of resonance after several periods. In consequence, the
magnetic field of the undulator is slightly changed along the
propagation direction (the so-called taper) in order to maintain
the resonance condition for its effective length. Further pre-
liminary time-dependent GENESIS simulations considering
the chirp and its compensation with the proper undulator taper
[153-156] confirm the gain in peak power due to the chicane
within 20% with respect to the analytic estimate (figure 7(a)).
Figures 7(b) and (c) exhibit the spectral and temporal dis-
tributions of the achieved FEL considering the chirp and a
taper compensation. They seem to indicate that, starting
without chicane with a few fs long pulse with a broad and
spiky spectrum, the FEL pulse is shaped by the chicane
manipulation towards smooth Gaussian shapes, accompanied
by a two orders of magnitude increase of peak power without

significant change of the FEL pulse duration (20-30 fs) in the
single spike. It results in a gain of four orders of magnitude on
the radiation brightness (10?” ph/s/mm?®mrad®/0.1%BW
at 40 nm).

Before entering the undulator, one has to refocus the
electron bunch in the first part of the undulator. One can
further take advantage of the particular correlation existing in
the electron beam phase space, in adjusting smoothly the
focusing of the electrons inside the undulator from slice to
slice, by properly setting the first series of quadrupoles, the
chicane, and an additional set of quadrupoles located before
the undulator so that particles contribute more efficiently to
the amplification. With this so-called ‘Chromatic-matching’
[152], the effective electron density is increased, and the peak
FEL power is enhanced by one or two orders of magnitude.

Seeding is also largely considered for LWFA-based FEL.
One can generate harmonics on crystals or in gas from the
powerful laser which produces the electrons, with a natural
synchronization with the electrons. Seeding will be quite
beneficial for the LWFA-based FEL, since it will enable one
to reduce the saturation length and to avoid a then too-large
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Figure 8. CATIA general integration view of the COXINEL LWFA
demonstration setup. General view of the COXINEL LWFA
demonstration setup (from right to left): LWFA chamber (gray) with
the first set of quadrupoles and a current beam transformer, magnetic
chicane (red), quadruplet of quadrupoles (pink), undulator (case of 2
meter U20 undulator), dipole for beam dump (red), and spectro-
meter (blue).

slippage. Furthermore, one can also aim at somehow playing
with the FEL performance (such as spectral and temporal
distributions, polarization, and up-frequency conversion).

In the frame of LUNEXS studies, a test experiment is
under preparation [159, 160]. Figure 8 shows the transport
line from the LWFA electron source to the undulator. The
FEL will use the electron beam generated at the Laboratoire
d’Optique Appliquée (LOA) with the 2 x 60 TW laser in the
colliding scheme and the associated gas chamber, transport,
and FEL equipment available or prepared at SOLEIL. This
includes variable permanent magnet quadrupoles, FEL char-
acterization tools, and available undulators from SOLEIL
(one 2 m long in-vacuum undulator of 20 mm period U20, a
3m long innovative cryo-ready in-vacuum Ul5 undu-
lator [161]).

The alternative to the demixing chicane is to use a
transverse gradient undulator [157, 158]. The concept here is
to generate a linear horizontal dependence of the undulator
vertical field combined with a dispersion of the electrons. The
transverse gradient undulator is created by canting the mag-
nets, resulting in AK,/K,=ax, x being the horizontal coor-
dinate. The dispersion function # links the transverse position
with the energy variation according to x=#5 AY/Y. One can
adjust the energy such as = Q+K>/a K2

Further studies will include sensitivity to parameters and
tolerance studies. The stability of LWFA can become chal-
lenging. From this prospect, the chicane setup might appear to
be more robust than the transverse gradient one.

Additionally, start-to-end simulations starting from PIC
calculations are under progress.

4. Conclusion

Specific transverse and longitudinal manipulation of the
electrons along the electron transport to the undulator to
handle the LWFA electron beam properties towards FEL
amplification have been discussed. The divergence can be

handled by strong quadrupoles located very close to the
electron source. Electron beam manipulation by chicane
decompression or by the use of transverse gradient undulator
suggests that significant amplification with the present
LWFA performance has become possible. The chicane
‘sorts’ the electrons by energy (in putting forward high
energy particles and back low energy ones), reducing the
slice energy spread and lengthening the bunch. Further,
synchronized focusing, by taking advantage of the particular
correlation existing in the electron beam phase space, can
provide an efficient amplification. Seeding can also be
applied, enabling one to reduce the undulator length and to
somehow manipulate the FEL properties. In addition, the use
of in-vacuum APPLE-II type undulators can be considered
for polarization control.

An experimental demonstration would represent a major
breakthrough, opening the way to the so-called fifth genera-
tion light source of compact laboratory-size FEL sources at
reasonable cost. It would enable widespread use of these
sources in a larger scale, revolutionizing access for
researchers of different fields. Several groups are presenting
working towards an experimental demonstration of the laser
effect while exploring new concepts of electron beam
manipulation with existing LWFA before stepping to a
dedicated test machine. These expected results will then
provide a major contribution towards the fifth generation light
sources, with future compact light sources and FELs. Also,
since LWFA appears to be an attractive candidate for the next
generation of colliders, such an FEL experimental demon-
stration will provide an intermediate qualification in the goal
towards TeV LWFA colliders of long-term interest for high
energy physics.
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