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Abstract
We study the deformations of two-component non-semisimple Poisson 
pencils of hydrodynamic type associated with Balinskiǐ–Novikov algebras. 
We show that in most cases the second order deformations are parametrized 
by two functions of a single variable. We find that one function is invariant 
with respect to the subgroup of Miura transformations, preserving the 
dispersionless limit, and another function is related to a one-parameter family 
of truncated structures. In two exceptional cases the second order deformations 
are parametrized by four functions. Among these two are invariants and two 
are related to a two-parameter family of truncated structures. We also study the 
lift of the deformations of n-component semisimple structures. This example 
suggests that deformations of non-semisimple pencils corresponding to the 
lifted invariant parameters are unobstructed.

Keywords: bi-Hamiltonian structures, Balinskǐ–Novikov algebras,  
complete lift
Mathematics Subject Classification numbers: 37K05, 37K10, 37K25, 53D45

1. Introduction

Systems of hydrodynamic type are systems of quasilinear evolutionary partial differential 
equations (PDEs) of the form

( )= =u V u i nu , 1, .., ,t
i

j
i

x
j (1.1)
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where ( )= u uu , ..., n1  and the summation convention is used to sum over the repeated index j.  
Equations of this form have many applications in mathematics and physics, such as in gas 
dynamics, fluid mechanics, plasma physics, magnetohydrodynamics, the Whitham averaging 
method, two-dimensional topological field theory, etc.

The theory of integrable Hamiltonian quasilinear systems of PDEs of the form (1.1) started 
in the 1980s and was originally motivated by the study of Whitham modulation equations [15]. 
The Hamiltonian formalism for systems (1.1) was studied by Dubrovin and Novikov who 
introduced the notion of Hamiltonian operators of hydrodynamic type. They are first order 
differential operators of the form

( ) ( ) ( ) ( )= ∂ − Γ = ∂ +P g u g u u g u b u u ,ij ij
x

il
lk
j

x
k ij

x k
ij

x
k (1.2)

where g is a flat pseudo-metric and Γlk
j  are the Christoffel symbols corresponding to g. 

Hamiltonian operators of the form (1.2) are sometimes called Dubrovin–Novikov Hamiltonian 
operators and sometimes called Hamiltonian operators of differential geometric type due 
to the geometric meaning of their coefficients. The system (1.1) is said to be Hamiltonian 
with respect to a Dubrovin–Novikov Hamiltonian operator if there exists a local functional 

( )∫=H h u xd  such that the right-hand side of (1.1) can be written as

( ( ) ( ) )δ
δ

= = ∂ +
∂
∂

V u P
H

u
g u b u u

h

u
.j

i
x
j ij

j
ij

x k
ij

x
k

j (1.3)

Recall that the system (1.1) is called hyperbolic if all the eigenvalues of the affinor V j
i  are real 

and the eigenvectors are linearly independent, and strictly hyperbolic if the eigenvalues are 
real and pair-wise distinct. Under some additional assumptions (in the strictly hyperbolic case, 
the vanishing of the Haantjes tensor) a hyperbolic system of hydrodynamic type can be diago-
nalized. This means that there exist special coordinates { }r r, ..., n1  called Riemann invariants 
where the system takes diagonal form

( )= =r v r r i n, 1, .., .t
i i

x
i (1.4)

In the case of complex eigenvalues, allowing complex change of coordinates, one can intro-
duce complex Riemann invariants. Novikov conjectured that diagonalizable Hamiltonian 
systems of hydrodynamic type are always integrable. The general theory of diagonalizable 
integrable systems of hydrodynamic type was developed by Tsarev [39] who proved that the 
integrability conditions are given by a set of PDEs for the characteristic velocities vi of the 
system (1.4)

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟∂

∂

−
= ∂

∂
−

≠ ≠ ≠
v

v v

v

v v
i j k i, .k

j
i

j i j
k

i

k i (1.5)

The above set of integrability conditions was called the semi-Hamiltonian condition since 
they are automatically satisfied by diagonalizable Hamiltonian systems as conjectured by 
Novikov. Tsarev’s integrability conditions imply the existence of a family of symmetries 
and a family of conservation laws depending on functional parameters. The characteristic 
velocities of these symmetries and the densities of these conservation laws are obtained as 
solutions of systems of linear PDEs. Tsarev also discovered that knowledge of the symme-
tries allows one to write the general solution of the system (1.4) in implicit form. In other 
words, for systems of hydrodynamic type integrability means linearizability. Later it was 
proved by Sevennec [37] that semi-Hamiltonian systems coincide with diagonalizable sys-
tems of conservation laws and it was conjectured by Ferapontov that all semi-Hamiltonian 
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systems are Hamiltonian with respect to a suitable (in general non-local) Hamiltonian 
operator [18].

In general, it might be very difficult to solve linear systems providing symmetries and con-
servation laws and, in practice, it is very useful to have some additional structure that provides 
a recursive procedure to obtain a countable subset of solutions. For instance, this can be done in 
the case of bi-Hamiltonian systems by means of classical Lenard–Magri recursive relations [31].

Bi-Hamiltonian systems are systems of differential equations which are Hamiltonian with 
respect to a pair ( )P P,1 2  of compatible Hamiltonian operators. The compatibility of P1 and P2 
means that the pencil λ= −λP P P2 1 is a Poisson pencil, i.e. it defines a Hamiltonian operator 
for any value of the parameter.

In the case of systems of hydrodynamic type (1.1) the bi-Hamiltonian structure is defined 
by a pair of Hamiltonian operators of differential geometric type (1.2) and the compatibility 
means that the associated pencil of the contravariant metric λ= −λg g g2 1 is flat for any λ and 

that the pencils of the contravariant Christoffel symbols λ−b bk
ij

k
ij

2; 1;  define the controvariant 
Christoffel symbols of the pencil λg  [10].

The semisimple case has been studied in detail. In this case there exists a special set of 
coordinates, the roots ( )r r, ..., n1  of the equation  =λgdet 0, such that both metrics of the pencil 

λg  take a diagonal form [10, 19]. The coordinates ( )r r, ..., n1  are called canonical coordinates 
and provide a set of Riemann invariants for the associated bi-Hamiltonian systems. They are 
usually assumed to be real. However this assumption can be relaxed [11].

Systems of hydrodynamic type are often obtained as the dispersionless limit of systems of 
evolutionary equations of the form

u V u u A u B u u C u D u u E u u u ,t
i

j
i

x
j

j
i

xx
j

jk
i

x
j

x
k

j
i

xxx
j

jk
i

x
j

xx
k

jkl
i

x
j

x
k

x
l2 3= + + + + + +ε ε εO( ) ( ) ( ) ( )

 
(1.6)

where A B, , ...j
i

jk
i  are functions of ( )u u, ..., n1 . Starting from this, Dubrovin and Zhang proposed 

a perturbative approach to the study of integrable bi-Hamiltonian systems of this form [16]. In 
their approach the full system (1.6) is obtained via a bi-Hamiltonian deformation procedure 
from the dispersionless limit →ε 0. Instead of deforming the system Dubrovin and Zhang 
deform the bi-Hamiltonian structure. Since the leading term of (1.6) is a system of hydrody-
namic type, the leading term of the full Poisson pencil is a Poisson pencil of hydrodynamic 
type:

g b u g b u .ij ij ij
x k

ij
x
k ij

x k
ij

x
k

2 1 2 2; 1 1;( )ω λω λ− = ∂ + − ∂ + (1.7)

Moreover, since the leading term of the system (1.6) is assumed to be diagonalizable the 
Poisson pencil (1.7) is assumed to be semisimple. Under this additional assumption the clas-
sification of the deformed bi-Hamiltonian structures was completely solved. It turned out that 
bi-Hamiltonian deformations are parametrized by a finite number of functions of a single 
variable, called central invariants (see the next section for a short review of the semisimple 
case). For the non-semisimple case no results are available. The aim of this paper is to start 
the study of the classification problem in the non-semisimple case. As the dispersionless limit 
we consider two examples of non-semisimple bi-Hamiltonian structures: a class of two-comp-
onent structures related to the so-called Balinskii–Novikov algebras and the lift on the tangent 
bundle of a semisimple bi-Hamiltonian structure. The first example is important as it shows 
that in addition to the non-semisimple analogue of the central invariants there is a new set 
of functional parameters related to a family of truncated structures. The second example is 
important as it suggests that, as in the semisimple case, the deformations related to the non-
semisimple analogue of the central invariants might be unobstructed.

A D Vedova et alNonlinearity 29 (2016) 2715
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2. The semisimple case

Let

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

A u u u

A u u u

, , ,

, , , ,

ij ij

k

k

l

k

k l
ij

x l x
k l

ij

k

k

l

k

k l
ij

x l x
k l

2
1 0

1

2; ,
1

1
1 0

1

1; ,
1

( )

( )

⩾
( )

( )

⩾
( )

( )

∑ ∑

∑ ∑

ω

λ ω

Π = + … ∂

− + … ∂

λ
=

+
− +

=

+
− +

ε

ε

 

(2.1)

(A k l
ij
1; ,  and A k l

ij
2; ,  are homogeneous differential polynomials of degree l) be a deformation of a 

semisimple Poisson pencil of hydrodynamic type. Two deformations Πλ and Π̃λ of the same 
pencil are considered equivalent if they are related by a Miura transformation of the form

˜ ( )
⩾

( )∑= + …εu u F u u u, , , ,i i

k

k
k
i

x k
1

 (2.2)

where ( )( )…F u u u, , ,k
i

x k  are differential polynomials of degree k. This means that two pencils 
belonging to the same class are related by

Π̃ = Πλ λ
∗L L ,

ij
k
i kl

l
j

where

( ) ˜ ˜
( ) ( )∑ ∑= −∂
∂
∂

=
∂
∂

∂∗L
u

u
L

u

u
, .k

i

s
x

s
i

k s k
i

s

i

k s x
s

, ,

Dubrovin, Liu and Zhang proved that the equivalence classes are labelled by n functions ( )c ri i  
called central invariants [11, 27]. These functions are obtained by expanding the roots λi of 
the equation

( ( ) ( ))
⩾

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑λ λ− + − =g g A u A u pdet 0,ij ij

k
k

ij
k

ij k
2 1

1
2; ,0 1; ,0

near λ = ri i:

∑λ λ= +
=

∞

r p ,i i

k
k

i k

1
2

2 (2.3)

and selecting the coefficient of p2. The central invariants are then defined as [12, 27]:

( )
( )

( )

⎛

⎝
⎜

⎞

⎠
⎟∑

λ
= = − +

−
−

= …
≠

c
g f

Q r Q
P r P

f r r
i n

1

3

1
, 1, , ,i

i

ii i
ii i ii

k i

ki i ki

k k i
2

1
2 2 1

2 1
2

where f i are the diagonal components of the contravariant metric g1 in canonical coordinates 
and

( ) ( ) ( ) ( ) θ= = = … =θ θ θ θP u A u Q u A u i j n, , , 1, , , 1, 2.ij ij ij ij
;1,2 ;2,3

They can also be defined by (see [17])

[ ( ( ) )]= − +λ λ λ λ λ λ=
− −c

f
g Q g P P

1

3
Res Tr ,i

i r
ij

lk
li kj1 1

i
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where λ= −λQ Q Qij ij ij
2 1  and λ= −λP P P .ij ij ij

2 1
In this framework the following facts should be mentioned:

 • Each function ci depends only on the corresponding canonical coordinate ri and is 
invariant with respect to Miura transformations (2.2) [27].

 • Two deformations (of the same pencil) belong to the same class of equivalence if and only 
if they have the same central invariants [11].

 • For any choice of the dispersionless limit and of the central invariants the equivalence 
classes are not empty. This fact, suggested by some computations (for the scalar case see 
[2, 30]), has been proved only recently, by Liu and Zhang in the scalar case [29] and by 
Carlet, Posthuma and Shadrin in the general semisimple case [8]. The proof is based on 
the vanishing of certain cohomology groups introduced in [27].

 • Fixing the dispersionless limit as ωλ and the central invariants as ( )c ri i  there exists a Miura 
transformation (2.2) reducing the pencil to the standard form [27]

( )

( )

ω λω ω

ω λω ω

Π = − + + Π + Π +

= − + + Π + Π +

λ ε ε ε

ε ε ε

Lie ...

Lie ...

X

Y

2 1
2

1
4

4
6

6

2 1
2

2
4

4
6

6

c cn

c cn

1,..,

1,..,

  where the polynomial vector fields ( )X c c,..., n1  and ( )Y c c,..., n1  can be written as the difference of 
two Hamiltonian vector fields

( ) ( )ω δ ω δ ω δ ω δ= − = −′ ′X H K Y H K,c c c c,..., 2 1 ,..., 2 1n n1 1

  with non-polynomial Hamiltonian densities:

H r c r r r x K r r c r r r x

H r
c r

r
r r x K r c r r r x

log d , log d .

log d , log d .

i

n
i i

x
i

x
i

i

n
i i i

x
i

x
i

i

n i i

i x
i

x
i

i

n
i i

x
i

x
i

1 1

1 1

∫ ∫

∫ ∫

∑ ∑

∑ ∑

= =

= =′ ′

= =

= =

[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )
 

(2.4)

 • The coefficients ( )( )…F u u u, , ,k x k  of the Miura transformation (2.2) are assumed to 
depend polynomially on the derivatives of ui. Removing this assumption the classification 
problem becomes ‘trivial’: all deformations turn out to be equivalent to their dispersion-
less limit. This remarkable property of the deformations was discovered in [11] and is 
called quasitriviality. For instance, it is easy to check that the canonical quasi-Miura 
transformation generated by the Hamiltonian H defined in the formula (2.4) reduces the 
pencil Πλ

ij to the form ( )ω λω− + εO .ij ij
2 1

4

3. Outline of the results of the paper

In the present paper we start the study of the non-semisimple case. Whereas the semisimple 
case is fairly well understood, the non-semisimple case is wide open. In addition to computa-
tional difficulties, the lack of canonical coordinates, or at least of a normal form theorem for 
non-semisimple pencils, makes a unified approach to the problem very difficult to obtain. For 
this reason in this paper we try to obtain some information on the general case focusing on two 
special subcases where computations are feasible:

The deformations of Poisson pencils related to two-dimensional Balinskiǐ–Novikov alge-
bras [6] and the associated invariant bilinear forms. These are linear Poisson pencils of the 
form

A D Vedova et alNonlinearity 29 (2016) 2715
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ω λω λη− = ∂ + − ∂ = …g b u i j k n, , , 1, , ,ij ij ij
x k

ij
x
k ij

x2 1 (3.1)

where g is a linear metric, that is ( )= +g b b uij
k
ij

k
ji k, and η is a constant metric. As proved by 

Balinskiǐ and Novikov in [6] the numbers bk
ij are the structure constants of an algebra B satisfy-

ing the following identities

( ) ( )
( ) ( ) ( ) ( )
⋅ ⋅ = ⋅ ⋅
⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅

a b c b a c
a b c a b c a c b a c b

,
.

We refer to them as Balinskiǐ–Novikov algebras, even if in the literature they are often called 
Novikov algebras (following [36]). A first approach to the study of such algebras was made 
by Zelmanov [43]. In low dimensions the problem of classification was addressed by Bai and 
Meng [3, 5] and recently by Burde and de Graaf [7], resulting in a complete description of 
one-, two- and three-dimensional Balinskiǐ–Novikov algebras. Unfortunately, the full classifi-
cation of these structures of dimension four and higher is far from complete.

It has been recently proved by Strachan and Szablikowski that special deformations of such 
structures, associated with second and third order co-cycles of B, naturally arise in the study 
of multi-component generalisations of the Camassa–Holm equation [38].

In this paper we focus on two-component (n  =  2) non-degenerate ( ≠gdet 0ij , η ≠det 0ij ) 
structures of the form (3.1), which are non-semisimple. These structures have already been 
classified by Bai and Meng [3], and are summarized in table 1 (the full list obtained in [3] is 
recalled later in section 4, table 2).

We prove that in the cases T3, N3 (corresponding to κ = 1), N5 and N6 with κ≠ − −0, 1, 2 
the deformations are quasi-trivial and can be reduced to the form

( )( )ω λω ωΠ = − + +λ ε εOLieX2 1
2

2
3

F F1, 2

with ( ) ω δ ω δ= −X H KF F, 1 21 2  where

[ ] ( )  [ ] ( ) ∫ ∫∑ ∑= =H u h u u x K u f u u xlog d , log d ,
i j

ij x
i

x
j

i j
ij x

i
x
j

, ,

and the functions hij and fij are uniquely determined by two arbitrary functions F F,1 2. Moreover 
both functions F1 and F2 depend only on the eigenvalue of the affinor L.

Table 1. Pair of metrics of bi-Hamiltonian structures.

Type Linear metric g Constant metric η Affinors η= −L g 1

(T3) ⎛
⎝
⎜

⎞
⎠
⎟−

−
u

u
0

0

1

1

⎛

⎝
⎜

⎞

⎠
⎟η

η η
0 12

12 22
( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−

−

η

η
η η

0u

u u

1

12

22 1

12 2

1

12

(N5)
( )

⎛
⎝
⎜

⎞
⎠
⎟

+
u

u u u
0

2

1

1 1 2

⎛

⎝
⎜

⎞

⎠
⎟η

η η
0 12

12 22
( )

( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟−

η

η
η
η η

+

0u

u u u u2

1

12

1 2

12

22 1

12 2

1

12

(N3, N4, N6) ( )
( )

⎛

⎝
⎜

⎞

⎠
⎟κ

κ
+

+
u

u u

0 1

1 2

1

1 2

⎛

⎝
⎜

⎞

⎠
⎟η

η η
0 12

12 22

( )

( )
( )

( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟−

κ
η

η
κ η
η

κ
η

+

+ +

0u

u u u

1

2 1 1

1

12

2

12

22 1

12 2

1

12
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The cases N4 (corresponding to κ = 0) and N6 with κ = −2 are more involved and there 
are four functions labelling non-Miura equivalent deformations (still depending on the eigen-
value of the affinor L).

In all cases one half of the arbitrary functions parametrizing the deformations (one in the 
two-parameter case, two in the four-parameter case) is related to a family of truncated struc-
tures and one half is invariant with respect to the Miura transformations that preserve the dis-
persionless limit. The invariant functions are related to the first coefficients of the expansion 
(2.3) (in the second case also the odd powers of p appear in this expansion): the coefficients of 
p2 in the case of the algebras T3, N3, N5 and N6 with κ≠ − −0, 1, 2 and the coefficients of p 
and p2 in the case of the algebras N4 and N6 with κ = −2. Moreover our computations sug-
gest that in exceptional cases the generic deformations are not quasi-trivial. This fact is rather 
unexpected and deserves deeper investigation.

The lift of deformations of semisimple structures. These are obtained using an infinite-
dimensional version of the complete lift introduced by Yano and Kobayashi [40]. The main 
point is to view the tangent bundle TM of a given manifold M as a manifold itself and to lift 
tensor fields and affine connections from M to TM via the projection map of the bundle. Such 
a construction can be extended to the case where the base manifold is a loop space ( )L M  and 
the lifted structures then are defined on ( )L TM . In particular one can lift Poisson structures 
of hydrodynamic type as well as Frobenius structures. The relevance of this construction for 
our purposes is due to the fact that a lifted Poisson structure turns out to be non-semisimple 
despite the semisimplicity of the starting one.

Although elementary, this case is important as it provides examples of full deformations of 
non-semisimple structures depending on functional parameters. By construction, all deforma-
tions of an n-component semisimple structure can be lifted to deformations of a 2n-comp-
onent non-semisimple structure. This means that the deformations of the lifted Poisson pencils 
contain n functional parameters at least.

4. Linear Poisson bi-vectors of hydrodynamic type

Let us introduce a Poisson bi-vector of hydrodynamic type on the loop space ( )L M . The tan-
gent space to ( )L M  at a loop →γ S M: 1  is naturally identified with the space ( )γΓ ∗S TM,1  of 
vector fields along γ. On the other hand, (a subspace of) the cotangent space to ( )L M  at γ is 
identified with the space ( )γΓ ∗ ∗S T M,1  of co-vector fields along γ, and the pairing between a 

tangent vector X and a co-vector ξ is just ( )∫ ξ X xd
S1 .

Let g be a pseudo-metric on M with Levi-Civita connection ∇. For any co-vector 
( )ξ γ∈Γ ∗ ∗S T M,1 , let ( )γ∈Γξ

∗X S TM,1  be the point-wise metric dual of ξ. Given two co- 

vectors ( )ξ η γ∈Γ ∗ ∗S T M, ,1 , letting

( ) ( )∫ξ η ξ= ∇γ ηP X x, d
S

˙
1

defines a bi-vector on ( )L M . As shown by Dubrovin and Novikov, P is a Poisson structure on 
( )L M  if and only if ∇ is flat [13, 14]. In local coordinates ui on M and x on S1 the Poisson ten-

sor P is represented by a differential operator of the form (1.2).
In this paper we will study linear Hamiltonian operators

( )= + ∂ +P b b u b u ,ij
k
ij

k
ji k

x k
ij

x
k

related to Balinskiǐ–Novikov algebras of structure constants bk
ij.

A D Vedova et alNonlinearity 29 (2016) 2715



2722

4.1. Invariant bilinear forms and bi-Hamiltonian structures

Given a Balinskiǐ–Novikov algebra B, as observed in [38], any invariant bilinear symmetric 
form on it gives rise to a bi-Hamiltonian structure in a canonical way. For convenience of the 
reader let us briefly recall how they are defined. Let …e e, , n1  be a basis of B, and let bk

ij be the 
corresponding structure constants. A bilinear form →η ×B B F:  is called invariant if and 
only if

( ) ( )η η⋅ = ⋅e e e e e e, , .i j k i k j

Bai and Meng classified these invariant bilinear forms on two- and three-dimensional 
Balinskiǐ–Novikov algebras in [3, 4]. For future reference we recall the two-dimensional clas-
sification in table 2.

Remark. Note that the cases N1 and N4 with η ≠ 011  are semisimple, and therefore they 
are covered by the Dubrovin–Liu–Zhang theory. Thus, for this reason in the case N4 we will 
always assume η = 011 . Moreover, the cases N3 and N4 can be considered a subclasses of N6, 
if we remove the constraints κ≠ 0, 1. Indeed, for κ = 0 we easily obtain N4 (with η = 011 ), 

Table 2. Two-dimensional Balinskiǐ–Novikov algebras and invariant bilinear forms.

Type
Characteristic  
matrix ⋅e ei j Linear Poisson structure

Invariant  
bilinear forms

T1 ⎜ ⎟
⎛
⎝

⎞
⎠

0 0
0 0

⎜ ⎟
⎛
⎝

⎞
⎠

0 0
0 0

⎛

⎝
⎜

⎞

⎠
⎟η η

η η

11 12

21 22

T2 ⎜ ⎟
⎛
⎝

⎞
⎠

e 0
0 0

2 ⎛
⎝
⎜

⎞
⎠
⎟∂ +u u2 0

0 0
x x

2 2 ⎛

⎝
⎜

⎞

⎠
⎟η η

η 0

11 12

12

T3 ⎜ ⎟
⎛
⎝

⎞
⎠−e

0 0
01

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− ∂

− ∂ −

u

u u

0

0
x

x x

1

1 1

⎛

⎝
⎜

⎞

⎠
⎟η

η η
0 12

12 22

N1
⎛
⎝
⎜

⎞
⎠
⎟e

e
0

0

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂ +

∂ +

u u

u u

2 0

0 2

x x

x x

1 1

2 2

⎛

⎝
⎜

⎞

⎠
⎟η

η
0

0

11

22

N2 ⎜ ⎟
⎛
⎝

⎞
⎠

e 0
0 0

1 ⎛
⎝
⎜

⎞
⎠
⎟∂ +u u2 0

0 0
x x

1 1 ⎛

⎝
⎜

⎞

⎠
⎟η

η
0

0

11

22

N3
⎛
⎝
⎜

⎞
⎠
⎟e e

e 0

1 2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂ + ∂ +

∂ +

u u u u

u u

2 2

2 0

x x x x

x x

1 1 2 2

2 2

⎛

⎝
⎜

⎞

⎠
⎟η η

η 0

11 12

12

N4
⎛
⎝
⎜

⎞
⎠
⎟e

e
0
0

1

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂ +

∂ ∂ +

u u

u u u

0

2

x x

x x x

1 1

1 2 2

⎛

⎝
⎜

⎞

⎠
⎟η η

η η

11 12

21 22

N5
⎛
⎝
⎜

⎞
⎠
⎟

+
e

e e
0
0

1

1 2
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∂ +

∂ + ∂ + +

u u

u u u u u

0

2

x x

x x x x

1 1

1 1 2 2 1

⎛

⎝
⎜

⎞

⎠
⎟η

η η
0 12

12 22

N6

⎛
⎝
⎜

⎞
⎠
⎟

κ
κ≠

e
e e
0

0, 1

1

1 2
( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

κ

κ κ

+ ∂ +

+ ∂ + ∂ +

u u

u u u u

0 1

1 2

x x

x x x x

1 1

1 1 2 2

⎛

⎝
⎜

⎞

⎠
⎟η

η η
0 12

12 22
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while N3 is equivalent to the case κ = 1 after the change of coordinates ˜ =u u1 2, ˜ =u u2 1. Ac-
cording to [3], this distinction is due to different algebraic properties: the cases N3 and N4 are 
characterized by the associativity of the algebra, while this is not the case for N6 with κ≠ 0, 1. 
However, for our purposes, we do not need to distinguish these cases.

Let us point out that adding the constraint η η=21 12 in T1 and N4, the bilinear invariant 
forms associated with two-dimensional Balinskiǐ–Novikov algebra become symmetric. As 
observed by Strachan and Szablikowski in [38] the associated Hamiltonian operator η ∂ij x is 
compatible with the linear Hamiltonian operator defining the Balinskiǐ–Novikov algebra.

Remark. Pairs of compatible flat metrics play a key role in the theory of multi-dimensional 
Poisson structures of hydrodynamic type [34, 35]. In two dimensions, such structures are 
given by

= ∂ + + ∂ +P g b u g b u ,ij ij
x k

ij
x
k ij

y k
ij

y
k

1 1; 2 2;

where g1 and g2 are compatible flat metrics satisfying some additional constraints, coming 
from the skew-symmetry and the Jacobi condition for Pij: in flat coordinates of g1, the metric 
g2 must be a linear (symmetric) Killing tensor of g1 with vanishing Nijenuis torsion [20]. 
Since the vanishing of Nijenuis torsion is a necessary condition for the compatibility, the 
structures coming from Balinskiǐ–Novikov algebras and their associated invariant bilinear 
forms can be interpreted as two-dimensional Poisson structures of hydrodynamic type if the 
Killing conditions hold. It is remarkable that in two-component structures only the case N6 
with κ = −2 satisfies this additional constraint.

4.2. Classification results

In this section we provide a classification of second order deformations of Poisson pencils 
coming from Balinskiǐ–Novikov algebras.

By definition, a kth deformation of a Poisson pencil of hydrodynamic type (1.7) is a defor-

mation (2.1) such that [ ˜ ˜ ] ( )Π Π =λ λ
+εO, k 1 . Here Π̃λ

ij
 denotes the distribution

˜ ( ) ( )

( ) ( )

⩾
( )

( )

⩾
( )

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∑ ∑

∑ ∑

ω δ

λ ω δ

Π = + … −

− + … −

=

+
− +

=

+
− +

ε

ε

A u u u x y

A u u u x y

, , ,

, , , ,

ij ij

k

k

l

k

k l
ij

x l
k l

ij

k

k

l

k

k l
ij

x l
k l

2
1 0

1

2; ,
1

1
1 0

1

1; ,
1

and the Schouten bracket is defined as follows [16]:

[ ˜ ˜ ] ( )
˜ ( )

( )
˜ ( )

˜ ( )
( )

˜ ( )
˜ ( )

( )
˜ ( )

( ) ( ) ( )

Π Π

=
∂Π

∂
∂ Π +

∂Π

∂
∂ Π +

∂Π

∂
∂ Π

λ λ

λ
λ

λ
λ

λ
λ

x y z

x y

u x
x z

z x

u z
z y

y z

u y
y x

, , ,

2
,

, 2
,

, 2
,

, .

ijk

ij

s
l x

s lk
ki

s
l z

s lj
jk

s
l y

s li

We have to distinguish two cases:

 1. The cases T3, N3, N5 and N6 with κ≠ − −0, 1, 2 where second order deformed structures 
depend on two functions.

 2. The remaining cases N4 (which corresponds to κ = 0) and N6 with κ = −2, namely
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⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟η

η η
= = ±

±
g g u

u u

0
, 0

2
,1

12

12 22 2

1

1 2

where second order deformed structures depend on four functions.

Theorem 1. In the cases T3, N3, N5 and N6 with κ≠ − −0, 1, 2, second order deformations 
can be reduced by a Miura transformation to the form

( )( )ω λω ωΠ = − + +λ ε εOLieX2 1
2

2
3

F F1, 2

with ( ) ω δ ω δ= −X H KF F, 1 21 2  where

[ ] ( )  [ ] ( ) ∫ ∫∑ ∑= =H u h u u x K u k u u xlog d , log d ,
i j

ij x
i

x
j

i j
ij x

i
x
j

, ,

and the functions hij and kij are uniquely determined in terms of two arbitrary functions F F,1 2 

depending only on the eigenvalue of the affinor = −L g g2 1
1. Calling ( )=K kij  and ( )=H hij , 

we have =K HLT , where LT means the transpose of L and H is given, respectively, for each 
case by

 • T3: = =h h 012 22  and

⎛
⎝
⎜

⎞
⎠
⎟

η
η

η η
= +

+
− = −′

− −η

η

η

η
h u F

u u

u
F F h F

e

3
,

e

3
.11 12

22 1
2

12 2 22 1

1 2 1 21 2

u

u

u

u

12 2

22 1

12 2

22 1

 • N5: = =h h 012 22  and

( ) ( )
( )

η η
η

η η

η η η η
=

+ −
+

−

+ −
+

′
h

u u u F F

u u u

F2

3

2

6 2 2
,11

12 1 2 22 1
2

12

12 22
2

12 12 1 2 22 1

1
12

( )η η
=

+ −
h

u u u
F

1

3 2
.21

12 1 2 22 1
2

 • N3, N6 ( )κ≠ − −0, 1, 2 : = =h h 012 22  and

h
u u F u u F

F

2 1

3 1

2 1

6

2
,

11

12 2 22 1
1

2 2
2 12

22 12 2 22 1 1
2 2

12

1
12

( ( ) )
( )

( ( ) )

( )

η κ η
κ η

η η κ η
η

η κ κ

=
− +
+

−
− +

+
+

′
κ κ+ −

( ( ) )
( )

η κ η
κ

=
− +

+

−

h
u u

F
2 1

3 1
.

k

21

12 2 22 1 1
2

2
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Here ( )=F F ui i
1 , i  =  1, 2.

In the case N4, namely

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟η

η η
= =g g u

u u

0
, 0

2
,2

12

12 22 1

1

1 2

the second order deformations can be reduced by a Miura transformation to the form

( )ω λω ωΠ = − + +λ ε εOLieX2 1
2

2
3

where

( ) ( )= + + + +X X u X u X u u X u X u ,i i
xx

i
x

i
x x

i
x

i
xx1

1
2

1 2
3

1 2
4

2 2
5

2

with

( )
( )

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

θ

θ

θ

θ

θ

θ
η

θ
η

θ
η

=

=

= ∂

= ∂

=

=

=

= ∂ −
∂

= ∂ −
∂

= −
∂

X

X F

X F

X F

X F

X

X F

X F
F

X F
F

X F
F

0,

,

,

,

0,

,

,

,

.

1
1

2
1

1

3
1

1 2

4
1

2 2

5
1

2

1
2

2
2

3

3
2

1
1
2 4

1 2
12

4
2

2
1
2 4

1 2
12

5
2 1

2 4
1 2
12

In the above formulas Fi are 4 arbitrary functions of u1 and ( )θ η η= − −u u222 1 12 2 1.
In the case N6 with κ = −2, namely

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟η

η η
= = −

−
g g u

u u

0
, 0

2
,1

12

12 22 2

1

1 2

the second order deformations can be reduced by a Miura transformation to the form

( )ω λω ωΠ = − + +λ ε εOLieX2 1
2

2
3 (4.1)

where

( ) ( )= + + + +X X u X u X u u X u X u ,i i
xx

i
x

i
x x

i
x

i
xx1

1
2

1 2
3

1 2
4

2 2
5

2

with
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( )

( )

( ) ( )

( ) ( )
( )

⎛
⎝
⎜

⎞
⎠
⎟η θ θ

θ
η

θ

η θ θ

η θ

θ

θ
θ
η

θ θ

θ
θ
η

=

= −
∂

+

= − ∂

= −

=

=

=

= ∂ −
∂

= ∂ + ∂

= −
∂

X

X F
F

F

X F F

X F

X F

X

X F

X F
F

X F F

X F
F

0,

2 ,

2 ,

4 ,

,

0,

,

,

4 ,

.

1
1

2
1 22 3

2 4
1

2
2

12 1

3
1 12 5

2 4 1
3

2

4
1 12 4

2

5
1 3

2

1
2

2
2

3

3
2

1
3
2 4

1
2 2

2
12

4
2

1
3

2 2
3
2 4

5
2 3

2 4
1

2
2

12

In the above formulas Fi are four arbitrary functions of u1 and ( )θ η η= + −u u2 12 2 22 1 1. Moreo-
ver all parameters Fi are essential in the sense that they cannot be removed by means of a 
Miura transformation.

Due to its technical nature, we postpone the proof to appendix A.

Corollary 2. In the cases T3, N3, N5 and N6 with κ≠ − −0, 1, 2, all second order deforma-
tions are quasi-trivial.

Proof. By construction, the canonical quasi-Miura transformation generated by H[u] re-
duces the pencil to its dispersionless limit up to terms of order ( )εO 4 . ◼

Remark. General Miura transformations have the form

→ ˜ ( ) ( )
⩾

( )∑= + …εu u f u F u u u, , , .i i i

k

k
k
i

x k
1

where ≠∂
∂

det 0f

u

i

j . In this paper we are interested in Miura transformations preserving the dis-

perionless limit and for this reason we consider the subgroup

→ ˜ ( )
⩾

( )∑= + …εu u u F u u u, , , .i i i

k

k
k
i

x k
1

Indeed, the only diffeomorphism preserving both metrics of the pencil is the identity.

4.3. Invariants of bi-Hamiltonian structures

As already mentioned in the introduction, the central invariants for deformations of semis-
imple Poisson pencils of hydrodynamic type (2.1) are related to the roots of the equation

( ( ) ( ))
⩾

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑λ λ− + − =g g A u A u pdet 0.ij ij

k
k

ij
k

ij k
2 1

1
2; ,0 1; ,0

A D Vedova et alNonlinearity 29 (2016) 2715



2727

Expanding these roots near λ = ri i one obtains a series:

∑λ λ= +
=

∞

r p ,i i

k
k
i k

1
 (4.2)

whose coefficients are invariants (up to permutations) with respect to Miura transformations 
as shown by Dubrovin, Liu and Zhang in [12].

Due to the skew-symmetry of the pencil, the sum and product of the roots contain only even 
powers of p. In the semisimple case the expansions (4.2) of the roots also contain only even 
powers of p, while in the non-semisimple case in general odd powers are also allowed. For 
instance, in the case of deformations of non-semisimple pencils associated with Balinskiǐ–
Novikov algebras one obtains the expansions

u p u p, .
k

k
k

k
k

k1 1

1

1 2 1

1

2∑ ∑λ λ λ λ= + = +
=

∞

=

∞

 (4.3)

where, due to skew-symmetry:

λ λ λ λ+ = − =+ + 0, 0.k k k k2 1
1

2 1
2

2
1

2
2 (4.4)

Thus it is natural to divide Poisson pencils associated with Balinskiǐ–Novikov algebras in two 
classes: those admitting as invariants λ λ= −1

1
1
2 and λ λ=2

1
2
2 (and eventually higher order coef-

ficients of the expansions (4.3)) and those admitting as invariants only λ λ−2
1

2
2 (and eventually 

higher order coefficients of the expansions (4.3)).

4.3.1. The cases T3, N3, N5 and N6 with κ≠ − −0, 1, 2. In the cases T3, N3, N5 and N6 with 
κ≠ − −0, 1, 2, the expansions of λi do not contain the linear term in p and the coefficients of 
the quadratic terms λ λ=2

1
2
2 are related to the functional parameter F2.

Theorem 3. Let ω ω λω= −λ 2 1 be a bi-Hamiltonian structure corresponding to one of the 
Balinskiǐ–Novikov algebras T3, N3, N5 or N6 with κ≠ − −0, 1, 2 and the associated symmet-
ric bilinear invariant form η. Let us consider bi-Hamiltonian structures Πλ of the form (2.1) 
with leading term ωλ

ij. Then the coefficients λ2
1 and λ2

2 of the expansion (4.2) coincide and they 
are related to the functional parameter F2 by the formulas:

 • T3: ( )λ =
η

− η
η F uei u

2 2
1

u

u
1

12

12 2

22 1 .

 • N5: ( )
( )

λ = −
η η η+ −

i u F u

u u u
2

2

1
2

1

12 12 1 2 22 1
.

 • N3, N6 with κ≠ − −0, 1, 2: ( )( ) ( ( ) )λ = − κ η κ η
η

+ − +
κ−

F u .i u u u
2

1 2 1
2

1
1 12 2 22 1 1

2

12

Proof. We are going to prove this statement in the case T3 with η ≠ 022 . In this case the 
dispersionless limit is given by

ω
η

η η
ω= ∂ = −

−
∂ +

−

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟u

u u
0

, 0
0

0 0

0
.ij

x
ij

x
x

1

12

12 22 2

1

1 1

If we write the pencil in the standard form

( ( ) ( )) ( )( ) ( )
( )∑ ∑ω λΠ = + … − … ∂ +λ λ

= =

+
− +ε εOA u u A u u, , , , ,ij ij

k

k

l

k

k l
ij

l k l
ij

l x
k l

1

2

0

1

2; , 1; ,
1 3
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the first two terms of the expansion (4.2) are

λ = 0,i
1 (4.5)

( )⎛

⎝
⎜

⎞

⎠
⎟λ

η
η
η η

= + + +
+

Q
P

u

Q u Q P P1

2
,i

2 12 2
12 2

12 2

1

22
2
11

12

1
1
12

1
12

2
12

12 (4.6)

where

( ) ( ) ( ) ( ) θ= = = … =θ θ θ θP u A u Q u A u i j n, , , 1, , , 1, 2.ij ij ij ij
;1,2 ;2,3

We know from general theory that these coefficients are invariant up to permutations. The 
condition λ λ=n n2

1
2
2  implies that they are genuine invariants.

Using this proof is a straightforward computation: substituting the relations

( )

( )

⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= = = =

∗

η
η

η
η

−

−
P P Q Q

u F u

u F u

0 0
0 0

,
0 e

e

,

u

u

u

u

1 2 1 2

1
2

1

1
2

1

12 2

22 1

12 2

22 1

in the formula (4.6) we obtain the result. The remaining cases can be proved following the 
same procedure. ◼

Remark. The invariant λi
2 can be also written as

( )ˆλ = − Λλ λ λ λ=
−g

1

2
Res Tri

2
1

where λ̂ is the eigenvalue of the affinor = −L g g2 1
1 and ( )Λ = +λ λ λ λ λ

−Q g P P .ij ij
lk

li kj1

2
1

4.3.2. The cases N4 and N6 with κ = −2. In the remaining cases the expansion of λi also con-
tains the linear term in p and the invariants λ λ= −1

1
1
2 and λ λ=2

1
2
2 are related to the functional 

parameters F2 and F4, respectively.

Theorem 4. Let ω ω λω= −λ 2 1 be a bi-Hamiltonian structure corresponding to one of the 
Balinskiǐ–Novikov algebras N4 or N6 with κ = −2 and the associated symmetric bilinear in-
variant form η. Let us consider a bi-Hamiltonian structures Πλ of the form (2.1) with leading 
term ωλ

ij. Then, the invariants ( )λi
1

2 and λi
2 are related to the functional parameters F2 and F4 

through the formulas:

 • N4:

λ
η

λ
η η η η

=

=
∂

−
− +

( )
( )

( )
( )

u F

u F u F

u u

2
,

2
.

i

i

1
2

1
2

12 3

2
1

1
2

12 2

1
4

12 12 2 22 1
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 • N6, κ = −2:

( )
( ) ( )

( )
( )

( ) ( )/

λ
η η η

λ
η η η

η η
η η η

=
+

=
+

−
− +

+

′

u F

u u

u F

u u

u u F u F

u u

2

2
,

2

2

2
.

i

i

1
2

1
2

12 3 12 2 22 1 2

2

1
4

12 12 2 22 1 3 2

12 2 22 1
2

1
2

12 2 12 2 22 1 3

Proof. We outline the proof in the case N4 (corresponding to κ = 0). In this case, the stand-
ard form of the pencil is

,
ij ij ij ij ij

x
ij

x
ij

x
ij2 3 2

3
3

2
2

1 0
3˜ ( ) ( ) ( )( ) ( ) ( ) ( )ω ωΠ = + Θ + = + Θ ∂ +Θ ∂ +Θ ∂ +Θ +λ λ λε ε ε εO O

where

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟ω λ

η
η η

= ∂ + − ∂λ
u

u u

u

u

0
2

0

0

0
.ij

x
x

x

x

1

1 2

1

2

12

12 22

and

η η η η η η η

η η η η η η η η

Θ =
−

−
− +

+
−

−
− +

+
−

−
− +

′

′ ′( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

u F

u u

u F u F

u u

u F

u u

u F u F

u u

u F

u u

u F u F

u u

2

2 2

2

2

2

2

2

4 4

2

,3

1
2

12 2 22 1

1
2

12

1
4

12 2 22 1

2
2

12 2 22 1

1
2

12

1
4

12 2 22 1

2
2

12 2 22 1

2
2

12

2
4

12 2 22 1

From the general theory and from relations (4.4) we know that ( )λi
1

2 and λi
2 are invariants.  

Using the invariance the proof is a straightforward computation. The case N6 with κ = −2  
can be treated in a similar way. ◼

Remark. The function ( )Θ 3
12  can also be written as

( )( ) ˆ
η

Θ = − Λλ λ λ λ=
−g

2
Res Tr3

12
12

1

where λ̂ is the eigenvalue of the affinor = −L g g2 1
1 and ( )Λ = +λ λ λ λ λ

−Q g P P .ij ij
lk

li kj1

2
1

5. Truncated structures

In theorems 3 and 4 we proved the invariant nature of some of the functional parameters 
appearing in the deformations. In this section we prove that the remaining parameters are 
related to truncated structures. These are Poisson pencils of the form (2.1) depending polyno-
mially on the parameter ε (that is the sum in (2.1) contains finitely many terms). We show that 
setting the invariant parameters to zero we obtain deformations that are Miura equivalent to 
truncated pencils up to order three. More precisely we prove that in the cases T3, N3, N5 and 
N6 with κ≠ − −0, 1, 2 the additional parameter provides a one-parameter family of truncated 
structures, while in the cases N4 and N6 with κ = −2 the two additional parameters provide 
a two-parameter family of truncated structures.
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Theorem 5. In the cases T3, N3, N5 and N6 with κ≠ − −0, 1, 2, the second order deforma-
tions with F2  =  0 can be reduced by a Miura transformation to the form ( )ωΠ = + Θ+λ λ ε εO2 3  
where

Θ= ∂ + ∂ + ∂⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

f f f
0 0
0 2

0 0
0 3

0 0
0 ,x

x
x

xx
x

3 2 (5.1)

with f  =  f (u1). Moreover, the truncated pencil ω + Θλ ε 2  is a Poisson pencil.

Proof. The form (5.1) can easily be obtained from the results of theorem 1 rescaling the 
function F1. In particular, we have to set

 • ( ) ( )=F u f u

u1
1

1

1 , for T3,

 • ( ) ( )= − ηF u f u

u1
1

12 1

1 , for N5,

 • ( ) ( )
( )

= − η κ
κ+

F u f u

u1
1

1

12 1

1, for N3, N6 with κ≠ − −0, 1, 2.

To prove that ω + Θλ ε 2  is a Poisson pencil, we have to show that

[ ] ( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( ) ( ) ( )

Θ Θ

=
∂Θ

∂
∂ Θ +

∂Θ
∂

∂ Θ +
∂Θ

∂
∂ Θ =

x y z

x y

u x
x z

z x

u z
z y

y z

u y
y x

1

2
, , ,

,
,

,
,

,
, 0.

ijk

ij

s
l x

s lk
ki

s
l z

s lj
jk

s
l y

s li

Taking into account that Θ = Θ = Θ = 011 12 21  and 
( )
=∂Θ

∂
0,

u s

22

2  we obtain the result. ◼

Theorem 6. In the case N6 with κ = −2 the second order deformations with = =F F 02 4  
can be reduced by a Miura transformation to the form ( )ωΠ = + Θ+λ λ ε εO2 3  where

Θ= ∂ + ∂ + + ∂ +⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

f f f g g
0 0
0 2

0 0
0 3

0 0
0 2

0 0
0 ,x

x
x

xx
x

x

3 2 (5.2)

with f  =  f (u1) and ( ( ) ) ( )= +g h u u h u ux x xx
1 1 1 1 . Moreover the truncated pencil ω + Θλ ε 2  is a 

Poisson pencil.

Proof. Here we prove only the first part of the theorem. The second part can be obtained as 
above by straightforward computation.

By theorem 1 we have

( )ω λω ωΠ = − + +λ ε εOLie ,X2 1
2

2
3

where the components of the vector field X are given by

X F u X F u, ,x x
1

1
1 2 2

3
1 2( ) ( )θ= =

with ( )θ η η= + −u u2 12 2 22 1 1. The Miura transformation

→ ( )− =εu Y u iexp , 1, 2,i i

generated by the vector field Y of components
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( )
( ) ( ) ( )

η η η

η η η η η η

= − − ∂ − ∂

= − − ∂ + ∂ − ∂ + ∂ +

Y Ru R u Ru u

Y Ru R u R R u u R u Ru

,

,
xx x x x

xx x x x x xx

1 12 1 12
1

1 2 12
2

1 2

2 22 1 22
1

1 2 12
1

22
2

1 2 12
2

2 2 12 2

with 
( )

=
η η η+

R u F

u u2 2

1
1

12 12 2 22 1 , reduces the pencil to the form ( )˜ω λω ω− + +ε εOLieX2 1
2

2
3 , 

where

˜ ( ) ( )

˜ ( )

( ) ( )

θ θ
θ η η θ η

θη
η

θ θ
θ η η

θη
η

θ η θ η

= − − − + +

= − + + + +

− + − −

′

′

′

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

X
u F u u F

u u F u u F u u

X
u F u u F u u F

u u F u u

u F
u F F u u F u

2 2

2 2 2

2
.

xx
x x x

xx xx
x x

x x

1
1

1
1 1

1 2 12 2 22 1
1

1 2 2 12 1
1

1 2

2
22 1

1
1

12

1
1

2 1
1 2 12 2 22 2

1
1 2

22 1
1

12
2 22 2

1 3
1 2 2 12 1

1
2 2

To conclude, it is easy to check that ˜ωLieX 2 coincides with (5.2) ( = − ηF f

u1
2 12

1  and = −F h

u3 1). ◼

Theorem 7. In the case N4 with = =F F 02 4  the second order deformations can be reduced 
by a Miura transformation to the form ( )ωΠ = + Θ+λ λ ε εO2 3  where

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟q

q

q q

q q

q q

q q

q q

0 0

0

0
,x x x

3
22

3 2
12

2
12

2
22

2 1
11

1
12

1
21

1
22

0
11

0
12

0
21

0
22

Θ= ∂ +
−

∂ + ∂ + (5.3)

with

q f

q f u

q f u

q f u

q f f h u

q f f h u f u u f u

q f h h u hu u f h u

q f f u f u u f u u

q h h u h u u hu u

q f f f u

f f u u f f u u

f u u f u u f u u f u

q h h h u

h h u u h h u u

hu u hu u hu u hu

2 ,

4 ,

3 ,

8 ,

2 2 2 ,

6 10 2 16 8 ,

2 6 8 4 ,

4 8 16 8 ,

2 4 8 4 ,

2 8 12

12 40 8 16

32 8 16 4 ,

4 6

6 20 4 8

16 2 4 ,

x

x

x

x

x x x xx

x x x xx

x x x x xx

x x x x xx

x

x x x xx

x x x xx xx x xxx

x

x x x xx

x x x xx xx x xxx

3
22

2
12 12 1

2
22 1

1
11 12 2 1 2

1
12 12 2 12 22 2 1 2

1
21 12 2 12 22 2 1 2 12 2 1 2 12 1

1
22 12 1 2 12 1 22 1 2 2 1 2 12 1 1

0
11 12 2 3 12 2 22 1 3 12 3 1 2 2 12 2 1 1

0
12 2 3 22 1 3 3 12 1 2 2 2 1 1

0
21 12 2 12 22 3 12 22 2 1 3

12 2 3 12 2 22 1 2 2 12 2 12 22 1 1

12 3 1 2 2 12 2 1 2 12 2 1 2 12 1

0
22 12 1 2 12 1 22 3 12 1 22 2 1 3

2 3 22 1 2 2 12 1 2 12 1 22 1 1

3 12 1 2 2 2 1 2 2 1 2 12 1 1

( ) ( )

( )( )

( )( ) ( )

( ( ) ( ) )( ) ( ( ) )

( ( ) ( ) )( ) ( ) ( ) ( )

( )( ) ( )

( ( ) )( )

( ( ) ( ) )( ) ( )
( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( ) )( )

( )( ) ( ( ) ( ) )
( ) ( )

″

″

″
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θη θ η η θ

θη θ η η θ θη θη

θ η θ η η θ θ η

θη θ η η θη θη

θ θ η θ η θ

θη θ η η θ η η

θη θ η η θη θ η η

θη θη θη θη

θ η θ η η θ η η

θ θ η θ η θ η η

θ η θ θ θ η

=

=

=

= −

= − +

= − − + + −

= + + − + +

= − + + −

= + − +

= − − −

+ + + − −

− + + −

= + +
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+ − − +

′

′
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′ ′

′

′

′
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′
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−
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where f  =  f (u1), h  =  h(u1) and ( )θ η η= − −u u2 12 2 22 1 1. Moreover the truncated pencil ω + Θλ ε 2   
is a Poisson pencil.

Proof. By theorem 1 we have ( )ω λω ωΠ = − + +λ ε εOLieX2 1
2

2
3 , where the components 

of the vector field X are given by

( ) ( )θ θ=− =−X F u X F u, ,x x
1

1
1 2 2

3
1 2

with ( )θ η η= − −u u2 12 2 22 1 1. The Miura transformation

→ ( )− =εu Y u iexp , 1, 2,i i

generated by the vector field Y of components

( )
( ) ( ) ( )

η η η

η η η η η η

= − − ∂ − ∂

= − − ∂ + ∂ − ∂ + ∂ +

Y Ru R u Ru u

Y Ru R u R R u u R u Ru

,

,
xx x x x

xx x x x x xx

1 12 1 12
1

1 2 12
2

1 2

2 22 1 22
1

1 2 12
1

22
2

1 2 12
2

2 2 12 2

with 
( )

= −
η η η−

R u F

u u2 2

1
1

12 12 2 22 1 , reduces the pencil to the form

( )˜ω λω ω− + +ε εOLie ,X2 1
2

2
3

where

( ) ( )

( )

( ) ( )

θ θ
θ η η θ η

θη
η

θ θ
θ η η

θη
η

θ η θ θ η

= + − − −

= − − + +

+ + − +

′

′

′

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

X
u F u u F

u u F u u F u u

X
u F u u F u u F

u u F u u

u F
u F F u u F u

2 2
,

2 2 2

2
,

xx
x x x

xx xx
x x

x x

1
1

1
1 1

1 2 12 2 22 2
1

1 2 2 12 1
1

1 2

2
22 1

1
1

12

1
1

2 1
1 2 12 2 22 2

1
1 2

22 1
1

12
2 22 2

1 3
1 2 2 12 1

1
2 2

To conclude the first part of the theorem we observe that it is easy to check that ˜ω = ΘLieX 2  

( = ηF f

u1
2 12

1  and = −
η

F h

u3 12 1). The second part is a cumbersome computation. ◼

Remark. Truncated Poisson pencils of the form

A A A Aij ij

l
l

ij
l

ij
x

l

l
l

ij
l

ij
x

l

0

2

2;1, 1;1,
2 2

0

3

2;2, 1;2,
3( ) ( )( ) ( )∑ ∑ω λ λΠ = + − ∂ + − ∂λ λ

=

−

=

−ε ε (5.4)

where ωλ is a Poisson pencil of hydrodynamic type associated with a Balinskiǐ–Novikov alge-
bra appear in [38]. In this case the coefficients

A A A A, , ,ij ij ij ij
2;1,0 1;1,0 2;2,0 1;2,0

are related to the second and third order co-cycles of the Balinskiǐ–Novikov algebra. In order 
to reduce deformations of the form (5.4) to the canonical form ( )ωΠ = + Θ+λ λ ε εO2 3  one 
has to perform a Miura transformation producing (in general) infinitely many terms in the 
right-hand side of (5.4). For this reason (in general) Strachan–Szablikowski truncated pencils 
correspond in our framework to non-truncated pencils.
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6. Lifts of Poisson structures

Given a differentiable manifold M, there is a natural way to lift tensor fields and affine connec-
tions from M to its tangent bundle TM, viewed as a manifold itself. Such a lift is called a com-
plete lift and has been extensively studied by Yano and Kobayashi [40–42]. In this section we 
apply this construction to Poisson tensors defined on a suitable loop space.

6.1. Complete lift

Let us recall the definition and some properties of complete lift, see the original papers men-
tioned above for more details.

Given local coordinates …u u, , n1  on M, let … …u u v v, , , , ,n n1 1  be the induced bundle coor-

dinates on TM so that any tangent vector on M has the form ∂
∂

vi
ui . The complete lift of a func-

tion f, a one form α α= udi i, and a vector field = ∂
∂

X Xi
ui  are defined, respectively, by

ˆ ˆ ˆα
α

α=
∂
∂

=
∂
∂

+ =
∂
∂
+
∂
∂

∂
∂

f v
f

u
v

u
u v X X

u
v

X

u v
, d d , .j

j
j i

j
i

i
i i

i
j

i

j i
 (6.1)

It follows readily from these local expressions that ( )α X  lifts to ˆ( ˆ )α X  and a commutator [X, Y]  
lifts to [ ˆ ˆ]X Y, .

Lifted vector fields (one-forms) span the tangent (cotangent) space of TM at any point 
which does not belong to the zero section {v  =  0}. As a consequence, one can define the 
complete lift K̂ of any given tensor field K just by imposing that any contraction with a vector 
field X or a one-form α on M lifts to the contraction of K̂ with X̂ or α̂. Then one can check that 
exterior derivative and Lie derivative are invariant with respect to the complete lift, meaning 
that ξd  lifts to ξ̂d  for any differential form ξ and that a Lie derivative LXK lifts to ˆˆL KX .

It may be useful to have at hand explicit expressions for some special classes of tensors. In 
particular, the complete lift of a bilinear form = ⊗g g u ud dij

i j turns out to be

ˆ =
∂

∂
⊗ + ⊗ + ⊗g v

g

u
u u g u v g v ud d d d d d ,k ij

k
i j

ij
i j

ij
i j (6.2)

and a trilinear form = ⊗ ⊗T T u u ud d dijk
i j k lifts to

ˆ =
∂
∂

⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗T v
T

u
u u u T u u v T u v u T v u ud d d d d d d d d d d d .h ijk

h
i j k

ijk
i j k

ijk
i j k

ijk
i j k

Moreover, an endomorphism of the tangent bundle = ⊗∂
∂

A A udj
i

u
j

i  lifts to

ˆ = ∂
∂
⊗ +

∂

∂
∂
∂
⊗ +

∂
∂
⊗A A

u
u v

A

u v
u A

v
vd d d ,j

i
i

j k j
i

k i
j

j
i

i
j (6.3)

and the lift of a bilinear product on vector fields ⋅ = ⊗ ⊗∂
∂

c u ud djk
i

u
j k

i  is

c
u

u u v
c

u v
u u

c
v

u u c
v

v u

d d d d

d d d d .

jk
i

i
j k h jk

i

h i
j k

jk
i

i
j k

jk
i

i
j k

⋅̂ =
∂
∂
⊗ ⊗ +

∂

∂
∂
∂
⊗ ⊗

+
∂
∂
⊗ ⊗ +

∂
∂
⊗ ⊗

 

(6.4)
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Finally, any bi-vector = ⊗∂
∂

∂
∂

P Pij
u ui j  lifts to

ˆ = ∂
∂
⊗
∂
∂
+

∂
∂
⊗
∂
∂
+
∂
∂

∂
∂
⊗
∂
∂

P P
u v

P
v u

v
P

u v v
.ij

i j
ij

i j
k

ij

k i j
 (6.5)

Now, let ∇ = Γ ⊗∂
∂

∂
∂

ud
u jk

i
u

j
k i  be an affine connection on M. Its complete lift ∇̂ is an affine 

connection on TM defined by requiring that for all vector fields X on M the endomorphism ∇X 

lifts to ˆ ˆ∇X. Using that ∂
∂uk  and ∂

∂
ul

uk  lift to ∂
∂uk  and +∂

∂
∂
∂

u vl
u

l
vk k , respectively, one can check 

that

∇̂
∂
∂
= Γ

∂
∂
⊗ +

∂Γ

∂
∂
∂
⊗ + Γ

∂
∂
⊗

u u
u v

u v
u

v
vd d d ,

k jk
i

i
j h jk

i

h i
j

jk
i

i
j (6.6)

∇̂
∂
∂
= Γ

∂
∂
⊗

v v
ud .

k jk
i

i
j (6.7)

From the definition one can readily deduce that for any tensor field K on M the complete 
lift of ∇K equals ˆ ˆ∇K. In particular, any flat tensor ( )∇ =K 0  lifts to a flat tensor ( ˆ ˆ )∇ =K 0 . 
Moreover the following holds [40, proposition 7.1]:

Proposition 8. The torsion and the curvature of ∇̂ are the complete lift of the torsion and 
the curvature of  ∇.

Remark. Since the lift is well defined for tensors and connections we can apply it to the 
geometric structures defining Frobenius manifolds. As a result one obtains a lifted Frobenius 
structure. We discuss this construction in more detail in appendix B.

6.2. Lift of Poisson structures of hydrodynamic type

The class of structures that can be lifted to the tangent bundle by means of complete lift 
includes symplectic forms and more generally Poisson tensors. The latter have been studied 
in some detail by Mitric and Vaisman [33]. Since the Schouten bracket is defined in terms of 
Lie derivative, it follows that it is invariant by complete lift as well. As a consequence, the 
complete lift of a bi-Hamiltonian structure λ= +λP P Q, where λ∈R and P, Q are Poisson 
tensors on M satisfying [P, Q]  =  0, is a bi-Hamiltonian structure ˆ ˆ ˆλ= +λP P Q.

Recall that in local coordinates ui on M and x on S1 the Poisson tensor P at ( )γ = u x  is 

represented by ⊗∂
∂

∂
∂

P
u

ij
ui j  where

= ∂ + =P g b u i j n, , 1, ..., .ij ij
x k

ij
x
k (6.8)

Here gij is the inverse of the matrix gij which represents g locally, and = − Γb gk
ij ih

hk
j , being Γhk

j  
the Christoffel symbols of g. It is clear that P can be lifted to ( )L TM  defining P̂ as

P g b u n, , 1, ..., 2 ,x x
ˆ ˆ ˆ α β= ∂ + =αβ αβ

γ
αβ γ

where ĝ is the lift of the contravariant metric, ˆ
γ
αβ

b  are the contravariant Christoffel symbols of 

the lifted Levi-Civita connection and we set =+u vn i i. Indeed one has only to check that ∇̂ 
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is the Levi-Civita connection of the lifted metric ĝ. But this follows by the uniqueness of the 
Levi-Civita connection together with the fact that ˆ ˆ∇ =g 0 for ∇ =g 0, and that ∇̂ is torsion 
free by proposition 8 and by the torsion-freeness of ∇. Therefore ĝ defines a Poisson structure 
of hydrodynamic type P̂ on ( )L TM .

Remark. It is easy to check that the lift P̂ is uniquely defined by the requirement (the analo-
gous property in the finite-dimensional case has been observed in [33])

{ } ⟨ { } ⟩ˆ ∫ ξ η=ξ ηH H v x, , , dP
S

P
1

 (6.9)

where ⟨ ⟩∫ ξ=ξH v x, d
S1  and { }⋅ ⋅, P is the Poisson bracket on 1-forms [21, 32] defined by g [1]:

{ } ( )
( )

( )
( )

( ) ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ξ η η
ξ

ξ
η

= ∂
∂

∂
− ∂

∂

∂
+ +g

u u
, .j

kl
x
s

l
j

s
k x

s
l

j

s
k

1 1
 (6.10)

Proposition 9. In local coordinates u v,i i on TM one has

ˆ ( ) ( )

( )

=
∂
∂
⊗ ∂ +

∂
∂
+
∂
∂
⊗ ∂ +

∂
∂

+
∂
∂
⊗ + ∂ +

∂
∂

+
∂
∂

⎛

⎝
⎜

⎞

⎠
⎟

P
v

g b u
u u

g b u
v

v
v b b v

b

u
u b v

v
.

i
ij

x k
ij

x
k

j i
ij

x k
ij

x
k

j

i
h

h
ij

h
ji

x
h k

ij

h x
k

k
ij

x
k

j

 

(6.11)

Proof. Thanks to (6.8) we have to determine the coefficients gij and bk
ij for the lifted metric 

ĝ. To this end, let Wj be the metric dual of the coordinate one-form ud j on M. This means that 
Wj is the unique vector field on M such that ( )⋅ =g W u, dj j, and clearly one has

=
∂
∂

W g
u

.j ij
i (6.12)

Moreover, well known properties of the Christoffel symbols yield

∇ =
∂
∂
⊗W b

u
ud .j

k
ij

i
k (6.13)

Therefore one can write

= ⊗∂
∂
∂
+∇ ⊗

∂
∂

γP W
u

W
u

,j
x j

j
j˙ (6.14)

wehere γ = ∂
∂

u˙ x
k

uk .

Let U j and V j be the metric dual of ud j and vd j with respect to the lifted metric ĝ on TM. 
One can readily check by (6.2) that

=
∂
∂

U g
v

.j ij
i (6.15)

On the other hand, by (6.1) the lift of ud j turns out to be vd j. Therefore ˆ=V Wj j
, so that
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( )=
∂
∂
+ +

∂
∂

V g
u

v b b
v

,j ij
i

k
k
ij

k
ji

i (6.16)

where we used the identity

∂
∂
= +

g

u
b b .

ij

k k
ij

k
ji (6.17)

In particular ˆ ˆ ˆ∇ = ∇V Wj j
, whence by definition of the lifted connection and equations (6.13) 

and (6.3) it follows that

∇̂ =
∂
∂
⊗ +

∂
∂

∂
∂
⊗ +

∂
∂
⊗V b

u
u v

b

u v
u b

v
vd d d .j

k
ij

i
k h k

ij

h i
k

k
ij

i
k (6.18)

On the other hand, by (6.7) one calculates

∇̂ =
∂
∂

∂
∂
⊗ + Γ

∂
∂
⊗U

g

u v
u g

v
ud d ,j

ij

k i
k ij

ki
h

h
k (6.19)

whence, thanks to the identity (6.17), one concludes

∇̂ =
∂
∂
⊗U b

v
ud .j

k
ij

i
k (6.20)

The statement then follows by simple calculations from equations (6.15), (6.16), (6.18), (6.20) 
and the identity

ˆ ˆ= ⊗∂
∂
∂
+∇ ⊗

∂
∂
+ ⊗∂

∂
∂
+∇ ⊗

∂
∂

γ γP U
u

U
u

V
v

V
v

,j
x j

j
j

j
x j

j
j˙ ˙ (6.21)

where γ = +∂
∂

∂
∂

u v˙ x
k

u x
k

vk k  for any loop ( ( ) ( ))γ = u x v x,  in TM. ◼

6.3. Lift of bi-vectors in the loop space

In matrix notation the lift (6.11) takes the form

ˆ
( )

( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟∑= ∂

∂
P

P

P v
P

u

0

,

ij

ij

k t
t

k
ij

t
k

,

 (6.22)

whence it is clear that one can lift to ( )L TM  any given Poisson structure (non-necessarily of 
hydrodynamic type) on the loop space ( )L M . The proof of this fact is contained in [25] in the 
framework of the linearization of Hamiltonian objects, i.e. formal or universal linearization 
(see for instance [23, 26]) or tangent covering (see for instance [24]). We provide here a dif-
ferent direct proof which rests just on the Schouten bracket formula given in [16].

Theorem 10. Suppose that

( ) ( ) ( )( )∑ δ= − … = … −+
=

+

+
+ −P P x y u u u A u u u x y, , , , , , , ,x y

ij
k
ij

x k
m

k

m
ij

x k
k m

, 1
0

1

1
1
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and

( ) ( ) ( )( )∑ δ= − … = … −+
=

+

+
+ −Q Q x y u u u B u u u x y, , , , , , , ,x y

ij
k
ij

x k
m

k

m
ij

x k
k m

, 1
0

1

1
1

have a vanishing Schouten bracket

[ ]
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

=
∂

∂
∂ +

∂

∂
∂ +

∂

∂
∂

+
∂

∂
∂ +

∂

∂
∂ +

∂
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∂ =

P Q
P

u x
Q

Q
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P

u z
Q

Q

u z
P
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u y
Q

Q

u y
P

,

0,

x y z
ijk x y

ij

s
l x

s
x z
lk x y

ij

s
l x

s
x z
lk z x

ki

s
l z

s
z y
lj

z x
ki

s
l z

s
z y
lj y z

jk

s
l y

s
y x
li y z

jk

s
l y

s
y x
li

, ,
,

,
,

,
,

,

,
,

,
,

,
,

then also the lifted structures

ˆ ˆ
( )

( )
( )

( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜

⎞
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∂
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u

0

,

0ij

ij

k t
t

k
ij

t
k

ij

ij

k t
t

k
ij

t
k

, ,

have a vanishing Schouten bracket.

Proof. Throughout in this proof un+i will denote vi for all = …i n1, , . Moreover we fix the 
convention that latin indices i, j, k run from 1 through n, and greek indices α β γ, ,  run from 1 
through 2n. By straightforward computation we obtain

 • For α β γ= = =i j k, , :

P Q
P

u x
Q

Q

u x
P

P

u z
Q

Q

u z
P

P

u y
Q

Q

u y
P

,
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x y z
x y
ij

s
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s

x z
k x y
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s
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s

x z
k z x
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z
s

z y
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s
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s
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,
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  since ˆ ˆ ˆ ˆ ˆ ˆ= = = = = =P Q P Q P Q 0x y
ij

x y
ij

z x
ki

z x
ki

y z
jk

y z
jk

, , , , , , .

 • For α β γ= + = =n i j k, , :
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A D Vedova et alNonlinearity 29 (2016) 2715



2738

  since ˆ ˆ= =P Q 0y z
jk

y z
jk

, ,  and P Q P Q, , ,x y
ij

x y
ij

x y
ki

x y
ki

, , , ,  do not depend on coordinates on the fibres. 

Similarly one can prove the vanishing of the Schouten bracket for α β γ= = + =i n j k, ,  
and α β γ= = = +i j n k, , .

 • For α β γ= + = + =n i n j k, , :
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  Using the identities
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 (6.23)

  we finally obtain

[ ˆ ˆ] [ ]= =+ +P Q P Q, , 0.x y z
n i n j k

x y z
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, ,
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, ,

  Similarly one can prove the vanishing of the Schouten bracket for α β γ= = + = +i n j n k, ,  
and α β γ= + = = +n i j n k, , .

 • For α β γ= + = + = +n i n j n k, , :
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  Using the identities (6.23) and the fact that the operator ∂x and the operator ( ) ( )( )
∑ + ∂

∂
uk t t

n k

u x,
t

k  
commute, as it is immediate to check using the identity

u x u x u x
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t
k x

t
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( )
∑= ∂

∂
+

∂
∂

+
∂

∂
=+ + + + + +

since [ ] =P Q, 0x y z
ijk

, ,  by the hypothesis. ◼

Remark. Note that the lift of bi-vectors (6.22) is obtained from (6.5) by just replacing 

∑ ∂
∂

vj
j

u j  with ( )
( )

∑ ∂
∂

vj k k
j

u,
k
j . The lift of general tensor fields can be defined in exactly the same 

way. For instance the lift of functionals, one forms and vector fields can be defined as

ˆ ˆ ˆ
( )

( )
( )

( )
∫ ∑ ∑
δ
δ

α
α
δ α δ= =

∂
∂

+ =
∂
∂
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∂
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∂
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F v
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u
x v

u
u v X X

u
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u v
d , , .j
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k
j i

k
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i
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i i
i

j k
k
j

i

k
j i

, ,

As in the finite-dimensional case the lift K̂ of higher order tensor fields K can be defined re-
quiring that any contraction with a vector field X or a one-form α on the loop space lifts to the 
contraction of K̂ with X̂ or α̂. As a consequence of this general rule the lift of a Hamiltonian 
vector field coincides with the Hamiltonian vector field obtained lifting the Poisson bi-vector 
and the Hamiltonian functional: ˆ ˆδ δ=̂P H P H. In appendix C we check this fact. Finally we 
point out that the linearization of Hamiltonian objects mentioned above is nothing but the 
Yano–Kobayashi complete lift in the infinite-dimensional setting.

6.4. Lift of deformations

We have seen in the introduction that deformations of n-component semisimple Poisson pen-
cils of hydrodynamic type depend on n arbitrary functions of a single variable. Applying the 
previous construction to this case we obtain an n-parameter family of deformations of the 
lifted Poisson pencil of hydrodynamic type. Due to the obvious identity

ˆ ( )π π=±det detij ij 2

any invariant coefficient comes with double multiplicity. This example suggests that defor-
mations of non-semisimple structures corresponding to those invariant parameters are 
unobstructed.

6.4.1. Example. In the scalar case all second order deformations are given by [30]

( ) ( )λΠ = ∂ + − ∂ + ∂ + ∂ + ∂ +λ ε εOu u s s s2 2 3 ,x x x x x x xx x
2 3 2 3 (6.24)

where c is a constant and s(u) is an arbitrary function of u. Applying the lift we obtain a one-
parameter family of deformations of a two-component Poisson pencil of hydrodynamic type.
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Here we want to show this lift is equivalent, up to Miura transformations, to the case N3 
(that is, N6 with κ = 1) with ( ) η= =F u 01

1 22 . Let us consider second order deformations of 
N3 obtained in theorem 1, and set η = 022  (otherwise g1 would not be the lift of the scalar 

constant metric η = 1), η = 112 , ( ) =F u 01
1  and ( ) ( )= −F u f u

u2
1

1

1 .
The Miura transformation

→ ( )− =εu Y u iexp , 1, 2,i i

generated by the vector field Y of components

( )″ ″
= + = − −
′ ′

Y
f

u
f

u Y
f

u u
f

u
3 3

,
3 3

,xx x x x xx
1 1 1 2 2 1 2 2

reduces the pencil to the form

ˆ
( )

( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟∑Π =

Π

Π
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∂

λ

λ

λ
λv

u

0

,

t
t

t

where Πλ coincides with (6.24) setting u1  =  u and f(u1)  =  s(u).
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Appendix A. Computations of deformations

In this appendix we give a sketch of the proof of theorem 1, providing the computations of 
deformations in detail. First we observe that the pencil Πλ

ij can be always reduced to the form

ωΠ = + + + +λ λ ε ε εQ Q Q ...1
2

2
3

3 (A.1)

by a suitable Miura transformation. The proof is due to Getzler and it is based on the study of 
the Poisson–Lichnerowicz cohomology groups [22] (an alternative proof can be found in [9, 
16, 28]):

( ( ) )
{ → }
{ → }

R ω =
Λ Λ

Λ Λ
ω

ω

+

−LH , :
ker d :

im d :
j n

j j

j j
loc loc

1

loc
1

loc

for Poisson bi-vector of hydrodynamic type ω. The differential ωd  is defined as

[  ]ω= ⋅ωd : ,

where the square bracket is the Schouten bracket. Getzler also proved the triviality of  
cohomology for any positive integer j (in particular that the triviality of deformations is related 
to the vanishing of the second co-homology group).
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A.1. First order deformations

The pencil (A.1) is a deformation of ωλ if it satisfies the Jacobi identity for every λ, that is

[ ] [ ]ω= =Q Q Q, , 0.1

where ω= + + + +ε ε εQ Q Q Q ...2 1
2

2
3

3 . This implies in particular

[ ] [ ]ω ω= =Q Q, , 0.2 1 1 1

In other words Q1 is a co-cycle for both the differentials ωd 1 and ωd 2. Using the triviality of 
( ( ) )R ωLH ,n1  and ( ( ) )R ωLH ,n2  we obtain ω= =ωQ Xd LieX1 22  for a suitable vector field of 

degree 1

( ) ( )= + =X X u u u X u u u i, , , 1, 2,i i
x

i
x1

1 2 1
2

1 2 2

satisfying

=ω ω Xd d 0.1 2

It is not difficult to prove that among the solutions of the above equation those corresponding 
to trivial deformations have the form ω δ ω δ= +X H K1 2 , where the Hamiltonian densities are 
differential polynomials of degree 0, namely ( )∫=H h u u x, d1 2  and ( )∫=K k u u x, d1 2 . It turns 
out that in our case all first order deformations are trivial. All details are given below, case by 
case.

A.1.1. T3. First order deformations. Let us point out that in this case the vanishing of the coef-
ficient η22 implies that the affinor L j

i  assumes a diagonal form, while for η ≠ 022  it corresponds 
to one ×2 2 Jordan block case (as well as all other cases we are dealing with). Recall that we 
are assuming η ≠ 012 . The vector field X solution of =ω ω Xd d 01 2  is given in components by

( )  

( ( ))

⎛
⎝
⎜

⎞
⎠
⎟∫

η
η

η
η

η
η

= = = ∂ + ∂ − ∂ +

= + + ∂ − ∂

X X X X X X u X
u

X u F

X X X u X X

, , d ,

,

1
1

1
1

2
1

2
1

1
2

22

12 1 1
1 1

1 1
1

22 1

12 1
2

1
2 2

2
2

1
1

22

12 2
1 1

2 1
1

1 2
1

where F  =  F(u1). The components Yi of the vector field ω δ ω δ= +Y H K1 2  are given by 
= +Y Y u Y ui i

x
i

x1
1

2
2, where

( ) ( )
η η

η η η η

= ∂ ∂ − ∂ ∂ = ∂ − ∂

=∂ ∂ + ∂ − ∂ =∂ ∂ + ∂ − ∂

Y H u K Y H u K

Y H H u K Y H H u K

, ,

, ,
1
1 12

1 2
1

1 2 2
1 12

2
2 1

2
2

1
2

1
12

1
22

2
1

1 2
2

2
12

1
22

2
1

1

Choosing H and K such that =X Yi i
1 1 for i  =  1, 2, one can easily see that

= + =X Y F X Y, .1
2

1
2

2
2

2
2

Finally, the function F can be removed using the vector field Y such that H  =  0 and K such that 
( )−∂ ∂ =u K F1

1
1 . Thus, the first order deformations are trivial.
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A.1.2. N5. First order deformations. Here η ≠ 012 . Solving =ω ω Xd d 01 2  for ( ) =Xdeg 1 we 
obtain

( )
 

⎛

⎝
⎜

⎞

⎠
⎟∫

η η η
η η

= ∂ = ∂

= ∂ +
∂ + ∂ −

+ −
+ =

X F X F

X X
F F X

u u u
u G X X

, ,

2
d , ,

2
1

1 1
2

2

1
2

1 2
2

22
2

12
1

12
2
2

12 1 2 22 1
2

2
2

2
2

where ( )=F F u u,1 2  and G  =  G(u1).
The components Yi of the vector field ω δ ω δ= +Y H K1 2  are given by

( )
( )

( )
( )

η

η

η η

η η

= ∂ ∂ + ∂

= ∂ ∂ + ∂

= ∂ + ∂ ∂ + ∂ + + ∂ ∂ + ∂

= ∂ ∂ + ∂ + ∂ ∂ + + ∂ + ∂

Y H u K

Y H u K

Y H H u K u u K K

Y H H u K u u K K

,

,

2 ,

2 .

1
1

1
12

2
1

2

2
1

2
12

2
1

2

1
2 12

1
2 22

1 2
1

1
2 1 2

1 2 2

2
2 12

1 2
22

2
2 1

1 2
1 2

2
2

2

Choosing H and K such that  η= ∂ + ∂ =F H u K X Y,12
2

1
2 2

2
2
2, we obtain

= = = =X X X X G0, .1
1

2
1

2
2

1
2

Taking H  =  0 and K such that ∂ =K 02  and ∂ =u K G1
1
2 , we can also remove G. Thus, deforma-

tions of degree 1 are trivial.

A.1.3. N3, N4 and N6. First order deformations. This case is more involved. Let us assume 
κ≠−1, otherwise the metric g2 would be degenerate. Here η ≠ 012 .
Imposing =ω ω Xd d 01 2  for ( ) =Xdeg 1 we obtain

( )  ∫θ κ η η η θ θ

= ∂ + = ∂ = ∂ = ∂

= ∂ + ∂ − ∂ +
κ κ κ− −

X G R X G X F X F

R G G F u S

, , , ,

d ,

1
1

1 2
1

2 1
2

1 2
2

2

2 22
2

12
1

12
2

1
2 2 2

where ( ) ( ) ( )= = =F F u u G G u u S S u, , , ,1 2 1 2 1  and ( )θ η κ η= − +u u2 112 2 22 1. The comp-
onents Y i of the vector field ω δ ω δ= +Y H K1 2  are given by

( ( ) )
( ( ) )
( ( ) )
( ( ) )

η κ κ

η κ

η η κ

η η κ

= ∂ ∂ + + ∂ − ∂

= ∂ ∂ + + ∂

= ∂ ∂ + ∂ + ∂ + + ∂ −

= ∂ ∂ + ∂ + ∂ + + ∂ −

Y H u K K

Y H u K

Y H H u K u K K

Y H H u K u K K

1 ,

1 ,

2 1 ,

2 1 .

1
1

1
12

2
1

2 2

2
1

2
12

2
1

2

1
2

1
12

1
22

2
2

2
1

1

2
2

2
12

1
22

2
2

2
1

1

Choosing H and K such that

( )η κ∂ + + ∂ =H u K F1 ,12
2

1
2

( )η η κ∂ + ∂ + ∂ + + ∂ − =H H u K u K K G2 1 ,12
1

22
2

2
2

1
1

we obtain

θ= = = =
κ

X S X X X, 0.1
1

2 2
1

1
2

2
2

Finally, taking a suitable choice of H and K, we can also remove S. In particular, we have
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 • for κ≠ −0, 2

( )
( ) ( ) ( )
κ θ

η κ κ
θ

η κ κ
=

+
+

= −
+

+ +κ κ

H
u S

K
S1

2
,

2
,

1 1

12 2

1

12

2 2

 • for κ = 0

( )( ( ) )
( )

η η η η
η

=
− − −

H
u u u u u S2 log 2 1

4
,

12 2 22 1 12 2 22 1 1

12 2

  ( )( ( ) ) ( )    ∫∫
∫ η η η η

η
η
η

= −
− − −

−
∂

K
u S u

u

u u u u S u S

u
u u

d 2 log 2 1

4 2
d d

2 1

1

12 2 22 1 12 2 22 1

12

22
1

1

12 1
1 1

 • for κ = −2

( )
( )

( )  ∫η η
η

η η
η η

=
+

=
+

+H
u u u S

K
u u S S u

u

log 2

4
,

log 2

4

d

2
.

12 2 22 1 1

12 2

12 2 22 1

12

1

12 1

Thus, first-order deformations are trivial.

A.2. Second order deformations

We have seen that in all cases Q1 can be eliminated by a Miura transformation. For this reason, 
without loss of generality, we can assume the pencil has the form

ωΠ = + + +λ λ ε εQ Q ...2
2

3
3

Using the same arguments applied to first order deformations we can easily prove that:

 • general second order deformations can be always written as Q Xd2 2= ω  for a suitable 
vector field of degree 2

( ) ( )( ) ( ) ( )( ) ( )= + + + +X X u u u X u u u X u u u u X u u u X u u u, , , , , ,i i
xx

i
x

i
x x

i
x

i
xx1

1 2 1
2

1 2 1 2
3

1 2 1 2
4

1 2 2 2
5

1 2 2

  satisfying

Xd d 0.1 2 =ω ω

 • trivial second order deformations are those corresponding to vector fields of the form 
ω δ ω δ+H K1 2 , where the Hamiltonian functionals H and K have Hamiltonian densities of 
degree 1, namely

[ ( ) ( ) ] [ ( ) ( ) ]∫ ∫= + = +H h u u u h u u u x K k u u u k u u u x, , d , , , d .x x x x1
1 2 1

2
1 2 2

1
1 2 1

2
1 2 2

  Before we go into the details of the computations, let us observe that

( )
( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟δ

δ
δ
δ
δ

= =

∂
∂
−

∂
∂

∂
∂
−

∂
∂

=
−

H

H

u
H

u

H

u x

H

u

H

u x

H

u

R u u u

R u u u

d

d

d

d

,

,
,x

x

x

x

1

2

1 1

2 2

1 2 2

1 2 1
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  for ( ) ( ) ( )= ∂ − ∂R u u H u u H u u, , ,1 2
1 2

1 2
2 1

1 2  and similarly

( )
( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟δ

δ
δ
δ
δ

= =

∂
∂
−

∂
∂

∂
∂
−

∂
∂

=
−

K

K

u
K

u

K

u x

K

u

K

u x

K

u

S u u u

S u u u

d

d

d

d

,

,
,x

x

x

x

1

2

1 1

2 2

1 2 2

1 2 1

  for ( ) ( ) ( )= ∂ − ∂S u u K u u K u u, , ,1 2
1 2

1 2
2 1

1 2 .

We now proceed as follows:

 1. We solve the equation  =ω ω Xd d 01 2 , which leads to a solution depending on two functions 
of two variables and at most four functions of one variable.

 2. Up to Miura-type transformations, that is, using the freedom given by the functions R and 
S, we can eliminate the two functions of two variables.

 3. In the cases T3, N3, N5 and N6 with κ≠− −1, 2, we still use a Miura-type transformation 
to reduce the deformation to a more suitable form (see step 4).

 4. The last step is quite straightforward. We firstly take a generic Hamiltonian vector field of 
the form ω δ ω δ= −X H K1 2  with

( )  ( ) ∫ ∫∑ ∑= =H h u u x K k u u xlog d , log d ,
i j

ij x
i

x
j

i j
ij x

i
x
j

, ,

  where the coefficients hij and kij are arbitrary functions of ( )u u,1 2 . Then, comparing X 
with the vector field obtained above (step 3), we obtain the values of hij and kij which 
correspond to the final expression written in theorem 1.

Let us discuss in detail each case. In what follows, all the functions X R S, ,j
i , i  =  1, 2, 

= …j 1, , 5, will depend on ( )u u,1 2 , unless stated otherwise.

A.2.1. T3. Second order deformations. Let us assume η ≠ 022 . The solution of =ω ω Xd d 01 2  
for ( ) =Xdeg 2 is given by

( ( ) )⎜ ⎟
⎛
⎝

⎞
⎠

η
η

η
η

=

=

= ∂ − ∂

=

=

= − ∂ − ∂ + +

= ∂

= ∂ + ∂

= ∂

= −
η
η
−

X X

X X

X X X

X

X

X
u

X X u X X F

X X

X X X

X X

X F X

,

,
2

3

1

3
,

0,

0,

4

3 3
2 ,

,

,

,

e .
u

u

1
1

1
1

2
1

2
1

3
1

2 1
1

2 5
2

4
1

5
1

1
2

22 1

12 2
1

1 1
1

22

12 1
1

5
2

5
2

1

2
2

1 1
2

3
2

2 1
2

1 5
2

4
2

2 5
2

5
2

2 1
1

12 2

22 1

where F F,1 2 depend on u1. The components Y i of the vector field ω δ ω δ= +Y H K1 2  are
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η

η

η

η

η

η η

η

η

= − +

= − ∂ + ∂

= − ∂ + ∂

=

=

= −

= − ∂

= ∂ − ∂ − ∂ −

= ∂ − ∂

= −

Y R u S

Y R u S

Y R u S

Y

Y

Y R

Y R

Y R R u S S

Y R u S

Y R u S

,

,

,

0,

0,

,

,

,

,

.

1
1 12 1

2
1 12

1
1

1

3
1 12

2
1

2

4
1

5
1

1
2 22

2
2 22

1

3
2 12

1
22

2
1

1

4
2 12

2
1

2

5
2 12 1

Choosing R and S such that =X Yi i
1 1 for i  =  1, 2, we finally obtain

( ( ) )η
η

=

=

= − ∂

=

=

= − ∂ + +

= ∂

= ∂ + ∂

= ∂

=
η
η
−

X

X

X X

X

X

X u X X F

X X

X X X

X X

X F

0

0
1

3
,

0,

0,

3
2 ,

,

,

,

e .
u

u

1
1

2
1

3
1

2 5
2

4
1

5
1

1
2

22

12 1
1

5
2

5
2

1

2
2

1 1
2

3
2

2 1
2

1 5
2

4
2

2 5
2

5
2

2

12 2

22 1

Thus, these coefficients depend on two functions F1, F2 in the variable u1.
In the case η = 022 , the computation is easier. The condition Xd d 01 2 =ω ω  implies

=

=

= ∂

=

=

=

= ∂

= −∂

= −∂

= −

X X

X X

X X

X

X

X F

X F

X X

X X

X X

,

0,

0,

,

,

,

,

.

1
1

1
1

2
1

2
1

3
1

2 1
1

4
1

5
1

1
2

2
2

1

3
2

1 1
1

4
2

2 1
1

5
2

1
1
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where F depends on u1. Also in this case the freedom in R and S allows us to reduce X1
1 and 

X2
1 to zero, obtaining

( ) ( )= = + ∂ =X X Fu F u Fu0, xx x x x
1 2 1

1
1 2 1

The second component of the vector field can be written as

 ∫= ∂X F ud ,x2
2 1

and setting f  =  Fu1 yields

⎛
⎝
⎜

⎞
⎠
⎟″ ″δ δ δ= + +′ ′Q

f f f
0 0
0 3 2

.
xx x

2

Finally, in order to obtain the form we need to compute hij (step 3), we perform the canoni-
cal Miura transformation generated by the local Hamiltonian

⎛
⎝
⎜

⎞
⎠
⎟H

u F u F
u x

3 3
e d .

S

u

u x

22 1 2
2

12 2

2
2

12
1

1

12 2

22 1( )
( )

 ∫
η
η η

=− +
′ η

η
−

Remark. Let us point out that this solution can be obtained from the general case in the 
limit →η 022 .

A.2.2. N5. Second order deformations. The condition =ω ω Xd d 01 2  for ( ) =Xdeg 2 implies

( )/ /

/ /

/

/

θ
η η

θ θ η η

θ
η η

θ

η θ

θ

=

= ∂

= ∂

=

=

=

= ∂ + ∂ +
−

+ − +

= ∂ − ∂ + ∂ −
−

= − − ∂

= −

X X

X X

X X

X

X

X X

X X F F X X F

X X X F F

X F X

X F X

,

,

,

0,

0,

,

2

3

5 2

3
,

4 3

6
,

,

,

1
1

1
1

2
1

1 1
1

3
1

2 1
1

4
1

5
1

1
2

1
2

2
2

1 1
2 1 2

1 2

12 22
3 2

2
22

1
1 12

1
2

1

3
2

2 1
2

1 1
1 1 2

1 2

12 22
3 2

2

4
2 12 3 2

2 2 1
1

5
2 1 2

2 1
1

where Fi, for i  =  1, 2, are functions depending on u1 and ( ( ) )θ η η= + − −u u u2 12 1 2 22 1 1. The 
components Y i of the vector field ω δ ω δ= +Y H K1 2  are
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( )
( )
( )

( ( ) )
( ( ) )
( ) ( ( ) )
( )

η

η

η

η

η

η η

η

η

= − +

= −∂ +

= −∂ +

=

=

= − + +

= − ∂ + + ∂ +

= ∂ + − ∂ + +

= ∂ +

= +

Y R u S

Y R u S

Y R u S

Y

Y

Y R u u S

Y R u u S S

Y R u S R u u S

Y R u S

Y R u S

,

,

,

0,

0,

2 ,

2 ,

2 ,

,

.

1
1 12 1

2
1

1
12 1

3
1

2
12 1

4
1

5
1

1
2 22 1 2

2
2 22

1
1 2

1

3
2

1
12 1

2
22 1 2

4
2

2
12 1

5
2 12 1

Choosing R, S such that =X Yi i
1 1 for i  =  1, 2, we can reduce X1 to zero and the coefficients of 

X 2, respectively, to

( ) ( )

( ) ( )

( )

/ / /

/ /

/

/

θ θ η θ θ

θ θ

θ

θ

=

= ∂ − ∂ − +

= ∂ − ∂

= ∂

=

X

X F F F F

X F F

X F

X F

0,
2

3

7

3
,

1

3
,

,

.

1
2

2
2

1
1 2

2 2
1 2

2
22 3 2

2 1

3
2

1
1 2

2 2
1 2

2

4
2

2
1 2

2

5
2 1 2

2

Thus, the deformations of degree 2 depend on two functions of u1.
To reduce the deformation in the form written in theorem 1 (step 3) we perform the canoni-

cal Miura transformation generated by

( )
( ) ( )/

/
⎛
⎝
⎜

⎞
⎠
⎟∫ η

η η θ
θ

θ
=

−
+ +′−

−
H

u F
F

F
u x

3 8

6

log

2
d .

S
x

1

12 2

22 12 1 2
2 1 2

2

1
1 1

1

A.2.3. N3, N4 and N6. Second order deformations. The vector fields δ δ= +Y P H Q K are 
given by

( ( ) )
( ( ) )
( ( ) )

( )
( )

( ( ) ) ( )
( ( ) )

( )

η κ

η κ κ

η κ

η

η

η κ η

η κ

η κ

= − + +

= −∂ + + +

= −∂ + +

=

=

= − +

= −∂ +

= ∂ + + − ∂ +

= ∂ + +

= + +

Y R u S

Y R u S S

Y R u S

Y

Y

Y R u S

Y R u S

Y R u S R u S

Y R u S

Y R u S

1 ,

1 ,

1 ,

0,

0,

2 ,

2 ,

1 2 ,

1 ,

1 .

1
1 12 1

2
1

1
12 1

3
1

2
12 1

4
1

5
1

1
2 22 2

2
2

1
22 2

3
2

1
12 1

2
22 2

4
2

2
12 1

5
2 12 1
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In studying the solutions of the equation  =ω ω Xd d 01 2  we have to distinguish three cases: 
κ κ κ= = − ≠0, 2, 0, 2. This is due to the fact that the conditions coming from this equa-
tion include the following:

( ) ( )κ κ+ =X u u2 , 0.5
1 1 2

Case 1: κ = 0. The condition =ω ω Xd d 01 2  for ( ) =Xdeg 2 leads to
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where Fi for = …i 1, , 4 are arbitrary functions depending on u1, and ( )θ η η= − −u u222 1 12 2 1. 
Choosing R and S such that =X Yi i

1 1 for i  =  1, 2, we can reduce both Xi
1 and i  =  1, 2 to zero, 

obtaining
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In this case, the deformations of degree 2 depend on four functions on u1.

Case 2: κ = −2. The condition =ω ω Xd d 01 2  for ( ) =Xdeg 2 implies
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here ( )θ η η= + −u u2 12 2 22 1 1 and ( )=F F ui i
1 , for = …i 1, , 4. Choosing R, S such that =X Yi i

1 1 
for i  =  1, 2, we can reduce Xi

1 to zero, obtaining
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Also in this case, the deformations depend on four functions on u1.
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Case 3: κ≠ − −0, 1, 2. The condition =ω ω Xd d 01 2  for ( ) =Xdeg 2 implies
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here ( )θ η κ η= − +u u2 112 2 22 1 and Fi for i  =  1, 2 are arbitrary functions depending on u1. 

Choosing R, S such that =X Yi i
1 1 for i  =  1, 2 we can remove Xi

1, obtaining
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In this last case, the deformations depend on two functions of u1. The canonical Miura transfor-
mation reducing the pencil to the form described in the step 3 is generated by the Hamiltonian 
functional
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Appendix B. Lift of Frobenius structures

Recall that a Frobenius manifold is a smooth manifold M equipped with a pseudo-metric g 
with Levi-Civita connection ∇, a symmetric bilinear tensorial product on vector fields · and 
two vector fields e, E such that

 • λ∇ = ∇ + ⋅λ Y Y X YX X  defines a flat affine connection ∇λ for all λ∈R,
 • ∇ =e 0, [e, E]  =  e and ⋅ =e X X for all vector fields X,
 • ( )∇ ∇ =E 0, ⋅ = ⋅LE  and LEg  =  k g for some constant k.

Theorem 11. Let ( )⋅M g e E, , , ,  be a Frobenius manifold. Then the lifted tensors ˆ ˆ ˆ ˆ⋅g e E, , ,  
define a structure of Frobenius manifold on TM. The Frobenius potential of the lifted structure 

is given by the lift of the Frobenius potential ˆ = ∂
∂

F v .i F

ui

Proof. From (6.2) one readily sees that ĝ is symmetric and non-degenerate as soon as g is. 
If ∇ is the Levi-Civita connection of g, then the lift ∇̂ is the Levi-Civita connection of ĝ. This 
follows by the uniqueness of the Levi-Civita connection once one notes that ˆ ˆ∇ =g 0 and that 
∇̂ is torsion free. To see this note that ˆ ˆ∇ =g 0 for ∇ =g 0 and that ∇̂ is torsion free by proposi-
tion 8 and by the torsion-freeness of ∇.

From (6.4) is clear that ⋅̂ is symmetric if · is. Moreover, by the definition of complete 

lift for connections it follows that ˆ ˆ ˆλ∇ = ∇ + ⋅
λ

Y Y X YX X  for all λ∈R, where now X, Y are 

arbitrary tensor fields on TM. Thanks to proposition 8, then ∇̂λ is flat. All other conditions  
follows directly from definition of complete lift and invariance of the Lie derivative under  
complete lift.  ◼

At this point recall that a Frobenius manifold is said to be massive if the algebra structure 
induced by the product · on any tangent space to M is semisimple. More explicitly this means 
that there is no tangent vector X on M such that ⋅ … ⋅ =X X 0 for some finite product. One 
may wonder whether the semisimplicity assumption is preserved by complete lift or not. In 
fact it is not, nor is possible to obtain a massive Frobenius manifold by complete lift of any 
Frobenius structure on M. The reason is that any vector Y which is tangent to the fibres of TM 
is an idempotent for the algebra structure induced by ⋅̂. Indeed any such vector has the local 

expression ∂
∂

Y i
yi , whence it follows that ⋅̂ =Y Y 0 thanks to (6.4).

Remark. Given a Frobenius manifold ( )⋅M g e E, , , ,  one can define a hierarchy of quasilin-
ear systems of PDEs of the form

δ
δ

α= = = =α
α

u P
H

u
i n p n, 1, ..., , 1, ..., , 0, 1, 2, 3, ...t

i ij p

j

,
p,

where Pij is Hamiltonian operator of hydrodynamic type associated with the invariant metric 
g and αHp,  are suitable local functionals in involution

{ } ( )∫
δ
δ

δ
δ

= ∂ + =α β
α β

H H
H

u
g b u

H

u
x, d 0p q P

S

p

i
ij

x k
ij

x
k q

j, ,
, ,

1

with respect to the associated Poisson bracket {, }P. It is easy to check that the flows of the 
lifted hierarchy

ˆ
ˆδ
δ

α= = = =α
α

u P
H

u
i n p n, 1, ..., 2 , 1, ..., , 0, 1, 2, 3, ...t

i ij p

j

,
p,
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coincide with ‘half’ of the flows of the principal hierarchy of the lifted Frobenius structure. 
The involutivity of the lifted Hamiltonian functionals

ˆ ∫= ∂α αH v h xdp
S

s
s p, ,

1

follows from the identity (6.9). Indeed, due to this identity any family of 1-forms in involution 
with respect to { }⋅ ⋅, P defines a family of Hamiltonians in involution with respect to { } ˆ⋅ ⋅, P. If 
the 1-forms are exact the Hamiltonians on the tangent bundle are the lift of the Hamiltonians 
on the base manifold.

Appendix C. Lift of Hamiltonian vector fields

Given a Hamiltonian vector field δP H with ( )∫ h u u x, , ... d
S x1 , we want to compare its complete lift

( )
( )

( )
∑δ

δ
δ

=
∂
∂
+

∂
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δ̂P H P
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u u
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where ˆ [ ] ∫=
δ
δ

H u v v x, d
S

H

u1 . Since the components along ∂
∂u

 coincide we have to show that
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∑ ∑
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We observe that
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where the second identity has been obtained integrating by parts. Using these facts and taking 

into account that the operators ∂x and ( )
( )

∑ ∂
∂

vk k u k
 commute, we obtain
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In the non-scalar case the proof works in exactly the same way.
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