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Abstract
The photoabsorption by an electron bound by a two-centre potential has been investigated
within the framework of the zero-range potential model. Expressions for total photoabsorption
cross sections and for the photoelectron angular distributions have been derived for
fixed-in-space and randomly oriented targets. The analytical formulae for gerade and
ungerade molecular states have been used to analyse separately the molecular effects due to
the two-centre ground state of quasi-molecule and diffraction effects that are connected with
the spherical waves in the molecular continuum. It is shown that the interference of these
waves significantly influences the magnitude of the cross sections near threshold but does not
significantly distort the shape of the photoelectron angular distribution and it depends rather
weakly on the character of the forces acting between the electron and molecular residue:
Coulomb forces for neutral molecular photoionization or the short-range forces in the case of
photodetachment of molecular negative ions. It is shown that despite the fact that the
photoionization of diatomic molecules is reminiscent of Young’s double-slit experiment, the
similarity between these processes has been grossly exaggerated. This is confirmed by
comparing the results of the classical interference of an electron scattered by two spatially
separated centres with molecular photoelectron angular distributions.

(Some figures may appear in colour only in the online journal)

1. Introduction

In 1966, Cohen and Fano [1] discussed the photoionization of a
homonuclear diatomic molecule and explained the oscillatory
behaviour of the cross sections observed in the valence
photoionization of N2 and O2 up to photon energy ∼60 eV.
Despite the fact that the process considered in [1] was based on
a simple model of molecular ion H2

+, the formulae obtained
in that paper describe the K-shell photoionization of some
homonuclear diatomic molecules quite well.

More recently, the Cohen and Fano formulation has been
of great interest in connection with developing spectrometric
methods [2–5] in which the energy and momentum of the
ejected electron correlate with both the polarization of ionizing

photons as well as with the energy and momentum vectors of
all of the remaining fragments after ionization. From these
data, the mutual orientation of photoelectron momentum and
molecular axes can be determined for each emission event
detected. The use of these methods for homonuclear diatomics
is of special interest because these molecules are characterized
by the symmetry of their atomic constituents, which leads to
considerable differences in photoelectron angular distributions
between gerade and ungerade molecular states [6]. Measuring
selectively the photoelectron angular distributions of these
states avoids the cancelling out of diffraction effects [7].

Interpretation of these experiments assumes that the
photoionization of the homonuclear diatomic molecule can
be regarded as a molecular Young’s double-slit experiment
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where the coherent emission of the spherical electron waves
originating from two spatially separated sources gives the
interference patterns. However, the analogy between these
two processes cannot be considered as complete because the
molecular photoionization is defined by the amplitude for a
transition from the molecular ground state to the continuum,
while the interference pattern in a Young-type experiment
(YTE) has no connection with the molecular ground state
but is formed due to the continuum wavefunction only. In
this context, it is interesting to analyse how the diffraction
pattern according to the Cohen and Fano model [1] is
associated with the interference pattern in the YTE, i.e. the
relative contributions of the initial discrete state and the final
continuum state.

A qualitative picture of electron wave scattering by
a two-centre target in YTE is shown in figure 1(a). On
the left is the plane wave and on the right, according
to the Huygens–Fresnel principle, there are two spherical
waves; their interference creates the diffraction pattern. It is
this picture of classical diffraction that is described in [1],
‘Diffraction phenomena should occur when electrons released
within a multi-center molecular field. From Huygens’ point
of view, the two atoms of N2 constitute two separate sources
of photoelectrons. Superposition of the emission from these
two sources produces an interference pattern whose properties
should depend periodically on the ratio of the inter-nuclear
distance to the photoelectron wavelength. This interference
may modulate the cross section for photoabsorption by
whole molecule’. However, the photoionization process is
considered in [1] within the framework of zero-order Born
approximation; the scattering picture in this approximation
is given in figure 1(b). On the right and left of the target,
there are plane waves only. In other words, using the Born
approximation specifically omits any interferences in the
final state of the molecular photoionization. As a result, in
this approach electron wave diffraction similar to YTE, as
described above, is omitted from the Cohen–Fano model [1].
Theoretical consideration of molecular photoionization within
YTE evidently requires going beyond the ideas of the model
[1]. The plane wavefunction for the molecular continuum
would have to be replaced by a wavefunction that obeys the
Huygens–Fresnel principle, i.e. beyond the target it should
include, in addition to the plane wave, the spherical waves
emitted from two atomic sites. It is precisely the existence of
the spherical waves of the molecular continuum, which are
absent in the zero-order Born approximation, that makes the
molecular photoionization process similar to Young’s double-
slit experiment.

In this paper, the aim is to analyse how the spherical waves
generated in the process of scattering of the photoelectron
waves by the molecular atoms influence the differential and
total cross sections of molecular photoionization. In [8], we
proposed a model of the molecular system that allowed this
analysis to be analytical. This is a model of the two-centre
quasimolecule formed by two zero-range potentials. These
potentials provide an accurate description of the behaviour
of particles interacting with one another through short-
range forces, e.g. a proton and a neutron in a deuteron

(a)

(b)

(c)

Figure 1. Qualitative picture of the electron wave crests for:
(a) Young’s double-slit diffraction; (b) the Cohen–Fano model;
(c) the Dill–Dehmer model [16].

[9] or an electron in atomic or molecular negative ions
[10]. The important advantage of these potentials is that
the wave equation describing the electron in their field has
exact analytical solutions for both the weakly bound electron
and the low-energy continuum. These wavefunctions, unlike
the system of the functions in the model of [1], (i) are
mutually orthogonal, (ii) take into account exactly the multiple
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scattering of an electron by the two centres and (iii) meet
the Huygens–Fresnel principle, i.e. they have the correct
asymptotic behaviour.

In section 2, we present the general formulae for the
cross section for molecular photoionization in gerade and
ungerade states which follow from the Cohen and Fano model
[1]. In section 3 within our model [8], the formulae for
differential and total cross sections are derived, both for fixed-
in-space molecules and for randomly oriented molecules. The
cross sections resulting from these two models are compared
in section 4. Next, section 5 presents the differential cross
sections for electron elastic scattering and a comparison
of the diffraction patterns of the classical Young’s double-
slit interference with the molecular photoelectron angular
distributions is given. Finally, section 6 presents the summary
and conclusions.

2. The Cohen and Fano model [1]

The wavefunctions used in [1] are defined as follows: the
ground state wavefunction of the H2

+ molecular ion is a linear
combination of the wavefunctions of the separate H atoms with
effective charges z∗. The gerade ground state of the system is
described by

ψg(r) = 1√
2(1 + S)

[u(r + R/2) + u(r − R/2)]. (1)

The position of the electron is indicated by r, vector R is
the internuclear distance (figure 1(a)), u(r) is the ground-state
electron wavefunction for an H atom, and S is the overlap
integral. The final state wavefunction of the photoelectron in
all space is a plane wave, which corresponds to the zero-order
Born approximation. The dipole matrix element for molecular
photoionization by photons with polarization e is defined by
(atomic units are used throughout the text)

Mg = −i
∫

e−ik·r(e · ∇)ψg(r) dr, (2)

with k the wave vectors of the photoelectron. Integrating (2)
by parts, we obtain the equalities

Mg = (e · k)

∫
e−ik·rψg(r) dr

=
√

2(e · k) cos(k · R/2)

∫
e−ik·ru(r) dr/

√
(1 + S). (3)

The differential photoionization cross section for the gerade
state of a fixed-in-space molecule is defined by the absolute
square of this matrix element:

dσg(ω, R)

d�k
∼ |J|2(e · n)2 cos2(k · R/2)/(1 + S). (4)

Here J is the integral in the last term of equation (3), and
the unit vector n = k/k. The vector R is introduced as an
argument in the cross section σ (ω, R) to stress that we are
dealing with a fixed-in-space molecular system. Averaging
equation (4) over all possible directions of the molecular
axis gives the differential photoionization cross section for
randomly oriented molecules:
dσg(ω)

d�k
= 1

4π

∫
dσg(ω, R)

d�k
d�R

∼ |J|2(e · n)2

(
1 + sin kR

kR

) /
(1 + S). (5)

The differential cross section, equation (5), can be written
equivalently as

dσg(ω)

d�k
= σH (z∗)

4π
[1 + 2P2(e · n)]

(
1 + sin kR

kR

) /
(1 + S).

(6)

Here σH (z∗) is the total photoionization cross section of
a single H atom with effective charge z

∗
, and P2(e · n)

is the Legendre polynomial of the second order. The total
photoionization cross section of the gerade state of the
molecule is then [1]

σg(ω) =
∫

dσg(ω)

d�k
d�k

= σH (z∗)
(

1 + sin kR

kR

) /
(1 + S). (7)

Repeating the above development for the ungerade ground
state

ψu(r) = 1√
2(1 − S)

[u(r + R/2) − u(r − R/2)], (8)

we obtain instead of equations (4), (6) and (7) the following
expressions:

dσu(ω, R)

d�k
∼ |J|2(e · n)2 sin2(k · R/2)/(1 − S), (9)

dσu(ω)

d�k
= σH (z∗)

4π
[1 + 2P2(e · n)]

(
1 − sin kR

kR

) /
(1 − S),

(10)

σu(ω) =
∫

dσu(ω)

d�k
d�k

= σH (z∗)
(

1 − sin kR

kR

)/
(1 − S). (11)

Because of the similarity with the diffraction features
of the two-centre systems, the modulation factors Fg,u =
[1±(sin kR)/kR] in equations (7) and (11) are interpreted in [1]
as a consequence of interference in molecular photoionization.
However, these periodic modulations are not the result of the
superposition in the continuum of the spherical waves emitted
by the separate sources of photoelectrons, as is the case in YTE.
They have a completely different nature. Their appearance in
the photoionization cross sections ‘is due to detailed properties
of valence orbitals’ [1], i.e. due to the multicentre structure of
the initial state molecular wavefunction.

3. Photoabsorption of electron bound by two
zero-range potentials

Consider the photoabsorption by a quasimolecular system
in which an electron is bound by two identical short-range
potentials separated by a distance R. We assume that the bound
state wavefunction is localized about each of the centres and
the region of its localization is small compared to R so that the
initial state wavefunction remains essentially atomic-like. The
character of this molecular system is in essence a model of
the negative molecular ion. As in the model [1], the bound
state wavefunctions in the field of two centres located at
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r = ± R/2 are reasonably approximated as gerade and
ungerade linear combinations of one-centre wavefunctions
[8]:

ψg(r) =
√

q

4π

[
e−q|r+R/2|

|r + R/2| + e−q|r−R/2|

|r − R/2|
]

,

ψu(r) =
√

q

4π

[
e−q|r+R/2|

|r + R/2| − e−q|r−R/2|

|r − R/2|
]

. (12)

Here it is assumed that qR � 1 so that the overlap-integral
S = 0; the wave vector q is connected to the electron binding
energy by the relation I = q2/2.

The continuum wavefunction for s-wave scattering of a
slow electron by two centres is given by [8]

ψ+
k (r) = eik·r + C1(k)

eik|r+R/2|

|r + R/2| + C2(k)
eik|r−R/2|

|r − R/2| . (13)

The coefficients C1 and C2 in equation (13) have the form

C1(k) = ad − bd∗

a2 − b2
, C2(k) = ad∗ − bd

a2 − b2
, (14)

where the parameters a = exp(ikR)/R, b = ik − k cot δ0 =
ik +q and d = − exp(ik ·R/2). The phase δ0 here is the phase
shift for s-wave scattering by the short-range potential and is
connected with q by the relation q = −k cot δ0 [8, 9]. Formally
the second and third terms in the wavefunction, equation (13),
look like the first-order terms of the Born approximation
for electron scattering by a two-centre target. However, this
is quite misleading since equation (13) represents the exact
general solution of the continuum wave equation outside the
range of the short-range potential. The situation can be clarified
by operating on the wavefunction, equation (13), with the
free-particle Hamiltonian, Ĥ = −(∇2 + k2)/2. The result of
this operation defines the right side of the inhomogeneous
Schrödinger equation that this wavefunction obeys. Since the
second and third terms in equation (13) are the free-particle
Green’s functions, we obtain on the right side of this equation
a linear combination of the delta-functions, δ(r±R/2), which
vanish beyond the region of the short-range potentials. Hence,
the wavefunction, equation (13), is everywhere (beyond the
cross-hatched spheres in figure 1(a)) a solution to the free
particle wave equation.

Unlike the plane wave in the model of [1], the
wavefunction, equation (13), is orthogonal to the ground state
wavefunctions, equations (12). Being an exact solution of the
wave equation, the function, equation (13), automatically takes
into account exactly the multiple scattering of an electron by
the two centres [8, 10], which is reflected in the amplitude
dependence of the spherical waves on the s-wave scattering
phase δ0. The second and third terms in equation (13) are
two spherical s-waves generated by the scattering centres
(figure 1(b)); thus, the wavefunction, equation (13), obeys
the Huygens–Fresnel principle. It is precisely the presence
of these spherical waves that makes the physical picture of
molecular photoionization similar to that of Young’s double-
slit experiment.

The wavefunction ψ−
k (r) describing the final state in

the photoabsorption by the two-centre ‘molecular’ system is
connected with the scattering function, equation (13), through

the relation ψ−
k (r) = ψ+∗

−k (r) and has the form

ψ−
k (r) = eik·r + C∗

1 (−k)
e−ik|r+R/2|

|r + R/2| + C∗
2 (−k)

e−ik|r−R/2|

|r − R/2| .
(15)

The initial and final state wavefunctions, equations (12) and
(13), respectively, are then used to calculate the dipole matrix
element corresponding to photoabsorption. Following the
methodology of [8], equation (3), in the present case for the
gerade state, is replaced by

Mg = 2ϕ{(e · n) cos(k · R/2) − (e · ρ) sin(k · R/2)	g(k, R)}.
(16)

Here the unit vector ρ = R/R and the functions ϕ and 	g(k, R)

are given by

ϕ = k
√

4πq(q2 + k2)−1, 	g(k, R) = ia(a − b)−1. (17)

According to equation (16), the replacement of the plane wave
by the exact wave function, equation (15), leads to the fact that
the matrix element for molecular photoabsorption becomes a
sum of two amplitudes. The first of them leads to Cohen–Fano
diffraction and the second is connected to spherical molecular
continuum wavefunctions defined by the 	g(k, R).

For the differential photoabsorption cross section for a
fixed-in-space molecule in the ground gerade state, instead of
equation (4), we now have

dσg(ω, R)

d�k
∼ 4|ϕ|2{(e · n)2 cos2(k · R/2)

− (e · n)(e · ρ) sin(k · R)Re	g

+ (e · ρ)2 sin2(k · R/2)|	g|2}. (18)

Averaging this cross section over all possible directions of the
molecular axis (details of derivation and variables are given in
the appendix) yields

dσg(ω)

d�k
= σA(ω)

4π
[Fg − 2Re	gςg + 2(αg + 2ηg)|	g|2]

× [1 + βgP2(e · n)]. (19)

Here σA(ω) is the total cross section for negative ion
photodetachment (see equation (6) of [8], equation (5) of [11]);
the dipole angular distribution parameter in equation (19) is
defined by

βg = 2
Fg − 2Re	gςg + 2|	g|2(αg − ηg)

Fg − 2Re	gςg + 2|	g|2(αg + 2ηg)
. (20)

The threshold behaviour of the dipole angular distribution
parameter is determined by the limits

	g(k → 0) = i(1 − qR)−1, Fg = 2; ςg = 1/2,

αg = 0 and ηg = 0, (21)

which results in βg(k → 0) = 2. The total gerade cross section
has the form

σg(ω) = σA(ω)[Fg − 2Re	gςg + 2(αg + 2ηg)|	g|2], (22)

where the factor multiplying the atomic cross section σA(ω) is
the analogue of the Cohen–Fano two-centre modulation factor
for the gerade state.

4



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 035202 A S Baltenkov et al

Repeating the calculations for the ungerade ground state,
equation (12), we have instead of equations (16)–(22)

Mu = 2iϕ{(e · n) sin(k · R/2)

+ (e · ρ) cos(k · R/2)	u(k, R)}, (23)

where the function 	u(k, R) has the form 	u(k, R) = ia(a +
b)−1. For the differential photoabsorption cross section for the
fixed-in-space ungerade molecular state, instead of equation
(18), we have

dσu(ω, R)

d�k
∼ 4|ϕ|2{(e · n)2 sin2(k · R/2)

+ (e · n)(e · ρ) sin(k · R)Re	u

+ (e · ρ)2 cos2(k · R/2)|	u|2}. (24)

For the ungerade state of the molecule in the gas phase,
averaging the cross section, equation (24), over all directions
of the molecular axis leads to
dσu(ω)

d�k
= σA(ω)

4π
[Fu − 2Re	uςu + 2(αu + 2ηu)|	u|2]

× [1 + βuP2(e · n)]. (25)

The total ungerade cross section is

σu(ω) = σA(ω)[Fu − 2Re	uςu + 2(αu + 2ηu)|	u|2]. (26)

The dipole angular distribution parameter in equation (25) is
defined by

βu = 2
Fu + 2Re	uςu + 2|	u|2(αu − ηu)

Fu + 2Re	uςu + 2|	u|2(αu + 2ηu)
. (27)

The threshold behaviour of the parameter βu is defined by the
limits

	u(k → 0) = i(1 + qR)−1, Fu = 0, ςu = 1/2,

αu = 1/3 and ηu = 1/3, (28)

which yields the limit βu(k → 0) = 0.
Comparing the formulae for cross sections derived within

the framework of the models of [1] and [8], we come to the
following conclusions. The spherical waves in the model of [8]
lead firstly to the dependence of the dipole angular distribution
parameters, equations (20) and (27), on photon energy; in
contrast, in the Cohen and Fano model [1], this parameter (the
coefficient of the Legendre polynomial in equations (6) and
(10)) is constant and equal to 2. Secondly, in the formulae
derived in the model of [8], the diffraction effects are defined
by the functions 	g,u(R), depending separately on k and R,
while in the model of [1], the two-centre modulation factors
are functions of the product kR only.

4. Numerical calculations

To determine the role of spherical waves in the formation
of molecular photoionization spectra quantitatively, the total
and differential cross sections of the process for different
parameters of the models [1] and [8] are calculated. Using the
molecular negative ion I2 as a guide to choose the parameters,
the electron affinity of this ion is equal to I = 2.58 eV [12]
and the interatomic distance is R = 2.667 Å = 5.042 atomic
units [13].

The calculated results for the two-centre amplitude
(modulation) factors, Fg and Fu in the Cohen–Fano model and
the ratios σg/σA and σu/σA in the present model, as a function
of ε for different distances between the centres 2 � R � 5
are presented in figure 2. The functions 	g,u(R), equations
(16) and (23), connected with spherical wave interference
decrease with increasing R; therefore, the results for the two
models rapidly become closer with increasing R and for R > 5
their effect on the behaviour of the amplitude factors defining
the total cross sections for photoabsorption can be neglected.
For smaller distances R, the differences in the factor shapes
are especially noticeable for low photoelectron energy. For
ε = k2/2 > 50 eV, the results calculated within both the
models practically coincide for all values of R considered.
Furthermore, with increasing ε, the amplitude factors for
gerade and ungerade states approach unity (dotted lines).

The evolution of the shapes of the differential
photoabsorption cross sections for fixed-in-space molecules
dσg/u(ω, R)/d�k for different internuclear distances R are
given in figure 3 for e||ρ. The comparison of the formulae for
these cross sections shows vivid differences in the calculated
results in the models of [1] and [8] when the molecular axis is
oriented along the photon polarization vector since for e||ρ the
coefficients of the functions 	g,u(R) reach the maximal values,
while for e ⊥ ρ these coefficients are equal to zero causing the
cross sections in the two models to coincide. Of particular
interest is that although the shapes of the photoelectron
angular distributions (PADs) in the two models are practically
the same, the inclusion of spherical waves in the present
model decreases the absolute values of the cross sections for
small inter-atomic distances considerably, as clearly seen in
figure 3.

Figure 4 demonstrates the dependence of the shape of
the PAD on the angle ϑe between the photon polarization
vector e and the molecular axis ρ for a fixed distance between
the atomic centres, R = 5.042, at photoelectron energy ε =
10 eV. From these results, it is clear that the shape of the PAD
is defined to a considerable extent by the photon polarization
vector. The maxima in the differential cross sections are
observed at the angles ϑk close to ϑe defining the position
of the vector e relative to the polar axis R.

The angular distributions in figure 4 for e||R and e ⊥ R
are qualitatively similar to the PADs for gerade/ungerade
N(1s) core photoelectron emission of N2 [6]. The measured
data points in the interval 0◦–90◦ are given in this figure
by the full circles. The six-lobe structure of the PADs for
e||R in both the gerade cases is transformed into two lobes
for e ⊥ R, while the two-lobe structure PADs for both the
ungerade states for e||R become four-lobed for e ⊥ R. The
similarity between the spectral shapes is surprising since the
curves correspond to rather different molecular structures and
spectral characteristics of the incident radiation. Besides in
this calculation the photon energy was ω = 12.58 eV, while
the core photoelectron emission of N2 [6] corresponds to
ω = 419 eV. The closeness of the spectral shapes serves as
indirect evidence that the character of the forces acting between
photoelectron and molecular residue—Coulomb forces (in the
case of [6]) or short-range (in the model of [8])—has little
effect on the shape of the PAD.

5



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 035202 A S Baltenkov et al

Figure 2. Two-centre modulation factors as a function of the photoelectron energy ε for different interatomic distances R. The left and the
right panels correspond to the gerade and ungerade states, respectively. The dashed curves are Cohen–Fano functions Fg and Fu; the solid
curves are the calculated ratios σg/σA and σu/σA, i.e. using the expressions in square brackets in equations (21) and (26). The dotted line is
the asymptotic value of the function, in each case.

More distinct differences in the two models are found in
the behaviour of the dipole angular distribution parameters.
The dependences of these parameters on photoelectron energy
are presented in figure 5. The Cohen–Fano model gives for
these parameters the constant value βg,u = 2. The differences
in the behaviour of the curves in the two models are due

entirely to the presence of spherical waves in the molecular
continuum wave function in the present model. As before, their
role is particularly significant for low photoelectron energy.
With increasing ε, both the gerade and ungerade β parameters
tend to 2. Here the qualitative behaviour of the parameters
in figure 5 is similar to both the experimental data [14] for
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Figure 3. Photoelectron angular distributions (PADs) for gerade (left) and ungerade (right) states for electron energy ε = 10 eV. The PADs
are shown in the plane perpendicular to the light propagation direction. The molecules are oriented parallel to the light polarization vector
(e || R) as shown in the upper-right figure. The dashed lines are Cohen–Fano cross sections dσg/u(ω, R)/d�k, equations (4) and (9), in which
the constants |J|2/(1 ± S), insignificant for the shape of the PADs, are omitted. The solid lines are the results of calculations using the
expressions in brackets in equations (18) and (24).
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Figure 4. The same as figure 3, but for the case when the photon polarization e is at various angles ϑe with respect to the molecular axis R.
As in figure 3, the photoelectron energy ε = 10 eV and R = 5.042. For these values of R and ε, the curves calculated within both the models
are similar and accurately coincide for e ⊥ R. The dashed lines correspond to equations (4) and (9). The solid lines are the results from
equations (18) and (24). As in [6, 14], the open circles are the mirror images of the measured data points (full circles).
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Figure 5. The dipole angular distribution parameters βg and βu as functions of photoelectron energy ε for various values of the internuclear
distance R. The Cohen–Fano parameter is constant and equal to 2.
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(k ⊥ R), as shown in the upper figure on the right. The EADs are shown in the plane defined by the vectors k, k′ and R.

βg,u in the case of N2:N(1s) core photoelectron emission, and
also previously calculated results [15]. We note that these
calculations are based on significant approximations [16];
specifically, the potential of the multi-atomic system is taken
as a cluster of non-overlapping spherical potentials centred on

the atomic sites, along with a molecular sphere that embraces
all of the atoms, as shown in figure 1(c). Beyond the molecular
sphere the continuum wavefunction is approximated as the
sum of a plane wave plus a single spherical wave emitted by
the molecular centre. It is evident that owing to the absence

9
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Figure 7. Electron and photoelectron angular distributions for R = 5.042 for various angles between the k, e and R vectors for 10 eV
electrons. Solid lines are EADs, dashed lines are PADs for the gerade state and dotted lines for the ungerade state.

of spherical waves emitted by spatially separated sources in
the outer region (figure 1(c)), this picture of the molecular
photoionization process cannot be adequate to fully describe
Young’s double-slit diffraction.

5. Young’s double-slit interference

Young-type interference patterns are observed in a double-
slit experiment in which the electron wave moving through
the slits forms two spherical waves behind the screen. An
exact analogue of this process in molecular physics is not
molecular photoionization but elastic scattering of an electron
by a diatomic homonuclear molecule. In the latter process,
each of the two centres is an equivalent source of the spherical
waves and the interference between these waves leads to a
Young-type interference pattern. Within the present model,
Young’s double-slit experiment is described by the molecular
continuum wavefunction, equation (13). The asymptotic form
of this wavefunction as r → ∞ defines the amplitude for
elastic scattering of an electron wave by the two centres and
has the form

F(k, k′, R) = 2

a2 − b2

{
b cos

[
(k − k′) · R

2

]

− a cos

[
(k + k′) · R

2

]}
, (29)

where the vector k′ = kr/r is the electron momentum after
scattering. The differential cross section for electron elastic

scattering within the solid angle d�k′ is defined by the absolute
square of the scattering amplitude, equation (29),

dσ (k, R)

d�k′
= |F(k, k′, R)|2. (30)

As in the case of the photo-process, the electron angular
distribution (EAD) is a function of the mutual position
of three vectors; in the photoabsorption cross sections,
equations (18) and (24), these were the vectors e, k and
R, while for elastic scattering, equation (30), these are the
vectors k, k′ and R. It is evident that the direct comparison
of the differential cross sections of these two processes does
not make sense; the shape of the PAD is defined by the
bound gerade or ungerade molecular state, while the elastic
electron scattering EAD shape cannot, in principle, be treated
in these terms because the angular distribution of electrons
elastically scattered by a two-centre target is independent of
the parity of the bound state that can be formed by these
centres.

Choosing as in the PAD calculations R as the polar
axis, the elastic cross section, equation (30), is calculated
for a range of scattered electron energies, ε. Consider first
the case of k ⊥ R. This corresponds to classical YTE in
which the electron wave is incident onto the screen normal
to its surface. The calculated EAD results are presented in
figure 6. In this figure, the electron kinetic energies were
chosen so that the value R = 5.042 au was within the range of
electron wavelengths λ = 2π/k, and for one of these energies,
ε = 21.12 eV, the electron wavelength is equal to the distance

10
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between the atomic centres λ ≈ R. With increasing electron
energy, the angular distribution is transformed from two lobes
into six lobes, both symmetrical relative to the vectors k
and R.

The 10 eV EAD in figure 6, to some extent, can be
compared with the lower gerade and ungerade PADs in
figure 4. It is known that in the photoionization process, the
electrons are emitted mainly along the photon polarization
direction. For the above-mentioned PADs, the polarization
vector is orthogonal to the molecular axis, i.e. the
photoelectron wave moves, as in figure 6, mainly along the
normal to the vector R (ϑk ≈ ϑe = π/2). The differences in
the spectral shapes in these figures are evident.

An even more vivid illustration of the fact that the PADs
in the model [1] have nothing in common with the classic
two-slit-wave interference is presented in figure 7 where it is
possible to see the evolution of the shapes of the EAD(ϑk)
and the PAD(ϑe) as functions of the angles between the
molecular axis R and vectors k and e for ϑe = ϑk. Here
it is assumed that all photoelectrons are emitted along the
polarization vector e and diffracted at the centres in the same
way as electrons with momentum k elastically scattered by a
target. Since in the EAD case we deal with the cross section
of elastic electron scattering by a target and in the PAD
case, with the cross section for ionic photodetachment, the
EAD and PAD spectra are normalized so that their shapes
can be compared directly. The energies of photoelectrons
and elastically scattered electrons are the same and equal to
ε = 10 eV. The first of the figures corresponds to ϑe = ϑk = 0◦

(k || R), and the next ones to 30◦ and 60◦. The last figure
corresponds to the case e ⊥ R (k ⊥ R). The comparison
of the PADs with the EADs shows that the shapes of the
angular distributions and the character of their modifications
for different mutual orientations of the vectors e, k and R are
completely different. The angular distributions of scattered
electrons (EADs) are symmetrical relative to the molecular
axis for all the angles of electrons incident on a target. The
PAD shapes (both for gerade and ungerade states), on the other
hand, are defined to a considerable extent by the polarization
vector; the shift of maxima of these angular distributions
follows the polarization vector. The corresponding curves,
therefore, are asymmetric relative to the polar axis R. Thus,
the origin of the diffraction effects in the Cohen and Fano
model [1] differs completely from the origins of the classic
wave interference.

6. Discussion and conclusions

It has been demonstrated that a degree of similarity between
homonuclear molecular photoionization and Young’s double-
slit diffraction has been exaggerated. Specifically, the periodic
modulations in molecular photoionization cross sections
observed in experiments are due to the multicentre structure
of the molecular initial state. While in YTE the diffraction
effects are due to interference of the spherical waves
emitted by the spatially separated sources of photoelectrons,
i.e. they are connected with the multicentre structure of
the molecular continuum. The fact that the interference

in Young’s double-slit experiments looks somewhat similar
to diatomic molecular photoionization cross sections leads
sometimes to mixing of the rather different pictures,
detailed in figure 1. In [2], it is noted that ‘ . . . Cohen
and Fano [1] discussed the role of interference in the
photoelectron spectra of valence electrons (using the model of
figure 1(b) for calculations). Their theme was developed by
Dehmer and Dill [16] into the K-shell spectroscopy of diatomic
molecules (using the model of figure 1(c) for calculations). The
idea behind it is sketched in figure 1(a)’.

Within the present molecular system model [8] it has
been shown that the photoionization amplitude is a sum of
the two terms. The first leads to Cohen–Fano effects and the
second is responsible for spherical waves in the molecular
continuum. Interference of these waves for low photoelectron
energy crucially influences the absolute value of the cross
sections but does not significantly distort the shape of the
angular distribution. It has been shown that the angular
distribution very weakly depends on the character of the
forces acting between the photoelectron and the molecular
residue: Coulomb forces for neutral molecular photoionization
and short-range forces for photodetachment of molecular
negative ions. The comparison of the interference patterns
in molecular photoionization with those of electron scattering
by two atomic molecules demonstrates that the interference
patterns corresponding to these two processes are significantly
different; this is because the former is essentially the initial-
state effect, while the latter is a final-state effect.

Our consideration is based on using zero-range potentials.
The well-known limitation of these potentials is that for
scattering problems they are able to generate spherical s-waves
only. Therefore, their application is restricted to the range of
low kinetic energy of the colliding particles. The wavefunction
for scattering by a target composed of zero-range potentials
can be represented as a linear combination of Green’s functions
of free motion, equation (13); the coefficients of this linear
combination C1(k) and C2(k) are defined by solving a system
of the two linear algebraic equations.

The generalization of zero-range potentials for the case
of non-zero orbital angular momenta and higher energy of
particles is reduced to modifying the boundary conditions
imposed on the wavefunction at the scattering centres and
to representing the scattering wavefunction as a sum of plane
wave and a linear combination of the derivatives of Green’s
functions; the derivatives of the first order for p-spherical
waves, the second order for d-waves, etc (see [17–19]).
Coefficients of this linear combination are defined by solving
a system of the 2(lmax + 1)2 linear algebraic equations. Here,
lmax is the maximal orbital angular momentum being taken
into account [18]. For these spherical waves, the qualitative
picture of scattering in figure 1(a) remains the same; the
crests of the spherical waves in this figure will be those of s-,
p-, d- etc spherical waves forming a diffraction pattern. The
amplitudes of these waves will depend on the corresponding
phases of elastic electron scattering by separate centres. If these
phases are taken to be zero the spherical waves vanish and the
picture in (a) goes to (b). Thus, inclusion of non-zero orbital
angular momenta will not change the general conclusion of
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our paper: the origin of the diffraction effects in the Cohen
and Fano model [1] are entirely different from the origin of
the interference in Young’s double-slit experiment.
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Appendix

Averaging in angles of the vector R reduces to the calculation
of the following integrals. For the gerade state:

1

4π

∫
cos2(k · R/2) d�ρ = 1

2

(
1 + sin γ

γ

)
= 1

2
Fg;

γ = kR; (A.1)

1

4π

∫
(e · ρ) sin(k · R) d�ρ = (e · n)

1

γ 2
(sin γ − γ cos γ )

= (e · n)ςg; (A.2)

1

4π

∫
(e · ρ)2 sin2(k · R/2)d�ρ

= (e · n)2

2

[
1

3
−

(
1

γ
− 2

γ 3

)
sin γ − 2

γ 2
cos γ

]

+1 − (e · n)2

4

{(
1 − sin γ

γ

)

−
[

1

3
−

(
1

γ
− 2

γ 3

)
sin γ − 2

γ 2
cos γ

]}

= (e · n)2αg + [1 − (e · n)2]ηg. (A.3)

For the ungerade state:

1

4π

∫
sin2(k · R/2) d�ρ = 1

2

(
1 − sin γ

γ

)
= 1

2
Fu; (A.4)

1

4π

∫
(e · ρ) sin(k · R) d�ρ = (e · n)

1

γ 2
(sin γ − γ cos γ )

= (e · n)ςu; ςu = ςg (A.5)

1

4π

∫
(e · ρ)2 cos2(k · R/2) d�ρ

= (e · n)2

2

[
1

3
+

(
1

γ
− 2

γ 3

)
sin γ + 2

γ 2
cos γ

]

+1 − (e · n)2

4

{(
1 + sin γ

γ

)

−
[

1

3
+

(
1

γ
− 2

γ 3

)
sin γ + 2

γ 2
cos γ

]}

= (e · n)2αu + [1 − (e · n)2]ηu. (A.6)
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