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Abstract The purpose of this paper is to relate the non-existence of polynomial integrals 
for a Hamiltonian system to the breakdown phenomenon of smooth solutions in quasi-linear 
equations. Using this relation it is shown that for the classical Hamiltonian system with 1.5 
degrees of freedom there are no non-trivial third power integrals of motion. The main tool used 
in ihe proof is the lax analysis on formation of singularities in quasi-linear equations. Some 
results and penpectives for the case of higher degrees are discussed. 

AMs classification scheme numbers: 58F05,70H05 

1. Introduction and main result 

A Hamiltonian system generally has no integrals of motion additional to the energy, 
i.e. functions on the phase space having constant values on the phase trajectories. It 
is an extremely interesting problem to find new integrable Hamiltonians or to understand 
obstructions to integrability. The reader can consult the survey papers [AKN, DKN, K] for 
the details of different aspects of the problem. 

Surprisingly, for all known integrable Hamiltonians of classical mechanics, the 
additional integrals are polynomial in the momentum variables. For example, an integral 
which is linear in momentum appears if the system admits a one-parametric group of 
symmetries (Noether's Theorem). An integral which is quadratic in momentum exists 
if there is a separation of variables in the Hamilton-Jacobi equation. However there are 
integrable systems whose integrability is not related to any obvious symmetry. A remarkable 
example provides the Hamiltonian of the three-particle Toda lattice, where the additional 
integral is of third degree in momentum (see [LL] for an explicit expression). 

In the present paper we study the existence of polynomial integrals for a system with lf 
degrees of freedom with the Hamiltonian H = fp2+ u(q, t ) ,  where U is a smooth potential 
1-periodic in both variables. The phase space of the system is T"S' x SI 5 T2 x R and 
the dynamics is governed by the Hamiltonian equations 

¶ = P  
p = -U&. t )  . 
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For such a system a function F : T*S' x S' + B is an integral if it satisfies the following 
equation: 

If such an integral exists then each non-singular level of it is a 2-torus invariant under the 
Hamiltonian flow and carrying quasi-periodic motion. However, it can be shown using 
variational analysis that for some potentials U there are no invariant tori in a certain region 
of the phase space [MI. 

In the following two cases (corresponding to those mentioned above) there exist 
solutions of (2) that are linear and quadratic in p .  In the first case U is a constant and 
in the second U has a form f ( k q  + et), where f is a I-periodic function of one variable 
and k ,  are integers. Let me remark that equations (1) and (2) are not changed if one adds 
to U an arbitrary function oft. 

Question. Do there exist other cases when (1) has a polynomial integral of degree n? 

It turns out that this question is closely related to the problem of existence of smooth 
solutions for a quasi-linear system of equations of the form 

Ut + A(U)Uq = 0 (3) 

where A ( U )  is (n - 1) x (n - 1)  matrix. With this language the two cases of integrability 
mentioned above correspond to the simple wave solutions of (3). If n = 3 the question can 
be completely answered. 

Theorem 1. Let U be a smooth (of class Cz) I-periodic potential. System (1 )  has an integral 
F polynomial of degree 3 with I-periodic coeficients $and only $U= constant. 

Remark. Here and below the equality U = constant is understood modulo an arbitrary 
function o f t .  

The main tools in the proof of theorem 1 are Hopf s strong maximum principle and 
Lax's method of formation of singularities in genuinely nonlinear hyperbolic systems. The 
proof is given in section 2. 

In the case n z 3 the problem becomes much more complicated. Using a completely 
different method by Hopf, which was used in his paper on Riemannian metrics without 
conjugate points, we show that there are no non-constant solutions of (3) for which the 
matrix A ( U )  is elliptic. This is done in section 3. In the case n z 3, even if one assumes 
the strict hyperbiolicity of the mahic A(U) ,  this does not yet imply genuine nonlinearity 
as was the case for n = 3. Therefore, the method by John [J1 is not applicable at least 
formally in this case. Nevertheless the system (3) has remarkable properties. It turns out 
that it can be written as a system of conservation laws. Moreover it can be shown that in 
this form it is a Hamiltonian system of hydrodynamic type (see [DKNI) and has infinitely 
many additional conservation laws. So far it is unclear as to how it can be used to give a 
complete answer to the question. 
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2. Cubic integrals 

Let us first derive the quasi-linear system (3). Let F = C:,oai(q, t)p' be a polynomial 
integral for (1). Recall that U ,  ai are assumed to be 1-periodic in q ,  t .  Since F satisfies (2), 
we immediately obtain the following equations 

(ads = 0 (a.), + ( a A q  = 0 
(adr + ( ~ i - i ) ~  - (i + l)u,czi+l = 0 i = 0, . . . , n - 1 

with the convention a-l G.O. 
The first three equations immediately give the following. The function a, is a constant 

and we will assume a. = without loss of generality. In addition, a.-l = p = constant, 
a,-2 = U + f(t). We can assume without loss of generality that f ( t )  0, since f ( t )  does 
not change equations ( I )  and (2). Using this information, we are left with the following 
system of quasi-linear equations 

(ai)? + ( ~ i - 1 ) ~  - ( i  + l)uqai+~ = 0 i = o ,  ..., n - 2  

where a-] 0 , a,-z = U , a,-, = p = constant. This is exactly the form (3). where 

Cl = (U. an-3, . . .ao) . 

For n = 3 this system takes a very simple form 

U, + uq - 2puq = 0 I U( - uuq = 0 

where U = no. The proof of theorem 1 follows immediately from the following 

Theorem 2. There are no smooth solutions of (4) periodic in q and t except constants. 

Proof. Note first, that U has to satisfy the following equation 

2 U n  - 2puqt + uuqq + uq = 0 

We claim that if a non-constant U satisfies (5) then 

maxu < p 2 .  

(4) 

Indeed, if maxu > p2 then in the domain (U > p2J the equation (5) is elliptic and hence 
Hopf's strong maximum principle implies U = constant. 

Now suppose that U is non-constant and U < pz everywhere. We now apply Lax's 
analysis (see [L]) of formation of singularities in a quasi-linear 2 x 2 system taking 
special care on the points of degeneracy where U = p2. The eigenvalues of the matrix 
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The right and left eigenvectors of A are given by the formulae 

e p  = ( P ,  1) e A  = (1, 1) 
7 rp = (1, -A)r rA = (1, - p )  . 

Let us note that for U < p2 the system is genuinely nonlinear 

1 
dh(r1) = 

Moreover we see that the nonlinearity increases if U approaches fi2. This enables one to 
carry out the method of Lax. In what follows, we apply Lax's analysis [L] adapted for our 
case. 

Let us now compute Riemann invariants that are the functions w, z on U, U satisfying 
the equations 

dw(rA) = 0 dz(rp)  = 0 . 
The functions w, z can be easily computed 

U) 

z = - u - p u + 3 ( / L  2 

-" - pfi - $($ - 4 3 1 2  

2 - u )  312 , 

Note that w, z are C1-functions on the whole q. t space and the p.  A are Lipshitz and 
bounded. The functions w ,  z are constants along p and i-characteristics respectively 

w'= wr +pw, = o  
i = Zr + A z ~  = 0 

where ' and ' denote differentiation along the p and h characteristics respectively. Note 
that h. p are Lipshitz and hence the equations of characteristics $ = h , 2 = p have no 
pathologies. 

Now we obtain the equation of evolution of 01 = wy along the p-characteristic. This 
equation is valid whenever U < p2 

Wtq f PW,, + PWW,2 + pzwqz, = 0 . 
4 2  Now z - w = ?(p - u)3/2 and hence 

By the definition of z we have zq = 5. So we obtain 

a' + pwaz + h z ' a  = 0 . 
P - h  
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Denote by h(w,z) a function which satisfies h, = 3, i.e. h, = m, Then 
h = ln(z - w). This choice gives h' = h ,~ '  = 2 z ' .  So we obtain a'+ pula2 + h'a = 0. 
Denote by B =a&, k = e-hp,. We obtain the following equation on p 

(7) p' + kp2 = 0 

p = (z - w)'l6w, 
where 

Note that p is a continuous bounded function on the q ,  t space. On the other hand, the 
solutions of (7) are given by the formula 

We now claim that p remains bounded only if p(t0) = 0. Suppose for example that 
p(t0) > 0. If the p-characteristic passing through the point (40, to) remains the whole time 
in region (U < p2}, then for some positive 7 the quantity 1 + B ( t 0 ) K m  vanishes and this 
gives the blowup of p.  In the case when the p-characteristic passing through (40, to) reaches 
the region ( U  = p'] at time t* for the first time, then we will use the following. 

Lemma. Integral Lf k(t)dt diverges to --M 

The lemma implies that also in this case there exists 7 such that 1 + @(to)K@ = 0. This 
proves the claim. This claim implies that wq 0 for all q. f where U c p'. However, 
equation (6) then implies that wl 0 and thus w are constant. Analogously z is constant and 
hence U is constant in the domain [U c pz]. But this means that U =constant everywhere. 
Thii completes the proof of theorem 2. 0 

Proof of the lemma. This proceeds as follows. Let q = f ( t )  be the p-chilracteristic 
passing through (40, t o ) ,  to < t < t*. We assume that u(f(t), f) < p* for to < t < t* and 
u( f ( t* ) ,  t*)  = p2. We have to show that 

Indeed p* - u(q, t) can be estimated in a neighbourhood of the point (f(t*), t*)  

p2 - ~ ( q ,  2) < ml( (q  - f(t*P + - t*)*) 

for some positive constant ml.  On the other hand f(r)  = -p + Jp2 - u ( f ( t ) ,  t) = p and 
hence 

If(0 - f(t") I< mzlf - t'l . 

p2 - U ( f ( t ) ,  t )  < m3(r - t*)' . 
These two inequalities imply 

The integral 

l* [p' - u(f(t), t)]-514 >, m4 ( t  - t*)-"I4dt = +ca [ 
This proves the lemma 0 
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3. Elliptic case for n > 3 

In this section we explain the geometric meaning of the eigenvalues of A ( U )  and, using an 
idea by Hopf from Riemannian geometn (see [HI), we prove the following statement. 

Theorem 3. Val1 eigenvalues of A ( U )  are non-real for all q, t then U = constant. 

Note that for n = 3 we used Hopfs strong maximum principle. 

Proof. We begin with the following lemma which is easily achieved by a straightforward 
computation. 

Lemma. The characteristic polynomial of the matrix A ( U )  coincides with the p-derivative 
of F.  

This lemma implies that with the assumptions of the theorem F,(p, q. t )  does not vanish. 
This means that all level sets of F are invariant 2-tori which are graphs of functions on 
q, t .  Introduce a function 

which is well-defined on the phase space and speaking geometrically, measures the ‘slope’ 
of the invariant ton. It is easily checked that o satisfies the following equation 

(8) 

We claim that o 0. This implies that U = f ( t )  and finishes the proof. 
To prove the claim, integrate the equation (8) over the region of the phase space 

QM = (IF1 < M) with respect to the measure dp, = dpdqdt which is invariant under 
the flow of (1). We obtain 

L, +oZ+ uqq = 0 .  

l, 02dp f A, u4& = 0 . 

On the other hand note that limM,+, J,, U 49 d p, + 0. Indeed this follows from the fact 
that for large M the ton ( F  = &M} differ very little from the tori p = constant, because 

U the slope o decays as p-’ uniformly in q, t .  This implies the result. 

. References 

[AKNI Amold V I, Kozlov V V and Neishtadt A I 1987 Mathematical aspects of classical and celestial mechanics 

[DKN] Dubrovin B A. Krichever I M and Novikov S P 1990 Integrable Systems I Encyclopaedia ofhfuthhemuticai 
Enqclopnedia of Mathematical Sciences vol 3 (Berlin: Springer) 

~~ 

Sciences vol4  pp 173-283 (Berlin: Springer) 
Hopf E 1948 Closed surfaces without conjugale points Proc. N a L  Aced. Sci. USA 34 47-51 
John F 1974 Formation of singularities in one-dimensional nonlinear wave propagalion Commun. Pure 
AppL Math. 27 377405 
Kozlov V V 1983 Integrability and nonintegrability in Hamiltonian mechanics Rnssion Moth Surveys 38 
1-76 
Lax P D 1973 Hyperbolic systems of consemation laws and the mathematical theory of shock waves SIAM 
Regionai Conference Series in AppL Mnrh #I1 (Philadelphia, PA SIAM) 
Lichtenberg A J and Liberman M A 1983 Regular and stochastic motion Appi. Math. Sci. 38 (Berlin: 
Springer) 
MacKav R S 1989 A criterion for non-existence of invariant ton for Hamiltonian system Physica 361) 
64-82. 


