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Abstract
We study the properties of a single-component (spin polarized) degenerate dipolar Fermi gas
of 161Dy atoms using a hydrodynamic description. Under axially-symmetric trapping we
suggest reduced one- (1D) and two-dimensional (2D) descriptions for the cigar and disc
shapes, respectively. In addition to a complete numerical solution of the hydrodynamic model
we also consider a variational approximation. For a trapped system under appropriate
conditions, the variational approximation as well as the reduced 1D and 2D models are found
to yield results for the shape, size and chemical potential of the system in agreement with the
full numerical solution of the three-dimensional (3D) model. For the uniform system we
consider anisotropic sound propagation in 3D. An analytical result for anisotropic sound
propagation in a uniform dipolar degenerate Fermi gas is found to be in agreement with the
results of numerical simulation in 3D.

(Some figures may appear in colour only in the online journal)

1. Introduction

After the experimental realization of a Bose–Einstein
condensate (BEC) of 52Cr [1, 2], 164Dy [3] and 168Er
[4] atoms with large magnetic dipolar interactions, there
has been renewed interest in the study of cold atoms,
both theoretically and experimentally. The anisotropic long-
range dipolar interaction acting in all partial waves in
these atoms is basically different from isotropic short-
range S-wave interactions acting in nondipolar atoms. Polar
bosonic molecules with much larger permanent electric dipole
moments are also candidates for possible BEC experiments
[5]. Dipolar BECs have novel distinct properties. Due to
the anisotropic dipolar interaction, the stability of a dipolar
BEC depends on the scattering length as well as the trap
geometry [2, 6, 7]. The shock and sound waves also propagate
anisotropically in a dipolar BEC [8, 9]. Anisotropic collapse
has been observed and studied in a dipolar BEC of 52Cr atoms
[10]. Anisotropic rotons [11] and anisotropic critical superfluid
velocity [12] have been suggested and studied in dipolar BECs.
Distinct stable checkerboard, stripe and star configurations
in dipolar BECs have been identified in a two-dimensional
(2D) optical lattice as a stable Mott insulator [13] as well as
superfluid soliton [14] states. Anisotropic solitons in 2D have
also been suggested in dipolar BECs [15]. A new possibility of

studying the universal properties of dipolar BECs at unitarity
has been suggested [16].

After the realization of BECs of alkali-metal atoms,
degenerate nondipolar gas of fermionic 6Li [17], 40K [18] and
87Sr [19] atoms was observed. Later, superfluid states of paired
6Li [20] and 40K [21] Fermi atoms have been investigated.
More recently a degenerate dipolar gas of fermionic 161Dy
atoms with a large magnetic dipole moment has been
created and studied [22]. Realization of quantum degeneracy
in 161Dy atoms should be considered as a doorway for the study
of anisotropic superfluidity in dipolar fermions. Fermionic
polar molecules, such as 40K–87Rb, of large permanent electric
dipole moments are also considered for this purpose [23]. The
40K–87Rb molecule in the singlet rovibrational ground state
has an electric dipole moment of 0.6 Debye, thus leading to
a dipolar interaction larger than in the case of 161Dy atoms
by more than an order of magnitude [1]. One advantage of
studying the effect of dipolar interactions in a degenerate
dipolar Fermi gas over that in a dipolar BEC is the remarkable
stability of the degenerate Fermi gas. A BEC is usually
fragile or short-lived for many experiments due to three-
body loss through molecule formation. The three-body loss
is highly suppressed in a degenerate Fermi gas due to Pauli
repulsion among identical fermions. On the other hand, a
theoretical study of a BEC is much simpler than that of a
degenerate Fermi gas [24] due to the existence of a simple order
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parameter and a simple mean-field Gross–Pitaevskii equation
in the former case.

A microscopic description of a degenerate Fermi gas is
complicated due to the difficulties with the antisymmetrization
of a many-fermion system and finding an appropriate simple
order parameter. Drastic approximations are often necessary
to achieve this goal for fermions. There have been several
different theoretical descriptions for a degenerate nondipolar
Fermi gas [25]. There have also been a few studies of the
degenerate dipolar Fermi gas employing different types of
approximations [26]. However, for a description of some
macroscopic observables of a degenerate Fermi gas, a simple
hydrodynamic description [27] often seems appropriate which
does not require a precise antisymmetrization of the dynamics
[24, 28, 29]. The effect of antisymmetrization is included
approximately via an appropriate energy or Lagrangian
density. A minimization of the energy leads to a well-founded
variational approximation [30]. An Euler–Lagrange equation
derived from such a Lagrangian provides further improvement
over the variational results. Here we present a description
of the degenerate spin polarized Fermi gas based on such a
hydrodynamic model [27, 28].

The present theoretical formulation for the degenerate
dipolar Fermi gas starts in section 2.1 with the standard
equations of classical hydrodynamics [27] with the appropriate
equation of state including the kinetic energy of fermions
filling the Fermi sea and the dipolar interaction among them.
The equivalent of the Thomas–Fermi (TF) approximation for
the dipolar gas is obtained by setting the velocity field equal to
zero in the hydrodynamic equations. An equivalent classical
energy density is written using the local-density approximation
(LDA) [24]. A quantum pressure term is then introduced
in the LDA energy density. With such a quantum pressure
term, a nonlinear Schrödinger-type equation is derived for
the density of fermions. For a moderate number of fermions
(greater than 100 or so), the quantum pressure term is
negligibly small and hence has an insignificant effect on the
result. However, the inclusion of the quantum pressure term
allows one to write a dynamical equation for fermions in
the form of a nonlinear Schrödinger equation to study the
dynamics. The LDA or the TF approximation, on the other
hand, allows only the investigation of static properties of the
system. For example, these approximations cannot be used
to study the sound propagation dynamics in fermions as in
section 3.2. In section 2.2, we present a Gaussian variational
approximation for the problem described by the LDA energy
density. In section 2.3, simplified models are derived in
reduced dimensions, appropriate for the cigar and disc shapes
of the degenerate dipolar gas when there is a strong trap in
the radial or axial directions, respectively. In section 2.4, using
the hydrodynamic model, we obtain an analytic expression
for the anisotropic sound velocity in the degenerate dipolar
gas. In section 3.1, we present numerical results for stationary
properties—shape, size and chemical potential—of a trapped
degenerate Fermi gas of 161Dy atoms, and compare with
results from appropriate models in reduced dimensions and
the variational approximation. In section 3.2, the anisotropic
sound propagation in an infinite dipolar degenerate gas is

demonstrated numerically and the velocities so obtained are
compared with the analytical results of section 2.4. Finally, in
section 4 we present a summary of our study.

2. Analytical consideration

2.1. Hydrodynamic model

The normal one-component Fermi gas can be in the
collisionless regime where collisions are rare or in the
collisional hydrodynamic regime where frequent collisions
due to the dipolar interaction allow the system to settle to
the local equilibrium, where the system can be described by
a simple hydrodynamic equation rather than a detailed multi-
particle description. Here we consider the system in such a
configuration. A semi-quantitative estimate for the validity
of a hydrodynamic description is given by the condition
that relaxation time τR is small compared to the time scale
1/ω defined by average trap frequency ω [8, 9]. For contact
interactions this condition can be expressed in terms of the
scattering length to measure the strength of atomic interactions
[31]. The strength of dipolar interactions is usually measured in
terms of the convenient length Ld ≡ 3add = μ0μ̄

2m/(4π�
2),

where μ̄ is the magnetic moment of an atom of mass m and
μ0 the permeability of free space. Using this length scale to
measure dipolar interactions, the condition for the validity of
the hydrodynamic description can be expressed as [9, 31]

(ωτR)−1 ≈
(

N1/3 Ld

aho

)2

F

(
T

TF

)
> 1, (1)

where N is the number of atoms, aho = √
�/(mω) the oscillator

length, T the temperature, TF the Fermi temperature and F(x)

a universal function and can be taken as the order of unity
[31] under experimental conditions. Hence for sufficiently
large N and/or sufficiently small aho, the system should
enter the hydrodynamic regime. For 161Dy atoms of magnetic
moment 10μB with μB the Bohr magneton, the length Ld ≡
3add ≈ 3 × 130a0 where a0 is the Bohr radius and for an
oscillator length aho = 0.25 μm and N = 5000 the system
is already in the hydrodynamic regime. For a polar Fermi
molecule 40K–87Rb of electric dipole moment d = 0.566
Debye in the singlet rovibrational ground state [23], the length
Ld = md2/(4π�

2ε0) ≈ 3 × 2000a0 [1], where ε0 is the
permittivity of free space, and the system should enter the
hydrodynamic regime with larger aho = 1 μm (weaker trap)
and much smaller N, of a few hundred.

At a sufficiently low temperature the normal Fermi gas
enters the degenerate phase. Most macroscopic properties, like
shape, density, chemical potential, sound propagation etc, of
this system can be described by the Landau hydrodynamical
equations [27]. A velocity field is introduced as the gradient
of a velocity potential � of flow, usually related to the phase
of the order parameter, by v(r, t) = ∇�(r, t),subject to the
irrotational condition ∇ × v(r, t) = 0. The continuity and
the flow equations are then given by [27]

∂n(r, t)

∂t
+ ∇ · [n(r, t)v(r, t)] = 0, (2)

m
∂v(r, t)

∂t
+ ∇

[
mv(r, t)2

2
+ μ(n, r) + V (r)

]
= 0, (3)

2
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where n(r, t) is density at space point r and time t, V (r) is an
external trap, usually taken as

V (r) = 1
2 mω2(ν2ρ2 + λ2z2), (4)

with ω the trap frequency and ν and λ are anisotropy
parameters. The bulk chemical potential μ(n, r) is determined
by the equation of state of the uniform Fermi gas of dipolar
atoms and is given by

μ(n, r) = �
2[6π2n(r)]2/3

2m
+

∫
dr′n(r′)Udd (r − r′), (5)

where the first term on the right-hand side (rhs) is the Fermi
energy EF ≡ �

2(6π2n)2/3/(2m) [24] and the last term is the
contribution from the dipolar interaction energy [28], with
Udd (r − r′) the dipolar potential.

The hydrodynamic description is valid for a macroscopic
observable with its characteristic excitation wavelength λ

much larger than the healing length [24]. A safe condition
to satisfy this criterion is to take the wavelength to be much
larger than the de Broglie wavelength at the Fermi surface, i.e.
[24, 32]

λ � 2π/kF (6)

with Fermi momentum kF defined by EF = �
2k2

F/2m. Truly
speaking, a degenerate Fermi gas may not be fully irrotational
and may allow rotational components in the velocity field,
not allowed in the present hydrodynamic formulation. This
fact should influence only the rotational properties [24] of the
degenerate Fermi gas not considered in this paper. We also
assume the absence of any velocity dependent frictional force.

An approximate TF profile for density can now be
obtained by setting velocity v = 0 in (3), when [24]

μ(n, r) + V (r) = μTF
0 , (7)

where μTF
0 is the chemical potential of the trapped gas. When

(7) is solved subject to the appropriate normalization condition,
we obtain both the chemical potential μTF

0 and the density n(r).
There is an equivalent description of the trapped

degenerate Fermi gas in the LDA, based on the assumption
that, locally the dipolar Fermi gas would behave like a uniform
gas, so that the energy density can be written as the energy
of the uniform system times the local density [24]. For the
degenerate dipolar Fermi system, the classical energy density
per particle is given by [26, 28]

Ecl(r) = 3

5

�
2

2m
(6π2N)2/3[n(r)]5/3 + V (r)n(r)

+ N
1

2

∫
dr′n(r)n(r′)Udd (r − r′), (8)

where n(r) is the density of fermions normalized as∫
drn(r) = 1. The first term on the rhs of (8) is the total

kinetic energy of the spin polarized fermions filling all levels
up to the Fermi sea, the second term is energy in the trap and
the third term describes the dipolar interaction. A minimization
of the classical energy (8) leads to the TF condition (7).

As the degenerate Fermi gas is a quantum system, a
quantum pressure term when included in (8) yields the
following expression for net energy density

E (r) = �
2

8m
|∇r

√
n(r)|2 + Ecl(r). (9)

This gradient correction term [33] to the TF energy density (8)
takes into account the additional kinetic energy due to spatial
variation of density (near the surface). Such a surface term was
first considered by von Weiszäcker [34–36] in the description
a large nuclei. Previous descriptions of a degenerate Fermi
gas considered different coefficients in this term [25, 33].
The energy density (9) has been successfully used in many
problems of Fermi gas [35–38].

With the Lagrangian density L(r) = E (r) − μ0n(r) the
Euler–Lagrange equation is given by [37]

μ0

√
n(r) =

[
− �

2∇2

8m
+ V (r) + �

2

2m
[6π2Nn(r)]2/3

+ N
∫

Udd (r − r′)n(r′) dr′
]√

n(r), (10)

with μ0 the chemical potential. The derivative term in (10)
contributes much less than the dominant ‘Fermi energy’ term
�

2[6π2Nn(r)]2/3/(2m) and its neglect leads to the TF relation
(7). The dipolar interaction in (10) is taken as Udd (R) =
3add�

2(1 − 3 cos2 θ ) /(mR3), R = r − r′ where θ is the
angle between the R and the polarization direction z.

The condition (1) refers to the validity of a hydrodynamic
description of the system (v �= 0) [9, 31]. A reliable stationary
description obtained using (10) for v = 0, of density and
other macroscopic properties, such as sound velocity, as
considered in this paper, can be obtained for a smaller number
of fermions consistent with condition (6) [24, 32], provided the
contribution of the kinetic energy term �

2[6π2Nn(r)]2/3/(2m)

in (10) is much larger than that of other terms.
It is convenient to write a dimensionless form of (10) with

the potential (4) as

μ0

√
n(r) =

[
− ∇2

8
+ 1

2
(ν2ρ2 + λ2z2) + 1

2
[6π2Nn(r)]2/3

+3addN
∫

1 − 3 cos2 θ

R3
n(r′) dr′

]√
n(r), (11)

where energy, length and density are expressed in units of �ω,
l0 = √

�/mω and l−3
0 .

2.2. Variational approximation

The energy density corresponding to the dimensionless
equation (11) can be written as

E (r) = 1

8
|∇r

√
n(r)|2 + 3addN

2

∫
dr′n(r)n(r′)

1 − 3 cos2 θ

R3

+ 1

2
(ν2ρ2 + λ2z2)n(r) + 3

10
(6π2N)2/3[n(r)]5/3. (12)

A variational approximation for the problem can be obtained
with the following Gaussian ansatz for density [30]

n(r) = 1

π3/2w2
ρwz

exp

[
− ρ2

w2
ρ

− z2

w2
z

]
, (13)

where wρ and wz are the variational widths along radial ρ and
axial z directions. With this density, the effective energy per
particle of the system E = ∫

drE (r) is

E = 1

8

[
1

w2
ρ

+ 1

2w2
z

]
+

[
ν2w2

ρ

2
+ λ2w2

z

4

]

− Nadd f (κ)√
2πw2

ρwz

+
√

3

5

9(6π2N)2/3

50πw
4/3
ρ w

2/3
z

, (14)

3
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where κ = wρ/wz and

f (κ) = 1 + 2κ2

1 − κ2
− 3κ2tanh−1

√
1 − κ2

(1 − κ2)3/2
. (15)

The variational equations are obtained by minimizing the
energy (14) by ∂E/∂wz = ∂E/∂wρ = 0 [2, 30]:

wρν
2 = 1

4w3
ρ

− add√
2π

Ng(κ)

w3
ρwz

+
√

3

5

6(6π2N)2/3

25πw
2/3
z w

7/3
ρ

, (16)

wzλ
2 = 1

4w3
z

− add√
2π

2Nh(κ)

w2
ρw

2
z

+
√

3

5

6(6π2N)2/3

25πw
5/3
z w

4/3
ρ

, (17)

where

g(κ) = 2 − 7κ2 − 4κ4

(1 − κ2)2
+ 9κ4tanh−1

√
1 − κ2

(1 − κ2)5/2
, (18)

h(κ) = 1 + 10κ2 − 2κ4

(1 − κ2)2
− 9κ2tanh−1

√
1 − κ2

(1 − κ2)5/2
. (19)

The chemical potential μ0 of the system per particle is

μ0 = 1

8

[
1

w2
ρ

+ 1

2w2
z

]
+

[
ν2w2

ρ

2
+ λ2w2

z

4

]

−2Nadd f (κ)√
2πw2

ρwz

+
√

5

3

9(6π2N)2/3

50πw
4/3
ρ w

2/3
z

. (20)

2.3. Approximate density for cigar and disc shapes

In many situations of experimental interest, the Fermi gas
could be subject to a strong trap either in the polarization
z direction or in the transverse radial ρ plane. The system
then has a one-dimensional (1D) cigar or 2D disc shape,
respectively. In such cases simplified equations in lower
dimensions could be very useful [39].

First we consider the reduced 1D equation for a cigar
shape. We assume that there is a strong trap in the x–y plane
and that the density in this plane is given by the Gaussian
ground state [39] n(ρ) = exp

( − ρ2/d2
ρ

)
/(

√
πdρ ), dρ =√

1/(2ν) of the trap ν2ρ2/2, so that the 3D density n(r)

satisfies√
n(r) ≡

√
n(ρ)

√
n(z) =

√
n(z)√
πdρ

exp

[
− ρ2

2d2
ρ

]
. (21)

Substituting this density in (11), and multiplying this equation
by the corresponding Gaussian

√
n(ρ) and integrating out the

ρ dependence we obtain the reduced 1D equation [40, 41]

μ1D

√
n(z) =

[
− ∂2

z

8
+ λ2z2

2
+ 3[6Nn(z)]2/3

10d4/3
ρ

+ 2addN

d2
ρ

∫ ∞

−∞

dkz

2π
eikzzn(kz)s1D

(
kzdρ√

2

)]√
n(z),

(22)

s1D(ζ ) =
∫ ∞

0
du

2ζ 2 − u

u + ζ 2
e−u, (23)

where n(kz) = ∫ ∞
−∞ e−ikzzn(z) dz, and μ1D is the chemical

potential. An approximate variational solution of (22) is

possible with the following ansatz for density [41] n(z) =
1/(

√
πwz) exp

[− z2/w2
z

]
, while the width wz is determined

by solving (17) with wρ = dρ and κ = dρ/wz.
Next we consider the reduced 2D equation suitable

for a disc shape with a strong axial trap. The dipolar
Fermi gas is assumed to be in the ground state [39] n(z) =
exp

(−z2/d2
z

)
/(

√
πdz), dz = √

1/(2λ), of the axial trap λ2z2/2
and the 3D density can be approximated as√

n(r) ≡
√

n(ρ)
√

n(z) =
√

n(ρ)

π1/4
√

dz
exp

[
− z2

2d2
z

]
. (24)

Using this ansatz in (11), and multiplying by the corresponding
Gaussian

√
n(z) and integrating out the z dependence we get

the effective 2D equation [41, 42]

μ2D

√
n(ρ) =

[
− ∇2

ρ

8
+ 1

2
ν2ρ2 +

√
3

5

[6Nn(ρ)]2/3π

2d2/3
z

+4πaddN√
2πdz

∫
d2kρ

(2π)2
eikρ .ρn(kρ )h2D

(
kρdz√

2

)]√
n(ρ),

(25)

where n(kρ ) = ∫
eikρ .ρn(ρ)d2ρ, h2D(ξ ) = 2 − 3

√
πξeξ 2

[1 −
erf(ξ )]. An approximate variational solution of (25) is
possible with the following ansatz for density [41] n(ρ) =
1/

(
πw2

ρ

)
exp

[ − ρ2w2
ρ

]
, while the width wρ is determined by

solving (16) with wz = dz and κ = wρ/dz.

2.4. Sound propagation in a uniform Fermi gas

To find the sound velocity in a uniform Fermi gas, we evaluate
the Bogoliubov spectrum using the linearized hydrodynamic
equations. We consider a stationary Fermi gas in a box with
a periodic boundary condition with the trap V fixing just the
allowed plane wave solution. Then (3), after the inclusion of
the gradient term of (9), reduces to

− �
2∇2

√
n(r, t)

8m
√

n(r, t)
+ μ(n, r) + m

∂�(r, t)

∂t
= 0. (26)

Now we allow small perturbation in n and � around their
equilibrium values n0 and �0 by n(r, t) ≈ n0 + n̄(r, t) and
�(r, t) ≈ �0 + �̄(r, t), then (2) leads to

∂ n̄(r, t)

∂t
+ n0∇2�̄(r, t) = 0. (27)

In (26), we need to use
√

n(r, t) ≈ √
n0 + n̄(r, t)/(2

√
n0)

and [n(r, t)]2/3 ≈ n2/3
0 + 2n̄(r, t)/

(
3n0

1/3
)
, while μ(n, r) ≈

μ̃0 + μ̄(n, r) with

μ̄(n, r) = �
2(6π2)2/3n̄

3mn1/3
0

+
∫

dr′n̄(r′, t)Udd (r − r′), (28)

where μ̃0 is the stationary value of μ. Then (26) leads to

− �
2∇2n̄(r, t)

16mn0
+ μ̄(n, r) + m

∂�̄(r, t)

∂t
= 0. (29)

Assuming the perturbations n̄ and �̄ in plane-wave forms
n̄ = n̄0 exp[i(k · r) − ωt] and �̄ = �̄0 exp[i(k · r) − ωt],
μ̄ has the form μ̄ = n̄0μ̄0 exp[i(k · r) − ωt] with

μ̄0 = �
2(6π2)2/3

3mn1/3
0

+ 4πadd�
2

m
(3 cos2 θ − 1), (30)

4
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where θ is the angle between the propagation direction and
polarization direction z, and the last term in (30) is just the
Fourier transform of the dipolar potential. Then (27) and (29)
become

− iωn̄0 − n0k2�̄0 = 0, (31)

[
�

2k2

16mn0
+ μ̄0

]
n̄0 − iωm�̄0 = 0. (32)

The condition of existence of the solution to this set of
equations leads to the Bogoliubov spectrum

εk ≡ �ω =
√

�2k2

4m

[
�2k2

4m
+ 4n0μ̄0

]
. (33)

The sound velocity, defined as cs(θ ) = limk→0(εk/�k) for a
uniform dipolar Fermi gas can be written as

cs(θ ) =
√

v2
F

3
+ 4πn0add�2

m2
(3 cos2 θ − 1), (34)

where vF ≡ �kF/m = �(6π2n0)
1/3/m is the Fermi velocity.

For a nondipolar Fermi gas (add = 0), (34) leads to the well-
known velocity of vF/

√
3 [24, 29].

The angle-dependent second term under the square root in
(34) is responsible for anisotropic sound velocity. Specifically,
for θ > 54.73◦, this term is negative corresponding to a
decrease in sound velocity. For large dipolar interactions, for θ

greater than a critical value and for a large density n0 the sound
velocity could be imaginary corresponding to no propagation.
However, in this study we shall only consider moderate values
of density and dipolar interaction, that allow anisotropic sound
propagation in all directions.

3. Numerical results

3.1. Stationary properties of trapped dipolar Fermi gas

For a trapped 3D Fermi system we solve (11) numerically
after discretization [43]. The divergence of the dipolar term
at short distances has been handled by treating this term in
momentum (k) space [6]. For the numerical calculation in
section 3.1, we consider a degenerate Fermi gas of 161Dy atoms
with add ≈ 130a0 and employ the oscillator length l0 = 1 μm.

The anisotropic dipolar interaction is partially attractive
in certain angles and repulsive in others and contributes very
little in a spherically symmetric trap. The dipolar interaction
contributes attractively in the cigar-shaped configuration along
the polarization z direction and repulsively in the disc-shaped
configuration perpendicular to the polarization z direction.
Hence we will mostly consider the degenerate dipolar Fermi
gas in cigar and disc shapes. The 3D model (11) is very strongly
nonlinear with nonlinearity N = (6π2N)2/3/2, leading to
large nonlinearities of N = 760 and 3526 for N = 1000 and
10 000, respectively.

First, we compare the results of the reduced 2D density
n(x, y) of a disc-shaped degenerate Fermi gas of 161Dy atoms
with λ = 10, ν = 1 as obtained from the 3D and 2D
models (11) and (25), respectively, and from the variational
approximation to the 3D model. The reduced 2D density

n(x, y) is defined by n(ρ) ≡ n(x, y) = ∫ ∞
−∞ dzn(x, y, z). In

figure 1(a) we plot the reduced 2D density along the x axis
n(x, y = 0) for different N. Next, we compare the results of
reduced 1D density n(z) of a cigar-shaped degenerate Fermi
gas of 161Dy atoms with λ = 0.1, ν = 1 as obtained from the
3D and 1D models (11) and (22), respectively, and from the
variational approximation to the 3D model. The reduced 1D
density n(z) is defined by n(z) = ∫ ∞

−∞ dx
∫ ∞
−∞ dyn(x, y, z). In

figure 1(b) we plot the reduced 1D density along the z axis
n(z) for different N. From figure 1 we find that in both cigar
and disc shapes the 1D and 2D models perform fairly well,
even for large nonlinearities, when compared with the results
of the full 3D model. To see if the condition (6) is satisfied by
the shapes in figure 1, we can use the TF estimate for kF of
a trapped degenerate Fermi gas [24]: kF ≈ (48N)1/6/l0. For
100 < N < 10 000, as in figure 1, the de Broglie wavelength
at the Fermi surface is 2π/kF ≈ l0. The shapes and sizes in
figure 1 are much larger than this value, consistent with the
condition (6).

Next we consider a cigar-shaped degenerate Fermi system
of 161Dy atoms with trap parameters ν = 1, λ = 0.3. In
figure 2(a) we plot the numerical and variational results for
the chemical potential μ and rms sizes 〈x〉 and 〈z〉 of this
system for 10 < N < 10 000. In figure 2(b) we plot the
same for a disc-shaped degenerate Fermi system with trap
parameters ν = 1, λ = 10. Finally, in figure 2(c) we plot
the same quantities for N = 1000 versus the trap anisotropy
λ for ν = 1. In all cases the variational results are in good
agreement with the 3D model. For a medium to small number
(N < 10 000) of trapped 161Dy atoms as considered here (also
of interest in experiment), the effect of the dipolar term in
equation (11) (the last term in this equation) is small compared
to the Fermi energy term (the last but one term there). Hence
the effect of the dipolar term in figure 2 is small. The plots
in these figures only change by less than about 2–4% if we set
add = 0.

3.2. Anisotropic sound propagation in uniform dipolar Fermi
gas

The hydrodynamic analytical result for sound velocity (34)
in a uniform dipolar Fermi gas shows a clear anisotropy
through the angle θ between the propagation direction r and the
polarization direction z. In this expression for sound velocity
there are two competing terms under the square root. The
first term v2

F/3 involving the Fermi velocity is isotropic and
proportional to n2/3

0 whereas the second term proportional to
dipolar interaction is anisotropic and proportional to density
n0. The anisotropy in sound velocity cs(θ ) will manifest
strongly for large strength add and for large n0 as the
anisotropic dipolar term in (34) will increase more rapidly
with n0 than the isotropic term. In figure 3(a) we plot the
sound velocity cs(θ ) for angles θ = 0 and π as a function of
density n0 for a degenerate Fermi gas with add = 130a0 (161Dy
atom) and 2000a0 (polar 40K–87Rb molecules in the singlet
rovibrational ground state [1]) using the analytical result (34).
The sound velocity for nondipolar atoms (add = 0) is also
plotted. From this plot we find that the anisotropy in sound
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Figure 1. (a) Radial density of a disc-shaped Fermi gas of 161Dy atoms in the x–y plane n(x, y = 0) = ∫ ∞
−∞ dzn(x, y = 0, z) from the 3D (11)

for ν = 1, λ = 10 compared with its variational (var) approximation and the solution of the reduced 2D (25) for N = 100, 500, 10 000. (b)
Axial density of a cigar-shaped Fermi gas of 161Dy atoms along the polarization z axis n(z) = ∫ ∞

−∞
∫ ∞

−∞ dx dyn(x, y, z) from the 3D (11) for
ν = 1, λ = 0.1 compared with its variational (var) approximation and the solution of the reduced 1D (22) for N = 100, 1000.

propagation as measured by the difference [cs(0) − cs(π/2)]
is sizable only for a relatively large density n0 = 1015 cm−3

for 161Dy atoms. However, for polar 40K–87Rb molecules
the anisotropy is appreciable for a relatively low density of
n0 = 1013 cm−3. From figure 3(a) we see that for 40K–87Rb
molecules, the sound velocity is imaginary for θ = 0 for a
density of about n0 = 5 × 1013 cm−3.

To study sound propagation, the present stationary (static)
3D model (11) is generalized to include time variation by
replacing μ by the usual time derivative i�∂/∂t. Consequently,
the infinite dipolar Fermi gas satisfies the following Galilei-
invariant equation [37]

i�
∂

∂t

√
n0(r) =

[
− �

2∇2

2(2m)
+ 2V (r) + 2

�
2

2m
[6π2n0(r)]2/3

+12add
�

2

2m

∫
1 − 3 cos2 θ

R3
n0(r′) dr′

]√
n0(r), (35)

where density n0(r) = Nn(r) is not normalizable for infinite
hydrodynamics. Equation (35) is consistent [37] with the time-
dependent hydrodynamic equation (3) after the inclusion of the
gradient correction term [33].

The anisotropy of the dipolar interaction would be
prominent at low to medium density for large dipolar
interactions. To illustrate the anisotropic sound propagation
we will consider two examples: 161Dy atoms at a medium
density of 1015 cm−3 and the polar molecules 40K–87Rb at the
low density of 1013 cm−3. First we consider the numerical

simulation of sound propagation in the infinite 161Dy gas
(add = 130a0) at a background density of n0 = 103 μm−3 =
1015 cm−3. The numerical simulation is initiated with a 3D
Gaussian pulse at the centre of the uniform 3D background
density given by n0(r) = (103 + 102e−r2/2w2

) μm−3, w = 2
μm, subject to a weak expulsive Gaussian potential V (r) =
0.000 01e−r2/2w2

μm−2. With this initial condition (35) is
solved by real-time propagation [43] to study sound waves. An
ellipsoid-like sound wave front is found to emerge outwards
upon time propagation. From a numerical study of this wave
front the sound velocity in different directions is calculated.

Typical anisotropic sound propagation in a 161Dy
degenerate gas of density 1015 cm−3 is shown in figure 4.
The sound propagation is illustrated via contour plots of 3D
density n0(x, y, 0) in the x−y plane and of density n0(x, 0, z) in
the x−z plane. In figures 4(a)–(d), to illustrate the anisotropic
sound propagation in the x−z plane, we show the contour
plot of n0(x, 0, z) at times t = 0.15t0, 0.2t0, 0.25t0 and 0.3t0,
respectively, with t0 = 2ml2

0/�
2 ≈ 0.005 s the time scale and

l0 = 1 μm the length scale used in the numerical solution
of (35). However, the propagation in the radial x−y plane
is isotropic. This isotropic sound propagation is shown in
figures 4(e)–(h) via the contour plot of n0(x, y, 0) at times
t = 0.15t0, 0.2t0, 0.25t0 and 0.3t0, respectively. A clean wave
front of high density is identified in these contour plots
encompassing a region of low density—a typical panorama
in sound propagation.
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Figure 2. (a) Reduced chemical potential μ/(�ω), and rms sizes 〈x〉, and 〈z〉 of a cigar-shaped Fermi gas of 161Dy atoms with
ν = 1, λ = 0.3 versus N from a numerical (n) solution of the 3D (11) and variational (v) approximation ((16), (17) and (20)). (b) The same
for a disc-shaped gas with ν = 1, λ = 10. (c) The same for the trapped Fermi gas of 1000 161Dy atoms versus the parameter λ with ν = 1
from a numerical solution of (11) and variational approximation.

The sound propagation along the z direction (polar angle
θ = 0) has a velocity (cs = vF/

√
3) larger than that for a

nondipolar system (add = 0) of the same density, whereas
that in the x−y plane (polar angle θ = π/2) has a velocity
smaller than that for a nondipolar system as can be seen from
(34). The analytical sound velocity cs for nondipolar atoms
of density 1015 cm−3 and atomic mass 161 is 8.88 mm s−1

compared to the numerically obtained velocity of 8.5 mm s−1.
For 161Dy atoms of density n0 = 1015 cm−3 with add = 130a0,
the analytical radial sound velocity is cs(π/2) = 8.1 mm s−1

(numerical 7.0 mm s−1), and the analytical axial sound velocity
is cs(0) = 10.3 mm s−1 (numerical 10.0 mm s−1). In
figure 3(b), we present the variation of axial (θ = 0) and
radial (θ = π/2) sound velocities versus add as obtained
from numerical simulation and analytical consideration (34).
In figure 3(c), the analytical result for velocity versus the polar
angle θ is compared with the numerical result. The agreement
between the analytical result (34) for sound velocity and

the result of numerical simulation is satisfactory considering
the very large nonlinearities present in the system due to
large density (n0) and large dipolar interactions.

To have a larger anisotropy in sound propagation than in
a gas of 161Dy atoms at a lower density, a stronger dipolar
interaction, as in polar molecules, is needed. A convenient
polar fermionic molecule 40K–87Rb has a permanent electric
dipole moment 0.052 Debye (add ≈ 20a0) for the triplet
rovibrational ground state and 0.566 Debye (add ≈ 2000a0)
for the singlet rovibrational ground state [1]. For illustration,
we consider a uniform gas of 40K–87Rb molecules of density
n0 = 1013 cm−3 with add = 1000a0. The numerical simulation
is initiated with a 3D Gaussian pulse at the centre of the
uniform 3D background density given by n0(r) = (10 +
e−r2/2w2

) μm−3, w = 2 μm, subject to a weak expulsive
Gaussian potential V (r) = 0.000 01e−r2/2w2

μm−2. With this
initial condition (35) is solved by real-time propagation [43] to
study sound waves. Typical anisotropic sound propagation in
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Figure 3. (a) The analytical sound velocity cs(θ ) given by (34) in axial z (θ = 0) and radial ρ (θ = π/2) directions versus density n0 for
add = 130a0 and 2000a0 as well as the velocity for add = 0. (b) The analytical (ana) sound velocity cs(θ ) in the axial z (θ = 0) and radial ρ
(θ = π/2) directions versus add compared with the results of numerical simulation (num). (c) The analytical sound velocity cs(θ ) versus
polar angle θ compared with the results of numerical simulation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The contour plot of 3D density in the x–z plane n0(x, y = 0, z) during sound propagation on a background density n0 = 103 μm−3

of a degenerate dipolar 161Dy gas with add = 130a0 at times t = (a) 0.15t0, (b) 0.2t0, (c) 0.25t0 and (d) 0.3t0 (t0 = 0.005 s). The contour plot
of 3D density in the x−y plane n0(x, y, z = 0) during the same sound propagation at times (e) 0.15t0, (f) 0.2t0, (g) 0.25t0 and (h) 0.3t0.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. The contour plot of 3D density in the x−z plane n0(x, y = 0, z) during sound propagation on a background density n0 = 10 μm−3

of a degenerate dipolar molecular 40K–87Rb gas with add = 1000a0 at times t = (a) 0.2t0, (b) 0.5t0, (c) 0.8t0 and (d) 1.1t0 (t0 = 0.004 s,
l0 = 1 μm). The contour plot of 3D density in the x−y plane n0(x, y, z = 0) during the same sound propagation at times (e) 0.2t0, (f) 0.5t0,
(g) 0.8t0 and (h) 1.1t0.

a 40K–87Rb degenerate gas of density 1013 cm−3 is shown
in figure 5. Because of the stronger dipolar interaction, a
larger anisotropy has appeared at a lower density in figure 5
compared to figure 4. For 40K–87Rb molecules of density
n0 = 1013 cm−3 with add = 1000a0, the analytical radial sound
velocity is cs(π/2) = 2.05 mm s−1 (numerical 2.4 mm s−1),
and the analytical axial sound velocity is cs(0) = 3.03 mm s−1

(numerical 3.4 mm s−1).

4. Summary

We developed a 3D theoretical formulation for describing
certain macroscopic observables of a degenerate dipolar
Fermi gas appropriate for studying stationary properties,
such as shape, size, energy, chemical potential etc of a
trapped system. The effect of dipolar interactions is negligible
in the spherically-symmetric configuration and the dipolar
interaction manifests strongly in the asymmetric cigar and
disc shapes. Simple reduced equations in 1D and 2D suitable
for studying the trapped degenerate dipolar Fermi gas in cigar
and disc shapes, respectively, are derived. Also, a Gaussian
variational approximation for studying these macroscopic
properties is derived. We apply the present formalism to study
the stationary properties of a trapped degenerate Fermi gas
of 161Dy atoms. The stationary properties of the 3D model
under appropriate conditions are found to be in satisfactory
agreement with those from the reduced 1D and 2D models as
well as with variational approximation.

Using the present 3D model we also obtained analytical
results for anisotropic sound velocity as a consequence of
the anisotropic dipolar interaction in a dipolar Fermi gas in
agreement with numerical simulation in 3D (35). The sound
velocity is larger along the polarization direction than in the
transverse plane.
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