REVIEW

Cancer consequences of the Chernobyl accident: 20 years on

To cite this article: Elisabeth Cardis et al 2006 J. Radiol. Prot. 26 127

View the article online for updates and enhancements.

Related content

- The Chernobyl accident as a source of new radiological knowledge: implications for Fukushima rehabilitation and research programmes
 Mikhail Balonov

- Doses for post-Chernobyl epidemiological studies: are they reliable?
 Vladimir Drozdovich, Vadim Chumak, Ausrele Kesminiene et al.

- Leukaemia, Chernobyl and Epidemiology
 John D Boice Jr

Recent citations

- Radiation-related occupational cancer and its recognition criteria in South Korea
 Songwon Seo et al

- Analysis of heteroplasmy in bank voles inhabiting the Chernobyl exclusion zone: A commentary on Baker et al. (2017)
 "Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent."
 Jenni Kesäniemi et al

- Chernobyl: more systematic research needed
 Maria Blettner and Roman Pokora
REVIEW

Cancer consequences of the Chernobyl accident: 20 years on

Elisabeth Cardis1,24, Geoffrey Howe2, Elaine Ron3, Vladimir Bebeshko4, Tetyana Bogdanova5, Andre Bouville1, Zhanat Carr6, Vadim Chumak4, Scott Davis7, Yury Demidchik8, Vladimir Drozdovitch1, Norman Gentner9, Natalya Gudzenko4, Maureen Hatch3, Victor Ivanov10, Peter Jacob11, Eleonora Kapitonova12, Yakov Kenigsberg13, Ausrele Kesminienė14, Kenneth J Kopecky14, Victor Kryuchkov15, Anja Loos1, Aldo Pinchera16,17, Christoph Reiners18, Michael Repacholi19, Yoshisada Shibata19, Roy E Shore20, Gerry Thomas21, Margot Tirmarche22, Shunichi Yamashita6,19 and Irina Zvonova23

1 International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, France
2 Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1104, New York, NY 10032, USA
3 Radiation Epidemiology Branch, Division of Epidemiology and Genetics, National Cancer Institute, Building EPS, MS 7238, Rockville, MD 20852, USA
4 Scientific Center for Radiation Medicine, Academy of Medical Sciences of Ukraine, 53 Melnikova street, 04050 Kiev, Ukraine
5 Morphology of Endocrine System Laboratory, Institute of Endocrinology and Metabolism, Academy of Medical Sciences, Vyshgorodskaya Street 69, Kiev, 04114, Ukraine
6 Radiation and Environmental Health Unit, Public Health and Environment, World Health Organization, 20 Avenue Appia, CH-1211, Geneva-27, Switzerland
7 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and Department of Epidemiology, School of Public Health and Community Medicine, University of Washington, 1100 Fairview Avenue N M4-B874, PO Box 19024, Seattle, Washington, WA 98109-1024, USA
8 Department of Oncology, Belarusian State Medical University, 64, build 4, P Scorinity Avenue, 220013 Minsk, Belarus
9 Rantz Road, Petawawa, ON, Canada
10 Medical Radiological Research Centre, Koroleva, 4, Obninsk 249020, Kaluga Region, The Russian Federation
11 GSF National Research Center, Institute of Radiation Protection, D-85764 Neuherberg, Germany
12 Republican Research Centre of Radiation Medicine and Human Ecology, Ilica street 290, 246042 Gomel, Belarus
13 National Commission of Radiation Protection, Belarus 220004, Belarus, Minsk, Prospect Pobeditelei 23, Belarus
14 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and Department of Biostatistics, School of Public Health and Community Medicine, University of Washington, 1100 Fairview Avenue N M3-C102, PO Box 19024, Seattle, Washington, WA 98109-1024, USA
15 State Research Center of the Russian Federation, Institute of Biophysics of the Public Health Ministry of the Russian Federation, Zhivopisnaya street, 46, Moscow, 123182, the Russian Federation
16 Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
17 WHO Collaborating Centre for the Diagnosis and Treatment of Thyroid Cancer, Via Paradisa, 2, 56124 Pisa, Italy

24 Author to whom any correspondence should be addressed.
Abstract

26 April 2006 marks the 20th anniversary of the Chernobyl accident. On this occasion, the World Health Organization (WHO), within the UN Chernobyl Forum initiative, convened an Expert Group to evaluate the health impacts of Chernobyl. This paper summarises the findings relating to cancer. A dramatic increase in the incidence of thyroid cancer has been observed among those exposed to radioactive iodines in childhood and adolescence in the most contaminated territories. Iodine deficiency may have increased the risk of developing thyroid cancer following exposure to radioactive iodines, while prolonged stable iodine supplementation in the years after exposure may reduce this risk. Although increases in rates of other cancers have been reported, much of these increases appear to be due to other factors, including improvements in registration, reporting and diagnosis. Studies are few, however, and have methodological limitations. Further, because most radiation-related solid cancers continue to occur decades after exposure and because only 20 years have passed since the accident, it is too early to evaluate the full radiological impact of the accident. Apart from the large increase in thyroid cancer incidence in young people, there are at present no clearly demonstrated radiation-related increases in cancer risk. This should not, however, be interpreted to mean that no increase has in fact occurred: based on the experience of other populations exposed to ionising radiation, a small increase in the relative risk of cancer is expected, even at the low to moderate doses received. Although it is expected that epidemiological studies will have difficulty identifying such a risk, it may nevertheless translate into a substantial number of radiation-related cancer cases in the future, given the very large number of individuals exposed.

1. Introduction

26 April 2006 marks the 20th anniversary of the accident at the Chernobyl nuclear plant in northern Ukraine, the largest nuclear accident in history. As a result of the accident about five million people were exposed to radioactive contamination in Belarus, the Russian Federation and Ukraine. The knowledge gained in the last 20 years provides valuable information on the
effects of environmental and occupational radiation exposure and will contribute to determining how best to respond to any future accidents of this nature.

2. Methods

In 2003, the WHO convened an Expert Group on Health (EGH) within the UN Chernobyl Forum, an initiative supported by eight UN organisations. After three years of work, the WHO-EGH produced a comprehensive technical report, ‘Health effects of the Chernobyl accident and special health care programmes’, including detailed critical reviews of published, scientifically valid studies of thyroid cancer, leukaemia and other cancers, as well as non-cancer outcomes (UN Chernobyl Forum 2006). The EGH gave little, if any, weight to anecdotal observations. The present paper, focused on radiation dosimetry and epidemiology, summarises the findings related to cancer, the main long-term effect expected as a result of radiation exposure (UNSCEAR 2000, US NRC 2006).

3. Results

3.1. Sources and levels of radiation dose

The greatest sources of radiation dose from Chernobyl were, at different time periods, intake of short-lived radioactive iodines (particularly 131I), external exposure from radionuclides deposited on the ground (particularly 95Zr + 95Nb, 103Ru, 132Te + 132I, 140Ba + 140La, 141Ce and 144Ce) and ingestion of radioactive caesiums (particularly 134Cs and 137Cs).

Three major groups of people were exposed to and, in some cases, are still being exposed to radioactive contamination:

1. Workers (liquidators, or emergency and recovery operations workers). Those individuals who were involved in emergency response, containment, clean-up and associated activities at the Chernobyl site and in the contaminated areas, commonly referred to as liquidators. This group consists of approximately 600 000 individuals, of whom about 240 000 worked in 1986 and 1987, when doses were highest, at the reactor site and the surrounding 30 km zone (Cardis et al 1996).

2. Inhabitants who were evacuated or relocated from contaminated areas. In the months following the accident about 116 000 people were evacuated from areas surrounding the reactor in Belarus, the Russian Federation and Ukraine. A further 220 000 people were relocated after 1986.

3. Inhabitants of contaminated areas who were not evacuated. About 5 million people continue to live in areas of Belarus, Ukraine and Russia that were contaminated by the accident.

Table 1 presents a summary of the number of persons exposed and the levels of doses received in these population groups. Residents of contaminated areas include residents of strict control zones (where strict measures to monitor and decrease annual whole body doses continue to be implemented) and residents of less contaminated areas.

The liquidators were mainly exposed to external γ- and β-radiation. Internal exposure due to ingestion was negligible, though inhaled radioiodines may have contributed to the dose for a small proportion of the liquidators during the first weeks after the accident. In the first few days after the accident, dose-rates were extremely heterogeneous and those liquidators who worked on the industrial site of the Chernobyl Nuclear Power Plant could receive very high doses (up to
Table 1. Estimates of mean effective doses (mSv) for population groups of interest (Cardis et al 1996, UNSCEAR 2000).

<table>
<thead>
<tr>
<th>Population</th>
<th>Approximate size of population</th>
<th>Mean effective dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquidators (1986–1987, 30 km zone)</td>
<td>240 000</td>
<td>100</td>
</tr>
<tr>
<td>Evacuees of 1986</td>
<td>116 000</td>
<td>33</td>
</tr>
</tbody>
</table>
| Persons living in contaminated areas:
 Deposition density of 137Cs >37 kBq m$^{-2}$ | 520 000d | 10b |
| Deposition density of 137Cs >555 kBq m$^{-2}$ | 270 000 | 50b |

a Including approximately 1 900 000 persons from Belarus, 2 000 000 from Russia and 1 300 000 from Ukraine (UNSCEAR 2000).
b For the period 1986–2005.
c Strict control zones (included in the areas with deposition density >37 kBq m$^{-2}$).

Table 2. Distribution of doses to clean-up workers as recorded in state Chernobyl registries (UN Chernobyl Forum 2006).

<table>
<thead>
<tr>
<th>Country and period</th>
<th>Number of clean-up workers</th>
<th>Percentage for whom dose is available</th>
<th>External dose (mSv)</th>
<th>75th (%)</th>
<th>95th (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>20%</td>
</tr>
<tr>
<td>Belarus 1986–1987</td>
<td>31 000</td>
<td>28</td>
<td>39</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>Belarus 1986–1989</td>
<td>63 000</td>
<td>14</td>
<td>43</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>Russian Federation</td>
<td></td>
<td></td>
<td>169</td>
<td>194</td>
<td>220</td>
</tr>
<tr>
<td>1986</td>
<td>69 000</td>
<td>51</td>
<td>92</td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td>1987</td>
<td>53 000</td>
<td>71</td>
<td>26</td>
<td>26</td>
<td>45</td>
</tr>
<tr>
<td>1988</td>
<td>20 500</td>
<td>83</td>
<td>48</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>6 000</td>
<td>73</td>
<td>48</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>1986–1989</td>
<td>148 000</td>
<td>63</td>
<td>107</td>
<td>92</td>
<td>180</td>
</tr>
<tr>
<td>Ukraine 1986</td>
<td>98 000</td>
<td>41</td>
<td>185</td>
<td>190</td>
<td>237</td>
</tr>
<tr>
<td>1987</td>
<td>43 000</td>
<td>72</td>
<td>112</td>
<td>105</td>
<td>142</td>
</tr>
<tr>
<td>1988</td>
<td>18 000</td>
<td>79</td>
<td>47</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>1989</td>
<td>11 000</td>
<td>86</td>
<td>35</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>1986–1989</td>
<td>170 000</td>
<td>56</td>
<td>126</td>
<td>112</td>
<td>192</td>
</tr>
</tbody>
</table>

In the course of time, due to decay of radionuclides and decontamination activities, dose-rates dropped significantly. This, together with the implementation (from the end of May 1986) of practices to limit exposure, resulted in doses that were generally below permissible levels (250 mSv in 1986; 50–100 mSv in 1987, depending on the work). The distribution of doses available in the State Chernobyl Registries is shown in table 2. The average recorded dose for the liquidators who worked on the reactor site and 30 km zone in 1986–87 is about 100 mSv (table 1), with few individual doses over 250 mSv.

The effective dose estimates for individuals in the general population accumulated over the 20 years following the accident (1986–2005) range from a few mSv to some hundred mSv depending on location, age and lifestyle factors, such as diet, or time spent outdoors. These doses are mainly due to external exposure from a mixture of deposited radionuclides, as well as to internal exposure from intake of 134Cs and 137Cs (UNSCEAR 2000). The mean effective dose accumulated up to 2005 among residents in the strict control zones (with 137Cs deposition density of 555 kBq m$^{-2}$ or more) is of the order of 50 mSv, while in less contaminated areas

<table>
<thead>
<tr>
<th>Population</th>
<th>Size of population</th>
<th>0–7 years</th>
<th>Adults</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuees of 1986, including</td>
<td>116 131</td>
<td>1.82</td>
<td>0.29</td>
<td>0.48</td>
</tr>
<tr>
<td>villages, Belarus</td>
<td>24 725</td>
<td>3.10</td>
<td>0.68</td>
<td>1.00</td>
</tr>
<tr>
<td>Pripyat town</td>
<td>49 360</td>
<td>0.97</td>
<td>0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>villages, Ukraine</td>
<td>28 455</td>
<td>2.70</td>
<td>0.40</td>
<td>0.65</td>
</tr>
<tr>
<td>Belarus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire country</td>
<td>10 000 000</td>
<td>0.15</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Gomel region</td>
<td>1 680 000</td>
<td>0.61</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>Ukraine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire country</td>
<td>55 000 000</td>
<td>—</td>
<td>—</td>
<td>0.01</td>
</tr>
<tr>
<td>Region around Chernobyl NPP</td>
<td>500 000</td>
<td>—</td>
<td>—</td>
<td>0.38</td>
</tr>
<tr>
<td>Kiev city</td>
<td>3 000 000</td>
<td>—</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>Russian Federation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire country</td>
<td>150 000 000</td>
<td>—</td>
<td>—</td>
<td>0.002</td>
</tr>
<tr>
<td>Bryansk region</td>
<td>1 457 500</td>
<td>0.16</td>
<td>0.026</td>
<td>0.04</td>
</tr>
<tr>
<td>Kaluga, Orel, Tula regions</td>
<td>4 000 000</td>
<td>—</td>
<td>—</td>
<td>0.01</td>
</tr>
</tbody>
</table>

it is of the order of 10 mSv (table 1). For comparison, the average effective dose from natural background radiation, excluding radon, to an average person is about 1 mSv/year (UNSCEAR 2000), or about 70–80 mSv over a lifetime.

The highest organ-specific dose was to the thyroid gland, primarily from ingestion of milk contaminated with radioactive iodines, particularly 131I. However, there are other sources of exposure resulting from the Chernobyl accident that contribute to thyroid dose, including intake of short-lived radioiodines (132I, 133I and 135I) and radiotelluriums (131Te and 132Te), external irradiation from radionuclides deposited on the ground and ingestion of 134Cs and 137Cs. These represent, for most individuals, only a small percentage of the thyroid dose due to 131I.

The estimation of thyroid doses from 131I is mainly based on the 350 000 direct thyroid exposure-rate measurements made among residents of Belarus, Ukraine and the Russian Federation, within a few weeks of the accident (UNSCEAR 2000, Gavrilin et al 1999, Likhtarov et al 2005, Zvonova and Balonov 1993). A wide range of thyroid doses was received by the inhabitants of the contaminated areas in the three affected countries. Doses varied with age at the time of the accident, level of ground contamination and rate and source of milk consumption. Reported individual thyroid doses ranged up to several tens of Gy, while average doses range from a few tens of mGy to several Gy (table 3).

Intake of stable iodine tablets during the first 6–30 h after the accident reduced the thyroid dose of the residents of Pripyat by a factor of six to seven on average (Balonov et al 2003, Goulko et al 1996). Pripyat was the largest city near Chernobyl and close to 50 000 residents were evacuated within 40 h of the accident.

3.2. Epidemiological studies

To date, most of the published studies of health consequences have been of the ecological type, where information on dose and health outcomes (and occasionally on potential confounders) is available only at the group or population level. This type of study can be subject to potential bias, in particular the ecological fallacy (the failure of group level data to properly
3.2.1. Thyroid cancer. The main health effect of radiation from the accident observed to date is a dramatic increase in the incidence of thyroid cancer in persons exposed as young people. This increase was observed first in the early 1990s in Belarus and continues until now in the most contaminated areas of Belarus, Ukraine and the Russian Federation (Jacob et al. 2006, Kazakov et al. 1992, Stsjazhko et al. 1995, UNSCEAR 2000). To illustrate this, figure 1 shows the temporal trends of childhood (0–14 years), adolescent (15–18 years) and adult (19–34 years) thyroid cancer in the general population of Belarus following the accident. By 1995, the incidence of childhood thyroid cancer had increased to four per 100,000 per year compared to 0.03–0.05 cases per 100,000 per year prior to the accident. As those who were children at the time of the accident have aged (by 2002, even the very youngest had reached adulthood), the childhood thyroid cancer rates have declined to near zero and parallel increases in the incidence of thyroid cancer in adolescents and slightly later in young adults have been seen.

The number of thyroid cancer cases diagnosed in Belarus, Ukraine and in the four most contaminated regions of Russia during 1986–2002 among those who were children (<15) or adolescents (15–17) at the time of the Chernobyl accident is presented in table 4. Altogether close to 5000 cases were observed in the three countries. Of these, 15 are known to have been fatal up to now.

At the time of the Chernobyl accident, it was widely held that radioactive iodines were much less carcinogenic than external photon exposure, as little or no experience of the effects...
Table 4. Number of cases of thyroid cancer diagnosed between 1986 and 2002, by country and age at exposure.

<table>
<thead>
<tr>
<th>Age at exposure (years)</th>
<th>Belarus(^a)</th>
<th>Russian Federation (4 most contaminated regions)(^b)</th>
<th>Ukraine(^c)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>1711</td>
<td>349</td>
<td>1762</td>
<td>3822</td>
</tr>
<tr>
<td>15–17</td>
<td>299</td>
<td>134</td>
<td>582</td>
<td>1015</td>
</tr>
<tr>
<td>Total</td>
<td>2010</td>
<td>483</td>
<td>2344</td>
<td>4837</td>
</tr>
<tr>
<td>Population aged less than 15 years in 1986</td>
<td>2300000</td>
<td>1100000</td>
<td>11000000</td>
<td>14400000</td>
</tr>
</tbody>
</table>

\(^a\) Cancer Registry of Belarus, 2006.
\(^b\) Cancer subregistry of the Russian National Medical and Dosimetric Registry, 2006.
\(^c\) Cancer Registry of Ukraine, 2006.

of the isotopes of iodine on the child’s thyroid was available (Baverstock and Cardis 1996). Information on radiation induced thyroid cancer came from studies of populations exposed to external radiation, mainly the atomic bomb survivors and patients who received therapeutic exposures in childhood and infancy. The estimate of risk for persons exposed to x- or \(\gamma\)-radiation before age 15, from a combined analysis of these studies (Ron \textit{et al} 1995), is shown in table 5. A number of epidemiological studies of thyroid cancer following exposure to radioactive iodines from the Chernobyl accident have been reported both in the most contaminated countries and in other European countries (UNSCEAR 2000). The most recent and informative studies of persons exposed in childhood and adolescence are also summarised in table 5. The excess relative risks (ERRs) derived in the case–control and cohort studies are all similar, though slightly lower than the estimate from studies of external radiation. The risk estimate from the ecological study is, on the other hand, higher but statistically compatible with that from studies of external radiation. The reasons for the difference in risk estimates for the two study designs are not yet clear, although uncertainties in dose estimates may be partly responsible.

Based on many decades of follow-up of studies of populations exposed to external radiation (Ron \textit{et al} 1995), it is expected that Chernobyl-related thyroid cancers will continue to occur for many more years, although the long-term magnitude of risk cannot yet be quantified.

There is some indication that iodine deficiency at the time of exposure may increase the risk of developing thyroid cancer among persons exposed to \(^{131}\)I as children (Cardis \textit{et al} 2005a, Shakhtarin \textit{et al} 2003). Conversely, prolonged stable iodine supplementation in the years after exposure may reduce this risk (Cardis \textit{et al} 2005a). Further studies are needed to replicate these findings.

Papillary cancer is the primary pathological type of thyroid cancer found in those exposed as children and adolescents to fallout from the Chernobyl accident. The biology of radiation-induced thyroid cancer does not appear to be fundamentally different from that seen in non-irradiated populations, although a slightly greater percentage of radiation-induced thyroid cancers appear to be papillary in nature (Williams \textit{et al} 2004). Possible differences in the molecular biology of the tumours, particularly with regard to \(RET/PTC\) rearrangements and \(BRAF\) mutations, are unclear at this time (Detours \textit{et al} 2005, Powell \textit{et al} 2005). While the increased risk of thyroid cancer in those exposed in childhood and adolescence is well demonstrated, the effect of exposure on adults remains unclear. In the only study that has evaluated the risk for adults living in the contaminated areas (Ivanov \textit{et al} 2003a), no
<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of study</th>
<th>Country/Region</th>
<th>Number of cases (ascertainment period)</th>
<th>Number of controls/size of study population</th>
<th>Type of thyroid dose</th>
<th>ERR at 1 Gy (95% CI)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ron et al. (1995)</td>
<td>Pooled analyses of 3 cohort studies</td>
<td>International</td>
<td>436</td>
<td>119,387</td>
<td>Individual doses from external exposure (x-ray, neutrons)</td>
<td>7.7 (2.1–28.7)</td>
<td></td>
</tr>
<tr>
<td>Astakhova et al. (1998)</td>
<td>Case–control study (population based)</td>
<td>Belarus (1988–92)</td>
<td>107</td>
<td>214</td>
<td>Individualised doses from 131I (inferred from estimated mean adult thyroid dose in the village of residence, accounting for age and place of residence)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis et al. (2004)</td>
<td>Case–control study (population based)</td>
<td>Russia (Bryansk) (1991–1997)</td>
<td>26</td>
<td>52</td>
<td>Individual reconstruction of doses from 131I</td>
<td>N.A</td>
<td></td>
</tr>
<tr>
<td>Cardis et al. (2005a)</td>
<td>Case–control study (population based)</td>
<td>Belarus and Russia (1992–1998)</td>
<td>276</td>
<td>1300</td>
<td>Individual reconstruction of doses from 131I, external irradiation, intake of short-lived radioiodines and long-lived radionuclides</td>
<td>4.5 (2.1–8.5) to 7.4 (3.1–16.3)</td>
<td></td>
</tr>
<tr>
<td>Jacob et al. (2006)</td>
<td>Ecologic</td>
<td>Belarus and Ukraine</td>
<td>1089 (1990–2001)</td>
<td>1620,000</td>
<td>Age–gender–settlement specific doses due to 131I exposure derived from measurements of thyroid activity</td>
<td>18.9 (11.1–26.7)</td>
<td></td>
</tr>
</tbody>
</table>

* N.A.: not available.

b OR: odds ratio.
dose–response relationship was found. No association with radiation dose was observed in studies of Estonian, Latvian and Russian liquidators (Rahu et al. 2006, Ivanov et al. 2002).

3.2.2. Leukaemia. Leukaemia (excluding chronic lymphocytic leukaemia) has been associated with exposure to ionising radiation in a number of populations, including atomic bomb survivors, patients treated with radiotherapy and populations exposed occupationally in medicine and the nuclear industry (UNSCEAR 2000). Increases in leukaemia risk appear within 2 to 5 years after exposure and the ERR per unit of dose (particularly in children) is one of the highest among all radiation-induced cancers (UNSCEAR 2000, US NRC 2006). Leukaemia incidence and mortality are, therefore, often considered ‘markers’ of radiation risks in exposed populations.

It has been suggested in ecological studies in Europe, particularly in Greece (Petridou et al. 1996), that in utero radiation exposure from Chernobyl may increase the risk of infant leukaemia. These results have not been confirmed in a similar study in Germany (Steiner et al. 1998) and results of studies in Belarus (Ivanov et al. 1998) and Ukraine (Noshchenko et al. 2001), where this has also been investigated, are not consistent. Because the studies had low statistical power and the exposure measures were crude, the association between leukaemia and in utero exposure is still unclear.

Several ecological studies have examined the association between leukaemia risk and exposure to radiation from the Chernobyl accident in childhood, including the European Childhood Leukaemia–Lymphoma Study (ECLIS), the largest and most comprehensive study to date (Parkin et al. 1993, 1996), and national incidence studies in Belarus (Gapanovich et al. 2001, Ivanov et al. 1993) and Russia (Ivanov and Tsyb 2002, Ivanov et al. 2003b). The ECLIS study found no evidence of a radiation-related increase in the incidence of leukaemia in Europe in the first five years after the accident. The national studies (including those in Belarus and the Russian Federation) do not, in general, provide evidence for an increase in the incidence of childhood leukaemia. None of these studies, however, is sufficiently sensitive to detect small changes in the incidence of rare diseases such as childhood leukaemia and all are subject to methodological problems that may limit the interpretation of the findings.

Only two case–control studies of childhood leukaemia have been published to date (Noshchenko et al. 2002, Davis et al. 2005). A significant association between leukaemia risk and radiation dose to the bone marrow was found in Ukraine but results are difficult to interpret due to problems in the selection and comparability of controls in Ukraine. No significant increase was seen in Belarus or Russia.

Thus, the current information is scant and conclusions cannot be drawn about possible increases in childhood leukaemia following the Chernobyl accident.

The results of studies of leukaemia risk among adults, conducted both among persons residing in contaminated areas and among liquidators, are equally inconclusive. The studies of leukaemia risk among adult populations living in highly contaminated areas are ecological in nature and generally indicate an increase in leukaemia incidence over time, that does not appear to be related to level of contamination (Bebeshko et al. 1997, Ivanov et al. 1997, Prisyazhniuk et al. 1995). Small studies of Estonian and Russian liquidators provide little information about risks (Rahu et al. 1997, Shantyr et al. 1997, Tukov and Dzagoeva 1993, Rahu et al. 2006), while an apparent increase in incidence of leukaemia in a large cohort of Ukrainian liquidators (Buzunov et al. 1996) is not related to dose. An approximately twofold increased risk is reported however in a very large cohort of liquidators in Russia with registered radiation doses between 150 and 300 mSv (Ivanov et al. 2003c). Dose estimates are quite uncertain in these studies. Ongoing case–control studies of liquidators with individual dose estimates are expected to provide additional information on the magnitude of a possible increased risk of leukaemia.
3.2.3. Solid cancers other than thyroid cancer. Although ionising radiation has been shown to increase the risk of cancers at many sites, data from Chernobyl on cancers other than thyroid cancer are very sparse (UNSCEAR 2000).

No significant increase in the incidence of solid cancers (defined as all cancers excluding haematological malignancies) was seen in a cohort of over 55,000 Russian liquidators (Ivanov et al. 2004) or among residents of the contaminated region of Kaluga in Russia (Ivanov et al. 1997).

Analyses of rates of breast cancer among subjects included in the Ukrainian Chernobyl registry indicated a significantly increased incidence compared to the general population (Prysyazhnyuk et al. 2002). Increases in the incidence of breast cancer over time were also reported in the Mogilev region of Belarus (Ostapenko et al. 1998). Both of these reports are difficult to interpret, as no information about radiation dose level was available. A more detailed ecological study was therefore conducted to describe the spatial and temporal trends in breast cancer incidence in Belarus and Ukraine (Pukkala et al. 2006). A large increase in breast cancer incidence was found in all areas of Belarus and Ukraine, reflecting improvements in cancer diagnosis and registration. A significant increase in risk was also observed during the period 1997–2001, based on a relatively small number of cases, in the districts with highest average dose levels compared to the least exposed districts. The magnitude of this increase is greater, however, than would be expected based on current risk estimates (US NRC 2006). Due to the public health importance of breast cancer, these findings warrant further investigation.

Increases in rates of other cancers, including cancers of the bladder and kidney, have also been reported (reviewed UN Chernobyl Forum, 2006). Because of various limitations (including small numbers of cases and/or controls, inadequate information on doses and/or on epidemiological methods and lack of information on other common risk factors for these diseases), it is difficult to judge the scientific merits of the findings.

4. Discussion

The study of the consequences of the Chernobyl accident has provided important information concerning the magnitude of the risk, and the biology of thyroid cancer following exposure to radioactive iodines in childhood and adolescence.

There remains, however, a lack of evidence of any clearly demonstrated effect of Chernobyl radiation exposures on the risk of leukaemia or solid cancers other than thyroid cancer. There have been reports of an elevated incidence of all solid cancers combined, as well as of specific cancers in Belarus, the Russian Federation and Ukraine, but much of the increase appears to be due to other factors, including improvements in diagnosis, reporting and registration. An increase in the incidence of breast cancer in the most heavily contaminated districts suggests a possible relation to radiation exposure. Recent studies suggest a doubling of leukaemia risk among Chernobyl liquidators. Both of these findings need confirmation in well designed analytical epidemiological studies with careful reconstruction of individual organ doses.

As noted above, studies of cancer risk other than thyroid are few and most have methodological limitations. Doses to most organs outside the thyroid tended to be low and studies lacked statistical power. Further, it is thought that for most solid cancers the latent period is likely to be longer than for leukaemia or thyroid cancer—of the order of 10–15 years or more (Cardis et al. 2005b). Because studies of external radiation indicate that radiation-related risks of solid cancers remain elevated throughout life, it is too early to evaluate the full radiological impact of the Chernobyl accident.
The fact that no significant increased cancer risk, apart from thyroid cancer, has been conclusively demonstrated to date among populations most exposed to the Chernobyl accident does not therefore imply that no increase in risk has occurred. Indeed, based on the experience of other populations exposed to ionising radiation, it is expected that the low to moderate doses received will have led to a small increase in the relative risk of cancer. Given the large number of individuals exposed, the absolute number of cancer cases caused by a small increase in the relative risk could be substantial, particularly in the future.

The question of estimating the number of cancer cases which could occur due to the Chernobyl accident is important for public health planning purposes. At present, given the lack of demonstrated increases and the relatively short follow-up for solid cancers, any such estimation must be based on risk estimates derived from other populations exposed to radiation, most notably the atomic bomb survivors. This implies a number of uncertainties. Major uncertainties relate to the choice of models used for transfer of risk between populations with different background cancer rates, for projection of risk over time and for extrapolation of risks following primarily external high dose and high dose-rate exposure to very low dose and low dose-rate exposures involving a mixture of external and internal radiation. Unfortunately, these problems limit the accuracy and precision of such projections.

In 1996, Cardis et al published predictions of the health effects of Chernobyl radiation, derived from models of radiation-associated risk from epidemiological studies of other populations exposed to radiation, mainly members of the Life Span Study (LSS) of Japanese atomic bomb survivors. The predicted lifetime excess of cancer and leukaemia deaths due to radiation from the Chernobyl accident was of the order of 4000 for liquidators, evacuees and residents of the strict control zones. A further 5000 cancer deaths were predicted among residents of other contaminated areas, for a total of about 9000 deaths among the most exposed persons in Belarus, the Russian Federation and Ukraine. This number is only an indication of the likely impact of the accident and should not be taken at face value because of the important uncertainties listed above. Although the absolute number of predicted deaths is large, it represents only a small fraction (about 1%) of the total number of cancers expected in these populations from other causes.

If these predictions are correct, therefore, it is expected that epidemiological studies will have limited statistical power to detect small increases of risk against much larger background rates of cancer. Further, the absence of high quality disease registers in many of the contaminated regions at the time of the accident, recent changes in the longevity of the populations in the affected countries (both in contaminated and uncontaminated regions) and the absence of individual dose estimates for the majority of exposed persons make it difficult to conduct informative epidemiological studies. On the other hand, well designed studies of carefully selected populations (such as the liquidators) and endpoints (in particular leukaemia, as well as breast cancer in young women) will facilitate the detection of a wider spectrum of health effects and possibly provide important additional information about radiation risks.

5. Conclusion

Today, nearly 20 years after the Chernobyl accident, the large increase in thyroid cancer incidence among those exposed in childhood and adolescence continues; fortunately, few of these have been fatal. In contrast, at this time, no clearly demonstrated increase in the incidence of other cancers can be attributed to radiation exposure from the accident.

Of course, the absence of a demonstrated increase in total cancer risk is not proof that no increase has, in fact, occurred. Based on the experience of atomic bomb survivors and of populations with medical and occupational exposures to ionising radiation, a small increase
in the relative risk of cancer is expected, even at the low to moderate doses received. Given
the very large number of individuals exposed, even a small increase in the relative risk would
result in a substantial number of radiation-related cancer cases in the future. In the coming
years, careful studies of selected populations and health outcomes are needed in order to study
the full effects of the accident and compare them to predictions.

References

short-lived radiiodines to thyroid doses received by evacuees from the Chernobyl area estimated using early in
Baverstock K F and Cardis E 1996 The WHO activities on thyroid cancer 1st Int. Conf. of the European Commission,
Belarus, the Russian Federation and the Ukraine on the Radiological Consequences of the Chernobyl Accident
(Minsk, Belarus, March 1996) (Brussels: European Commission) pp 715–26
population of Ukraine exposed to chronic low dose irradiation Low Doses of Ionizing Radiation: Biological
Effects and Regulatory Control (Vienna: IAEA) pp 337–8 (IAEA-TECDOC-976)
consequences cleaning up participants in Ukraine—health status epidemiologic study—main results 1st Int. Conf.
of the European Commission, Belarus, the Russian Federation and the Ukraine on the Radiological Consequences
of the Chernobyl Accident (Minsk, Belarus, March 1996) (Brussels: European Commission) pp 871–8
long term health effects of the Chernobyl accident One decade after Chernobyl—Samming up the Consequences
Cardis E et al 2005a Risk of thyroid cancer after exposure to 131I in childhood J. Natl Cancer Inst. 97 724–32
Cardis E et al 2005b Cancer risk following low doses of ionising radiation—a retrospective cohort study in 15 countries
Davis S et al 2004 Risk of thyroid cancer in the Bryansk oblast of the Russian Federation after the Chernobyl power
Davis S et al 2005 Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl power station
accident: results from an international collaborative population-based case–control study Int. J. Epidemiol.
(November) (Epub ahead of print)
Detours V, Wattel S, Venet D, Huteau N, Bodanov A, Bronko M, Dumba J, Franck B, Thomas G and
Maenhaut C 2005 Absence of a specific radiation signature in post-Chernobyl thyroid cancers Br. J. Cancer 92 1545–52
in Belarus before and after the Chernobyl accident: continued follow-up Radiat. Environ. Biophys. 40 259–67
Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus Health Phys. 76
105–19
Greenland S and Morgenstern H 1989 Ecological bias, confounding, and effect modification Int. J. Epidemiol. 18
269–74
225–35
Infant leukemia in Belarus after the Chernobyl accident Radiat. Environ. Biophys. 37 53–5
Verger P 2003A Thyroid cancer incidence among adolescents and adults in the Bryansk region of Russia following
the Chernobyl accident Health Phys. 84 46–60
the Chernobyl emergency workers residing in Russia: estimation of radiation risks Radiat. Environ. Biophys. 43
35–42
Ivanov V K and Tsyb A F 2002 Medical Radiological Effects of the Chernobyl Catastrophe on the Population of Russia: Estimation of Radiation Risks (Moscow: Meditsina)
Jacob P et al 2006 Thyroid cancer risk in areas of Ukraine and Belarus affected by the chernobyl accident Radiat. Res. 165 1–8
Ostapenko V A, Dainiak K L and Hunting 1998 Breast Cancer Rates Among Women in Belarus Prior to and Following the Chernobyl Catastrophe (Rotterdam: International Conference on Diagnosis and Treatment of Radiation Injury)
Parkin D M et al 1996 Childhood leukaemia in Europe after Chernobyl: 5 year follow-up Br. J. Cancer 73 1006–12
Powell H G, Jeremiah J, Morishita M, Bethel J, Bogdanova T, Tronko M and Thomas G A 2005 Frequency of BRAF T1794A mutation in thyroid papillary carcinoma relates to age to patient at diagnosis and not to radiation exposure J. Pathol. 205 558–64
Shakhtar V V, Tsyb A F, Stepanenko V F, Orlov M Y, Kopecy K J and Davis S 2003 Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident Int. J. Epidemiol. 32 584–91
Shanty I I et al 1997 Cancer Morbidity Among the Emergency Workers of the Chernobyl Accident Int. Conf. on Low Doses of Ionizing Radiation: Biological Effects and Regulatory Control (Seville, Spain) (Vienna: IAEA) IAEA-TECDOC-976
Tronko M D et al 2006 A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening J. Natl Cancer Inst. at press
Takov A and Dzagoeva L G 1993 Morbidity of Atomic Industry Workers of Russia who Participated in the Work of Liquidating the Consequences of the Chernobyl Accident—Medical Aspects of Eliminating the Consequences of the Chernobyl Accident (Moscow, SSSR: Central Scientific Research Institute)
UN Chernobyl Forum 2006 Health Effects of the Chernobyl Accident and Special Health Care Programmes (Geneva: WHO)
Williams E D et al 2004 Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness Br. J. Cancer 90 2219–24
Zvonova I A and Balonov M I 1993 Radiiodine dosimetry and forecast for consequences of thyroid exposure of the RSFSR inhabitants following the Chernobyl accident The Chernobyl Papers. V. I: Doses to the Soviet Population and Early Health Effects Studies (Rochland, WA: Research Enterprises) pp 71–125