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Abstract
A comprehensive computational study using the convergent close-coupling method
of 64.6 eV electron-impact ionization of the ground state of helium is presented. The
kinematics considered range from the very asymmetric energy-sharing through to equal
energy-sharing. The cross sections given range from the total to fully differential, with the
latter being calculated for in- and out-of-plane geometries. Generally excellent agreement
with available experiment is found, but some systematic discrepancies are also
identified.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electron–helium scattering problem is one of the most
fundamental collision systems in atomic physics. Owing
to the ease with which the target beam can be prepared
there is an abundance of experimental data for excitation and
ionization processes, for vastly varying kinematical conditions
and geometrical orientation of the detectors. In recent years,
there has been immense development in complete theories of
electron–atom collisions, but mostly for the electron-atomic
hydrogen problem. The exterior complex scaling (ECS)
method [1–4], the time-dependent close-coupling (TDCC) [5]
are able to yield accurate e–H excitation and ionization cross
sections at all energies of interest. However, as yet the ECS
method has not yet been extended to e–He collisions, whereas
the TDCC method does so within the configuration average
approach [6] making the distinction between the singlet- and
triplet-state excitation not possible. We do note, however,
the successful application of the TDCC approach to e–He
ionization; see [7] and references therein. As far as we are
aware only the convergent-close-coupling (CCC) method is
able to treat both the e–H [8, 9] and e–He [10, 11] systems for
all of the excitation and (single) ionization processes, with the
validity of the method being independent of the kinematical
conditions.

Historically, the close-coupling method was intended
for just excitation processes, and various R-matrix
implementations dominate the literature; see for example
[12–15]. The CCC method was also initially intended just
for excitation processes, but following the description of the
e–H total ionization cross section [16], the method has been

extended to fully differential ionization [17]. This work was
initially modelled [18] on the pioneering effort of Curran and
Walters [19], but then considerably simplified to yield the
ionization amplitudes directly from the excitation amplitudes
of the positive-energy pseudostates [17].

Application of the CCC method to ionization has resulted
in some greater understanding of the close-coupling expansion
utilizing a complete basis. The ionization amplitudes were
found to converge to step functions [20], and for finite
bases they behave as Fourier expansions of step functions
[21]. This required a slight modification of the way the
amplitudes are used to define the cross sections, particularly
for the equal-energy sharing case, where the amplitudes
converge to half the step height [21, 22]. Furthermore,
the numerical success of the CCC and ECS methods has
resulted in a comprehensive analysis of the underlying
formal issued involving Coulomb two- and three-body
problems [23].

The CCC method has been applied extensively to e–
He (single) ionization at the higher energies [17] through
to the more difficult lower energies [22]. The case of
64.6 eV electron-impact ionization of helium is of particular
value to the field owing to the extraordinary amount
of absolute data for varying kinematics and geometries.
We demonstrate here how a single CCC calculation is
able to generate results for comparison with all of the
available data. The comprehensive study will uncover some
unexpected discrepancies with experiment not previously
identified.

0953-4075/10/074028+08$30.00 1 © 2010 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-4075/43/7/074028
http://stacks.iop.org/JPhysB/43/074028


J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 074028 I Bray et al

Figure 1. Energy levels, relative to the ground state energy of He+, obtained in the two CCC calculations; see the text for details.

2. Convergent close-coupling theory for e–He
scattering

The details of electron–helium scattering calculations with the
CCC method were presented by Fursa and Bray [10]. We
begin with an overview of the target structure generation.

2.1. Target structure

The helium wavefunctions are written in the frozen-core
approximation where one of the electrons is described by
the He+(1s) orbital. The other electron is represented as a
linear combination of Nl orthogonal Laguerre basis functions,
obtained by diagonalizing the He+ Hamiltonian for each orbital
angular momentum l � lmax. The two-electron states are
obtained upon diagonalization of the He Hamiltonian, using
a subset of the Laguerre-based orbitals, for each l and spin s.
To make convergence studies rather systematic, we take the
Laguerre basis size to be N0 − l, and so convergence needs to
be established just with increasing lmax and N0. Note that we
keep the Laguerre exponential parameter λ = 4 constant so
that the He+(1s) orbital comes out exactly. The resulting states
are all square-integrable and have both negative- and positive-
energy states. With increasing N0 the former converge to the
true discrete states and the latter yield an increasingly dense
discretization of the target continuum. Due to the frozen-core
approximation, the ground state ionization energy is 23.8 eV
rather than the experimental energy of 24.6 eV. However, all
of the excited states are very accurately treated by the frozen-
core approximation, and a small shift in the incident energy
ensures that in the calculations and the experiment the total
energy E is the same. Figure 1 presents the energy levels εn of
the helium wavefunctions used in the present CCC calculations

with lmax = 6 and N0 = 35 and 40. We have not used all of
the N0 − l orbitals in the generation of the He states, but only
25 − l. Given that the incident energy is 64.6 eV there is no
point keeping the very high energy orbitals that will lead to
high-energy He states. The two N0 calculations have exactly
the same number of states (309), but the lower value of N0

leads to a slightly less dense discretization and hence extends
out to higher energies.

2.2. Scattering calculation

The two-electron target states are used to expand the total
wavefunction of the e–He system, and thereby uniquely
define the close-coupling approximation for the scattering
calculation. There are several numerical methods for
solving such systems. In the CCC method we solve a
set of partial-wave expanded coupled Lippmann–Schwinger
equations in momentum space [8]. The present combination
of 309 states and lmax = 6 leads to a maximum of 1179
coupled channels, and when combined with integration over
intermediate momentum, results in having to solve linear
equations with 80 000 by 80 000 matrices.

Solution of the equations results in scattering amplitudes
Tf i(kf ,ki ) for the transition from the initial He state of
energy εi to the final He state of energy εf due to an
electron of incident momentum ki and outgoing momentum
kf . For εf < 0 this can be used directly to generate discrete
excitation data for comparison with experiment. However, for
ionization (εf > 0) we multiply Tf i(kf ,ki ) by the overlap of
the Laguerre-based two-electron state with the corresponding
true continuum (frozen-core) state [17]. Then the resulting
ionization amplitude may be written as T (kA,kB,ki ), where
kA = kf and kB is defined from EB = εf for each l [17].
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Figure 2. Singly differential cross sections for 64.6 eV
electron-impact single-ionization of helium. The raw CCC results
are those that show oscillation at the lower energies and diminish to
zero at the higher energies. The symmetric, about 20 eV, results are
the corresponding estimates of the true cross section; see the text.
The experimental data are due to Röder et al [26].

3. Results

3.1. Total ionization cross section (TICS)

We begin with the CCC results for the TICS. This can be
obtained simply by summing the cross sections for excitation
of all of the positive-energy states. We obtained 2.97 ×
10−17cm2 with the N0 = 40 calculation and 2.90 × 10−17cm2

Figure 3. Doubly differential cross sections for 64.6 eV electron-impact ionization of helium. The CCC calculations are described in the
text. The experimental data are due to Röder et al [26].

with the N0 = 35 one. These values are within the (few per
cent) error bars of Montague et al [24] and Shah et al [25].

3.2. Singly differential cross section (SDCS)

In figure 2, we present the CCC results for the SDCS. For both
calculations, there are two curves, corresponding to the raw
results (which go to zero above 20 eV) and the estimates (which
are symmetric about 20 eV) of the SDCS. The CCC theory is
unitary and yields independent cross sections for 0 � εf � E,
where presently E = 40 eV. The integral under the raw
CCC curves yields the TICS given above. Knowing [20–22]
that the CCC results should converge to the true SDCS, but
only on the interval 0 � εf < E/2, together with the value
of the SDCS at E/2 (raw amplitude converges to half step
height, hence cross section to a quarter) allows us to make the
symmetrized estimates. The symmetrized results also smooth
the oscillations as these arise from a Fourier-like expansion
of the underlying step function. Subsequently, the generation
of the angle-differential cross sections for asymmetric energy-
sharing kinematics needs to be rescaled by the ratio of the
estimated and raw results. This is typically by less than
10%, but ensures internal consistency of the cross sections and
that the convergence checks are not overly influenced by the
expected oscillations. For example, the two SDCS estimates
are in good agreement with each other even though the nature
of the oscillations is a little different at the lower energies.

3.3. Doubly differential cross section (DDCS)

In figure 3 the DDCS are presented. The measured DDCS
were integrated over the solid angle to generate the SDCS
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Figure 4. Parametrization of the fully differentialionization cross
sections.

of figure 2. We see an excellent agreement between the two
calculations and the experiment. The only minor exception to
this is at the lowest energy of 1 eV, where there is some visible
difference between the two calculations. This is due to the fact
that the smaller N0 calculation has a less dense discretization
making the generation of the ionization amplitudes more
problematic.

3.4. Triply differential cross section (TDCS)

The TDCS are obtained by measuring the two outgoing
electrons in coincidence. They have been obtained for a
range of kinematics and varying geometric orientation of the
detectors; see figure 4. For the case of equal-energy sharing,
i.e. two 20 eV outgoing electrons, we have a detailed study
of the in-plane geometries by Röder with 25% absolute value
uncertainty [27], and out-of-plane geometries by Murray and
Read with 44% absolute value uncertainty [28]. The data

Figure 5. Triply differential cross sections at fixed angle θA for 64.6 eV electron-impact ionization of helium with two 20 eV outgoing
electrons. The experimental data due to Röder, see [27], have 25% absolute uncertainty and have been multiplied by 1.2 for best visual fit to
the theory.

for both sets of measurements are internormalized, and one
geometry is common to both sets. To enable comparison with
theory we have multiplied the data of Röder by 1.2, as was
done in [22], and multiplied the data of Murray and Read
by 0.77 to ensure agreement at the common angle of 90◦.
This is a convenient angle for normalization as the statistical
uncertainty is very small, and is the unique point common to
all of the considered out-of-plane geometries.

Figures 5 and 6 show the TDCS in the case of coplanar
geometry and equal-energy sharing. In the former, the angle
θA of one outgoing electron is fixed and the TDCS is plotted
against the angle θB of the other electron. For the latter, the
angle θAB = θB − θA between the two outgoing electrons is
kept constant and the TDCS is plotted against the scattering
angle θB . We see an excellent agreement between the two
calculations and the experiment.

In figure 7, the out-of-plane (for ψ > 0◦) geometries
are considered. Here the two detectors are on the opposite
side of the incident beam which comes in at angle ψ to the
scattering plane; see figure 4. The geometry is such that the
θB = −θA = 90◦ point is common for all ψ . The in-plane
case for ψ = 0◦ has also been measured by Röder. Note that
uniformly multiplying the data of Röder by 1.2 for best visual
fit on the previous two figures and then normalizing the data
of Murray and Read at 90◦ to the theory means that we are
not free to move the two data sets for ψ = 0◦ relative to each
other. While the 90◦ point is near a minimum for ψ = 0◦

it is the maximum for ψ = 90◦. Hence we are identifying
a systematic discrepancy between the CCC theory and the
data of Murray and Read. Most unusually, the discrepancy is
for the largest cross sections measured. Whereas for ψ = 90◦
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Figure 6. As for figure 5, except for fixed θAB .

Figure 7. As for figure 5 except for the geometries measured by Murray and Read [28], whose data have been normalized to the theory at
the common 90◦ angle; see the text.

agreement with experiment is within 0.1 of the presented units,
the discrepancy for ψ = 0◦ is around 20 units. We shall
see that a similar systematic problem persists for asymmetric
energy sharing.

In figure 8, the outgoing electrons do not share the excess
energy equally, having EA = 25 eV and EB = 15 eV, though
the geometry remains the same as for figure 7. This time
only the data of Murray and Read [28] are available. Again
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Figure 8. Triply differential cross sections for 64.6 eV electron-impact ionization of helium with EA = 25 eV and EB = 15 eV outgoing
electrons. The experimental data of Murray and Read [28] have an uncertainty of about 44% and have been multiplied by 0.59 to be
normalized to the theory at the common (for all ψ) 90◦ angle.

we normalize the experiment to the theory at the common
point of 90◦, by multiplication of the original data by 0.59.
Convergence of the two calculations is excellent, particularly
for the largest cross sections (smallest ψ). However, as for the
equal-energy sharing case, agreement with experiment is best
for the smallest cross sections.

Figure 9 presents the results for EA = 30 eV and EB =
10 eV kinematics. Once again we find good convergence
between the two calculations, and best agreement with the
smallest measured cross sections. This time the discrepancy
with the largest cross sections has increased to around 30 of
the presented units.

Finally, figure 10 shows the comparison for the case of
EA = 35 eV and EB = 5 eV kinematics. Much the same
observation can be made as for the previous three figures.
However, it is interesting to note the qualitative change in the
ψ = 0◦ cross section at the forward angles. Owing to electron–
electron repulsion this region should have small cross sections
whenever the electrons have similar energies. Even for the
previous case of EA = 30 and EB = 10 eV the cross sections
here were small. Yet the transition to EA = 35 and EB =
5 eV has resulted in this region to be a clear maximum. It is
most unfortunate that we have a systematic discrepancy with
experiment here and such a rapid variation predicted by theory
is not able to be confirmed.

There are other interesting behaviour in the TDCS that we
have not yet touched upon. This involves the deep minima of
the cross sections at intermediate scattering angles for certain
values of ψ . This arises from the destructive interference

of the various partial waves and has been studied in some
detail recently by Colgan et al [29] at a range of incident
energies.

4. Summary and conclusions

We presented the results of two 64.6 eV e–He CCC
calculations, concentrating only on the ionization processes.
Excellent agreement with the TICS, SDCS and DDCS has been
demonstrated. Excellent agreement has also been found with
the coplanar TDCS measured by Röder, which are available
only for equal energy-sharing kinematics. While we find
excellent agreement with the data of Murray and Read for
the smallest most out-of-plane kinematics, there are substantial
discrepancies for the largest most in-plane cross sections. This
is true for equal and asymmetric energy-sharing kinematics.

We are unable to suggest any reason for the identified
discrepancies. While it is not unusual to find discrepancies
with experiment for the smallest cross sections, this is the first
time we have come across agreement with the smallest cross
sections measured and not the largest. We do not expect
the frozen-core treatment of the ground state in the CCC
calculations to be responsible for the discrepancy. Generally,
the smaller the cross section, the more accurate the calculation
needs to be. Here we see that the smallest out-of-plane cross
sections are very well described by the present calculations.
This, together with the agreement of the CCC results and
the experimental TICS, SDCS, DDCS and the in-plane data
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Figure 9. Same as for figure 8, except for EA = 30 eV and EB = 10 eV. The normalization constant is 0.72.

Figure 10. Same as for figure 8, except for EA = 35 eV and EB = 5 eV. The normalization constant is 0.84.

of Roeder, suggests that the frozen-core approximation is
sufficiently accurate. We are hopeful that the discrepancies,

presented here in full detail for the first time, will stimulate
experimental activity aimed at their resolution.

7



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 074028 I Bray et al

Acknowledgments

This work was supported by the Australian Research Council.
We are grateful for access to the Australian National
Computing Infrastructure Facility and its Western Australian
node iVEC.

References

[1] Rescigno T N, Baertschy M, Isaacs W A and McCurdy C W
1999 Science 286 2474–9

[2] Baertschy M, Rescigno T N and McCurdy C W 2001 Phys.
Rev. A 64 022709

[3] Bartlett P L, Stelbovics A T and Bray I 2004 J. Phys. B: At.
Mol. Opt. Phys. 37 L69

[4] Bartlett P L 2006 J. Phys. B: At. Mol. Opt. Phys.
39 R379–R424

[5] Colgan J and Pindzola M S 2006 Phys. Rev. A
74 012713

[6] Pindzola M S et al 2007 J. Phys. B: At. Mol. Opt. Phys.
40 R39–R60

[7] Colgan J, Foster M, Pindzola M S, Bray I, Stelbovics A T
and Fursa D V 2009 J. Phys. B: At. Mol. Opt. Phys.
42 145002

[8] Bray I and Stelbovics A T 1992 Phys. Rev. A
46 6995–7011

[9] Bray I and Stelbovics A T 1995 Adv. At. Mol. Phys. 35 209–54
[10] Fursa D V and Bray I 1995 Phys. Rev. A 52 1279–98
[11] Fursa D V and Bray I 1997 J. Phys. B: At. Mol. Opt. Phys.

30 757–85

[12] Burke P G and Robb W D 1975 Adv. At. Mol. Phys. 11 143–214
[13] Fon W C, Berrington K A, Burke P G and Kingston A E 1981

J. Phys. B: At. Mol. Phys. 14 1041–51
[14] Bartschat K, Hudson E T, Scott M P, Burke P G and

Burke V M 1996 J. Phys. B: At. Mol. Opt. Phys. 29 115–23
[15] Gorczyca T W and Badnell N R 1997 J. Phys. B: At. Mol. Opt.

Phys. 30 3897–912
[16] Bray I and Stelbovics A T 1993 Phys. Rev. Lett. 70 746–9
[17] Bray I and Fursa D V 1996 Phys. Rev. A 54 2991–3004
[18] Bray I, Konovalov D A, McCarthy I E and Stelbovics A T

1994 Phys. Rev. A 50 R2818–R2821
[19] Curran E P and Walters H R J 1987 J. Phys. B: At. Mol. Phys.

20 337–65
[20] Bray I 1997 Phys. Rev. Lett. 78 4721–4
[21] Stelbovics A T 1999 Phys. Rev. Lett. 83 1570–3
[22] Stelbovics A T, Bray I, Fursa D V and Bartschat K 2005 Phys.

Rev. A 71 052716
[23] Kadyrov A S, Bray I, Mukhamedzhanov A M and

Stelbovics A T 2009 Ann. Phys. 324 1516–46
[24] Montague R G, Harrison M F A and Smith A C H 1984

J. Phys. B: At. Mol. Phys. 17 3295–310
[25] Shah M B, Elliot D S, McCallion P and Gilbody H B 1988

J. Phys. B: At. Mol. Opt. Phys. 21 2751–61
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