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Abstract
This paper develops spherically symmetric models as well as a more accurate model for the
calculation of the damage and the movement of free and quasi-free electrons which are
produced from the irradiation of x-ray free electron lasers (XFELs). The behaviour of free and
quasi-free electrons is studied for targets with various shapes such as spheres and ellipsoids by
treating the space distribution of free and quasi-free electrons. Furthermore, the limits of the
application of spherically symmetric models to various shapes are discussed. The spherically
symmetric model developed here is also applied to a bio-molecule. The results obtained are
useful for the analysis of the three-dimensional structures of large bio-molecules in the
experiments of XFELs.

1. Introduction

The study of the damage and destruction of bio-molecules
due to the irradiation of x-ray free electron lasers (XFELs)
is indispensable for the analysis of three-dimensional (3D)
structures using non-crystallized single bio-molecules [1–13].
We define the damage and the destruction as the ionization
and the movement of atoms in a target, respectively [6, 7].
This comes from the fact that the positions of the atoms
do and do not change due to the movement and the
ionization, respectively. The change of the positions means
that the reconstruction of the 3D structure cannot be executed.
The damage and the destruction mainly occur through the
following occurrences. (i) The atoms in the target are ionized
through x-ray absorption or Compton scattering. (ii) From
these ionization processes, free electrons, quasi-free electrons
and ions are produced and move, where we define ‘a
free electron’ and ‘a quasi-free electron’ as an electron,
which is ionized from an atom, outside and inside the
target, respectively [4]. (iii) Quasi-free electrons promote the
ionization of other atoms through electron impact ionization
processes. (iv) Other ionization processes, such as Auger, also
occur.

The analysis of 3D structures of bio-molecules is executed
based on diffraction patterns which come from x-rays scattered
by electrons bounded in atoms. The intensity of the diffraction
patterns (Io) is given by

Io(�k) ∝ Ii |F(�k)|2, (1)

where Ii is the intensity of an XFEL, and F(�k) defined by

F(�k) =
∫

ρ(�r) ei�k•�r d�r

=
∑

i

ei�k•�ri

∫
ρatom(�r) ei�k•�r d�r +

∫
ρfe(�r) ei�k•�r d�r (2)

is the structure factor as a function of wave number vectors (�k)
with �k = �Ki − �Kf . Here �ri , ρ(�r), ρatom(�r) and ρfe(�r) are the
position of an atom in the target, the electron density in the
bio-molecule, the electron density in the atom and the density
of free and quasi-free electrons, respectively, and �Ki and �Kf

are the wave number vectors of the incident and scattered
x-rays, respectively. It should be noted that the second
term on the right-hand side of equation (2) is conventionally
ignored because ρfe(�r) is too small. As seen in equation (1),
in diffraction patterns, the information on the phases of
F(�k) has disappeared. In order to get three-dimensional
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structures, the phase recovery for the first term on the right-
hand side of equation (2) is required using the repetition of
Fourier transfer simulations such as an over-sampling method
[11, 12]. Further, the change of ρatom(�r) and the positions of
atoms during the irradiation of x-rays are also conventionally
ignored because of the small amount of damage and
destruction. On the other hand, in XFEL light pulses, we may
need to consider this second term on the right-hand side of
equation (2), the change of ρatom(�r) and the positions of atoms
because of the larger damage. Namely, the damage and the
destruction change the diffraction patterns due to (i) ionization
processes, which reduce Io; then we should change ρatom(�r)
to the electron density according to the ionized states [ρion(�r)]
using the method given in [13]; (ii) the interference of x-
rays scattered by electrons bounded in the atoms with those
by quasi-free and free electrons, which changes Io (see the
second term on the right-hand side of equation (2)); (iii) the
movement of atoms, which changes �ri . For the movement of
atoms, the distances over which the atoms move become one of
the factors in the decision of the highest resolving power of the
3D structures obtained from the experiments. Therefore, we
need to control these distances to be smaller than the desired
resolving power during the irradiation of XFEL light pulses on
the target. However, the movement of atoms may be able to be
controlled using a short pulse of XFELs [1] or a tamper target
[5], where the latter is defined as a bio-molecule surrounded
by multi-layers of water. Hau-Riege et al [5] showed from
their simulation that the movement of atoms can be controlled
using a tamper target and a pulse of 50 fs as diffraction patterns
change little. On the other hand, it is almost impossible to
control the movement of electrons. This means that the effect
of the movement of atoms on the analysis of 3D structures is
much smaller than that of the movement of electrons. Here we
include the movement of electrons and exclude the movement
of atoms in our simulations, although we do not think that the
movement of atoms can be ignored. We will address this in
the future.

Before we commence the experiments of diffraction
patterns, simulations of the damage and the destruction play
an important role. The simulations have been executed
using various methods, such as molecular dynamics (MD)
[1–3], rate equations [4–7, 9, 10] and kinetic Boltzmann
equations [8]. All of these methods have advantages and
disadvantages. In MD, accurate simulation can be executed
for bio-molecules of small size, having up to 10 000 atoms.
However, MD is unsuitable for larger sizes because it takes
too much time to calculate the damage and the movement
of electrons and ions. The rate equations and the kinetic
Boltzmann equations can treat bio-molecules of larger size
using spherically symmetry models, that is, one-dimensional
models. If spherically symmetrical models are applicable, then
the interaction between individual charged particles does not
have to be calculated, which saves computing time. However,
there are no papers that discuss the limits of the application
of spherical symmetrical models to the shape of the targets as
far as we know. Therefore, in this paper, we confirm these
limits. Further, we develop a spherically symmetrical model
based on the Gauss law for spheres, which is able to treat the

movement of free and quasi-free electrons (see section 2.4).
We compare the movement of free and quasi-free electrons
calculated by our spherically symmetric model with those of
a more accurate one, that is, the Monte Carlo and Newton
equation (MCN) model (see section 2.3 and [9]) for various
target shapes in order to study the accuracy of our spherically
symmetric model. We hope that our model and the information
from its application will help in simulating larger sizes of
bio-molecules using the rate equations or kinetic Boltzmann
equations.

2. Method of calculations

2.1. Setups of the positions of atoms and parameters of XFEL
light pulses

First, we treat model carbon clusters with various shapes such
as spheres and ellipsoids at a solid density (3 × 1022 cm−3)
in order to develop simulation models. We choose positions
inside and outside the target from the number and the density of
atoms. Then the positions of the atoms are assigned randomly
on the condition that they are located inside the target and that
lengths among the atoms are larger than 3 Å, which is almost
the same as the length between carbons in proteins. Then we
attempt to apply our models to one bio-molecule, that is, a
lysozyme which has the elements H, N, O and S, as well as
C. We use the coordinate data of a lysozyme in the protein
data bank (PDB) (http://www.pdb.org/pdb/home/home.do), in
which we employ 2LZM as PDB ID.

For the parameters of XFEL light pulses, it is estimated
that x-ray fluxes around 1020 photons/pulse/mm2 and
wavelength around 1 Å are required [1, 4, 6]. In this paper,
we treat x-ray fluxes of 1020 to 5 ×1020 photons/pulse/mm2,
a wavelength of 1 Å, a pulse of 10 fs and the number of atoms
of 1000–8000.

2.2. Ionization processes

Ionization processes treated here are x-ray absorption (e.g. C +
hν → C+ + e−), Compton scattering (e.g. C + hν → C+ + e− +
hν ′), electron impact ionization (e.g. C + e− → C+ + 2e−) and
Auger (e.g. C+∗ → C2+ + e−), where hν and hν ′ are the x-ray
energies before and after the process occurs, respectively. We
calculate the change of both the ionized and excited states of
the atoms and the production of free and quasi-free electrons
using rates or cross sections of these ionization processes as a
function of time. We use the same rates or cross sections as
given in [7, 10, 14, 15]. The x-ray absorption cross sections
(σ xa) are roughly calculated by

σxa ∝ |〈f |⇀r |i〉|2, (3)

where |i〉 and |f 〉 are the wavefunctions for the initial and
final states, respectively [16]. On the other hand, the cross
sections of Compton scattering (σ CS) are determined by the
Klein–Nishina formula [17, 18], that is,

dσCS

d�
= 1

2
r2
c

(hν ′)2

(hν)2

(
hν

hν ′ +
hν ′

hν
− sin2 θ

)
, (4)

2
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where rc, θ and � are the radius of a classical electron, the
scattering angle and the solid angle, respectively, and hν ′ is
given by

hν ′ = hν

1 + hν
mec2 (1 − cos θ)

, (5)

where me and c are the mass of an electron and the speed of
light, respectively. Then the rates of the x-ray absorption (Rxa)
and Compton scattering (RCS) are given by

Rxa = Iσxa

hν
and RCS = IσCS

hν
, (6)

respectively, where I is the intensity of the x-rays [19, 20]. On
the other hand, Auger rates are roughly given by

Aa ∝
∣∣∣∣〈f | 1

r12
|i〉

∣∣∣∣
2

, (7)

where r12 is the length between an electron transferred from
an excited state to the ground state and that ionized from an
ion [7, 16]. We have used the Auger rates given in [7]. For
the cross sections of the electron impact ionization processes
(σ e), we employ the data listed in [14].

The initial energies and velocities of electrons produced
from these ionization processes should be mentioned because
they contribute significantly not only to the movement of
free and quasi-free electrons but also to the treatment of
electron impact ionization processes. (i) X-ray absorption
processes: the initial electron energy corresponds to the value
that subtracted a bound energy (EB) of atoms or ions from
the x-ray energy. Since the x-ray energy treated here is much
larger than EB of H, C, N and O, which are the main elements of
bio-molecules, the initial electron energy is almost the same
as the x-ray energy. (ii) Compton scattering: the value of
θ is determined randomly by treating the right-hand side of
equation (4) multiplied by d� as a weighting factor and the
initial electron energy is hν – hν ′ – EB . (iii) Auger: we employ
the initial electron energy calculated by Cowan’s code [16].
(iv) Electron impact ionization processes: we calculate the
initial electron energy from binary encounter dipole (BED)
theory [10, 21] or use the data given in [22]. After the
initial electron energy is determined, the initial direction of
the electron velocity is given randomly except for that due
to Compton scattering. In Compton scattering, the initial
direction is determined from the electron energy, θ , and the
momentum conservation law.

2.3. Monte Carlo and Newton equation model

The MCN model employed here is almost the same method
as that treated in [2, 3] except for the movement of atoms
or ions as mentioned in section 1. The x-ray absorption,
Auger and Compton scattering processes are treated using
the Monte Carlo method as follows [23] (i) When an XFEL
light pulse begins to irradiate a target, we start the calculation
and set the time t = 0. We also set the neutral and the
ground states for ionized and excited states of all atoms
in the target, respectively. (ii) We calculate the transition
rates [Rifp(m)] (see section 2.2) of all the possible ionization
processes according to the ionized and excited states of all the

atoms and random numbers [NR(m)]. One random number
is given to each atom at the time interval between t and t +
�t, where Rifp(m) and NR (m) are the transition rate from
the ith state to the f th one of the mth atom due to the pth
ionization process and the random number given to the mth
atom, respectively. We take �t to be 2 × 10−3 fs. (iii) Only
when ∑

p

∑
f

Rifp(m)�t > NR(m), (8)

one process for the mth atom occurs. When equation (8)
is satisfied, the state where the ionization occurs is chosen
randomly among all the possible transitions using the
respective Rifp(m) as weighting factors. (iv) The value of
t increases by �t and procedures (ii) and (iii) are executed.
(v) We reiterate procedures (ii)–(iv) until the XFEL light pulse
passes through the target.

For the electron impact ionization process, a similar
method to that treated in [2, 3] is employed. It is judged that
the process occurs only when a quasi-free electron crosses the
area of a cross section according to an ionized state of an atom.
The centre of the cross section is located at the atomic nucleus
and the cross section is perpendicular to the direction of the
electron velocity.

The Coulomb forces due to ions and electrons act on free
and quasi-free electrons. The movement of these electrons is
solved by the Newton equations, that is,

�F = me

d�vei

dt
= −

∑
j 	=i

e2�rij

4πε0r
3
ij

+
∑

l

qle�ril

4πε0r
3
il

, (9)

where ε0, me, ⇀
vei , ql and �rij (l) are the dielectric constant

in vacuum, the mass of an electron, the velocity of the ith
electron, the charge of the lth ion and the distances between
the ith electron and the j th free and quasi-free electron (the
lth ion), respectively [9]. In order to avoid divergence near
rij (l) = 0 in equation (9), we use a similar approximation to
that employed in [2, 3], that is, rij (l ) is approximately replaced

by
(
r2
ij (l) + a2

s

)1/2
, where we take as to be 1 Å. We use �t

given in equation (8) as a time step for the movement of the
electrons.

It should be noted that the production and the movement of
electrons depend on the initial values of the random numbers
(seeds) and that we can demonstrate the calculations of the
damage and the electron distributions for different pulses
using different initial seeds for the random number generated.
We show the results averaged by a few hundred pulses in
section 3.

2.4. Spherically symmetric models

In the case of a spherical target with a radius of 100 nm, the
number of atoms is larger than 107. In our calculation using
the MCN developed here, it takes about 12 h to calculate the
damage and the movement of free and quasi-free electrons for
the number of atoms of only 8000 and the x-ray flux of 3 ×
1020 photons/pulse/mm2. Therefore, it takes too much time
to execute the 3D calculation for the damage of bio-molecules
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when we treat a target with a radius around 100 nm. Then
spherically symmetric models become useful.

When we study the irradiation of XFEL light pulses with
the clusters or bio-molecules, the uniform space charge Qe(r)
is produced from electrons escaping from the target [9], that
is,

Qe(r) = 4
3πr3Deee (r < r0)

Qe(r) = 4
3πr3

0 Deee (r � r0),
(10)

with Dee = Nee/Vt , where r0, e, Nee and Vt are the radius
of the target, the charge of an electron, the number of the
electrons which escape from the target and the volume of the
target, respectively [9]. This comes from the Gauss law for
the sphere [9]. Then, in our first approximation (which we
call the SSM1), we use equation (10) for the space charge,
where the uniform charge distribution in the spherical targets
is assumed. In the case of ellipsoids, we define an escaped
electron as an electron which has a value of r larger than that
of the atom furthest from the centre of the target (ralm), that is,
r0 = ralm. From equation (10), the force acting on an electron
becomes

F(r) = Qe(r)e

4πε0r2
= 1

3ε0
rDeee

2 (r < r0)

F (r) = Qe(r0)e

4πε0r2
(r � r0).

(11)

Here, the force is directed towards the centre. It should be
noted that equation (11) follows the Gauss law in the case of
uniform charge distribution in spherical targets. Namely the
electric fields (F(r)/e) are produced from the charge, which
exists inside the location of interest, and the charge outside
it can be ignored because of cancellation. We treat equation
(11) instead of equation (9) for the movement of electrons in
the SSM1. In equation (11), there is no divergence near r =
0, which often appears for the point charge because F(0) = 0.
This approximation is usable only when the number of quasi-
free electrons is too small to affect the charge distribution.
Since the SSM1 is useful for saving the calculation time, we
examine the limits of application of the SSM1. When we
consider that quasi-free electrons affect the charge distribution,
the charge distribution for r becomes non-uniform. Then in
our second approximation (SSM2), we estimate the charge
Qes(r) by counting the total charge inside the location where
the electron of interest exists and we use Qes(r) instead of Qe(r)
in equation (11).

3. Results and discussion

Here the behaviour of free and quasi-free electrons is discussed
from the space electron distribution. We treat the x-ray fluxes
of 1020, 3 × 1020 and 5 × 1020 photons/pulse/mm2 and the
number of atoms of 1000, 2000, 4000 and 8000. We have
found almost the same trends for the electron distribution for
all the parameters. Here we show only the case of the x-ray
flux of 3 × 1020 photons/pulse/mm2 and the number of atoms
of 2000.

Figure 1 shows the free and quasi-free electron
distribution as a function of r for a spherical target at t =

1 attosecond (as), 1, 3 and 9 femtosecond (fs) calculated by
the MCN, the SSM1 and the SSM2, where r is the distance
from the centre of the target. We set the time of t = 0 just
when an XFEL light pulse begins to irradiate the target. The
electron distribution treated here is defined as follows. (i) We
count the number of electrons [Ne(r)] at the interval between
r and r + �r, where we take �r to be 1 Å. (ii) The electron
distribution Fed (r) is given by

Fed(r) = Ne(r)

4π
(
r + �r

2

)2 . (12)

The results calculated by the SSM1 and SSM2 show good
agreement with those of the MCN at t = 1 as and 1 fs (see
figures 1(a) and (b)). At 1 as (see figure 1(a)), the distribution
becomes almost a constant value as a function of r except
for those near the surface. The behaviour near the surface
comes from the fact that quasi-free electrons produced near
the surface can escape from the target even at 1 as. At
1 fs (see figure 1(b)), many quasi-free electrons can escape
from the target. Then the distribution becomes smaller as r
increases. We predict from figure 1(b) as follows. (i) Since
quasi-free electrons are accelerated towards r = 0, the electrons
become concentrated near r = 0. (ii) As the charge becomes
smaller near r = 0, the acceleration becomes weaker as
time progresses. (iii) This reduces the invasion of quasi-free
electrons into r = 0. As a result, the distribution near r = 0
becomes almost a constant value as a function of r (see
figures 1(c) and (d)). This trend agrees well with that given
by [4]. For t � 3 fs (see figures 1(c) and (d)), the SSM1
seems to become useless because the number of quasi-free
electrons is large enough to affect the charge distribution.
The electron distribution calculated by the SSM2 still shows
good agreement with that of the MCN except for points near
r = 0.

In order to verify the behaviour of the electron distribution
shown in figure 1 in more detail, we have calculated electric
fields. Figure 2 shows the electric fields on the x-axis as a
function of x for the spherical target at t = 1, 3 and 9 fs. Here
we take randomly one direction from the centre as the x-axis
because we treat spherical targets where spherical symmetry,
that is, the one-dimensional model, can be adopted. In figure
2, the MCN and the SSM2 are employed. We have found
from the results calculated by the MCN in figure 2(a) that the
electric fields show similar trends to those obtained from the
Gauss law in the case of the uniform space charge distribution
in spherical targets. Namely, the electric fields increase almost
in proportion to x until they reach the surface of the target and
then decrease beyond the surface. The y- and z-components of
the electric fields are much smaller than their x-component. On
the other hand, for t � 3 fs (see figures 2(b) and (c)), the electric
fields become much smaller except for those near the surface of
the target. This comes from the invasion of quasi-free electrons
into r = 0 and then causes the SSM1 to become useless because
the charge distribution becomes non-uniform for r. Further,
we have found that the y- and z-components of the electric
fields become comparable to their x-component near x = 0
in the MCN. This may come from the facts that the number
of charged particles inside the location of interest is much
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(a) (b)

(c) (d)

Figure 1. Electron distribution defined by equation (12) versus r at (a) t = 1 as, (b) t = 1 fs, (c) t = 3 fs and (d) t = 9 fs for a spherical target.
The calculation methods are the MCN (×), the SSM1 (�) and the SSM2 (
). The x-ray fluxes, the number of atoms in a target, the
wavelength and the pulse of XFEL are 3 × 1020 photons/pulse/mm2, 2000, 1 Å and 10 fs, respectively.

smaller than that outside it and the charge distribution outside
the location of interest is not perfectly symmetrical. In the case
of perfect symmetry, the cancellation occurs for electric field
contributions from charged particles outside the location of
interest as mentioned before. However, the cancellation near
x = 0 may become insufficient in figures 2(b) and (c) because
of the large number of quasi-electrons outside the locations
of interest and non-perfect symmetry. As a result, we may
not be able to ignore the charge distribution outside it near
x = 0 in the MCN. On the other hand, in the SSM2, only
the charge inside it is considered (see section 2.4). This gives
rise to a disagreement between the electron distributions near
r = 0 given by the MCN and the SSM2 (see figures 1(c)
and (d)).

From here, we do not treat the SSM1 because we have
judged from figure 1 that it is dangerous to apply the SSM1 to
the calculation of the electron distribution. Figure 3 shows the
same as figure 1(d) (t = 9 fs) for lr = 2, 3 and 4, where lr is
the ratio of the lengths of the major axis with that of the minor
one in the ellipsoid. We have found the same tendency as that in
figure 1(d) at lr = 2 and 3 (see figures 3(a) and (b)), that is,
the electron distribution near r = 0 remains almost a constant
value, and good agreement between the electron distributions
calculated by the SSM2 and the MCN is shown. As lr
increases, the discrepancy between the electron distributions

calculated by the SSM2 and the MCN becomes larger. At
lr = 4, the flat appearance near r = 0 seems to disappear. Since
there is a big difference in the electron distribution calculated
by the MCN with that by the SSM2 at lr = 4, our spherically
symmetric models may no longer be applied for lr = 4.

Figure 4 shows the same as figures 1(d) and 3 (t = 9 fs) for
the application to a lysozyme. A lysozyme has the elements
H, N, O and S, as well as C. We treat the ionization processes
using cross sections or rates corresponding to each element
except for S because the proportion of S is much smaller than
that of the other elements. We have found the same trends
as those in figure 1(d), that is, the electron distribution near
r = 0 remains almost a constant value and good agreement
between the electron distributions calculated by the SSM2 and
the MCN is shown. This may result from the fact that a
lysozyme has a shape close to a sphere as follows. We derive
the relationship between the radius of the sphere into which
the bio-molecule could be transformed (r0t ) and the average
value among the lengths of the places of atoms from the centre
(rav). The relationship between rav and r0t is given by

rav =
∫ r0t

0 r4πr2 dr

4
3πr3

= 3

4
r0t , (13)

that is, we assume r0t = 4/3 rav. From this equation, we
estimate that r0t and lr for a lysozyme are approximately 21 Å
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(a)

(b)

(c)

Figure 2. Electric field on the x-axis versus x model at (a) t = 1 fs,
(b) t = 3 fs and (c) t = 9 fs for a spherical target. The calculation
methods are the SSM2 (×) and the MCN. In the MCN, the
x-component (�), y-component (–) and z-component (�) of the
electric fields are shown. The x-ray fluxes, the number of atoms in a
target, the wavelength and the pulse of XFEL are 3 × 1020

photons/pulse/mm2, 2000, 1 Å and 10 fs, respectively.

and about 1.35, respectively. We conclude that we may apply
the SSM2 to the calculation of the electron distribution on
bio-molecules with shape close to a sphere.

The 3D structures of bio-molecules which cannot be
crystallized will be constructed from diffraction patterns,
which are produced from x-rays scattered by the bound
electrons in atoms in the target. On the other hand, x-rays
scattered by quasi-free electrons obtained here interfere with
those by the bound electrons in the atoms and the interference
appears as a noise for the diffraction patterns observed on the
x-ray detectors. For the calculation of this noise, we hope that

(a)

(b)

(c)

Figure 3. The same as figure 1(d) for (a) lr = 2, (b) lr = 3 and
(c) lr = 4. The calculation methods are the MCN (×) and the
SSM2 (
).

Figure 4. The same as figure 1(d) for the target of a lysozyme. The
calculation methods are the MCN (×) and the SSM2 (
).

our spherically symmetrical model becomes useful for large
bio-molecules.
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4. Summary

We have developed spherically symmetric models and a more
accurate model applied to the calculation of the damage of bio-
molecules and the movement of free and quasi-free electrons
for targets with various shapes such as spheres and ellipsoids.
The damage and the free and quasi-free electrons are produced
from the irradiation of XFELs on the target. We discuss
the space distribution of free and quasi-free electrons. The
electron distribution calculated by our spherically symmetric
model agrees well with that calculated by our more accurate
model except for the point near the centre of the targets with
lr = 1–3, where lr is the ratio of the lengths of the major
axis with that of the minor one in the ellipsoid. However, we
have found a big difference between the electron distributions
calculated by the MCN and SSM2 models at lr = 4 and our
spherically symmetric model may no longer be applied for
lr � 4. Our spherically symmetric model can be applied to a
lysozyme. We may apply our spherically symmetric models
developed here to the calculation of the movement of free and
quasi-free electrons in bio-molecules with a shape close to a
sphere.
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