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Abstract
Attosecond pulses are generated by a macroscopic number of ionizing atoms interacting with a
focused laser pulse, via the process of high harmonic generation. The physics of their
generation consists of an interplay between the microscopic laser–atom interaction and
macroscopic effects due to ionization and phase matching in the nonlinear medium. In this
review, we focus on a complete understanding of the way in which attosecond pulses arrive at
a target where they can be characterized and used in an experiment. We discuss a number of
results from calculations of attosecond pulse generation obtained by simultaneous solution of
the time-dependent Schrödinger equation and the Maxwell wave equation. These results,
which allow for a clean separation of microscopic and macroscopic factors, illustrate how
macroscopic effects are used to select attosecond pulses from the radiation that is emitted by
atoms interacting with a strong laser field.

1. Introduction

The production of sub-femtosecond pulses of extreme
ultraviolet (XUV) radiation in recent years has allowed
physical processes to be studied on the attosecond time scale
for the first time [1–10]. Attosecond pulses (1 as = 10−18 s)
are now available in several laboratories as either single sub-
femtosecond bursts or as trains of attosecond pulses. They
are generated when a strong, infrared (IR) laser field rapidly
ionizes a gas of atoms [11, 12]. Because the laser field interacts
with a macroscopic number of atoms, the full description of
this process requires solving not only the strong-field laser–
atom interaction at the microscopic level, but also the Maxwell
wave equation which describes, at the macroscopic level, the
propagation of the radiation through the nonlinear medium.
In this review, we focus on a complete understanding of the
way in which attosecond pulses actually arrive at a target
where they can be characterized and used in an experiment
to study sub-femtosecond dynamics. Our goal is to broaden
the understanding of attosecond pulse generation beyond the
single-atom level, where one thinks about the emission in terms
of the laser–atom interaction alone, to include macroscopic
aspects of the process. The motivation for doing so is

simple: as we will see, any process that produces attosecond
pulses necessarily relies on a combination of microscopic and
macroscopic effects, since single atoms alone, interacting with
strong laser fields, do not emit pulses of attosecond radiation.

The process that leads to attosecond XUV emission begins
at the single-atom level, when an electron in a spatially
localized bound state encounters a linearly polarized laser field
of sufficient strength to cause ionization. As the amplitude of
the laser field rises and falls periodically, part of the bound state
wavefunction evolves into a continuum wave packet, initially
with very little energy. These wave packets, released every
half cycle of the laser oscillation, can continue to interact with
the ion core but they can also gain energy from the laser field
[13]. Part of each wave packet will move away from the
ion core never to return, but another part will be driven back
towards the ion core, returning after about one optical cycle.
When it reaches the vicinity of the core the wave packet can
spatially overlap with the remaining bound-state amplitude,
which leads to a time-dependent dipole moment and stimulated
photon emission. This harmonic generation process, as it is
called, converts some of the energy absorbed by the electron
from the IR field into short-wavelength radiation in the XUV
[14, 15]. The single-atom spectrum of radiation consists of a
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Figure 1. (a) The single-atom harmonic generation spectrum from
an argon atom exposed to an 800 nm laser pulse. The flat top laser
pulse has an intensity of 1.6 × 1014 W cm−2, which gives rise to a
cutoff energy around the 30th harmonic (46 eV). Odd harmonics are
visible throughout the spectrum. (b) The time-dependent intensity
(electric field squared) of the radiation obtained by selecting the
boxed portion of the spectrum in part (a) and Fourier transforming
to the time domain. The radiation consists of two trains of
overlapping pulses, one each from the ‘short’ and ‘long’ quantum
paths, which are shown in different shades for clarity. (c) The time
history of the harmonic radiation shown in part (a) obtained via a
time-frequency analysis of the full time-dependent dipole radiation,
see [27] for details. The solid black line shows the semi-classical
prediction for the return energy of the two shortest trajectories. The
dotted horizontal line indicates the central frequency of the range of
harmonics used to construct the pulse train shown in part (b). Parts
(b) and (c) make clear that the harmonic peaks in the single-atom
spectrum contain contributions from multiple quantum paths,
leading to multiple attosecond bursts in each half cycle.

rapid decline for the low orders followed by a long plateau of
constant strength, and a cutoff that depends on the wavelength
and intensity of the driving laser [16], see figure 1(a). The
harmonic spectrum can stretch from the infrared all the way
to the soft x-ray region [17–19]. The radiation is emitted
in a dipole pattern and has, in general, a very complex time
structure that reflects the fact that the amplitude for emitting
an XUV photon is the coherent sum over all of the different
ways in which the emission can occur [20].

Although single atoms do not emit attosecond pulses when
interacting with strong IR fields (see figure 1(c)), there is a
natural attosecond time scale that characterizes the harmonic
generation process. This can best be appreciated in the context
of the semiclassical description of the quantum wave packet
dynamics described in the previous paragraph [21]. In this
picture, the amplitude for any strong-field process can be
expressed as a coherent sum over only a few quantum orbits.

These spacetime trajectories follow a sequence of release into
the continuum (ionization), acceleration in the IR field, and
return to the ion core, where photon emission takes place as
the electron ‘recombines’ to the initial state. To a very good
approximation, these quantum orbits can be described by the
classical trajectory of an electron in an oscillating electric
field, where the quantum phase is obtained from the classical
action associated with a given trajectory. A specific electron
trajectory begins at the ion core at a specified time, with zero
initial velocity. This ionization time, and the laser intensity,
then determine the possible times when an electron can return
to the ion core and recombine, as well as the energy at the
time of return. The emitted photon energy is simply the
return energy plus the ionization potential (since the electron
recombines).

In the semiclassical model of harmonic generation, the
highest return energy that is possible defines the cutoff in the
single-atom spectrum, and occurs at only one return time in
each half cycle [22, 23]. For any energy below the cutoff
there will be more than one quantum path, corresponding to
different sets of ionization and return times, with the same
return energy. Because the wave packet spreads rapidly in the
continuum, it is usually the case that only the two quantum
paths with travel times in the continuum of less than one
optical cycle are important [24, 25]. The return energy for
these two families of trajectories is a smooth function of the
return time in each half cycle. The different quantum paths
can be recognized in the time profile of a number of harmonics
selected from the spectrum, see figure 1(b) and (c). Near the
cutoff there is one burst per half cycle, while in the plateau
region below the cutoff there are (at least) two bursts per half
cycle. From this simple picture we see that although there
is a natural attosecond time scale in that quantum paths with
similar return energies also have similar return times [26], the
unfiltered single-atom emission bears little resemblance to a
useable attosecond pulse.

In fact, the XUV radiation signal generated in a strong
field laser–matter interaction experiment and measured at a
target downstream is not the dipole radiation pattern from a
single atom. Rather, it is the spectral intensity (and sometimes
phase) distribution of the XUV electric field at the target. This
electric field is the coherent sum of the radiation from all the
atoms in the gas and is a result of constructive interference
mostly in the forward direction. The constructive interference
is commonly referred to as ‘phase matching’ of the radiation
since it relies on matching the phase front of newly generated
radiation at one point in the gas to the phase front of the
field that is already propagating at the same frequency. A full
description of the XUV radiation that arrives at a target must
therefore account for the single-atom emission, macroscopic
propagation, and any filtering of the radiation after the medium
and before the target.

In this paper, we review a number of results from
‘complete’ calculations of attosecond pulse generation
schemes obtained by simultaneous solution of the time-
dependent Schrödinger equation (TDSE) to describe the
microscopic laser–atom interaction and the Maxwell wave
equation (MWE) to describe the macroscopic propagation and
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phase matching of the radiation. The theoretical methods have
been well validated by comparison to a number of experiments
as described in the references throughout, however, we will
not spend much time comparing to experiments explicitly.
This is because our focus is on the interaction between the
microscopic and macroscopic aspects of attosecond pulse
generation, and a separation of these factors is possible
only within a theoretical framework since experiments always
measure an outcome that convolutes these factors. For further
discussions of experimental results we refer the reader to
[11, 12].

A key result obtained from the calculations we will
describe is that it is never the case that attosecond pulses are
‘generated’ per se, but rather that they are ‘selected’. The
difference is crucial, since one view leads to a simplistic
focus on single-atom dynamics, whereas the other leads to
an appreciation of how various microscopic and macroscopic
processes interact to produce an attosecond pulse on a target.
To produce a usable attosecond pulse the enormous XUV
radiation spectrum that results from the strong-field laser–atom
interaction must be gated and/or filtered, most often in time,
space and frequency. That is, we look for natural groupings of
radiation, in frequency, space and time, that can give isolated
attosecond pulses (if the driving laser pulse is only a few IR
cycles in duration) or trains of distinct attosecond pulses (if
the driving pulse is longer). Macroscopic effects always play
a role in this process, sometimes enabling the process and
sometimes inhibiting it. To understand how attosecond pulses
can be either optimized or even produced via new methods, as
will certainly be necessary for attosecond science to progress,
it is important to understand the various filtering and gating
schemes that are employed (sometimes without complete
knowledge of them). More generally, we feel certain that
thinking of attosecond pulse generation only in terms of the
single-atom dynamics not only limits the imagination, it also
disregards potentially useful nonlinearities at the macroscopic
level which could be used to produce shorter, more intense
pulses.

In the following section, we begin our examination of
the macroscopic aspects of attosecond pulse generation with
a review of phase matching as it applies to strong field
XUV generation. Much of the material applies to harmonic
generation in general, since present-day attosecond pulses are,
as we said, selected from the radiation produced in a typical
harmonic generation experiment. These experiments employ
focused, 800 nm laser pulses interacting with atomic gas
media. The driving pulses last from 5–50 fs and typically have
peak intensities between 1014 W cm−2 and 1015 W cm−2. In
addition to discussing the phase matching of the harmonics, we
examine factors like ionization and other dispersive effects that
can reshape the driving pulse and impact the XUV radiation
that is produced. We next give a detailed account of the
theoretical methods that are used to simultaneously solve the
TDSE and the MWE, including the strong-field approximation
(SFA) for solving the TDSE and the slowly evolving wave
approximation for the MWE.

Following this theoretical preface, we begin by discussing
the role that phase matching plays as a temporal gate in the

production of attosecond pulse trains [2, 26]. The temporal
gating can happen in the nonlinear medium, when one family
of trajectories is preferably produced, or after the medium via
the spatial separation of the different trajectories. Spectral
filtering is also necessary in this case, as only a range of
plateau harmonics can yield short pulses. We then discuss
the production of isolated or single attosecond pulses (SAPs).
The most straightforward methods use 5 fs driving laser pulses
with a well-controlled carrier envelope phase as a time gate
on the emission of a range of frequencies, combined with
spectral filtering. One method uses a single few-cycle driving
pulse to time gate the emission near the high harmonic cutoff
[4, 5, 28–32], while another uses two such pulses with
orthogonal polarizations to create a time gate in the emission of
plateau harmonics [33–41]. In both cases macroscopic effects
can inhibit or, perhaps surprisingly, enable the production of
isolated pulses. The use of few-cycle IR pulses to drive isolated
attosecond pulse production makes these schemes technically
very demanding and there is wide interest in using longer
driving pulses to produce SAPs. We review two methods for
this, ionization-induced reshaping of the driving laser pulse,
which allows a far-field spectral and spatial filter to act as a
time gate, and phase-matching used as a spatio-temporal gate
[42, 43].

We end our review by discussing novel methods for
producing attosecond pulses. These include using longer
wavelength driving lasers (in the mid-infrared) [11, 27, 44–49]
and using two-colour driving fields with one of the colours
being the familiar 800 nm used in most experiments to date
[50–52]. Two-colour methods offer increased control over
attosecond pulse generation, allowing for the tailoring of
attosecond pulse trains, as well as allowing for using longer
driving pulses. The key challenge, as we show, is to keep all
of the control parameters roughly constant over the interaction
region, something that is made difficult by macroscopic effects.
We end by briefly reviewing what we see as the biggest
challenges for attosecond pulse generation over the next few
years.

2. Phase matching

The XUV electric field generated and measured in a strong
field laser–matter interaction experiment results from the
coherent sum of the radiation from all the atoms in the
nonlinear medium, which interferes constructively mostly in
the forward direction. By constructive interference we mean
that the radiation generated at a position z2 some distance
into the nonlinear medium must be in phase with the radiation
that was generated at an earlier position z1 < z2 and then
propagated to position z2. In the most general terms, phase
matching is the matching of the phase front of the newly
generated field to the phase front of the propagating field,
which mathematically can be expressed as

�ksource = �kω, (1)

where �kω is the wave vector of the propagating field with
angular frequency ω and �ksource is the wave vector of the
newly generated field which depends on the phase variation
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of the source term (the nonlinear polarization field), �ksource =
�∇φsource(r, z).

The generation of attosecond pulses, and more generally
of high-order harmonics, is a highly nonlinear process which
is the result of an intense, focused laser beam interacting with
and propagating through a macroscopic number of ionizing
atoms. There are a number of effects that influence the phase
variation of the source term and therefore the phase matching
and build-up of the harmonic radiation. We discuss the most
important ones next.

2.1. Phase matching in the absence of ionization and other
dispersive effects

There is a range of experimental conditions for generating high
harmonics and attosecond pulses where one can think of phase
matching without considering effects of ionization. These
include when the laser intensity is safely below saturation
and the ionization rate is not rapidly changing in time, when
the atomic density is low (few tens of Torr pressure), and the
medium is short compared to the length over which ionization-
induced defocusing and dephasing occur. The two biggest
contributions to the phase variation of the source term are
then the geometrical phase variation φfocus(r, z) due to the
focused laser beam, and the intrinsic intensity-dependent phase
φdip,j (r, z) of the dipole radiation which we will describe in
more detail below [24, 53–55]. In such conditions, we can
write the phase matching requirement as

�kdip,j (r, z) +
ω

ω1
(�kfocus(r, z) + �k1) = �kω, (2)

or

�∇φdip,j (r, z) +
ω

ω1

�∇φfocus(r, z) +
ω

c
�ez = �kω, (3)

where ω1 and �k1 are the central frequency and wave vector
of the laser light, �ez is a unit vector in the propagation
direction, and we have used cylindrical coordinates. In writing
equation (3) we have also ignored effects of linear dispersion
of the gas medium, i.e. we assume that the refractive index is
equal to one for both the laser and the XUV fields. Balcou
and collaborators suggested that the degree of phase matching
according to equation (3) can be represented via the phase
mismatch �kω(r, z) given by [55]

�kω(r, z) = ω

c
−

∣∣∣∣�kdip,j (r, z) +
ω

ω1
(�kfocus(r, z) + �k1)

∣∣∣∣ . (4)

This corresponds to requiring that the length of the wave
vector of the propagating XUV field, which is chosen to be
ω/c, should equal the length of the wave vector of the newly
generated XUV field which has had the dipole and the focusing
phase imposed on it. Equation (4) implicitly assumes that the
XUV field predominantly propagates in the forward direction.

For a Gaussian beam, the phase variation of the laser beam
due to focusing is given by

φfocus(r, z) = −tan−1

(
2z

b

)
+

2k1r
2z

b2 + 4z2
, (5)

where b is the confocal parameter of the beam [56]. On
axis (r = 0), the phase from focusing (the Gouy phase)
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Figure 2. The phase coefficient α calculated as the action integral
over the two shortest electron trajectories in the semi-classical model
is plotted as a function of electron return energy, in units of Up.

decreases monotonically from π/2 to −π/2. This gives a
negative contribution to the wave vector of the laser field and
causes the laser wave fronts to advance faster than they would
in the absence of focusing.

The spatial variation of the dipole phase φdip,j (r, z),
through its dependence on the laser field intensity, has
important consequences for phase matching and for the
temporal and spatial coherence properties of the XUV
radiation [53, 57–59]. The intensity dependence of the
dipole phase can be understood from the semi-classical model
[24, 53, 59]. The phase of the time-dependent dipole moment
is the phase accumulated by the electron wave packet during
its acceleration by the laser field between time of release t ′ and
time of return t and is given by the action integral

φ(t ′, t) = −
∫ t

t ′
S(t ′′) dt ′′, (6)

where S(t ′′) = Ekin(t
′′)−Epot(t

′′) is the classical action given
by the difference between the kinetic and the potential energy.
In the long-pulse limit, the kinetic energy of the electron
is proportional to the ponderomotive energy of the driving
field

(
and thereby the intensity I, since Up ∝ I

/
ω2

1

)
, with a

proportionality constant α that depends on the time spent in
the continuum. For a given electron trajectory j defined by
a specific time of release and return and thereby a specific
return energy ω, we write the phase as −αjUp/ω1 (in atomic
units). The phase constant increases monotonically with the
time spent in the continuum. A plot of αj as a function of
return energy for the two shortest electron trajectories is shown
in figure 2, calculated for a monochromatic field as outlined
in equations (15)–(16) of [21].

Figure 2 shows that for each XUV energy in the plateau
region, the different quantum path contributions to the dipole
moment have different intensity-dependent phases, each with
a phase coefficient that changes with XUV energy. For a range
of energies in the plateau region α1 (for the short trajectory)
is small and α2 (long trajectory) is large, and for energies
closer to the cutoff region the two phase coefficients become
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more similar. We note here that even though the dipole phase
is strictly proportional to the intensity only in the long-pulse
limit, writing the phase variation as φdip,j = −αjUp/ω1 is
a very good approximation even for pulses as short as three
optical cycles [60].

The spatial variation of the focused laser beam intensity
means that the conditions for good phase matching in general
are very different for the two quantum path contributions
to a given XUV energy, and that the phase matching
conditions also vary with XUV energy [61, 62]. As a simple
example, let us consider the phase matching condition from
equation (4) along the axis of propagation only, for one
quantum path contribution j ,

�kω(z) = αj

d (Up/ω1)

dz
+

ω

ω1

2

b(1 + (2z/b)2)
. (7)

The second term in this equation is always positive so to
achieve perfect phase matching on axis, we find the familiar
result that we must place the nonlinear medium after the laser
focus (z = 0) where the intensity is decreasing with z, so that
dUp/dz is negative.

Including the radial variation of the laser intensity
and phase makes the phase matching conditions more
complicated. Following Balcou and collaborators [55],
the degree of phase matching from equation (4) can be
represented graphically via the coherence length Lcoh(r, z) =
2π/�kω(r, z) over which the XUV radiation can be expected
to phase match constructively. Figure 3 shows an example of
this representation, from Chipperfield and collaborators [63]
who have calculated coherence lengths for different harmonics
in neon generated by a 750 nm laser field with a peak intensity
of approximately 4 × 1014 W cm−2 and a confocal parameter
of 7 mm, see [63] for details. The phase matching conditions
for the two quantum path contributions to the dipole moment
are shown separately. A long (short) coherence length,
corresponding to good (bad) phase matching, is shown with
light (dark) colours in the figure.

The three harmonics shown in figure 3 span the plateau
range in neon for the intensity used in the calculation. The
21st harmonic is in the lower plateau, the 35th harmonic
in the middle and the 45th harmonic is close to the cutoff
energy. It is clear from the figure that phase matching depends
strongly on the phase coefficient αj . For a given XUV
energy (given harmonic) there is a big difference between
the phase matching of the short and the long quantum path
contribution. In general, it is easier to achieve reasonably
good phase matching for the short path than for the long-
path contributions. Because of the large intensity-dependent
phase associated with the long trajectory contribution, its phase
matching is much more specific to the focusing conditions, and
its coherence length in the absence of perfect phase matching
is very short. In contrast, the coherence length for the short
trajectory contribution is more than 0.5 mm over most of the
focus for the lowest harmonics. It is also interesting to note
that for the case shown in the figure, a thin medium placed at a
position of z = 2 mm will lead to almost identical degrees of
phase matching for the short trajectory contribution to all three
of the harmonics shown in the figure, which covers most of the
plateau range of the harmonic spectrum. However, the figure

Figure 3. Phase matching maps for the two different quantum path
contributions to the 21st (a–b), 35th (c–d) and 45th (e–f) harmonic
in neon, driven by a 750 nm, 4 × 1014 W cm−2 laser pulse with a
confocal parameter of 7 mm. The phase matching of the short
(long)-path contribution to each harmonic is shown on the left
(right). The (red) arrows in the figure indicate the direction of the
wave vector �ksource, which is the most likely direction of propagation
for the XUV radiation. The solid (purple) lines mark the transition
between the plateau and the cutoff region for each harmonic, see
[63] for details. Reprinted from [63] with permission from Elsevier.

also shows that it is possible to obtain very good on-axis (or
off-axis) phase matching for the long trajectory contribution
to a small range of XUV energies over a short distance. For
example, a thin nonlinear medium placed 0.5 mm after the
focus will give rise to very good on-axis phase matching for
the long trajectory contribution to the 21st harmonic.

2.2. Ionization-induced dispersion and non-adiabatic
self-phase matching

In experimental configurations with high intensity or very short
driving pulses, or high pressure or long media, it is no longer
justified to ignore the effects of ionization on the propagation
of the laser field and the phase matching of the generated
XUV radiation. Examples of such configurations would
be the generation of extremely high photon energies as in
[18, 19, 44, 64], often using few-cycle driving pulses, or
very long nonlinear media such as gas cells or wave guides
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[18, 65, 66, 67]. Dispersion and absorption from neutral atoms
can also play an important role in long media [67, 68, 69].

The presence of free electrons in the nonlinear medium
resulting from the unavoidable laser-driven ionization changes
the propagation dynamics of the laser field. The free
electron contribution to the refractive index is negative, and is
proportional to the free electron density and the wavelength
squared [70]. In the spatial domain, this causes the laser
phase front to advance faster on axis than off axis (since the
intensity and thereby the electron density is highest on axis),
which leads to defocusing of the beam. In the time domain,
the increasing free electron density causes a (dynamical) blue
shift of the driving laser frequency [70, 71]. These spatio-
temporal propagation dynamics and their consequences for
phase matching cannot be simply described in an adiabatic
equation for the phase mismatch as in equation (4). However,
we can estimate the dispersive effects of ionization and
neutral atoms over a short distance where the free electron
density is constant by expanding the on-axis phase mismatch
equation (7) to include dispersion,

�kω(z) = ω

c
�nat (ω) +

ω

c
�nel(ω)

+ αj

dUp/ω1

dz
+

ω

ω1

2

b(1 + (2z/b)2)
, (8)

where the difference in refractive index �n(ω) = n(ω)−n(ω1)

is negative for the atomic contribution and positive for the free
electron contribution. �n(ω) also depends on z through the
densities of neutral atoms and electrons.

At high intensity and high photon energies, the positive
free electron contribution strongly dominates the neutral atom
contribution, see for instance [54, 72]. Also for very high
photon energies the positive focusing contribution to the phase
mismatch, which scales with ω, strongly dominates the dipole
contribution, which varies only slowly with ω over any limited
range of the harmonic spectrum (see figure 2). The total phase
mismatch is therefore positive which means that the phase
fronts of the driving field, and thereby the source term, advance
faster than the newly generated XUV field. In the adiabatic
limit, this would make phase matching of very high-order
harmonics (several hundred eV photon energies) very difficult
and strongly limit their production efficiency.

Geissler and collaborators have shown that phase
matching of these very high harmonics is much improved
when using a few-cycle driving pulse [72]. In this case, there
is a non-adiabatic contribution to the phase mismatch which is
negative, and perfect phase matching can therefore be achieved
for a large range of XUV energies over a short distance. The
non-adiabatic phase mismatch is due to the ionization-induced
blue shift which causes the laser frequency to increase with
propagation distance (until ionization-induced defocusing
reduces the intensity, at which point the laser frequency no
longer changes). The shortening of the wavelength with z

acts to slow down the advance of the driving field phase front
and allows the XUV phase fronts to catch up. See [72] for a
more detailed discussion of this mechanism which has been
termed non-adiabatic self-phase matching (NSPM). In a recent
experiment by Seres and collaborators the relatively efficient
production of keV XUV energies was attributed to NSPM [19].

As a conclusion to this section on phase matching, let us
note that although it is very useful and sometimes sufficient to
think about the generation and phase matching of attosecond
pulses in terms of adiabatic phase matching diagrams, the
propagation of the laser field and the build-up of coherent
XUV radiation in the macroscopic, ionizing medium is a
process which is highly dynamical in both the temporal and
spatial domain. Even the non-adiabatic self-phase matching
mechanism described above does not take into account the
spatial modulations of the laser field caused by ionization-
induced defocusing. In the following section, we outline a
theoretical approach to describing these large-scale extremely
nonlinear dynamics and the XUV radiation that results from
them.

3. Theoretical method

To calculate the XUV radiation generated in a macroscopic
medium by an intense, focused laser pulse we numerically
integrate the coupled, non-adiabatic solutions to the Maxwell
wave equation (MWE) and the time-dependent Schrödinger
equation (TDSE). This means that our description of the
intense-laser–matter interaction includes both the response of
a single atom to the laser pulse and the collective response of
the macroscopic gas medium.

3.1. Propagation equations

We start from the MWE with source terms, written in the time
domain as (using SI units)

∇2E(t) − 1

c2

∂2

∂t2
E(t) = 1

ε0c2

∂2

∂t2
P(t). (9)

where E(t) is the time-dependent electric field of the driving
and/or generated fields and P(t) is the time-dependent
polarization field representing for the moment all source terms
for the driving and the generated field. Both E(t) and P(t)

are functions of the cylindrical coordinates r and z. In a
coordinate system that moves at the group velocity vg of the
pulse, z′ = z, t ′ = t − z/vg, and after applying the slowly
evolving wave approximation (SEWA, see [73] for details) the
propagation equation becomes

∇2
⊥E(t ′) − 2

vg

∂2

∂z′∂t ′
E(t ′) +

(
1

v2
g

− 1

c2

)
∂2

∂t ′2
E(t ′)

= 1

ε0c2

∂2

∂t ′2
P(t ′). (10)

In contrast with the slowly varying envelope approximation,
which also leads to a first-order propagation equation in z′,
the SEWA is valid for light pulses with durations as short
as one optical cycle, as long as the amplitude and phase
of the electric field are slowly varying (on the scale of the
wavelength) in the propagation direction. The SEWA implies
that we neglect backwards propagating waves, and is usually
valid for the relatively dilute gases and moderate ionization
rates we are considering in harmonic generation scenarios (see
[73] for details). For an example of a Maxwell–Schrödinger
equation solver that is not based on the SEWA but integrates
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the full vectorial Maxwell equations, coupled to 3D numerical
integrations of the time-dependent Schrödinger equation for
molecules, see the work by Lorin and collaborators [74].

The SEWA propagation equation in equation (10) can be
integrated directly in the time and space domain, as is done in
[43, 73]. We follow the approach of Priori et al [75] and Shon
et al [76] among others, and solve the propagation equation in
the frequency domain after Fourier transforming with respect
to t ′,

∇2
⊥Ẽ(ω) +

2iω

vg

∂Ẽ(ω)

∂z′ +

[
ω2

c2
− ω2

v2
g

]
Ẽ(ω) = − ω2

ε0c2
P̃ (ω).

(11)

The source term on the right-hand side describes the response
of the medium to the electric field and includes both linear
and nonlinear terms. It is often useful to separate the
polarization field into its linear and nonlinear components
P̃ (ω) = χ̃(ω)Ẽ(ω) + P̃NL(ω), where the linear susceptibility
χ̃ (ω) includes both linear dispersion and absorption through
its real and imaginary parts. This finally yields

∇2
⊥Ẽ(ω) +

2iω

vg

∂Ẽ(ω)

∂z′ +

[
ñ2(ω)ω2

c2
− ω2

v2
g

]
Ẽ(ω)

= − ω2

ε0c2
P̃NL(ω), (12)

where ñ2(ω) is given by 1 + χ̃ (ω)/ε0. The nonlinear
polarization field includes the effects of ionization and
the generation of new frequencies via harmonic generation
and is calculated in the time-domain via solution of the
time-dependent Schrödinger equation in the strong field
approximation, as described in more detail below. The
linear response of the medium is included directly in the
frequency domain via tabulated frequency-dependent values
of dispersion and absorption coefficients. It is of course an
approximation to split the polarization field into linear and
nonlinear components. In particular, it is an approximation
to write the linear response as a product of a frequency-
dependent susceptibility and the Fourier components of the
electric field, since in a rapidly ionizing medium even the
linear response would be the Fourier transform of the product
of the time-dependent density and the time-dependent atomic
response. However, we are not dealing with situations where
linear dispersion/absorption is dominating the dynamics, and
it is therefore practical to divide the polarization field into its
linear and nonlinear components, which allows us an easy way
to include absorption of the high frequencies via one-photon
ionization.

We next perform the very good approximation of not
allowing the weak radiation generated via the nonlinear
interactions to influence the strong driving electric field. In
practice, this means that we separately solve propagation
equations for the driving field Ẽ1(ω) and the generated fields
Ẽh(ω). For the driving field we ignore all linear dispersion
and absorption effects which is justified due to the short
propagation lengths (few millimetres) and moderate pressures
(10–100 Torr) we are considering. For the generated fields
we include absorption effects through frequency-dependent

absorption coefficients α̃(ω) obtained from [77]. The
absorption coefficient is proportional to the density of neutral
atoms. In the calculations shown in this paper we have
not included linear dispersion due to neutral atoms, but it
can be included using the frequency-dependent dispersion
coefficients calculated in [78]. We thus have the two separate
sets of equations (now dropping primes on the z-coordinate),

∇2
⊥Ẽ1(ω) +

2iω

c

∂Ẽ1(ω)

∂z
= − ω2

ε0c2
P̃ion(ω) (13)

∇2
⊥Ẽh(ω) +

2iω

c

∂Ẽh(ω)

∂z
+

iω

c
α̃(ω)Ẽh(ω) = − ω2

ε0c2
P̃dip(ω).

(14)

In these equations we have specified that the source terms for
the driving field, P̃ion(ω), and for the generated fields, P̃dip(ω),
are different as described in more detail below.

We solve equations (13) and (14) for the driving field
Ẽ1(ω) and the generated fields Ẽh(ω) by space-marching
through the ionizing nonlinear medium, using a Crank–
Nicholson scheme. At each plane in the propagation direction
z, we calculate the time-dependent driving field E1(t) as the
Fourier transform of Ẽ1(ω). We then calculate the nonlinear
atomic response in the time-domain by solving the TDSE using
E1(t) as the driving field (see below). The time-dependent
atomic response is used to calculate the frequency-dependent
source terms in the wave equation, which are then used for
marching to the next plane in z.

3.2. Calculation of source terms

3.2.1. Source terms for the driving field. The source term
P̃ion(ω) for the propagation of the driving laser field is due
to the ionization of the medium, and is calculated from
the time-dependent current density J (t) = ∂Pion(t)

∂t
so that

− ω2

ε0c2 P̃ion(ω) = F̃ T
[

1
ε0c2

∂J (t)

∂t

]
, where F̃ T denotes a Fourier

transform. We follow the approach in [79] and include two
contributions to the current density

∂Jp(t)

∂t
= e2Ne(t)

me

E1(t) (15)

∂Jabs(t)

∂t
= ∂

∂t

γ (t)Ne(t)IpE1(t)

|E1(t)|2 , (16)

where e and me are the electron charge and mass, Ne(t) is
the free electron density, γ (t) is the ionization rate and Ip is
the atomic ionization potential. The absorption term Jabs(t)

describes the loss of energy from the laser field due to the
ionization of the medium. This term is in general small in
the conditions that are of interest for harmonic generation and
production of attosecond pulses.

The plasma oscillation term Jp(t) is due to the oscillatory
motion of the free electrons in the laser electric field. It gives
rise to a spatial and temporal variation of the refractive index,
which in turn causes defocusing and self-phase modulation and
gives rise to an additional phase mismatch in the propagation
of the harmonics relative to the driving field. As we discussed
in section 2, this term can be very important for how the
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spatio-temporal shape of the laser electric field evolves during
propagation through the nonlinear medium, especially in
situations where the laser intensity and/or the atomic density
is high, or when the driving pulse is very short.

How accurately one needs to calculate the time-dependent
ionization probability depends on the generation configuration.
There are a range of attosecond pulse generation scenarios
where ionization is only of minor importance, for instance
when the intensity and atomic density are relatively low,
or when the medium is short compared to the laser
confocal parameter. However, it is also important to keep
in mind that harmonic generation is an ionization driven
process—the first step in the semi-classical description of
HHG is the tunnel ionization of the electron into the
continuum—and that ionized electrons will always be around
in a harmonic generation experiment. In situations where
ionization plays a big role in the propagation dynamics of the
laser pulse, an incorrect description of ionization quickly leads
to substantially incorrect results.

In general, the consequence of overestimating ionization
is that saturation happens at too low intensity, and too
early in the medium along the propagation direction. In
time it leads to a blue-shift which is too large and which
remains with the driving pulse through the remainder of the
medium. Underestimating or neglecting ionization leads to a
too optimistic picture of the effective peak intensity driving the
harmonic generation. To describe the short-pulse ionization
dynamics correctly it is therefore crucial to accurately calculate
Ne(t) and γ (t) with sub-cycle precision. Our calculation
of Ne(t) and γ (t) originates in a numerical solution of the
TDSE within the single active electron approximation [20] as
described in more detail below.

In figure 4 we show a particular example of the importance
of ionization in the propagation dynamics, calculating the
evolution of the on-axis energy density of a laser field as it
propagates through neon at a pressure of 150 Torr. We compare
calculations where we have used ionization probabilities
calculated via the widely used instantaneous ionization rates
as proposed by Ammosov, Delone and Krainov (ADK) [80],
and ionization probabilities corrected to better agree with a
numerical integration of the TDSE in the single active electron
approximation (SAE) [20]. The un-corrected ADK rates give
rise to a 45% ionization probability at the beginning of the
medium (compared with 15% for the corrected result), which
leads to very fast defocusing of the beam. After about 1 mm
of propagation, the intensity has been reduced by 35% and the
radial profile has become very broad and flat (not shown in
the figure). We also compare the resulting harmonic spectra
at the end of the neon gas and show that the ADK-based
calculation leads to a much lower cutoff energy.

In the following, we describe two different approaches
to correcting the ADK results so they agree better with the
SAE-TDSE result, without having to implement a direct
numerical integration of the SAE-TDSE into the solution of
the propagation equation. In the simplest correction scheme,
we scale the intensity-dependent ADK rates γADK(I0) obtained
as a function of the (constant) intensity I0 with an intensity-
dependent correction factor so that they agree better with
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Figure 4. Difference in propagation dynamics caused by using
ionization probabilities calculated in different ways. Thick (blue)
lines are the result of using TDSE-corrected ADK rates, thin (red)
lines are the result of using uncorrected ADK rates. In the inset we
show the evolution of the on-axis energy density with propagation
distance through a 3 mm long neon gas at a pressure of 150 Torr for
a 750 nm, 7 fs driving pulse with an initial peak intensity of 9 ×
1014 W cm−2, in the figure itself we show the resulting radially
integrated harmonic spectra at the end of the neon gas.

tabulated intensity-dependent TDSE ionization rates. We then
carefully compare the time-dependent ionization probabilities
that result from using the corrected ADK rates or the SAE
rates, to make sure that the agreement is good over a range
of peak intensities and pulse durations (we have typically
used 1–3 × 1014 W cm−2 and pulse durations of 5–10 optical
cycles, and so far only applied this in argon). This approach
is adiabatic in nature since it relies on intensity-dependent
ionization rates and implicitly assumes that the driving pulse
is long.

For short driving pulses, where we are interested in the
dynamical effects of a rapidly ionizing nonlinear medium, we
have implemented a more elaborate correction of the time-
dependent ADK ionization probability. We start by defining
the time-dependent ionization probability in the TDSE
calculation as the probability density of the wavefunction
outside of a small volume around the ion core, Pvol(t). In
figure 5(a) and (b) we show Pvol(t) for three different volumes,
resulting from two different few-cycle driving pulses [81].
We also show the time-dependent ground-state population for
comparison. The oscillations in the ionization probability
calculated for the larger volumes result from the driven motion
of the electron in the laser field, indicating that the electron at
these radii can already be considered to be free and contributing
to the plasma oscillation. We therefore use the smallest
radius (10 au) to define Pvol(t). Next, we compare Pvol(t)

to PADK(t), which is obtained using instantaneous ADK rates.
As discussed in [71], we find that for a given peak intensity
the ionization probability PADK(t) calculated from ADK rates
differs from Pvol(t) by only a constant factor β, as long
as the intensity is below the ADK saturation intensity. We
determine β as the ratio between Pvol(t) and PADK(t) at the
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Figure 5. Time-dependent ionization probabilities for a neon atom exposed to a 750 nm laser pulse with a peak intensity of 1015 W cm−2.
In (a) and (b) we have used pulse durations of 7.5 fs and 2.5 fs, respectively, and show the result of using spheres with radius 10 au
(solid line), 30 au (dashed line) and 50 au (dotted line) to define Pvol(t) in the numerical solution of the TDSE. We also show the ionization
probability calculated from the population left in the ground state, which can be evaluated only when electric field is zero (open circles).
(c) Time-dependent ionization probability of a neon atom exposed to a 750 nm, 7 fs laser pulse with a peak intensity of 1015 W cm−2. Pvol(t)
is shown with solid line, βPADK(t) is shown with dashed line. T1 = 2.5 fs is the optical period of the driving field. (d) Intensity-dependent
correction factor β for three different pulses: 7 fs duration, cosine carrier (open circles); 5 fs duration, cosine carrier (open triangles); 5 fs
duration, sine carrier (filled circles).

end of the laser pulse. Figure 5(c) shows a typical example
of the excellent agreement between Pvol(t) and βPADK(t),
for a 750 nm, 7 fs driving pulse with a peak intensity of
1015 W cm−2. The ionization probability at the end of the
pulse is only about 15%. In figure 5(d) we show the intensity
dependence of the correction factor, β(I0). The insensitivity
of β(I0) to the duration and phase of the driving pulse ensures
that this correction is justified even as the pulse changes shape
and phase during propagation. Finally, we use β(I0)PADK(t)

to calculate the source terms Ne(t) and γ (t) for each point in
the nonlinear medium, where I0 is the peak intensity of the
driving pulse at that point.

This latter correction method was used in the calculation
shown in figure 4, and in the results on ionization driven spatio-
temporal reshaping in neon shown in section 4.5.

In the long-pulse (adiabatic) regime, several groups
have successfully implemented Coulomb corrections to rates
calculated within strong-field-type approximations [82–86].

3.2.2. Dipole source term for the generated fields. The
source term for the generated XUV radiation is calculated
from the time-dependent nonlinear polarization field, which is

taken to be proportional to the microscopic single-atom dipole
moment xnl(t) and the density of neutral atoms,

P̃dip(ω) = F̃ T [Natom(t)xnl(t)], (17)

where F̃ T denotes a Fourier transform. Both the atomic
density and the dipole moment also depend on r and z.
We calculate the time-dependent dipole moment by solving
the TDSE, using a non-adiabatic form of the strong field
approximation (SFA) [21] which takes into account the full
time dependence of the driving field E1(t) [75] (in atomic
units),

xnl(t) = 2 Re

{
i
∫ t

−∞
dt ′

(
π

ε + i(t − t ′)/2

)3/2

d∗[pst(t
′, t)

+ A(t)]d[pst(t
′, t) + A(t ′)] exp[−iSst(t

′, t)]E1(t
′)
}
,

(18)

where ε is a small positive regularization constant, A(t) is the
vector potential associated with the electric field E1(t), and
d(p) is the dipole matrix element for transition between the
ground state and a continuum state with momentum p, and is
given by (for hydrogen-like atoms) [21]

d(p) = i
27/2(2Ip)

5/4

π

p

(p2 + 2Ip)3
. (19)
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(a) (b)

(c) (d)

Figure 6. Quantum path contributions as functions of intensity for the 27th and 15th harmonics in argon (top and bottom row, respectively).
(a) and (c) were calculated by numerical integration of the TDSE, (b) and (d) were calculated with the SFA. Note that what is labelled α on
the x-axis in the figure is termed γ in the text for consistency with our definition of the phase coefficient in section 2. Reprinted with
permission from [88]. Copyright (2002) by the American Physical Society.

As first proposed by Lewenstein et al [21], one can
interpret the dipole radiation at time t as being a sum
over all possible quantum paths characterized by an electron
being released via tunnel ionization at the core at time t ′,
and returning to the core at time t with kinetic energy
(pst(t

′, t) + A(t))2/2. The stationary values of the momentum
pst(t

′, t) and action integral along the trajectory Sst(t
′, t) are

given by

pst(t
′, t) = 1

t ′ − t

∫ t

t ′
A(t ′′) dt ′′ (20)

Sst(t
′, t) = (t − t ′)

(
Ip − p2

st

/
2
)

+
1

2

∫ t

t ′
A2(t ′′) dt ′′, (21)

where Ip is the atomic ionization potential. For a
monochromatic field with a constant intensity, the stationary
action is given by Ip(t − t ′) + Upf (t − t ′) where f (t − t ′)
is a function that depends only on the electron travel time
τ = t − t ′. For return energies below the classical
maximum of 3.17Up, the stationary action quantum paths in
the SFA are similar to the returning electron trajectories in
the classical model discussed in the introduction, in terms of
their release and return times and their phase coefficients αj

[24, 25, 61, 87]. The two quantum paths with travel time
τ less than one cycle dominate the SFA dipole response at
most intensities as discussed in more detail in connection with
figure 6.

3.2.3. Validity of the strong-field approximation. At this
point it is interesting to note that the dominant electron

trajectories discussed in classical terms in the introduction,
and as the stationary points of the SFA action integral, can also
be recognized in more accurate (and more computationally
intensive) numerical solutions of the 3D SAE-TDSE. In [88],
Gaarde and Schafer calculated dipole radiation spectra for
argon and neon via direct numerical integration of the SAE-
TDSE, using realistic pseudopotentials for the interaction
between the active electron and the ion core [89]. They
calculated harmonic spectra for many quasi-constant peak
intensities to obtain dq(I ), the intensity-dependent strength
of the dipole spectrum for each harmonic q. The intensity-
dependent dipole moment was then analysed in terms of its
conjugate variable, the phase coefficient γ , in the following
way [90]:

Dq(γ, I0) =
∫

dq(I )W(I0) eiγ I dI, (22)

where W(I0) is a window function centred on intensity I0.
For each intensity I0, the magnitude of Dq(γ ) represents the
weight of the contribution with phase coefficient γ to the dipole
moment of harmonic q. The resulting distribution of phase
coefficients as a function of intensity I0 for two harmonics in
argon is shown in figure 6. We note that in this representation
of the intensity-dependent phase, the phase coefficient γ is
proportional to the laser wavelength to the third power, in
contrast to the wavelength independent expression of the phase
coefficient α discussed in section 2.

At the lowest intensities, the 27th harmonic is in the cutoff
region and there is only one dominant phase contribution
(corresponding to only one quantum path). At higher
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intensities this path splits into two, with phase coefficients
as predicted by the semi-classical model. At an intensity of
about 1.5×1014 W cm−2 a second group of phase coefficients
appear (corresponding to quantum paths with travel times
longer than one optical cycle) which bifurcates into two paths
above 2 × 1014 W cm−2. It is clear that for both the 27th and
the 15th harmonic in argon the shortest path (with the smallest
γ ) dominates the response.

Figure 6 also shows the SFA predictions for the phase
coefficients in the 27th and 15th harmonics in argon.
Comparison between the TDSE and the SFA results shows that
although the SFA agrees well with the TDSE in terms of which
quantum paths contribute to the dipole moment, the prediction
for their relative weight is quite different. In particular, the SFA
strongly favours the second-shortest quantum path (which in
the literature is often referred to as the ‘long’ quantum path),
whereas the more accurate calculation predicts that the shortest
path is the more dominant, and that the short path of the second
group of trajectories contributes as much as or more than the
long path of the first group of trajectories. Gaarde and Schafer
discussed in [88] that this result is quite general and true for
many harmonics in both argon and neon. Recent work by
Tate and collaborators has shown that for driving fields with
wavelengths in the mid-infrared range, quantum paths longer
than one optical cycle are even more important than at 800 nm
[27]. Gaarde and Schafer have also found that the overall
yields of the dipole moments calculated within the SFA (using
800 nm driving laser pulses) are somewhat lower than the SAE
results. At low intensity, when a harmonic is in the cutoff
region, the two calculations agree well. At higher intensity,
when a harmonic is deep in the plateau region, the SFA can
underestimate the harmonic strength by up to a factor of 10.

Propagation calculations based on using SAE-TDSE
dipole moments have given results that are in very good
qualitative and quantitative agreement with experimental
results for harmonic generation driven by long pulses
(these propagation calculations are based on the slowly
varying envelope approximation), see for instance [57, 91].
We therefore believe that comparison with SAE-TDSE
calculations can serve as a benchmark for more tractable
but approximate calculations, such as the SFA, of the time-
dependent dipole moments. For large-scale calculations
incorporating accurate numerical solutions of the TDSE into
non-adiabatic solutions of the MWE, see the work by Shon
et al [76] and Lorin et al [74, 92].

The conclusion that one should draw from the comparison
shown in figure 6 is that SFA-based predictions about the
generation and properties of high harmonics and attosecond
pulses should be made with caution. In many experimental
scenarios, phase matching conditions are such that only one
quantum path contribution really matters (usually the short
one which leads to XUV light with better temporal and
spatial coherence properties) in which case the SFA can serve
adequately as the basis for predictions and interpretations
[25, 87]. However, in cases where the phase matching
restrictions are not severe enough to completely eliminate one
or more trajectories, so that there are substantial contributions
from longer trajectories, SFA predictions can be misleading,
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Figure 7. Time profile of harmonics 15–23 in argon after
propagation through a 1 mm argon gas jet at low pressure, generated
by a 810 nm, 100 fs driving pulse with a peak intensity of 2.5 ×
1014 W cm−2. The confocal parameter of the beam was 5 mm, and
the gas jet was placed 2.5 mm beyond the laser focus. These
parameters are similar to those used in the experiment by Paul and
collaborators [2]. Results of using TDSE or SFA dipole data are
shown with solid or dashed lines, respectively. Reprinted with
permission from [88]. Copyright (2002) by the American Physical
Society.

see for instance [57, 93, 59]. An example of this, for the
generation of a train of attosecond pulses from low-order
harmonics in argon, is shown in figure 7.

3.3. Implementation of propagation equations

So far we have described the calculation of atomic quantities
from a one-electron atom. For argon, neon and helium, the two
m = 0 electrons in the outermost shell contribute equally to
the depletion of the ground state and the dipole radiation (and
the m = ±1 electrons in argon and neon ionize and contribute
at a much lower rate because their orbitals are not aligned with
the laser field). The time-dependent macroscopic polarization
field Pdip(t) is thus given by

Pdip(t) = 2N0(1 − Pion(t))xnl(t), (23)

where N0 is the initial atomic density and pion(t) is the
one-electron ionization probability, which is related to the
probability for an atom to stay neutral, Pneutral(t), by

pneutral(t) = (1 − pion(t))
2. (24)

The macroscopic density of free electrons is then given by
Nel(t) = N0(1 − pneutral(t)).

The nonlinear medium is initially defined by its ionization
potential and the initial atomic density. We usually assume that
the density of the medium is constant in the radial direction
(which is a very reasonable assumption since the laser waist
is usually on the order of 100 µm or less), and also in the
z-direction except for a linear increase and decrease at the
edges. It would be straightforward to implement a different
gas profile if so desired. The length of the medium in the
z-direction is typically between 0.5 mm and 5 mm.

The driving field is specified both in terms of its temporal
and spatial properties. We define an initial pulse by its
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wavelength, its pulse duration τ at FWHM, and the peak
intensity it would have in the focus if it were propagating
in vacuum. The intensity envelope for the initial pulse is
usually given by a cos4(at/τ ) function where a is defined so
that cos4(a/2) = 0.5. The time resolution is set by the highest
frequency one wishes to resolve in the harmonic spectrum,
typically a few hundred points per optical cycle of the driving
field. To get sufficient frequency resolution for the propagation
of both the laser and the harmonic fields we pad the time axis
with zeros before and after the pulse. The time axis typically
spans from −4τ to +4τ , and the total number of points in the
time and frequency domain is on the order of 104.

The initial spatial profile of the laser beam is a Gaussian
and is specified in the frequency domain by its confocal
parameter and the position of its focus relative to the centre of
the nonlinear medium. We specify the confocal parameter
of the central frequency of the pulse, and assume that
all other frequencies in the spectrum are focused with the
same lens (which means that the confocal parameter varies
proportionately with the frequency). We typically use between
200 and 400 points in the radial direction, and between 100
and 400 points in the propagation direction, depending on the
relative lengths of the medium and the confocal parameter, and
the laser peak intensity.

The only computationally expensive quantity is the
evaluation of the time-dependent dipole moment in
equation (18), since for each time t it involves an integral
over all previous times t ′ where electrons could have been
released into the continuum. In principle, it even involves a
double integral since the stationary momentum and action are
defined from integrals of A(t ′′) and A2(t ′′) between t ′ and t.
We reduce the computation time in a number of ways.

• We pre-calculate the integrals fA1(t) = ∫ t

−∞ A(t ′) dt ′

and fA2(t) = ∫ t

−∞ A2(t ′) dt ′. The stationary momentum
pst(t,

′ t), for instance, is then given by (fA1(t) −
fA1(t

′))/(t ′ − t).
• For any given time t, we only start the t ′ integral at release

times t ′ equal to one or two cycles before t. This means
we are only including trajectories with return times that
are shorter than one (or two) optical cycles. Since the
SFA response is dominated by the trajectories that return
within one cycle, this usually gives a very good agreement
with longer integration times.

• We only evaluate the dipole moment over the part of the
time axis where the electric field is nonzero. The electric
field is only exactly zero on the zero-padded part of the
time axis right at the beginning of the medium. As soon as
it starts propagating, both physical and numerical effects
cause it to ‘spill’ over onto the time axis where it was
previously zero. However, since the contribution to the
dipole moment is negligible at very low electric fields,
this is not usually a problem.

• We only calculate the dipole moment over part of the radial
profile where the peak intensity of the driving field is non-
perturbative. Depending on the atomic species, we choose
a minimum peak intensity typically around 1013 W cm−2.
For grid-points in the radial direction where the temporal
peak intensity is less than this intensity, we do not

calculate the time-dependent dipole moment with the SFA
formalism. Instead we assume a perturbative decrease
with intensity, which we evaluate in the frequency domain.

• As discussed in [75], we do not calculate the time-
dependent dipole moment at each step in the propagation
direction, as the driving field intensity is usually slowly
varying. We typically evaluate it every five or ten steps,
depending on how rapidly the driving and generated
fields are evolving due to effects of ionization and phase
matching. At the steps in between we scale the response
to correct for any change in atomic density, and correct for
the evolution of the driving field phase due to propagation.
If the intensity is high it can be necessary to calculate the
ionization source terms for the laser field at each step, but
this is not nearly as time consuming as the calculation of
the time-dependent dipole moment.

4. Results

In the following we will review a range of different schemes
for attosecond pulse production, in each case focusing on the
interplay between the microscopic and macroscopic aspects of
the generation process. For each scheme we will highlight the
temporal, spectral and spatial gates that enables the temporal
and spatial isolation of attosecond XUV pulses at the detector
or target. In some (most) schemes, macroscopic effects are
crucial in the time gating process, whereas in a few schemes
that rely on a single-atom time gating mechanism, macroscopic
effects must be kept to a minimum to preserve the single-atom
nature of the interaction over the entire interaction volume.

We will start by discussing the first and best known
example of macroscopic time gating in attosecond pulse
generation: the macroscopic separation of the two quantum
path contributions to the single-atom dipole moment as first
discussed by Antoine and collaborators [26] in the context
of generating trains of attosecond pulses (section 4.1). We
will then discuss the generation of isolated attosecond pulses
using few-cycle driving pulses (section 4.2), and using
few-cycle pulses in combination with polarization gating
(section 4.3). In sections 4.5 and 4.6, we show two examples
of how macroscopic effects can isolate a single attosecond
pulse in space and time from a longer XUV pulse generated
by a multi-cycle driving pulse. In section 4.7, we discuss how
the generation of harmonics and attosecond pulses by driving
lasers with wavelengths in the mid-IR regime (1.5–3 µm) is
extremely sensitive to phase matching conditions because of
the increase in the intensity-dependent phase variation with
laser wavelength. Finally, in section 4.8 we discuss how a
two-colour driving field provides an additional single-atom
temporal gate in attosecond pulse production, and how to
extend this single-atom control to the macroscopic domain.

4.1. Phase matching driven selection of microscopic
quantum path contributions

The best known example of the influence of macroscopic
effects on the generation of harmonics and attosecond pulses
is the phase-matching controlled separation of the different
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Figure 8. Macroscopic time profiles of harmonics 41–61 in neon
for two different focusing conditions, favouring either short or long
trajectory (solid lines). Shown with dashed lines are the single-atom
time profiles (shifted in time to account for different Guoy phases
due to different focusing conditions). The intensity of the 825 nm
laser field was 6.6 × 1014 W cm−2 and the confocal parameter was
5 mm. In (a) the nonlinear medium was placed a few millimetres
after the laser focus, to optimize the contribution of the short
quantum path, labelled τ1 in the figure, in (b) the medium was
placed very close to the laser focus to optimize the long-path
contribution, labelled τ2. The calculations were performed in the
long-pulse (adiabatic) limit. Reprinted with permission from [26].
Copyright (1996) by the American Physical Society.

quantum path contributions to the single-atom dipole moment.
This was first demonstrated in calculations by Antoine and
coworkers [26] in the context of generating trains of attosecond
pulses by a long IR pulse in neon. In the single-atom
response, even after spectrally selecting a range of harmonics
in the plateau region, the resulting train of attosecond pulses
always exhibits at least two attosecond bursts per half-cycle,
corresponding to the emission times for the two shortest
electron trajectories discussed above (see figure 1). Antoine
et al showed, as in figure 8, that in the macroscopic response
it is possible to synthesize trains with just one attosecond
pulse per half-cycle. By changing the focusing conditions
of the driving laser beam (specifically, by moving the laser
focus relative to the centre of the gas jet) they were able to
phase match the contribution from either the short or the long

electron trajectory [26]. In this scheme for attosecond pulse
generation, a temporal gate is formed in each half cycle of the
field by phase matching, leaving a train of attosecond pulses
with only one burst per half-cycle.

This selection of a microscopic quantum path contribution
via the macroscopic effect of phase matching can be
understood using phase matching maps such as those shown in
figure 3. The harmonics that were used to make the attosecond
pulse trains in figure 8 were all from the mid-plateau range,
corresponding to the harmonics in figure 3(a)–(d). For these
harmonics, the short-path contribution is well phase matched
when the nonlinear medium is placed a few millimetre after
the laser focus. The long-path contribution to a smaller range
of plateau harmonics is well phase matched on or off axis
when a short medium is placed close to the laser focus. Both
of these observations are in agreement with the results of
figure 8: the isolation of the short trajectory contribution in
figure 8(a) was very efficiently achieved by placing the neon
gas a few millimetre after the laser focus, and the less effective
isolation of the long trajectory contribution in figure 8(b) was
achieved by placing the neon gas very close to the laser focus.

There is another and conceptually simpler way to
macroscopically select one or the other quantum path
contribution. As was first experimentally demonstrated by
Bellini and collaborators, a spatial filter placed in the far field
may act as a temporal gate and separate the two quantum
path contributions [57]. The origin of the spatial separation is
once again the different intensity-dependent phase variations
of the two contributions, which means that the electric field
generated by each contribution will have phase fronts with very
different curvatures and therefore different divergences. The
arrows in figure 3 indicate the direction of the wave vector
�ksource which is imposed on the harmonic field by the laser
field at each point. Clearly, the contributions from the long
trajectory are much more divergent than those of the short
trajectory. This means that in the far field, one can separate the
short and long trajectory contribution with a small aperture.
An example from Bellini et al is shown in figure 9 for the
15th harmonic in argon. By measuring the coherence time
of the harmonic pulses, Bellini and coworkers demonstrated
that the bright, narrow spot in the centre is due to the short
trajectory and the weaker, more divergent, radiation off axis
is due to longer trajectories [57]. The macroscopically driven
far-field separation of microscopic quantum path contributions
has since then been explored in great detail and is standardly
employed in a range of experiments [2, 25, 59, 87, 93, 94].

We note that in the first experimental demonstration of an
attosecond pulse train from harmonics 11 through 19 in argon,
Paul and collaborators employed both phase matching and
spatial gating, by placing the argon medium a few millimetre
after the laser focus and having a small aperture in the far field
to select only the collimated part of the XUV radiation [2].

4.1.1. Macroscopic control of individual pulse durations in
attosecond pulse trains. The duration of individual bursts
in an attosecond pulse train (APT), even after macroscopic
selection of only one quantum path contribution, is limited
both by the spectral range of harmonics used to synthesize the
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Figure 9. Spatial profile of the 15th harmonic in argon in the far
field, showing different quantum path contributions spatially
separated via phase matching. The interference pattern visible in
both the inner and outer part of the beam is due to an identical,
time-delayed harmonic pulse which was used to measure the
coherence times of the inner and outer parts of the beam.

train and by the variation of the single-atom dynamics over
this photon energy range, see for instance [11, 27, 61, 62, 94].
This is because the different XUV energies constituting the
bandwidth of the train are made by electron trajectories with
slightly different times of return. For the short quantum path,
the highest energies are made by trajectories that spend longer
time in the continuum and return later to the core, giving rise
to the so-called atto-chirp of the individual attosecond pulses
in the train [61, 62]. López-Martens and collaborators showed
that the atto-chirp can be macroscopically compensated by
sending the APT through a medium with a negative dispersion
which induces a delay of the lowest energies in the train with
respect to the highest energies in the train [94]. In this way,
APT pulses synthesized from harmonics 13–35 in argon were
compressed from an initial duration of 480 as to 170 as, very
close to the Fourier transform limit.

More recently, Ruchon and collaborators have shown
that it is possible to macroscopically minimize the atto-
chirp directly during the harmonic generation process [67].
They show that in very loose focusing conditions, where
the effects of focusing and the intensity-dependent dipole
phase are minimal, the dispersion induced by the presence
of free electrons ionized during the harmonic generation and
the dispersion induced by the neutral atoms in the gas can
compensate each other over a range of harmonic energies,
since one increases and the other decreases with increasing
photon energy. Their measurements of the atto-chirp support
the conclusion from calculations that there is an optimum
pressure and ionization fraction for the production of transform
limited bursts in the APT [67].

4.2. Few-cycle driving pulses

Conceptually, spectral filtering of the high harmonic spectrum
generated by a few-cycle driving pulse is the simplest scheme

for producing isolated attosecond pulses [4, 5, 28–32]. In
general, the highest harmonic energies are only generated
at the peak of the pulse and if the driving pulse is short
enough (approximately two optical cycles or less) and has the
appropriate carrier envelope phase (CEP), the XUV radiation
in the cutoff region can be emitted during one half-cycle
only, producing a continuous spectrum. This method has
been demonstrated experimentally by the group of Krausz
and collaborators [4, 5], yielding isolated attosecond pulses
with durations of a few hundred attoseconds. Technically,
this approach to single attosecond pulse generation is very
demanding as it requires access to intense, phase stabilized,
sub-6 fs laser pulses [95].

The XUV time gate is formed in this case by the
combination of a short pulse (intensity gate) and a spectral
filter (spectral gate) and is single atom in nature—each atom
is emitting the highest frequencies during an intensity gate
that only lasts a short time. Macroscopic effects are important
mainly in terms of the yield and coherence properties of
the attosecond pulses—it is important that the macroscopic
effects work to enhance and not destroy the single-atom gating
mechanism. In addition, as we discussed earlier, it is only for
a few cycle driving pulse that one can achieve non-adiabatic
self-phase matching for very high XUV energies, for which
phase matching would otherwise be strongly limited by the
presence of free electrons [19, 72].

4.2.1. Isolated attosecond pulses from molecules driven
by few-cycle laser pulses. Very recently, Lorin and
collaborators have reported interesting propagation effects
in calculations of isolated attosecond pulse production by
a macroscopic number of aligned H+

2 ions driven by an
intense, few-cycle 800 nm laser pulse [92]. They see that
for high molecular densities, the harmonic plateau extends to
substantially higher energies than at lower densities, indicating
the potential for synthesizing shorter attosecond pulses. They
attribute the extension of the plateau to a spectral broadening of
the laser pulse towards lower frequencies during propagation
through the gas, due to self-phase modulation (the Kerr effect)
[92].

4.2.2. Few-cycle pulses produced via filamentation.
Several groups have taken an interest in using few-cycle
pulses produced via self-compression during laser-driven
filamentation for driving strong field processes [96, 97], as an
alternative to the more standard few-cycle pulses produced in
hollow-core fibres [95]. Chakraborty et al have recently shown
in calculations that isolated attosecond pulses can be produced
from cutoff harmonics generated by these self-compressed
filaments, and that the sub-femtosecond XUV time gate for
these pulses is formed by the (standard) steep intensity gate at
the rising edge of the pulse, and by a steep frequency gate at
the peak and trailing edge of the driving pulse. This frequency
gate arises because of a large blue shift imposed on the laser
pulse during the filamentation process, which rapidly lowers
the instantaneous cutoff energy [98].

14



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 132001 Topical Review

Figure 10. Left panel: single-atom time profile of harmonics in argon between 25–45 eV generated by a 750 nm, 5 fs driving pulse with a
rapidly varying ellipticity (shown in the figure with thin solid line). Results of using two different values of the CEP are shown with thick
solid or dashed lines. The XUV emission is clearly not of sub-femtosecond duration. The peak intensity of the driving pulse during the
linearly polarized gate is approximately 5 × 1014 W cm−2. Right panels: (a) and (b) on axis and radially integrated time profiles of
harmonics in the same range after propagation through a 1 mm long argon gas jet at a pressure of 30 mbar. Reprinted with permission from
[41]. Copyright (2007) by the American Physical Society.

4.3. Polarization gating

Recently, the production of an isolated attosecond pulse via
polarization gating of high-order harmonics generated by a
short driving pulse has been experimentally demonstrated
[33, 34]. The time-gating mechanism of this approach is
based on the strong sensitivity of the harmonic generation
process to the polarization (ellipticity) of the driving laser pulse
[35–40, 99]. Harmonic generation is very inefficient even
for small ellipticities of the laser field, and by constructing
a laser pulse in which the light is linearly polarized only
during a single half-cycle one forms a polarization gate for
the generation of an isolated attosecond pulse. The advantage
of the polarization gate as compared to the intensity/time
gate discussed above is that in principle a much larger range
of frequencies in the harmonic spectrum will be emitted
during a short time (not only the frequencies in the cutoff
region), allowing for potentially much shorter attosecond
pulses with higher yields. In the experiment by Sansone and
collaborators, the sub-cycle polarization gate was produced
by the combination of two CEP stabilized few-cycle (≈5 fs)
pulses with orthogonal polarizations which were delayed with
respect to each other [33, 34].

Very interestingly, it has recently been proposed by
Altucci and collaborators [41] that the production of single
attosecond pulses via polarization gating is actually a
macroscopic effect of phase matching in the nonlinear
medium and not a single-atom ellipticity gating effect.
Their calculations show that the electron trajectories that are
initiated, accelerated and returned to the core by an electric
field with a rapidly varying ellipticity are actually much longer
than the trajectories in the linear polarization case, especially
for lower harmonics far from the cutoff energy. The authors
refer to these as ‘super-long’ trajectories. The single-atom
emission time for a range of plateau harmonics in argon can
therefore be substantially longer than the ellipticity gate itself,
as shown in the left panel in figure 10, from [41].

The calculations of Altucci et al also show that it is
the effects of phase matching and radial averaging during
propagation through a macroscopic nonlinear medium that
allows the generation of an isolated attosecond pulse, as shown
in the bottom right panel of figure 10. The ‘super-long’
trajectories are suppressed due to a lack of phase matching, and
the off-axis contributions to the range of harmonics considered
are emitted during a shorter time than the on-axis contributions.
Altucci and collaborators point out that their calculations
are in good agreement with the experimental measurements
of isolated attosecond pulses produced in polarization gates,
in terms of the parameters used in the experiments and the
durations measured [33, 34, 41].

4.4. Production of isolated attosecond bursts by driving
pulses longer than two optical cycles

There is currently great interest in experimental schemes that
would produce isolated attosecond pulses without starting
from intense, CEP stabilized, two-cycle (5 fs) driving pulses
which are notoriously hard to produce and control. To produce
an isolated attosecond burst with pulses that are longer than
two optical cycles, the generation scheme must give rise
to additional time gating mechanisms beyond the intensity
gate provided by the peak of the pulse. The following four
sections discuss different such generation schemes, many
of them relying on macroscopic effects such as ionization
and phase matching to provide the extra XUV time gating
mechanism.

4.5. Spatio-temporal gating of isolated attosecond pulses
based on ionization-driven reshaping

Gaarde and Schafer recently demonstrated that macroscopic
effects can play a crucial role in the production of
isolated attosecond pulses by a pulse substantially longer
than two optical cycles [42]. They performed detailed
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Figure 11. Spatio-temporal dynamics of the propagation of a 750 nm, 7 fs pulse, with an initial peak intensity of 9 × 1014 W cm−2

propagating through 3 mm of neon gas at a pressure of 150 Torr. (a) shows the on-axis energy density of the driving field (dashed line, left
axis), and the radially integrated yield of the generated radiation around 90 eV (symbols, right axis) as a function of propagation distance.
In (b) we compare the radial intensity distribution, and in (c) the on-axis time-dependent electric field, at the beginning and at the end of the
medium (dashed and solid lines, respectively). In (d) we show the radially integrated harmonic spectrum at the end of the neon gas. The
high-energy cutoff which can be seen around 175 eV is from radiation which is generated only at the beginning of the neon gas where the
intensity is still high [71].

numerical simulations of the 2001 experiment in which
isolated attosecond pulses were first detected [1]—somewhat
surprisingly generated by an almost three cycle long pulse
which was not CEP stabilized. Gaarde and Schafer found
that ionization driven spatio-temporal reshaping of an intense
driving pulse as it propagates through a long, relatively dense
medium leads to XUV radiation which, after spatial and
spectral filtering in the far field, yields an isolated attosecond
pulse. The XUV time gating mechanism in this case is
provided by a spectral and spatial filter, the effectiveness of
which is enabled by the ionization driven reshaping of the laser
pulse that happens during its propagation through the medium.

The focusing conditions of the driving laser beam
employed in the experiment in [1] and the calculations in [42]
were very loose (confocal parameter ten times longer than the
nonlinear medium) which means that it is ionization effects
that dominate the propagation dynamics, and the effects of
phase matching as discussed in the context of figure 3 are
minimized. Figure 11 illustrates some of the spatio-temporal
dynamics that can be caused by rapid ionization in a relatively
dense medium. We show the evolution of a 750 nm, 7 fs
laser pulse as it propagates through a 3 mm long neon gas
medium with an atomic density of 5×1018 cm−3. The focusing
conditions are very loose, with an initial confocal parameter of
more than 4 cm. The peak intensity in the centre of the focus

(in the absence of ionization-induced defocusing) would be
9 × 1014 W cm−2. Although ionization is far from saturated
at the end of this pulse (the one-electron ionization probability
is 15% at the end of the pulse), it plays a profound role in the
propagation dynamics. The ionization probability is highest
on axis because of the radial intensity variation of the focused
beam, and the resulting radial variation of the electron density
acts like a negative lens which rapidly defocuses the laser
beam. The resulting lower intensity in turn slows down the
defocusing process. Figure 11(a) shows the evolution of the
on-axis energy density of the field as a function of propagation
distance. The intensity on axis is reduced by about a factor
of 2 by the end of the medium, and the radial profile is much
wider and almost flat over a diameter of about 100 µm (shown
in figure 11(b)). The largest changes to the spatial profile
happen in the first half of the medium where the intensity
is highest (since the ionization is highly nonlinear). Once
the ionization probability is lowered to just a few per cent
(which happens about half-way through the medium in these
conditions), the spatial profile does not significantly change
its shape but merely diverges slowly because it has acquired a
diverging phase front.

The time dependence of the refractive index, through the
variation of the electron density, leads to a time-dependent
phase of the electric field and therefore a frequency chirp.
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Figure 13. XUV generation resulting from the laser pulse shown in figure 12. We show the spatio-temporal profile of 90 eV radiation at the
end of the neon gas (a) and in the focus generated after spatial filtering and reflection by a 2 mm diameter mirror placed 3.0 m from the neon
source (b).

During the pulse the electron density either increases (when
the intensity is high), or stays constant (when the intensity is
low). Even if the intensity were sufficiently high to saturate
the ionization probability, the electron density would initially
increase and then saturate and stay constant. This means
that the central frequency will always be blue shifted during
propagation through an ionizing medium, and that the blue
shift is in most cases time-dependent. Such a blue shift is
evident in the comparison between the on-axis laser electric
field at the beginning and at the end of the medium, shown in
figure 11(c).

Figure 11(c) also shows that the electric field at the end
of the medium has been reshaped temporally. The peak of the
pulse occurs earlier and the effective duration of the on-axis
pulse is shorter than the incoming pulse. This is an effect
of the overall spatio-temporal reshaping that the laser pulse
has undergone as demonstrated in figure 12, which shows its
intensity profile at the beginning and at the end of the gas cell.
The outgoing beam is much broader and more divergent than
the incoming beam, and has a lower peak intensity. It also
has a large radial phase variation which means that the peak
intensity occurs at different times for different radial positions,
and that the duration of the pulse varies with r.

The high-energy XUV radiation that emerges from the
nonlinear medium in these conditions has been predominantly
generated by the strongly reshaped laser pulse shown in
figure 12(b) (see figure 11(a)), and individual XUV attosecond
bursts are in general produced with different divergences. This
is illustrated in figure 13, which shows the spatio-temporal
intensity profile of the XUV radiation in a 5 eV window around
90 eV. Figure 13(a) shows the near-field XUV time profile at

the end of the neon gas, whereas in figure 13(b) we have
spatially filtered the XUV radiation by reflecting it on a small
mirror placed on axis several metres from the gas, see [42]
for details. Only the radiation with the smallest divergence
is reflected by the mirror, resulting in a single attosecond
burst in the focus (figure 13(b)). The duration of this pulse
is 650 as and it contains an energy of approximately 3 pJ.
This figure presents a very plausible explanation for why an
isolated attosecond pulse could be produced by a 7.5 fs pulse
by Krausz and collaborators [1].

The carrier envelope phase of the driving laser pulse in
these calculations is zero with respect to a cosine oscillation. In
[42] we explored the CEP dependence of the far-field selection
of single attosecond pulses generated by a laser pulse with
parameters as in figure 12, and showed that for most values of
the CEP it is possible to isolate a single XUV burst. We also
predicted that single attosecond pulses can be produced via
spatial filtering by laser pulses as long as four optical cycles,
if combined with CEP stabilization.

It is worth noting at this point that the ability of the far-
field spatial filter to act as a temporal filter is a consequence
of the ionization-driven reshaping of the laser pulse, and not
a generic feature of far-field spatial filtering. In figure 14,
we compare the radially integrated time profile of 90 eV
radiation before and after far-field spatial filtering, generated
by two different driving fields. In (a) we have used the same
driving field as in figure 12, and in (b) the laser intensity
is lower (5 × 1014 W cm−2) and the confocal parameter
is longer (6 cm). The duration for both laser pulses is
7 fs but their propagation dynamics are very different. The
lower peak intensity pulse (b) propagates through the medium
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Figure 14. We compare radially integrated time profiles of 90 eV radiation at the end of the medium (thin lines) and after spatial filtering in
the far field and refocusing to the near field (thick lines). In (a) we have used parameters as in figure 13, in (b) we have used a laser pulse
with the same parameters except a lower initial peak intensity (5 × 1014 W cm−2). The laser pulse in (b) gives rise to the same 90 eV cutoff
energy as the one in (a), and the harmonic spectra from the two pulses are very similar. The pulse in (b), however, gives rise to very little
ionization and does not undergo spatio-temporal reshaping.

essentially unaltered and the driving field intensity at the end
of the medium is therefore similar for the two pulses. They
both give rise to a harmonic cutoff energy around 90 eV and
similar-looking harmonic spectra. The time profiles of the
90 eV radiation before far-field filtering both contain multiple
attosecond bursts. However, spatial filtering does not alter
the time structure of the XUV radiation generated by the laser
pulse which has not undergone reshaping (b), it merely reduces
it by an overall factor. This is because XUV bursts generated
in consecutive half-cycles of the field in (b) will have similar
divergence properties due to the smooth radial structure of
the beam, and because the phase matching conditions do not
change from one half-cycle to the next.

4.6. Spatio-temporal gating of isolated attosecond pulses
based on phase matching

A different approach to spatial selection of an isolated
attosecond XUV pulse was recently proposed by Haworth
and collaborators in [43]. Their approach is based on the
different phase matching that can be achieved for different
energy regions of the harmonic spectrum in a tight focusing
geometry. The authors calculate that in these conditions good
phase matching on axis is only achieved for XUV radiation
generated during one half-cycle of the driving field, and by
applying a spatial and spectral filter in the far field they can
temporally select a single attosecond pulse from a 3–4 cycle
driving pulse. The extra XUV time gating mechanism in this
case takes the form of a spatial and spectral filter, which is
effective because of the large variation of the XUV phase
matching conditions from one half-cycle to the next.

To understand how phase matching can provide a sub-
femtosecond time gate, it is useful to start with a discussion
of the concept of half-cycle cutoffs as introduced by Haworth
and collaborators [43]. In a few-cycle pulse, which by its
nature has a steep intensity gradient in each optical cycle, the
peak electric field changes substantially from one half optical
cycle to the next. This means that the maximum energy of the
harmonic radiation also changes significantly from one half
cycle to the next. These individual half-cycle cutoffs have
been documented experimentally and were used by Haworth
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Figure 15. (b) Spatio-temporal behaviour of harmonic radiation
around 90 eV, (c) before and (a) after spatial filtering with a narrow
2 mrad full-angle aperture. The time dependence of the driving
electric field is shown in the top part of (a). See the text for the
parameters of the calculation. Reprinted by permission from
Macmillan Publishers Ltd: Nature Physics 3, 52 (2007), copyright
(2007) [43].

et al to measure the absolute phase of the driving laser field
[43]. A given range of harmonics can thus belong to the plateau
region during a half-cycle close to the peak of the pulse, and to
the cutoff region during the next half-cycle with a lower peak
intensity.

The phase-matching based spatio-spectral gating
mechanism for producing isolated attosecond pulses proposed
by Haworth et al is shown in figure 15. The figure shows
the calculated macroscopic response of a 4 mm long gas of
neon atoms at an atomic density of 3 × 1017 cm−3 (pressure
of approx. 9 Torr) to an 8.5 fs, 800 nm laser pulse with a
peak intensity of 6 × 1014 W cm−2. The laser beam is focused
relatively tightly compared to the length of the medium, with
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a confocal parameter of 6 mm. Figure 15(b) shows the spatio-
temporal intensity profile of the XUV radiation with photon
energies close to 90 eV (13.5 nm) at the end of the neon
gas. There are approximately four significant attosecond XUV
bursts, generated in different half-cycles of the laser fields (as
shown in the top part of figure 15(a)). However, only one
of these bursts has a significant on-axis component, and the
comparison of the radially integrated XUV time profiles before
and after applying a 2 mrad spatial filter shows that one can
beautifully isolate a single attosecond pulse with the help of
phase matching (figure 15(c) and (a), respectively).

The phase matching driven isolation of a single attosecond
pulse via spatial filtering can also be understood with the
help of the phase matching maps shown in figure 3, from
[63]. Although these phase matching maps are not generated
for exactly the same conditions as the calculation shown in
figure 15, they still illustrate the important features of the time
gating mechanism. In figure 15, a spectral gate has already
been applied which selects a range of harmonics from one
of the lower half-cycle cutoffs, i.e. not the highest harmonic
energies in the spectrum. As discussed above, these harmonics
belong to the cutoff region during one half-cycle only, and to
the upper plateau region for the half-cycles with higher peak
electric fields. If we now look at the phase matching maps for
a cutoff harmonic, shown in figure 3(e) and (f), we see that it
is well phase matched on axis over several mm of propagation
when the medium is placed 2 mm beyond the laser focus. In
contrast, neither the short nor the long trajectory contribution
to the upper plateau harmonics shown in figure 3(c)–(d) are
phase matched on axis, but rather off axis and with diverging
phase fronts. A spatial and spectral filter placed in the far field,
selecting only the on-axis radiation around one of the lower
half-cycle cutoffs, will therefore also temporally gate the XUV
radiation to a single half-cycle’s on-axis contribution, as in
figure 15(a) and (b).

Experimental support for the idea of generating isolated
attosecond pulses from individual half-cycle contributions to
the harmonic radiation has been presented by Pfeifer and
collaborators in [100]. They generated harmonics in neon by a
6 fs, 720 nm laser pulse and observed that a 15 eV wide region
of the harmonic spectrum near the cutoff energy was quasi-
continuous, supporting the bandwidth necessary for a single
few-hundred attoseconds XUV pulse. Similarly to the work
in [43], they interpreted the isolation mechanism in terms of
different phase matching of different half-cycle contributions
[101].

In contrast to the ionization driven spatio-temporal gating
mechanism discussed in section 4.5, the phase matching driven
mechanism discussed in this section does not depend on
effects of ionization, which are minimal for the very low
density used in the calculation in figure 15 [102]. The two
gating mechanisms we have described (in this section and
in 4.5) are therefore very different in nature and work in
different regions of parameter space. The ionization gating
through reshaping as presented in section 4.5 works in a
loose-focusing and high-pressure regime and may lead to a
larger XUV yield than the tight-focusing low-pressure phase
matching gating approach in this section, simply because it

allows one to have a larger and denser interaction volume.
However, the phase matching gating described in this section
takes advantage of near-perfect phase matching conditions for
a range of harmonics during a particular time, which may make
up for the difference in interaction volume. A combination
of the two methods, employing phase matching gating in a
situation where ionization is substantial and contributes both
to spatio-temporal reshaping of the driving pulse and to the
phase matching conditions, may be a very promising route to
pursue.

4.7. Novel regime for phase matching: longer wavelength
driving lasers

Technological developments over the past decade have made
it possible to generate intense, few-cycle pulses at mid-
infrared (MIR) wavelengths (between 1.5 µm and 4 µm,
approximately) [46, 103–105], and there is an increasing
interest in driving strong field processes with these sources
[11, 27, 44, 45, 46, 48, 49]. The production of high
harmonics and attosecond pulses is particularly interesting
at MIR wavelengths since the ponderomotive energy and
therefore the spectral cutoff is proportional to the wavelength
squared. The same atom exposed to driving pulses with
identical peak intensities would thus yield a cutoff energy
four times larger with a 1.6 µm driving field than with an
800 nm driving field. The extended cutoff energy in MIR
harmonic spectra has been experimentally demonstrated by
several different groups [47, 45]. One can also expect to
generate shorter attosecond pulses with MIR driving lasers,
since the atto-chirp is inversely proportional to the wavelength
[27]. For a detailed discussion of scaled interactions at longer
wavelengths see [11, 27].

Tate and collaborators have recently investigated
wavelength scaling laws of the yield and atto-chirp of
harmonics, via numerical solutions of the SAE-TDSE using a
pseudo potential for argon, and they show that the atto-chirp is
indeed smaller at longer wavelength [27]. They also show that
harmonics generated by MIR lasers have unexpectedly large
contributions from electron trajectories longer than one optical
cycle, i.e. trajectories much longer than what we have been
referring to as the ‘long’ electron trajectory, compared with
harmonics generated by 800 nm lasers [27]. It is interesting
to note that this result is not reproduced by the strong field
approximation which predicts that the two trajectories with
returns within the first cycle to dominate the dipole response
both at IR and MIR wavelengths. This may indicate an
increased sensitivity to the effect of the atomic potential on the
electron trajectories at MIR wavelengths, something which is
ignored in the SFA.

The macroscopic aspects of few-cycle MIR driven
generation of high-order harmonics and attosecond pulses
have recently been addressed in calculations by Yakovlev and
collaborators [44]. Their results present yet another example
of how phase matching can form a time gate for the production
of an isolated attosecond pulse, see figure 16. The top panel
shows on-axis harmonic spectra in the far field generated by
driving fields with different wavelengths after propagation
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Figure 16. (a) On-axis, far-field harmonic spectra generated by
MIR fields with different wavelengths, after propagation through a
100 mbar helium gas jet of varying length (see the text for details).
(b) Time profile synthesized from the spectral range above 100 eV
in the 1.5 µm spectrum. Reprinted with permission from [44].
Copyright (2007) by the Optical Society of America.

through a 100 mbar helium gas. Each driving pulse has a
duration of two optical cycles and an initial peak intensity
so as to give a cutoff energy of 700 eV. For the 1.5 µm
driving pulse this corresponds to an initial intensity of
approximately 1015 W cm−2. The propagation lengths vary as
each calculation has been terminated when the intensity has
been reduced by 10% of its initial value.

The 1.5 µm spectrum in the top panel of figure 16 exhibits
a 60 eV wide region in the lower plateau where the spectrum is
continuous, indicating the presence of an isolated XUV burst.
The time profile of these harmonics, after spectral gating with
a filter that suppresses energies below 100 eV, is shown in the
bottom panel of figure 16 and indeed presents an isolated pulse
with a duration of only 60 as. Even though the driving pulse
duration is only two optical cycles, the time-gating mechanism
in this case is not the amplitude gating that leads to isolated
attosecond pulses in the cutoff region of harmonics generated
by few cycle pulses as discussed in section 4.2 above. Here,
the time gating mechanism is due to phase matching and is
similar to that proposed by Haworth and collaborators [43] in
section 4.6, in that it relies on good phase matching for the
long trajectory contribution to a specific range of harmonic

radiation during one specific half-cycle of the driving pulse
[106]. For MIR driving lasers, the dipole phase varies much
more rapidly with intensity than at IR wavelengths since the
action integral is given by −αUp/ω1 and therefore scales
as λ3

1I . This means that the phase matching conditions are
extremely sensitive to variation in the laser intensity along
the propagation direction, even in loose focusing conditions,
and that very good phase matching can be achieved only
in very specific conditions. This allows for very efficient
generation of a range of harmonics in one half-cycle and not
in others. According to Yakovlev, the good phase matching of
the long trajectory contribution leading to the single attosecond
pulse in figure 16 is most likely due to a cancellation of
the intensity-dependent dipole phase variation by the phase
variation induced by the free electron dispersion [106].

The single-atom dipole moments used in the calculations
by Yakovlev and collaborators were obtained using the strong
field approximation, and for each XUV energy only including
the shortest two quantum path contributions. The phase
matching of longer quantum path contributions, found to
be important in the work of Tate et al [27], remains to
be investigated although one can speculate that it would be
hard to find robust phase matching conditions for quantum
path contributions with even steeper intensity-dependent phase
variations.

4.8. Two-colour control of attosecond pulse generation

Adding a second field of different frequency and intensity to
the intense IR field offers additional control over the generation
of high-order harmonics and attosecond pulses. The presence
of the second field breaks the half-cycle periodicity of the
electron dynamics and offers an additional time gate compared
to whatever other time gating mechanism is employed. The
parameters that control the two-colour time gate are the relative
frequencies, intensities and delay between the two fields. An
important constraint for a two-colour control mechanism is
that to be effective at a macroscopic level, all three of these
parameters must remain more or less constant over the entire
interaction volume.

Most two-colour control schemes relating to attosecond
pulse generation involve a strong IR field and a weaker second
harmonic field (which we will refer to as blue). Such a
two-colour electric field has a periodicity of a full IR optical
cycle, and the harmonic spectrum contains both odd and even
harmonics. When the blue field is very weak it acts as a
small phase perturbation to the one colour harmonic generation
process, and by changing the relative delay one can control the
intensity ratio between odd and even harmonics [87]. We will
spend the rest of this section discussing the case where the
second field is relatively strong, with an intensity of more
than a few per cent of the IR intensity. In this case, the two-
colour electric field in consecutive half-cycles is very different
and the blue field substantially alters the electron continuum
dynamics.

In a two-colour driving field, there are in general two
different electric field ‘evolutions’ over one cycle of the IR
field [50], see examples in figure 17(a). Each field evolution
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Figure 17. (a) Electric field time profile of IR-blue two-colour field
where the blue intensity is half as strong as the red intensity, for two
different delays. The electric field is given in units of the IR alone
electric field strength. (b) Harmonic spectra generated in argon by
the electric field shown with solid line in (a). We have separately
calculated the contribution from the two electric field evaluations,
see [50] for details.

gives rise to its own family of trajectories which can be strongly
perturbed compared to the one-colour trajectories. For most
delays, one evolution has first a strong half-cycle, followed
by a much weaker half-cycle. This evolution in general gives
electron trajectories that are released at a relatively strong
electric field, and are pushed back to the core by a relatively
weak electric field. The harmonic spectrum generated by these
trajectories has a high yield and a low cutoff energy. The other
electric field evolution starts with a weak half-cycle and is
followed by a strong half-cycle, and gives rise to a harmonic
spectrum with a low yield but a much higher cutoff energy. In
[50], Mauritsson et al showed that the two spectra can often
be observed separately in a calculated harmonic spectrum, as
shown in figure 17(b).

For the particular delay used in figure 17(b), the spectra
from the two families of trajectories each represent radiation
which is emitted only once per IR cycle. The time structure of
a selection of harmonics close to either of the two cutoffs in the
full spectrum will therefore exhibit only one attosecond XUV
burst per IR cycle. This means that it is in principle possible to
produce isolated attosecond pulses with a driving pulse that is

twice as long as in the IR alone case, or attosecond pulse trains
with only one attosecond burst per full cycle of the IR field.
Attosecond pulse trains generated around the low-energy,
high-yield cutoff were produced experimentally by Mauritsson
et al [50]. In an experiment by Oishi and collaborators, a
supercontinuous harmonic spectrum was produced in argon
using a 9 fs, two-colour driving field, indicating the presence of
an isolated attosecond pulse [52]. The production of isolated
attosecond pulses from a three to four cycle driving pulse
employing two-colour control has been shown in single-atom
calculations by several different groups [51, 107, 108]. Chang
and collaborators have recently proposed using two-colour
control in combination with polarization gating to form a so-
called double optical gate [109, 110]. Their experimentally
produced supercontinuum supports an isolated attosecond
pulse with a duration of 130 as [110].

In all of these scenarios, the extra time-gating mechanism
compared to IR-driven attosecond pulse generation is provided
by the blue field which for certain delays suppresses every
other attosecond burst. In order for this approach to be
successful at a macroscopic level it is, as we said, necessary to
keep the delay and the relative intensities close to constant over
the entire interaction volume. It is by definition impossible to
keep the intensity ratio and relative delay exactly constant
over the entire interaction region, because of the different
diffraction properties of fields of different wavelengths. For
a Gaussian beam, the confocal parameter b is related to its
waist wf in the focus by b = 2πw2

f

/
λ. The confocal

parameter controls the evolution of the intensity and phase of
the beam along the axis of propagation, and the waist controls
the evolution in the radial direction. In general, one has to
choose whether to match the axial or the radial dependence
of the two beams. We find that it is better for two-colour
attosecond pulse control to match the radial than the axial
dependence of the beams (see for instance [111]). This is
because the confocal parameters of both beams are in general
much longer than the nonlinear medium (typically 1–2 cm
compared with 1–2 mm), and the relative change in intensity
and phase over the length of the medium can be kept small even
if the confocal parameters differ by a factor of 2. In contrast, if
the waists of the two beams are substantially different then it is
only in part of the interaction volume that one actually exerts
two-colour control over the generation process, and there will
likely be a substantial contribution to the harmonic signal from
the remaining volume. This is particularly a problem if the
weak control field is smaller than the IR field so that there
is substantial IR-alone harmonics generated off axis, and is
less severe if the weak control field is the larger of the two
beams. We note here that matching the focused waists of
two beams with different wavelengths requires either using
two different focusing elements or increasing the (unfocused)
size of one beam with respect to the other.

Another issue for two-colour control is ionization-induced
defocusing and de-phasing which affects long wavelength
fields more than short wavelength fields because the plasma
contribution to the refractive index is proportional to the
wavelength squared. A particularly difficult case in this respect
is two-colour control using a sub-harmonic of the IR laser as
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Figure 18. Harmonic spectra after propagation through short
(1 mm), low-pressure (30 Torr) argon gas medium, generated by an
IR-MIR two-colour field (see the text for details).

the second field. A two-colour field consisting of a strong
800 nm field and a weaker 1600 nm field has a periodicity
of two IR optical cycles. Pfeifer and collaborators showed
in single-atom calculations that because of this extended
periodicity, it is possible to generate an isolated attosecond
burst with a 24 fs driving pulse by selecting only harmonics
above the IR cutoff energy, for certain delays between the two
fields [112].

In the following, we investigate the effects of ionization-
induced defocusing driven by a ω1, ω1/2 two-colour field. We
calculate the macroscopic response of a 1 mm long argon
gas jet with a density of 1018 atoms cm−3 (corresponding to
a pressure of about 30 Torr) to an intense two-colour driving
pulse with a duration of 24 fs. The peak intensity of the 810 nm
IR pulse is 2.25 × 1014 W cm−2 and that of the 1620 nm MIR

Figure 19. Spatio-spectral profiles of the IR and the MIR field at the beginning and at the end of the argon jet. The IR field is essentially
unchanged after propagation through the short medium, but the MIR field is strongly altered by effects of ionization, both spatially (has been
defocused), and spectrally (blue-shifted).

pulse is 2.25 × 1012 W cm−2. The relative delay between the
two pulses has been chosen so as to optimize the generation of
an isolated attosecond pulse (see below) and is −0.7T1. This
differs from the single-atom optimum delay of zero because
of propagation effects. The confocal parameters are 2 cm and
4 cm for the MIR and the IR beams, respectively, which means
that they have the same waists in their common focus. The
radially integrated harmonic spectrum at the end of the argon
gas is shown in figure 18.

For comparison, in figure 18 we also show the spectrum
generated by the IR field alone. It is the two-colour XUV
radiation generated at frequencies beyond the IR-alone cutoff
energy that can reasonably be expected to comprise an isolated
attosecond pulse after spectral filtering, i.e. radiation above
approximately 40ω1. The top-most spectrum in figure 18
shows the two-colour spectrum one would get in the absence
of the ionization-induced free electron contribution to the
refractive index. Two consequences of ionization can be
seen in the comparison of the spectra: (i) ionization-induced
defocusing decreases the peak intensity which reduces the
cutoff energy and (ii) the no-ionization spectrum is much less
modulated at high energy, indicating that the time structure
of the radiation beyond 40ω1 is more likely to be emitted in
a single burst. We note that the no-ionization spectrum has
been calculated for a relative delay of zero which was the
optimal delay for producing isolated attosecond pulses in the
single-atom calculations.

Figure 19 illustrates the effect of ionization-induced
defocusing and dephasing on the two-colour field. We show
the spatio-spectral profiles of the IR and MIR beams separately
at the beginning and at the end of the argon gas. It is clear
that the MIR beam is affected much more by ionization. As
a result of the spatial variation of the plasma refractive index,
the radial profile is much flatter for the MIR beam than for the
IR beam, and the reduction of the on-axis intensity is much
larger. As a result of the temporal variation of the plasma
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refractive index, the on-axis blue shift of the MIR frequency
is larger than that of the IR frequency. Furthermore, the MIR
beam exhibits a more complicated spatio-spectral shape where
the central frequency changes with r. The dual effects of
ionization are thus to reduce the spatial overlap between the
two beams, and to cause a temporal phase shift which varies
with r. Phrased in terms of the two-colour control parameters,
ionization causes both the relative intensities and phases to
change with propagation distance.

In spite of the dephasing caused by ionization in this two-
colour scheme, phase matching can still allow the generation
of an isolated attosecond pulse. The time profile of harmonics
40–60 from the propagated spectrum is shown in figure 20.
The limitation of phase matching and ionization in this case is
that the yield (which is quite low for argon, 0.1 pJ at 50 eV)
does not scale up well. Increasing either the intensity or the
pressure will increase the effects of ionization. This means
that not only does the yield not scale up with intensity and
pressure, but that eventually it will no longer be possible to
isolate a single attosecond pulse due to the de-phasing effects.
The only way to increase the yield is by brute-force scaling
of interaction volume: increasing both confocal parameters
proportionately which requires a higher laser energy.

5. Main challenge for attosecond
sources—enhancement of yield and control of
coherence properties

In this review, we have outlined how macroscopic effects often
play a crucial role in the generation of attosecond pulses in a
number of different scenarios, forming temporal or spatial
gates for isolating only the useful part of the XUV radiation.
Macroscopic effects are of course also extremely important
in the more traditional sense of determining the yield and the

coherence properties of the attosecond pulses. Improving the
yield of attosecond pulses while maintaining control of their
spatial and temporal coherence properties will likely remain
a challenge for attosecond source development into the next
decade, as it requires the control of tens or hundreds of eV of
bandwidth deep in the XUV spectral region.

While only a few studies have explicitly addressed
optimization of attosecond pulse generation [113–115], there
have been a range of studies on how to improve the yield
and coherence properties of high-order harmonics via phase
matching. In the following we mention a few of these studies,
many of which could be extended directly to the optimization
of attosecond pulses.

Several groups have explored optimal control approaches,
where optimization of some property of the harmonic radiation
is achieved via a feedback loop that is coupled to a pulse-
shaper, in most cases optimizing the yield of particular
harmonics [113, 114, 116–118]. For a recent review of using
optimal control methods to optimize harmonic generation,
which also discusses spatial shaping of the driving beam, and
optimizing properties other than the yield, see [118]. A few
theoretical studies have optimized the generation of attosecond
pulses directly, either through temporal pulse shaping [114] or
choice of focusing conditions [113].

Many groups have used quasi-phase matching to improve
the yield of high-order harmonics [18, 31, 65, 66, 115, 119,
120, 121]. The basic premise of quasi-phase matching is
to dramatically improve yield in a medium which is much
longer than the coherence length, by having the gas density be
zero during the part of the propagation where new radiation
interferes destructively with the already propagating radiation,
allowing only constructive build-up of the radiation. The
Murnane/Kapteyn group has successfully employed more
general approaches to quasi-phase matching using modulated
wave guides and counter-propagating light, in both cases
modulating the generating light rather than the generating
material [18, 65, 66, 119, 120]. In a very recent study, Tosa
and collaborators optimize the yield of MIR driven isolated
attosecond pulses via quasi-phase matching in a series of thin
gas jets placed one after the other [115].

In a range of other experimental and theoretical studies,
the yield of harmonics has been optimized through changing
the length and pressure of the nonlinear medium [122, 123], the
spatial structure of the laser beam [69, 124–128], or by using
ions in a capillary discharge to improve yield of very high-
order harmonics [129]. Taking advantage of the combined
effects of ionization-induced defocusing and Kerr effect self-
focusing in a very long medium at high intensity [130], and
using a mixture of argon and helium gases to improve phase
matching conditions in a long medium [131, 132] have also
been studied.

A novel source of very high-order harmonics which
shows promise for increasing the yield of attosecond pulses
by several orders of magnitude, compared to gas phase
harmonic generation as described in this review, is the
interaction between a relativistically intense laser pulse and an
overdense plasma created at the surface of a solid by the laser
pulse. Although the temporal structure of the generated XUV
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radiation still remains to be characterized experimentally, very
high photon energies have been observed in both experiments
and calculations with very high conversion efficiencies
[133–136].

6. Summary

We have reviewed the macroscopic aspects of attosecond
pulse production in a number of different generation schemes.
We have discussed how in each case the attosecond pulses
are selected from among a complex spectral and spatial
distribution of XUV radiation. We have shown that
macroscopic effects such as phase matching and ionization
always play a role in this selection process, in most cases
enabling the formation of the attosecond pulses and in a few
cases limiting it.

The progress of attosecond science will be closely
connected with the improvement of attosecond sources in
terms of their yield and coherence properties. Exploiting
nonlinearities at the macroscopic level, in addition to novel
single-atom generation and control schemes, is a promising
route to shorter and more intense attosecond pulses.
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