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Abstract
In this paper, we want to understand the Proudman resonance. It is a resonant 
respond in shallow waters of a water body on a traveling atmospheric disturbance 
when the speed of the disturbance is close to the typical water wave velocity. 
We show here that the same kind of resonance exists for landslide tsunamis and 
we propose a mathematical approach to investigate these phenomena based on 
the derivation, justification and analysis of relevant asymptotic models. This 
approach allows us to investigate more complex phenomena that are not dealt 
with in the physics literature such as the influence of a variable bottom or the 
generalization of the Proudman resonance in deeper waters. First, we prove a 
local well-posedness of the water waves equations with a moving bottom and 
a non constant pressure at the surface taking into account the dependence of 
small physical parameters and we show that these equations are a Hamiltonian 
system (which extends the result of Zakharov (1968 J. Appl. Mech. Tech. Phys. 
9 190–4)). Then, we justify some linear asymptotic models in order to study 
the Proudman resonance and submarine landslide tsunamis; we study the 
linear water waves equations and dispersion estimates allow us to investigate 
the amplitude of the sea level. To complete these asymptotic models, we add 
some numerical simulations.

Keywords: water waves equations, quasilinear hyperbolic system, 
asymptotic models, dispersion estimates
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1. Introduction

1.1. Presentation of the problem

A tsunami is popularly an elevation of the sea level due to an earthquake. However, tsunamis 
induced by seismic sources represent only 80% of the tsunamis. 6% are due to landslides and 
3% to meteorological effects (see the book of Levin and Nosov [21]). Big traveling storms 
for instance can give energy to the sea and lead to an elevation of the surface. In some cases, 
this amplification is important and this phenomenon is called the Proudman resonance in the 
physics literature. Similarly, submarine landslides can significantly increase the level of the 
sea and we talk about landslide tsunamis. In this paper, we study mathematically these two 
phenomena. We model the sea by an irrotational and incompressible ideal fluid bounded from 
below by the seabed and from above by a free surface. We suppose that the seabed and the 
surface are graphs above the still water level. We model an underwater landslide by a mov-
ing seabed (moving bottom) and the meteorological effects by a non constant pressure at 
the surface (air-pressure disturbance). Therefore, we suppose that b t X b X b t X, ,m0( ) ( ) ( )= + , 
where b0 represents a fixed bottom and bm the variation of the bottom because of the landslide. 
Similarly, the pressure at the surface is of the form P Pref+ , where Pref is a constant which 
represents the pressure far from the meteorological disturbance, and P(t, X) models the meteo-
rological disturbance (we assume that the pressure at the surface is known). We denote by d 
the horizontal dimension, which is equal to 1 or 2. X d∈R  stands for the horizontal variable 
and z∈R is the vertical variable. H is the typical water depth. The water occupies a moving 
domain X z H b t X z t X: , , , ,t

d 1{( ) ( ) ( )}ζΩ = ∈ − + < <+R . The water is homogeneous (con-
stant density ρ), inviscid, irrotational with no surface tension. We denote by U the velocity 
and Φ the velocity potential. We have U X,zΦ= ∇ . The law governing the irrotational fluids is 
the Bernoulli law

gz P
1

2

1
 in   ,t X z t,

2
ref| | ( )

ρ
∂Φ + ∇ Φ + = − ΩP (1)

where P is the pressure in the fluid domain. Changing Φ if necessary, it is possible to assume 
that P 0ref = . Furthermore, the incompressibility of the fluid implies that

0 in .X z t,    ∆ Φ = Ω (2)

We suppose also that the fluid particles do not cross the bottom or the surface. We denote by 
n the unit normal vector, pointing upward and n∂  the upward normal derivative. Then, the 
boundary conditions are

z t X1 0 on , ,t n
2    { ( )}ζ ζ ζ∂ − +|∇ | ∂ Φ = = (3)

and

b b z H b t X1 0 on , .t n
2    { ( )}∂ − +|∇ | ∂ Φ = = − + (4)

In 1968, Zakharov (see [33]) showed that the water waves problem is a Hamiltonian system 
and that ψ, the trace of the velocity potential at the surface ( zψ = Φ ζ| = ), and the surface ζ 
are canonical variables. Then, Craig, Sulem and Sulem (see [11] and [12]) formulate this 
remark into a system of two non local equations. We follow their construction to formulate 
our problem. Using the fact that Φ satisfies (2) and (4), we can characterize Φ thanks to ζ and 

zψ = Φ ζ| =

M Benjamin Nonlinearity 28 (2015) 4037



4039

⎪

⎪
⎧
⎨
⎩ b b

0 in ,

, 1 .

X z t

z z H b tn

,

2

   

ψ

∆ Φ = Ω

Φ = +|∇ | ∂ Φ = ∂ζ| = | =− +
 (5)

We decompose this equation in two parts, the surface contribution and the bottom contribution

,S BΦ = Φ + Φ

such that

⎪

⎪
⎧
⎨
⎩ b

0 in ,

, 1 0,

X z
S

t

z
S

z H b
S

n

,

2

   

ψ

∆ Φ = Ω

Φ = +|∇ | ∂ Φ =ζ| = | =− +
 (6)

and

⎪

⎪
⎧
⎨
⎩ b b

0 in ,

0, 1 .

X z
B

t

z
B

z H b
B

tn

,

2

   ∆ Φ = Ω

Φ = +|∇ | ∂ Φ = ∂ζ| = | =− +
 (7)

In the purpose of expressing (3) with ζ and ψ, we introduce two operators. The first one is the 
Dirichlet–Neumann operator

G b, : 1 ,z
S

n
2[ ]ζ ψ ζ+|∇ | ∂ Φ ζ| =� (8)

where SΦ  satisfies (6). The second one is the Neumann–Neumann operator

G b b, : 1 ,t z
B

n
NN 2[ ]ζ ζ∂ +|∇ | ∂ Φ ζ| =� (9)

where BΦ  satisfies (7). Then, we can reformulate (3) as

G b G b b, , .t t
NN[ ]( ) [ ]( )ζ ζ ψ ζ∂ − = ∂ (10)

Furthermore thanks to the chain rule, we can express t z( )∂Φ ζ| = , X z z,( )∇ Φ ζ| =  and z z( )∂ Φ ζ| =  in 
terms of ψ, ζ, G b,[ ]( )ζ ψ  and G b b, t

NN[ ]( )ζ ∂ . Then, we take the trace at the surface of (1) 
(since there is no surface tension we have Pz =ζ| =P ) and we obtain a system of two scalar 
equations that reduces to the standard Zakharov/Craig-Sulem formulation when b 0t∂ =  and 
P  =  0,

⎧
⎨
⎪

⎩
⎪

G b G b b

g
G b G b b P

, , ,

1

2

1

2

, ,

1
.

t t

t
t

NN

2
NN 2

2

[ ]( ) [ ]( )
( [ ]( ) [ ]( ) )

( )

ζ ζ ψ ζ

ψ ζ ψ
ζ ψ ζ ζ ψ

ζ ρ

∂ − = ∂

∂ + + |∇ | −
+ ∂ +∇ ⋅ ∇

+|∇ |
= −

 

(11)

In the following, we work with a nondimensionalized version of the water waves equa-
tions with small parameters ε, β and μ (see section 2.1). The wellposedness of the water waves 
problem with a constant pressure and a fixed bottom was studied by many people. Wu proved 
it in the case of an infinite depth without nondimensionalization ([31] and [32]). Then, Lannes 
treated the case of a finite bottom without nondimensionalization ([18]), Iguchi proved a local 
wellposedness result for μ small enough in order to justify shallow water approximations for 
water waves ([16]), and Lannes and Alvarez-Samaniego showed, in the case of the nondimen-

sionalized equations, that we can find an existence time T T

max ,
0

( )
=

ε β
 where T0 does not depend 

on ε, β and μ ([7]). More recently, Mésognon-Gireau improved the result of Lannes and 
Alvarez-Samaniego and proved that if we add enough surface tension we can find an existence 

time T T0=
ε

 where T0 does not depend on ε and μ ([24]). Iguchi studied the case of a moving 
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bottom in order to justify asymptotic models for tsunamis ([17]). Finally, Alazard, Burq and 
Zuily study the optimal regularity for the initial data ([2]) and more recently, Alazard, Baldi 
and Han-Kwan show that a well-chosen non constant external pressure can create any small 
amplitude two-dimensional gravity-capillary water waves ([3]). We organize this paper in two 
part. Firstly in section 2, we prove two local existence theorems for the water waves problem 
with a moving bottom and a non constant pressure at the surface by differentiating and ‘quasi-
linearizing’ the water waves equations and we pay attention to the dependence of the time of 
existence and the size of the solution with respect to the parameters ε, β, λ and μ. This theorem 
extends the result of Iguchi ([17]) and Lannes (chapter 4 in [20]). We also prove that the water 
waves problem can be viewed as a Hamiltonian system. Secondly in section 3, we justify some 
linear asymptotic models and study the Proudman resonance. First, in section 3.1 we study the 
case of small topography variations in shallow waters, approximation used in the Physics lit-
erature to investigate the Proudman resonance; then in section 3.2 we derive a model when the 
topography is not small in the shallow water approximation; and in section 3.3 we study the 
linear water waves equations in order to extend the Proudman resonance in deep water with 
a small fixed topography. Finally, appendix A contains results about the elliptic problem (17) 
and appendix B contains results about the Dirichlet–Neumann and the Neumann–Neumann 
operators. Appendix C comprises standard estimates that we use in this paper.

1.2. Notations

A good framework for the velocity in the Euler equations is the Sobolev spaces Hs. But we do 
not work with U but with ψ the trace of Φ, and U = X,zΦ∇ . It will be too restrictive to take ψ 
in a Sobolev space. A good idea is to work with the Beppo Levi spaces (see [14]). For s 0⩾ , 
the Beppo Levi spaces are

H L H˙ : , .s d d s d
loc
2 1( ) { ( ) ( )}ψ ψ= ∈ ∇ ∈ −R R R

In this paper, C is a constant and for a function f in a normed space X,( )|⋅|  or a parameter 
γ, C f ,( )γ| |  is a constant depending on f| | and γ whose exact value has non importance. The 
norm L2|⋅|  is the L2-norm and |⋅|∞ is the L∞-norm in dR . Let f d0( )∈ C R  and m∈N such that 

Lf

x
d

1 m ( )∈
+ | |

∞ R . We define the Fourier multiplier f D H L: m d d2( ) ( ) → ( )R R  as

̂u H f D u f u, .m d( ) ( ) ( ) ( ) ( )ξ ξ ξ∀ ∈ = �R

In dR  we denote the gradient operator by ∇ and in Ω or S 1, 0d ( )= × −R  the gradient operator 

is denoted X z,∇ . Finally, we denote by D: 1 2Λ = +| |  with D i= − ∇.

2. Local existence of the water waves equations

This part is devoted to the wellposedness of the water waves equations (theorems 2.3 and 2.4). 
We carefully study the dependence on the parameters ε, β, λ and μ of the existence time and 
of the size of the solution. Contrary to [20] and [17], we exhibit the nonlinearities of the water 
waves equations in order to obtain a better existence time.

2.1. The model

In this part, we present a nondimensionalized version of the water waves equations. In order to 
derive some asymptotic models to the water waves equations we introduce some dimensionless 
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parameters linked to the physical scales of the system. The first one is the ratio between the 
typical free surface amplitude a and the water depth H. We define : a

H
ε = , called the nonlinear-

ity parameter. The second one is the ratio between H and the characteristic horizontal scale L. 
We define : H

L

2

2µ = , called the shallowness parameter. The third one is the ratio between the 

order of bottom bathymetry amplitude abott and H. We define : a

H
bottβ = , called the bathymetric 

parameter. Finally, we denote by λ the ratio of the typical landslide amplitude a mbott,  and abott. 
We also nondimensionalize the variables and the unknowns. We introduce

⎧

⎨
⎪⎪

⎩
⎪
⎪

X
X

L
z

z

H a
b

b

a
b

b

a
b

b

a
t

gH

L
t

H

aL gH

L

Ha gH

H

aL gH
P

P

a g

, , , , , , ,

, , , ,

m
m

m

S S B

m

B

bott
0

0

bott bott,

bott,
( ) ( )

ζ
ζ

ψ ψ
ρ

= = = = = = =

Φ = Φ Φ = Φ = =

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′

 

(12)

where

{( ) ( ) ( )}′ β εζΩ = ∈ − + < <′ ′ ′ ′ ′ ′ ′ ′ ′+RX z b t X z t X, , 1 , , .t
d 1

Remark 2.1. It is worth noting that the nondimensionalization of SΦ , ψ and t comes from 
the linear wave theory (in shallow water regime, the characteristic speed is gH). See sec-
tion 1.3.2 in [20]. Let us explain the nondimensionalization of BΦ . Consider the linear case

⎪

⎪

⎧
⎨
⎩

H z

b

0, 0,

0, .

X z
B

z
B

z z H
B

t

,

0

∆ Φ = − < <

Φ = ∂ Φ = ∂| = | =−

A straightforward computation gives bB z D

D H D t
sinh

cosh

( )
( )

Φ = ∂| |
| | | |

. If the typical wavelength is L, 

the typical wave number is 
L

2π. Furthermore, the typical order of magnitude of bt∂  is 
a gH

L
mbott, . 

Then, the order of magnitude of BΦ  in the shallow water case is

L gH a

L

gH a H

L2

sinh 2

cosh 2
.

m
H

L

H

L

mbott, bott,( )
( )π

π

π
∼

For the sake of clarity, we omit the primes. We can now nondimensionalize the water waves 
problem. Using the notation

( )∇ = ∇ ∂ ∆ = ∆ + ∂μ μ: ,  and  : ,X z
μ

X z
t

X z
μ

X z, ,
2

the water waves equations (11) become in dimensionless form

⎧

⎨

⎪
⎪

⎩

⎪
⎪

G b G b b

G b G b b
P

1
, , ,

2 2

, ,

1
.

t t

t

t

NN

2

NN
2

2 2

( )
[ ]( ) [ ]( )

[ ]( ) [ ]( ) ( )

( )

ζ
µ

εζ β ψ
βλ
ε

εζ β

ψ ζ
ε
ψ

ε
µ

εζ β ψ εζ β µ εζ ψ

ε µ ζ

∂ − = ∂

∂ + + |∇ | −
+ ∂ + ∇ ⋅ ∇

+ |∇ |
= −

µ µ

µ
λβµ
ε µ

 (13)
In the following n∂  is the upward conormal derivative

μ
n

I 0
0 1

.S μ
n

d
X,z

S
|

⎛
⎝
⎜

⎞
⎠
⎟ Φ∂ Φ = ⋅ ∇ ∂Ω
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Then, The Dirichlet–Neumann operator G b,[ ]εζ βµ  is

G b, : 1 ,z
S

X z
S

z z
S

n
2 2[ ]( )εζ β ψ ε ζ µε ζ= + |∇ | ∂ Φ = − ∇ ⋅ ∇ Φ + ∂ Φµ εζ εζ εζ| = | = | =

 
(14)

where SΦ  satisfies

⎪

⎪
⎧
⎨
⎩

0 in ,

, 0,

X z
S

t

z
S

z b
S

n

,

1

   

ψ

∆ Φ = Ω

Φ = ∂ Φ =

µ

εζ β| = | =− +
 (15)

while the Neumann–Neumann operator G b,NN[ ]εζ βµ  is

G b b, : 1 ,t z
B

X z
B

z z
B

n
NN 2 2[ ]( ) ( )εζ β ε ζ µ εζ∂ = + |∇ | ∂ Φ = − ∇ ⋅ ∇ Φ + ∂ Φµ εζ εζ εζ| = | = | =

 
(16)

where BΦ  satisfies

⎪

⎪
⎧
⎨
⎩ b b

0 in ,

0, 1 .

X z
B

t

z
B

z b
B

tn

,

2 2
1

   

β

∆ Φ = Ω

Φ = + |∇ | ∂ Φ = ∂

µ

εζ β| = | =− +
 (17)

Remark 2.2. We have nondimensionalized the Dirichlet–Neumann and the Neumann– 
Neumann operators as follows

[ ]( ) [ ]( ) [ ]( ) [ ]( )ζ ψ εζ β ψ ζ εζ β= ∂ = ∂′ ′ ′ ′ ′ ′µ µ ′G b
aL gH

H
G b G b b

a gH

L
G b b, , , , , .t

m
t2

NN bott, NN

We add two classical assumptions. First, we assume some constraints on the nondimen-
sionalized parameters and we suppose there exist 0maxρ >  and 0maxµ > , such that

0 , , 1, and .max max⩽ ⩽     ⩽ε β βλ
βλ
ε

ρ µ µ< (18)

Furthermore, we assume that the water depth is bounded from below by a positive constant

h b h0, 1 .min min⩾εζ β∃ > + − (19)

In order to quasilinearize the water waves equations, we have to introduce the vertical speed 
at the surface w and horizontal speed at the surface V . We define

⎜ ⎟
⎛
⎝

⎞
⎠w w b b

G b G b b
: , ,

, ,

1
,t

t
NN

2 2
[ ]

[ ]( ) [ ]( )
εζ β ψ

βλ
ε

εζ β ψ µ εζ β εµ ζ ψ

ε µ ζ
= ∂ =

+ ∂ + ∇ ⋅ ∇

+ |∇ |

µ
βλ
ε µ

 

(20)

and

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠V V b b w b b: , , , , .t t[ ] [ ]εζ β ψ

βλ
ε

ψ ε εζ β ψ
βλ
ε

ζ= ∂ = ∇ − ∂ ∇ (21)

2.2. Notations and statement of the main results

In this paper, d 1 or 2   = , t d
0 2
> , N∈N and s 0⩾ . The constant T 0⩾  represents a final time. 

The pressure P and the bottom b are given functions. We suppose that b W H; N d3, ( ( ))∈ ∞ +R R  
and P W H; ˙ N d1, 1( ( ))∈ ∞ + +R R . We denote by MN a constant of the form

M Benjamin Nonlinearity 28 (2015) 4037
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⎛
⎝
⎜

⎞
⎠
⎟M C

h
b

1
, , , .N H L H

min
max t N

t X
t Nmax 0 2, max 0 2,( ) ( )µ ε ζ β= | | | |+ ∞ + (22)

We denote by U : , t( )ζ ψ=  the unknowns of our problem. We want to express (11) as a quasi-
linear system. It is well-known that the good energy for the water waves problem is

( ) ∣ ∣ (∣ ∣ ∣ ∣ )
| |⩽

( ) ( )∑ψ ζ ψ= + +
α α

α α
∈

E
N

P PU ,N

H N
L L

2

,

2 2

d
3
2

2 2 (23)

where ( )ζ ζ= ∂α
α: , ( )ψ ψ ε ζ= ∂ − ∂α

α αw:  and : D

D1
=

µ

| |

+ | |
P . This energy is motivated by 

the linearization of the system around the rest state (see 4.1 in [20]). P acts as the square 
root of the Dirichlet–Neumann operator (see [20]). Here, ( )ζ α  and ( )ψ α  are the Alinhac’s good 
unknowns of the system (see [5] and [4] in the case of the standard water waves problem). We 
define ( )( ) ( ) ( )ζ ψ=α α αU : , t. We can introduce an associated energy space. Considering a T 0⩾ ,

E U T H H U L T: 0, ; ˙ , 0, .T
N t d d N2 20{ ([ ] ( ) ( )) ( ) ([ ])}= ∈ × ∈+ ∞C ER R (24)

Our main results are the following theorems. We give two existence results. The first theorem 
extends the result of Iguchi (theorem 2.4 in [17]) since we give a control of the dependence of 
the solution with respect to the parameters ε, β and μ and we add a non constant pressure at 
the surface and also extends the result of Lannes (theorem 4.16 in [20]), since we improve the 
regularity of the initial data and add a non constant pressure pressure at the surface and a mov-
ing bottom. Notice that we explain later what is condition (29) (it corresponds to the positivity 
of the so called Rayleigh-Taylor coefficient).

Theorem 2.3. Let A  >  0, t d
0 2
> , N tmax 1, 30⩾ ( )+ , U EN0

0∈ , b W H; N d3, ( ( ))∈ ∞ +R R  and 
P W H; ˙ N d1, 1( ( ))∈ ∞ + +R R  such that

U b P A.N
t L H L H

0
t X

N
t X

N( ) ⩽βλ
ε

+ ∂ + ∇∞ ∞E

We suppose that the parameters , , ,ε β µ λ satisfy (18) and that (19) and (29) are satisfied 
initially. Then, there exists T  >  0 and a unique solution U ET

N∈  to (13) with initial data U0. 
Moreover, we have

T
T T

b P T
c and U cmin

max ,
, ,

1
    sup ,

t L H L H t T

N0 0

0

1

0,

2

t X
N

t X
N( )

( )
[ ]

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ε β

=
∂ + ∇

= =βλ
ε

∈∞ ∞

E

with c C A b P, , , , , ,j
h W H W H

1 1
max max t X

N
t X

N
min min

3, 1,( )µ ρ= ∇∞ ∞
a

.

Notice that if bt∂  and P are of size max ,( )ε β , we find the same existence time that in theo-
rem 4.16 in [20]. The second result shows that it is possible to go beyond the time scale of the 
previous theorem; although the norm of the solution is not uniformly bounded in terms of ε 
and β, we are able to make this dependence precise. This theorem will be used to justify some 
of the asymptotic models derived in section 3 over large time scales when the pressure at the 
surface and the moving bottom are not supposed small. We introduce : max , 2( )δ ε β= .

Theorem 2.4. Under the assumptions of the previous theorem, there exists T0  >  0 such that 

∈
δ

U E T
N

0
. Moreover, for all [ ]α∈ 0, 1

2
, we have
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( ) ⩽
δ

µ ρ= = ∇

δ

α
∈ α

∞ ∞E
a

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

T
c U

c
c C A

h
b P

1
, sup , ,

1
,

1
, , , , .

t
T

N j
W H W H

0

1

0,

3

2
min min

max max t X
N

t X
N

0

3, 1,

Notice that when bt∂  and P are of size max ,( )ε β , the existence time of theorem 2.3 is better 
than the one of theorem 2.4. Theorem 2.4 is only useful when bt∂  and P are not small. Notice 
finally, that condition (29) is satisfied if ε is small enough. Hence, since in the following, ε is 
small, it is reasonable to assume it.

2.3. Quasilinearization

Firstly, we give some controls of Hsψ| |P  and ( )ψ| |αP Hs with respect to the energy UN( )E .

Proposition 2.5. Let T  >  0, >t d
0 2

 and N t2 max 1, 0⩾ ( )+ . Consider U ET
N∈ , b W H; N d1, ( ( ))∈ ∞ +R R ,  

such that ζ and b satisfy condition (19) for all t T0 ⩽ ⩽ . We assume also that μ satisfies (18). 

Then, for t T0 ⩽ ⩽ , for α∈Nd with N 1⩽α| | −  and for s N0 1

2
⩽ ⩽ − ,

⩽ ( )( )ψ ψ ψ
βλ
ε

|∂ | +| | +| | + ∂α
α ∞EP P P M U M b .L H H N

N
N t L H

1
2s

t X
N2 1

Proof. For the first inequality, we have thanks to Proposition C.1,

⩽ ( )

⩽

( )

( )

ψ ψ ε ζ

ψ
ε

µ
ζ

|∂ | | | + | ∂ |

| | + | ∂ |

α
α

α

α
α

P P P

P

w

w

,

.

L L L

L H1
4

2 2 2

2 1
2

But Ḣ d2( )ψ∈ R . Then by Proposition B.8, w H d1( )∈ R  and ( )ζ∂ ∈α RH d1 . Using Proposition 
C.2, we obtain

| | ⩽ | | | | ⩽ | | | | | | | |( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠ψ ψ ε ζ ψ ε ζ ψ

βλ
ε

∂ + + + ∂α
α αP P P PC

w

μ
M b .L L

H

H L N H H t H1
4

N N2 2

1

2 3
2

1

The other inequalities follow with the same arguments, see for instance lemma 4.6 in [20].  □

The following statement is a first step to the quasilinearization of the water waves equa-
tions. It is essentially proposition 4.5 in [20] and lemma 6.2 in [17]. However, we improve 
the minimal regularity of U (we decrease the minimal value of N to 4 in dimension 1) and we 
provide the dependence in bt∂  which does not given in [17]. For those reasons, we give a proof 
of this proposition.

Proposition 2.6. Let t d
0 2
> , T  >  0, N tmax , 1 30⩾ ( )+ , b W H; N d1, ( ( ))∈ ∞ +R R  and U ET

N∈ , 

such that ζ and b satisfy condition (19) for all t T0 ⩽ ⩽ . We assume also that μ satisfies (18). 
Then, for all α∈Nd, N1 ⩽ ⩽α| | , we have,

μ
G b G b b

μ
G b G b b

V R1

1
, ,

1
, ,

.

μ μ t μ μ t

N

NN NN[ ]( ) [ ]( ) [ ]( ) [ ]( )

( )

( )

{| | } ( )

⎛
⎝
⎜

⎞
⎠
⎟εζ β ψ

λβ
ε

εζ β εζ β ψ
βλ
ε

εζ β

ε ζ

∂ + ∂ = + ∂ ∂

− ∇ ⋅ +

α
α

α

α α α=

Furthermore Rα is controlled
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⩽ ( ) ( )εζ β
βλ
ε

| | | | + ∂α ∞ER M b U M b, .L N H
N

N t L H

1
2N

t X
N2

Proof. We adapt and follow the proof of proposition 4.5 in [20]. See also Proposition C.4 in 
[17]. Using Proposition B.13, we obtain

[ ]( ) [ ]( ) [ ]( ) [ ]( )

( )

( )

{| | } ( )

⎛
⎝
⎜

⎞
⎠
⎟εζ β ψ

λβ
ε

εζ β εζ β ψ
βλ
ε

εζ β

ε ζ

∂ + ∂ = + ∂ ∂

− ∇ ⋅ +

α
α

α

α α α=

μ
G b G b b

μ
G b G b b

V R1

1
, ,

1
, ,

,

μ μ t μ μ t

N

NN NN

where Rα is a sum of terms of the form (we adopt the notation of Remark B.12 in appendix B.3)

( ) ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟ψ

βλ
ε

ζ ζ= ∂ + ∂ ∂ ∂ ∂ ∂ ∂ι ν
ν ν ι ι ι ιA d

μ
G G b b b:

1
. , ..., ; , ..., ,j

j
μ μ t, ,

NN j j1 1

where j is an integer and , ..., j1ι ι  and ν are multi-index, and

N ,
l j

l

1⩽ ⩽
∑ ι ν| |+| |=

with j N N, , 1, , 0 and 0, 0,l0( | | | |) ( ) ( )ι ν ≠ . Here l0ι  is such that max l j
l l

1
0

⩽ ⩽ ι ι| |=| |. In particular, 
N1 l0⩽ ⩽ι| | . We distinguish several cases.

(a) N 2l0 ⩽ι ν| |+| | −  and N 3l0 ⩽ι| | −  or Nl0 ⩽ι ν| |+| | , N 3l0 ⩽ι| | −  and N 2⩽ν| | −  :

Applying the second point of theorem 3.28 in [20] and the first point of Proposition B.15 

with s 1

2
=  and t tmin ,0 0

3

2( )= , we get that

⎡
⎣⎢

⎤
⎦⎥A M b b, ,j L N

l
H H t L, ,

l l
2 3 1 2⩽ ( )∏ ε ζ β ψ

βλ
ε

| | | ∂ ∂ | | ∂ | + |∂ ∂ |ι ν
ι ι ν νP

and the result follows by proposition 2.5.

(b) N 2l0ι| |= −  and or0, 1 2   ν| |=  :

We apply the fourth point of theorem 3.28 in [20] and the second point of Proposition B.15 

with s 1

2
=  and t tmax , 10 0( )= ,

⎡
⎣⎢

⎤
⎦⎥A M b b b, , .j L N H

l l
H H t H, ,

l l l l
N N N2

0 0
3
2

0

2 2 2⩽ ( ) ( )∏ε ζ β ε ζ β ψ
βλ
ε

| | | ∂ ∂ | | ∂ ∂ | | ∂ | + |∂ ∂ |ι ν
ι ι ι ι ν ν

≠

− − −P

Then, we get the result thanks to proposition 2.5.

(c) 1ι ι=  with N 1ι| |= − , j 1ν| |= =  :

We proceed as in proposition 4.5 in [20], using theorem 3.15 in [20] and Propositions B.7, 
B.8 and B.13.

(d) N 1l0ι| |= −  and 0ν| |=  :

Here j  =  2 and 12ι| |= . For instance we consider that l0  =  1 and 12ι| |= . Using the second 
inequality of Proposition B.15 we have
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d G b b b M b b b. , ; , , , .t
L

N
H H

t H
2 NN 1 2 1 2

2

1 1

1

2 2

2
2( ) ( ) ⩽ ( ) ( )ζ ζ ε ζ β ε ζ β∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂µ

ι ι ι ι ι ι ι ι

Furthermore, using two times Proposition B.13, we get

( ) ( ) [ ] ( ) ( )

[ ] ( ) ( )

( ( ) ( ))
[ ]( ( )) ( )

[ ]( ( ) ( ))
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⎝
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⎛
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⎠
⎟
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ε
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ε
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− ∂ ∂
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∼
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μ
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μ
w
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μ
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dG b b V b
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1
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, , 0 . 0, .

μ μ

μ

μ

μ

2

NN

NN

1 2 1 2 1 2

1 2

1 2

1 2

1 2

The control follows from the first inequality of theorem 3.15 and proposition 4.4 in [20], and 
Propositions B.8, B.11 and B.14.

(e) N 1ν| |= −  and 1l0ι| |=  :

Here, j  =  1. It is clear that

dG b b M b. ; .μ t
L

N t H
NN

N
1 1

2
( ) ( ) ⩽βλ

ε
ζ

βλ
ε

∂ ∂ ∂ ∂ ∂ν ι ι

Furthermore,

μ
dG b

μ
dG b

μ
dG

μ
w b

1
. ;

1
. ;

1
. ; .μ μ μ

1 1 1 1 1 1( ) ( ) ( ) ( ) ( )( )

⎛

⎝
⎜

⎞

⎠
⎟ψ ζ ψ ζ

ε
ζ ζ∂ ∂ ∂ = ∂ ∂ + ∂ ∂ ∂ν ι ι

ν
ι ι ν ι ι

Then, using theorem 3.15 in [20] and proposition 2.5, we get the result.  □

This proposition enables to quasilinearize the first equation of the water waves equations. 
For the second equation, it is the purpose of the following proposition.

Proposition 2.7. Let T  >  0, N tmax , 1 30⩾ ( )+ , b W H; N d1, ( ( ))∈ ∞ +R R  and U ET
N∈ , such 

that ζ and b satisfy (19) for all t T0 ⩽ ⩽ . We assume also that μ satisfies (18). Then, for all 
α∈Nd, N1 ⩽ ⩽α| | , we have,

μ
μ w V w

μ
w G

w G b S

2 2
1

.

μ

μ t

2 2 2 2

NN

| | ( | | ) ( ) ( )

( )

( )
⎡
⎣⎢

⎤
⎦⎥

ε
ψ

ε
ε ζ ε ψ ε ζ

ε
ψ

βλ

∂ ∇ − + ∇ = ⋅ ∇ + ∂ ∇ − ∂

− ∂ ∂ +

α
α

α α

α
α

Furthermore Sα is controlled

⩽ ( ) ( )ε
βλ
ε

ε
βλ
ε

| | + ∂ + ∂α ∞ ∞E EP ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟S M U C M b U M b, .L N

N
N t L H

N
N t L H

1
2

2

t X
N

t X
N2

Proof. The proof of this proposition is similar to the proof of proposition 4.10 in [20] expect 
we use Propositions B.8 and B.13. See also Proposition C.4 in [17].  □
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Thanks to this linearization, we can ‘quasilinarize’ equations (13). It is the purpose of the 
next proposition. Let us introduce, the Rayleigh-Taylor coefficient

( ) [ ]

[ ] [ ]

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝
⎜

⎛
⎝

⎞
⎠
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⎠
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⎠
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⎝
⎜

⎛
⎝

⎞
⎠
⎞
⎠
⎟

β ε εζ β ψ
βλ
ε

ε εζ β ψ
βλ
ε

εζ β ψ
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ε

= = + ∂ ∂

+ ∂ ⋅ ∇ ∂

a a U b w b b

V b b w b b

: , 1 , ,

, , , , .

t t

t t
2

 

(25)

This quantity plays an important role. We also introduce two new operators,

U b μ
G b

U b
, :

0
1

,

, 0

μ[ ]
[ ]

( )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

β
εζ β

β
=

−
A

a

 (26)

and

[ ] ( )⎛
⎝
⎜

⎞
⎠
⎟β

ε
ε

=
∇ ⋅

⋅ ∇
B U b

V
V

, :
• 0

0
. (27)

We can now quasilinearize the water waves equations. We use the same arguments as in prop-
osition 4.10 in [20] and part 6 in [17]. Notice that we give here a precise estimate with respect 
to bt∂  and P of the residuals Rα and Sα and that the minimal value of N, regularity of U, is 
smaller than in proposition 4.10 in [20].

Proposition 2.8. Let T  >  0, ⩾ ( )+N tmax , 1 30 , ( ( ))∈ ∞ +R Rb W H; N d2, , ( ( ))∈ ∞ + +R RP L H; ˙ N d1  
and U ET

N∈  satisfies (19) for all t T0 ⩽ ⩽  and solving (13). We assume also that μ satisfies 
(18). Then, for all α∈Nd, N1 ⩽ ⩽α| | , we have,

[ ]( ) [ ]( ) [ ]( ) ( )( ) ( ) {| | } ( ) ⎜ ⎟
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(28)

Furthermore, R
∼
α and Sα satisfy
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Proof. Thanks to Proposition B.15, we get

[ ]( ) [ ]( ) ⩽ [ ]( ) ( )

⩽ ( )
∫εζ β εζ β ζ

εζ β

∂ ∂ − ∂ ∂ ∂ ∂

| | ∂ ∂

µ
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µ
α

α
∞

G b b G b dG z z b b b z

M b b

, 0, 0 , . , d

, .

t t
L

t
L

N H t L H

NN NN

0

1
NN

N
t X

N

2 2

Then, denoting [ ]( ) [ ]( )εζ β= + ∂ ∂ − ∂ ∂∼
α α µ

α
µ

αR R G b b G b, 0, 0t t
NN NN , we obtain the first equa-

tion  thanks to proposition 2.6. For the second equation, using proposition 2.7 and the first 
equation of the water waves problem, we have
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2

and the result follows.  □

In the case of a constant pressure at the surface and a fixed bottom, it is well-known that 
system (28) is symmetrizable if

U b0, , .min min( ) ⩾β∃ >a a a (29)

Then, we introduce the symmetrizer

U b
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μ
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This symmetrization has an associated energy

( ) ( [ ]( ) )    

( ) [ ]

( ) ( )

( ) ( )

[ ]

⩽
∑

β α

ζ ψ
µ

εζ β ψ

= ≠

= | | + Λ Λ

=

α
α α

µ

α

α

| |

F S

F

F F

⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟
⎞
⎠
⎟

U U b U U

U G b

U U

1

2
, , , if 0,

1

2

1

2
,

1
, ,

.

L

H
L

N

N

0 2
3
2

3
2

2

3
2 2

 

(31)

As in lemma 4.27 in [20], it can be shown that N[ ]F  and N[ ]E  are equivalent in the following 
sense.

Proposition 2.9. Let T  >  0, N∈N, U ET
N∈  satisfying (19) and (29) for all t T0 ⩽ ⩽ . Then, 

for all k N0 ⩽ ⩽ , k[ ]F  is comparable to kE
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∞
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 (32)

2.4. Local existence

The water water equations can be written as follow:

U U P0, ,t
t( ) ( )∂ + = −N (33)

with U U U, t
1 2( ) ( ( ) ( ))=N N N  and

U
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According to our quasilinearization, we need that a be a positive real number. Therefore, we 
have to express a without partial derivative with respect to t, particularly when t  =  0. It is easy 
to check that (we adopt the notation of Remark B.12 in appendix B.3)

U b V b b w b b

dw b U b w b P U b
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(35)

The following proposition gives estimates for U b,( )βa . It is adapted from Proposition C.6  
in [17].

Proposition 2.10. Let T  >  0, t d
0 2
> , N tmax , 1 30⩾ ( )+ , E, T

N( )ζ ψ ∈  is a solution of the wa-

ter waves equations (13), P L H; ˙ N d1( ( ))∈ ∞ + +R R  and b W H; N d2, ( ( ))∈ ∞ +R R , such that condi-
tion (19) is satisfied. We assume also that μ satisfies (18). Then, for all t T0 ⩽ ⩽ ,
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Proof. Using the first point of Proposition B.8 and Product estimate Proposition C.2 we have
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2
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Furthermore, thanks to the first point of Proposition B.15 and the first point of theorem 3.28 
in [20] we obtain
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Then, the first inequality follows easily from Propositions B.8 and C.2 and Product estimate 
Proposition C.2. The second inequality can be proved similarly.  □

We can now prove theorems 2.3 and 2.4. We recall that : max , 2( )δ ε β= .

Proof. We slice up this proof in three parts. First we regularize and symmetrize the equa-
tions, then we find some energy estimates and finally we conclude by convergence. We only 
give the energy estimates in this paper and a carefully study of the nonlinearities of the water 
waves equations is done. We refer to the proof of theorem 4.16 in [20] for the regularization, 
the convergence and the uniqueness (see also part 7 in [17]). For theorem 2.3 (respectively 

theorem 2.4), we assume that U solves (13) on T0,[ ] ⎡
⎣

⎤
⎦respectively on 0, T( )   
δ

 and that (19) 

and (29) are satisfied for h

2
min and 

2
mina  on T0,[ ] ⎡

⎣
⎤
⎦respectively on 0, T( )   
δ

 for some T  >  0.
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(a) 0α| |= , The 0—energy

We proceed as in section 4.3.4.3 in [20] and part 6 in [17]. We have

( ( ) ) ( )( ) [ ] ( ) [ ]( )

( ( ) ) [ ] [ ]
⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟
⎞
⎠
⎟

⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟

εζ β ψ ζ ψ
βλ
ε

εζ β ζ

ζ εζ β ψ εζ β ψ

= Λ ∂ ∂ Λ + Λ ∂ Λ

− Λ − Λ − Λ Λ

F

N

t
U

μ
dG b b G b b

U
μ

G b
μ

G b P

d

d

1

2
, . , , , ,

,
1

,
1

, , .

μ t t
L

μ t
L

μ

L

μ

L

0 3
2

3
2

3
2

NN 3
2

3
2 2

3
2

3
2

3
2

2 2

2 2

 

(36)

We have to control all the term in the rhs.

 • Control of G b b, ,t
L

3
2

NN 3
2

2( )[ ]( )εζ β ζΛ ∂ Λβλ
ε µ .

  Using Proposition B.7, we get

G b b M b U, , .t
L

N t L H
N3

2
NN 3

2
1
2

t X
N

2( )[ ]( ) ⩽ ( )βλ
ε

εζ β ζ
βλ
ε

Λ ∂ Λ ∂µ ∞ E

 • Control of U G b, ,
L

3
2 2

1 3
2

2( ( ))( ( ) ) [ ]ζ εζ β ψΛ − Λ
µ µN .

  Using propositions 2.5 and B.8, we get

⎜ ⎟

⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟
⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠

U G b U G b

M U M b U

,
1

,
1

, ,

.

L
H

L

N
N

N t L H
N

3
2 2

3
2 2

3
2

3
2

2

t X
N

2

3
2

2

( ( ) ) [ ] ⩽ ( ) [ ]

⩽ ( ) ( )

ζ
µ

εζ β ψ ζ
µ

εζ β ψ

ε
βλ
ε

ε

Λ − Λ − Λ

+ ∂

µ µ

∞

N N

E E

 • Control of G b P, ,
L

1 3
2

3
2

2( ( ) )[ ]εζ β ψΛ Λ
µ µ .

  We get, using remark 3.13 in [20],

⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟G b P M E U P

1
, , .

L

N
N

L H

3
2

3
2

1
2

t X
N

2

[ ] ⩽ ( )
µ

εζ β ψΛ Λ |∇ |µ ∞

 • Control of dG b b, . , ,t t
L

1

2

3
2

3
2

2( ( ) )[ ] ( )εζ β ψ ζ ψΛ ∂ ∂ Λ
µ µ .

  Using proposition 3.29 in [20], the second point of theorem 3.15 in [20], Propositions B.7 
and C.2 , we get

dG b b M U b

M U b U

1
, . , , ,

max , .

t t
L

N t H H

N
N

t L H
N

3
2

3
2 1

2

3
2

N

t X
N

2
2 3

2( ( ) )[ ] ( ) ⩽ ( ( ) )

⩽ ( ) ( ) ( )

µ
εζ β ψ ζ ψ ε β ψ

ε β βλ

Λ ∂ ∂ Λ ∂

+ ∂

µ −

∞

N

E E

P

Finally, gathering all the previous estimates, we get that

( )( ) ⩽ ( ) ( ) ( )

( ) | |⎜ ⎟
⎛
⎝

⎞
⎠

ε ρ ε β

βλ
ε

+ ∂

+ ∇ + ∂

∞

∞ ∞

F E E
t

U M U M C b U

M E U P b

d

d
, max ,

.

N
N

N t L H
N

N
N

L H t L H

0 3
2 max t X

N

t X
N

t X
N

 
(37)
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(b) 0α| | > , the higher orders energies

We proceed as in section 4.3.4.3 in [20] and part 6 in [17]. A simple computation gives

( ( )) ( ( )) [ ]( )

[ ]( ) [ ] [ ]( )

( ) [ ]( ) ( )

{| | } ( ) ( ) ( )

{| | } ( ) ( ) ( )

( ) ( ) ( ) ( )

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

ε ζ ζ ζ
βλ
ε

ε εζ β ψ ψ εζ β ψ

ζ ζ εζ β ψ ζ ψ

= − ∇ ⋅ + ∂∂ +

− ⋅ ∇ + − ∂

+ ∂ + ∂ ∂

∼α
α α α α

α
α

α α α α α
α

α α α α

=

=

F a a

a

t
U V G b R

μ
G b V

μ
G b S P

μ
dG b b

1

1

d

d
, , 0, 0

1
, ,

1
, ,

1

2
,

1

2

1
, . , , .

N L μ t
L

N μ

L

μ

L

t L μ t t

L

NN
2

2

2 2

2
2

 

(38)

We have to control all the term in the rhs.

 • Control of ( )( ) ( )ζ ζ∂ α αa ,t L2.

  Using the second point of proposition 2.10 we get

( )( ) ⩽ ( ) ( )

( ) ( )

( ) ( )

⎜ ⎟
⎛
⎝

⎞
⎠

ζ ζ ρ ε ε

βλ
βλ
ε

ε

∂ ∂ ∇

+ ∂ ∇ + ∂

α α ∞ ∞

∞ ∞ ∞

E E

E

a M C b P U U

C M b P b U

, , , ,

, .

t L N t W H L H
N N

N t L H W H t W H
N

max

1
2

3
2

2

t X
N

t X
N

t X
N

t X
N

t X
N

2 1,

1, 1,

 • Control of ( )[ ]( )( )ζ ∂ ∂α
βλ
ε µ

αa G b, 0, 0 t
L

NN
2
.

  We get, thanks to propositions 2.10 and B.7,

( )[ ]( ) ⩽ ( )

( )

( )⎜ ⎟
⎛
⎝

⎞
⎠ζ

βλ
ε

ρ ε

βλ
ε

∂ ∂ ∇

× ∂

α
α

∞ ∞

∞

E

E

a G b C μ b P U

b U

, 0, 0 , , , ,

.

μ t
L

W H L H
N

t L H
N

NN
max max

1
2

1
2

t X
N

t X
N

t X
N

2

2,

 • Controls of ( ( )){ } ( ) ( )ε ζ ζ∇ ⋅α α α| |= a V1 ,N L2.

  Inspired by section 4.3.4.3 in [20], a simple computation gives

( )
( ( )) ( )

⩽ ( ) ( ) ( )

( ) ( ) ( ) ( )ε ζ ζ ε ζ ζ

ρ µ δ ε

∇ ⋅ = ∇ ⋅

∇ +

α α α α

∞ ∞ E E E

a a

⎡
⎣⎢

⎤
⎦⎥

V V

C b P U U U

, ,

, , , , .

L L

W H L H
N N N

max max

3
2

t X
N

t X
N

2 2

2,

  using propositions 2.10 and B.8.

 • Controls of ( )[ ]( )( )εζ β ψ − ∂
µ µ α α

αG b S P, ,
L

1

2
, ( )[ ]( ) ( )( ) ( )εζ β ψ ζ ψ∂ ∂
µ µ α αdG b b, . , ,t t

L

1

2
 and 

( )( )ζ
∼

α αa R,
L2.

  We can use the same arguments as in the third and the fourth point of part (a) using 
propositions 2.8 and 2.10.

 • Control of ( )[ ]( ) [ ]( ) ( )ε εζ β ψ ψ⋅ ∇
µ µ α αG b V, ,

L

1

2
.

  We refer to the section 4.3.4.3 and proposition 3.30 in [20] for this control.

  Gathering the previous estimates and using proposition 2.9, we obtain that
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t
U C

h
μ b P U

U U U b P

d

d
,

1
, ,

1
, , ,

max , .

N
W H W H

N

N N N
t L H L H

max
min

max
min

1
2

3
2

1
2

t X
N

t X
N

t X
N

t X
N

3, 1,( ) ⩽ ( )

( ) ( ) ( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠
⎟

ρ ε

ε ε β
βλ
ε

∇

× + + ∂ + ∇

∞ ∞

∞ ∞

F F

F F F

a

 (39)
Then, we easily prove theorem 2.3, using the same arguments as section  4.3.4.4 in [20]. 

Furthermore, for ⎡⎣ ⎤⎦0, 1

2
α∈ , defining ( )( )( ) ( )τ δ=

∼ α τ
δα

F FU UN N2 , we get

⎛
⎝
⎜

⎞
⎠
⎟U C

h
b P U

d

d
, ,

1
,

1
, , , .N

W H W H
N

max max
min min

t X
N

t X
N3, 1,( ) ⩽ ( )

τ
ρ µ ∇

∼ ∼
∞ ∞F F

a

We can also apply the same arguments as section 4.3.4.4 in [20] and theorem 2.4 follows.  □

2.5. Hamiltonian system

In this section we prove that the water waves problem (13) is a Hamiltonian system in the 
Sobolev framework. This extends the classical result of Zakharov ([33]) to the case where the 
bottom is moving and the atmospheric pressure is not constant (see also [13]). In the case of 
a moving bottom, Guyenne and Nicholls already pointed out it in [15]1. We have to introduce 
the Dirichlet–Dirichlet and the Neumann–Dirichlet operators

⎪

⎪
⎧
⎨
⎩

G b

G b b

, ,

, ,

S
z b

t
B

z b

DD
1

ND
1

[ ]( ) ( )

[ ]( ) ( )

εζ β ψ

εζ β

= Φ

∂ = Φ

µ β

µ β

| =− +

| =− +
 (40)

where SΦ  is defined in (15) and BΦ  is defined in (17). We postpone the study of these operators 
to appendix B.

Remark 2.11. If we denote : S BΦ = Φ + Φβλµ
ε

, Φ satisfies

⎧
⎨
⎪

⎩⎪ b b

0 in ,

, 1 .

X z t

z z b tn

,

2 2
1

   

ψ β
βλµ
ε

∆ Φ = Ω

Φ = + |∇ | ∂ Φ = ∂

µ

εζ β| = | =− +

Then

G b G b b1 , , ,z tn
2 2 NN[ ]( ) [ ]( )ε ζ εζ β ψ

βµλ
ε

εζ β+ |∇ | ∂ Φ = + ∂εζ µ µ| = (41)

and

G b G b b, , .z b t1
DD ND[ ]( ) [ ]( )εζ β ψ

βµλ
ε

εζ βΦ = + ∂β µ µ| =− + (42)

Theorem 2.12. Let T  >  0, t d
0 2
> , b T H, 0, ; t d0 10([ ] ( ))ζ ∈ +C R , T H0, ; d0 2([ ] ( ))ψ∈ C R , 

b T H0, ;t
d0 1([ ] ( ))∂ ∈ C R , P T L0, ; d0 2([ ] ( ))∈ C R  such that ,( )ζ ψ  is a solution of (13). Define 

H H , , ,( ) ( ) ( )ζ ψ ζ ψ ζ ψ= = +T U , where ,( )ζ ψ =T T  is

1 It seems that there is a typo in their hamiltonian; ‘ vζ− ’ should read ‘ vζ+ ’.
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[ ]( ) [ ]( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ ∫

βλ
ε

βλ
ε

εζ β ψ
βλ
ε

εζ β= ∇ Φ + Φ + ∂ + ∂
Ω

T
Rμ

μ
b G b

μ
G b b

1

2
, , ,X z

μ S B
t μ μ t,

2
DD ND

t
d

 

(43)

and ,( )ζ ψ =U U  is

X P X
1

2
d d .2

d d∫ ∫ζ ζ= +U
R R

 (44)

Then, the water waves equations (13) take the form

I
I

H

H
0

0
.t ⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠
⎛

⎝
⎜

⎞

⎠
⎟ζ

ψ
∂ =

−
∂
∂
ζ

ψ

Remark 2.13. T  is the sum of the kinetic energy and the moving bottom contribution and 
U  the sum of the potential energy and the pressure contribution. Using Green’s formula and 
remark 2.11 we obtain that

⎜ ⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠

G b G b b X

b G b G b b X

1

2

1
, , d

1

2
, , d ,

t

t t

NN

DD ND

d

d

[ ]( ) [ ]( )

[ ]( ) [ ]( )

∫

∫

ψ
µ

εζ β ψ
βλ
ε

εζ β

βλ
ε

εζ β ψ
βλµ
ε

εζ β

= + ∂

+ ∂ + ∂

µ µ

µ µ

T
R

R

Proof. Using the linearity of the Dirichlet–Neumann and the Dirichlet–Dirichlet operators 

with respect to ψ and the fact that the adjoint of G b,NN[ ]εζ βµ  is G b,DD[ ]εζ βµ  (see Proposition 

B.5), we get that

H G b G b b
1

, , .t
NN[ ]( ) [ ]( )

µ
εζ β ψ

βλ
ε

εζ β∂ = + ∂ψ µ µ

Applying Proposition B.13 (which provides explicit expressions for shape derivatives) and 
remark 2.13, we obtain that

H
μ

G b w V G b b w P

μ
G b w w G b b w P

μ
w μ P

2 , , 2 2 ,

, , 2 2 ,

1 2 2 ,

μ μ t

μ μ t

NN

2 NN

2 2 2 2

[ ]( ) [ ]( )

[ ]( ) [ ]( )

( | | )

ε
εζ β ψ ε ψ ε

βλ
ε

εζ β ζ

ε
εζ β ψ ε ψ ψ ε ψ ζ ε

βλ
ε

εζ β ζ

ε ψ
ε

ε ζ ζ

∂ = − + ∇ ⋅ − ∂ + +

= − + ∇ ⋅ ∇ − ∇ ⋅ ∇ − ∂ + +

= ∇ − + ∇ + +

ζ

which ends the proof.  □
In fact, working in the Beppo Levi framework for ψ requires that b L

D t
d1 2( )∂ ∈

| |
R  and results 

that are not dealing with this paper.

3. Asymptotic models

In this part, we derive some asymptotic models in order to model two different types of tsuna-
mis. The most important phenomenon that we want to catch is the Proudman resonance (see 
for instance [25] or [30] for an explanation of the Proudman resonance) and the submarine 
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landslide tsunami phenomenon (see [21, 27] or [28]). These resonances occur in a linear case. 
The duration of the resonance depends on the phenomenon. For a meteotsunami, the duration 
of the resonance corresponds to the time the meteorological disturbance takes to reach the 
coast (see [25]). However, for a landslide tsunami, the duration of the resonance corresponds 
to the duration of the landslide (which depends on the size of the slope, see [21] or [27]). If the 
landslide is offshore, it is unreasonable to assume that the duration of the landslide is the time 
the water waves take to reach the coast. A variation of the pressure of 1 hPa creates a water 
wave of 1 cm whereas a moving bottom of 1 cm tends to create a water wave of 1 cm. Therefore 
we assume in the following that a ambott, =  (and hence βλ ε= ). However, it is important to 
notice that even if for storms, a variation of the pressure of 100 hPa is very huge, it is quite 
ordinary that a submarine landslide have a thickness of 1 m. Typically, a storm makes a varia-
tion of few Hpa, and the thickness of a submarine landslide is few dm (we refer to [21]). In 
this part, we only study the propagation of such phenomena. Therefore, we take d  =  1. In the 
following, we give three linear asymptotic models of the water waves equations and we give 
examples of pressures and moving bottoms that create a resonance. The pressure at the sur-
face P and the moving bottom bm move from the left to the right. We consider that the system 
is initially at rest. We start this part by giving an asymptotic expansion with respect to μ and 

max ,( )ε β  of G b,NN[ ]εζ βµ .

Proposition 3.1. Let t d
0 2
> , ( )ζ ∈ + Rand b Ht d20  such that condition (19) is satisfied. 

We suppose that the parameters ε, β and μ satisfy (18). Then, for all B Hs d1
2( )∈ − R  with 

s t0 0
3

2
⩽ ⩽ + , we have

G b B G B M b B, 0, 0 ,
H H H

NN NN
0s t s1

2
0 2 1

2
[ ]( ) [ ]( ) ⩽ ( )εζ β εζ β− | |µ µ − + −

and

G B B C B0, 0 .
H H

NN
s s1

2
3
2

[ ]( ) ⩽ µ−µ − +

Proof. The first inequality follows from Proposition B.15 and the second from Remark B.1. 
 □

Remark 3.2. In the same way and under the assumptions of the previous proposition, we 

can prove that (see proposition 3.28 in [20]), for s t0 0
3

2
⩽ ⩽ + ,

G b G M b, 0, 0 ,
H H H0s t s1

2 0 2 1
2

[ ]( ) [ ]( ) ⩽ ( )εζ β ψ ψ µ εζ β ψ− | |µ µ − + +P

and

G C
1

0, 0 .
H

H
s

s
1
2

5
2

[ ]( ) ⩽
µ

ψ ψ µ ψ+∆ ∇µ
−

+

We denote by V  the vertically averaged horizontal component,

V V b b
b

b b z z, ,
1

1
, , , d ,t

b
X t

1
[ ]( ) ( [ ]( )( ))∫εζ β ψ

εζ β
εζ β ψ= ∂ =

+ −
∇ Φ ∂ ⋅

β

εζ

− +
 

(45)

where b b, , t[ ]( )εζ β ψΦ = Φ ∂  satisfies

⎪

⎪
⎧
⎨
⎩

b z

b b

0, 1 ,

, 1 .

X z

z z b tn

,

2 2
1

⩽ ⩽β εζ

ψ β µ

∆ Φ = − +

Φ = + |∇ | ∂ Φ = ∂

µ

εζ β| = | =− +
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The following proposition is remark 3.36 and a small adaptation of proposition 3.37 and 
lemma 5.4 in [20] (see also section A.5.5 in [20]).

Proposition 3.3. T  >  0, t d
0 2
> , s t0 0⩽ ⩽  and b W T H, 0, ; t d1, 20([ ] ( ))ζ ∈ ∞ + R  such that condi-

tion (19) is satisfied on [0, T ]. We suppose that the parameters ε, β and μ satisfy (18). We also 
assume that W T H0, ; ˙ s d1, 3([ ] ( ))ψ∈ ∞ + R . Then,

G b G b b b V b, , 1 ,t t
NN[ ]( ) [ ]( ) (( ) )εζ β ψ µ εζ β µ εζ β µ+ ∂ = − ∇ ⋅ + − + ∂µ µ

and

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

V C
h

b b

V C
h

b

1
, , , max , ,

1
, , , , , , .

H H L H H t L H

t t H H t H W H H t H

min
max

min
max

s t
t X

t s
t X

s

s t t
t X

t s s

0 2 0 2 2 1

0 2 0 2 2, 0 2 2 2

⩽ ( )

⩽

ψ µ µ ε ζ β ψ

ψ µ µ ζ ζ ψ ψ

−∇ | | | | ∇ ∂

∂ −∇∂ | | ∂ | | ∇ ∂∇

+ ∞ + + ∞ +

+ + ∞ + + +

In this part, we will consider symmetrizable linear hyperbolic systems of the first order. We 
refer to [8] for more details about the wellposedness. In the following, we will only give the 
energy associated to the symmetrization.

3.1. A shallow water model when β is small

3.1.1. Linear asymptotic. We consider the case that ε, β, μ are small. Physically, this means 
that we consider small amplitudes for the surface and the bottom (compared to the mean 
depth) and waves with large wavelengths (compared to the mean depth). The asymptotic 
regime (in the sense of Definition A.19 in [20]) is

, , , , 0 , , , ,LW 0{( ) ⩽ }ε β λ µ µ ε β δ βλ ε= < =A (46)

with 10δ � .

Proposition 3.4. Let t d
0 2
> , N tmax 1, 30⩾ ( )+ , U EN0

0∈ , P W H; ˙ N d1, 1( ( ))∈ ∞ + +R R  and 

b W H; N d3, ( ( ))∈ ∞ +R R . We suppose (19) and (29) are satisfied initially. Then, there exists 

T  >  0, such that for all , , , LW( )ε β λ µ ∈A , there exists a solution U E, T
N

0

( )ζ ψ= ∈
δ

 to the 

water waves equations with initial data U0 and this solution is unique. Furthermore, for all 

0, 1

3
[ )α∈ ,

⩽
( ) ( )

ζ ζ ψ ψ δ− + ∇ −∇
∼

δ δ

α−

α α
∞ − ∞ −

� �
R R

⎛
⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟

⎛
⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟

T C ,
L T H L T H0, ; 0, ; 0

1 3
N d N d

0

4

0

2

where

= | | ∇
∼

∞ ∞

⎛
⎝
⎜

⎞
⎠
⎟C C U

h
b P,

1
,

1
, , ,N

W H W H
0

min min
t X

N
t X

N3, 1,( )
a

E

and with, ,( )ζ ψ� �  solution of the waves equation

⎪

⎪
⎧
⎨
⎩

b

P

,

,

t X t

t

ζ ψ

ψ ζ

∂ +∆ = ∂

∂ + = −

�

�

�

� (47)
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with initial data U0.

Proof. First, the system (47) is wellposed since it can be symmetrized thanks to the energy

t .
L L

2 2

2 2( ) ζ ψ= + ∇� �E

Using theorem 2.4 we get a uniform time of existence 0T

0
>

δ
 for the water waves equa-

tion and for all parameters in LWA . Then, using proposition 3.1, remark 3.2, Propositions B.8 
and C.1 and standard controls we get that

⎧
⎨
⎩

b R

P R

,
,

t X t

t

1

2

ζ ψ
ψ ζ
∂ +∆ = ∂ +
∂ + = − + (48)

with

⎧

⎨
⎪

⎩
⎪

R C b b b

R C b b

, , max , ,

, max , .

H H L H H H t H

H H L H
H

t H

1

2
2 2

N N
t X

N N N N

N N
t X

N
N

N

4 1
2

1 1
2( )

( )⩽ ( )( ( ) )

⩽ ( )

ε ζ εζ β µ ψ

ε ε ζ ψ

| | | | | | + | | |∂ |

| | | | | | |∂ |

− ∞ −

− ∞
−

P

P

If we denote 1ζ ζ ζ= − � and 1ψ ψ ψ= − �, we see that ,1 1( )ζ ψ  satisfies

⎧
⎨
⎩

R

R

,

.
t X

t

1 1 1

1 1 2

ζ ψ
ψ ζ
∂ +∆ =
∂ + =

Differentiating the energy

t
1

2

1

2
,N

H H1
2

1
2

N N4 2( ) ζ ψ= + ∇− −E

we get the estimate thanks to proposition 2.5 and energy estimate in theorem 2.4.  □

This model is well-known in the physics literature (see [26]).

3.1.2. Resonance in shallow waters when β is small. We consider the equation (47) for d  =  1. 
We transform it in order to have a unique equation for h b: ζ= −� ,

⎧

⎨
⎪

⎩
⎪

h h P b

h b

h

,
0, . ,

0.

t X X

t

t t

2 2 2

0

0

( )
( )

∂ − ∂ = ∂ +
= −

∂ =
| =

| =

 (49)

We denote f t X P b t X, : ,( ) ( )( )= + , which represents a disturbance. We want to under-
stand the resonance for landslide and meteo tsunamis. In both cases, it is a linear respond, in 
the shallow water case, of a body of water due to a moving pressure or a moving bottom, when 
the speed of the storm or the landslide is close to the typical wave celerity (here 1). We can 
compute h thanks to the d’Alembert’s formula

h t X b X t b X t f X t

f X t

,
1

2
0, 0,

1

2
, d

1

2
, d .

h t X

t

X

h t X

t

X

h t X

,

0

: ,

0

: ,

T L

R

( ) ( ( ) ( )) ( )

( )

( ) ( )

( )

∫

∫

τ τ τ

τ τ τ

= − − + + + ∂ + −

− ∂ − +

=

=

� �������������� �������������� � ������������ ������������

� ������������ ������������
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We are interesting in disturbances f moving from the left to the right (propagation to a coast). 
Therefore, we study only hR. The following proposition shows that a disturbance moving with 
a speed equal to 1 makes appear a resonance.

Proposition 3.5. Let f L H; d1( ( ))∈ ∞ +R R  and f LX t X
d( )∂ ∈ ××

∞ R R . Then, for all X∈R, t  >  0,

h t X
t

f,
2

.R X( ) ⩽ ∂ ∞

Furthermore, if f(t, X )  =  f0(X  −  t), f H d
0

1( )∈ R  and f X t f0 0 0( )− =′ ′ ∞ the equality holds 

for t X,0 0( ). If f(t, X )  =  f0(X  −  Ut) with f H d
0

1( )∈ R  and U 1≠ ,

⩽
| − |

′∞
∞

∞

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟h

f

U

t
fmin

1
,

2
.R

0
0

Proof. If f(t, X)  =  f0(X  −  Ut),

( ) ( ( ) )∫ τ τ= − − + −′h t X f X t U,
1

2
1 d ,R

t

0
0

and the result follows.  □

This proposition corresponds to the historical work of Proudman ([26]). We rediscover 
the fact that the resonance occurs if the speed of the disturbance is 1. For a disturbance with 
a speed different from 1, we notice a saturation effect (also pointed out in [27]). The graph 
in figure 1, gives the typical evolution of h t,( )⋅ ∞ with respect to the time t for different 
values of the speed. We can see the saturation effect. We compute h with a finite difference 
method and we take f t X, e X Ut1

2
2( ) ( )= − − . We see also that the landslide resonance and the 

Proudman resonance have the same effects. There are however two important differences 
that we exposed in the introduction of this part. The first one is the duration of the reso-
nance. A landslide is quicker than a meteorological effect. The second one, is the fact that 
the typical size of the landslide (few dm) is bigger than the size of a storm (few hPa). For 
instance, for a moving storm which creates a variation of the pressure of 3 hPa during 15 
t0, the final wave can reach a amplitude of 13 cm (it is for example the case of the meteot-
sunami in Nagasaki in 1979, see [25]). Conversely, an offshore landslide with a thickness 
of 1 m that lasts t0, can create a wave of 50 cm (which corresponds to the results in [27]). 
Therefore, we see that the principal difference between an offshore landslide and a moving 
storm is the size.

3.2. A shallow water model when β is large

3.2.1. Linear asymptotic. In this case, we suppose only that ε and μ are small. We recall that 
b t X b X b t X, ,m0( ) ( ) ( )β β βλ= + . Then, we assume also that b h1 00 min⩾− > . In the follow-

ing, we denote h b: 10 0β= − . The asymptotic regime is

, , , , 0 , , 0 1, ,LVW 0{( ) ⩽ ⩽ }ε β λ µ ε µ δ β βλ ε= < < =A (50)

with 10δ � . We can now give a asymptotic model.

Proposition 3.6. Let t d
0 2
> , N tmax 1, 40⩾ ( )+ , b W H; N d3, ( ( ))∈ ∞ +R R , U E, N0

0 0 0( )ζ ψ= ∈ , 

and P W H; ˙ N d1, 1( ( ))∈ ∞ + +R R . We suppose that (19) and (29) are satisfied initially. We  suppose 
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also that b HN d
0 ( )∈ R  and that h b h10 0 min⩾β= − . Then, there exists T  >  0, such that for all 

, , , LVW( )ε β λ µ ∈A , there exists a unique solution U E, T
N( )ζ ψ= ∈  to the water waves equa-

tions with initial data U0. Furthermore, for V  as in (45),

V V T C ,L T H L T H1 0, ; 1 0, ; 0N d N d4 4 ⩽([ ] ( )) ([ ] ( ))ζ ζ δ− + −
∼

∞ − ∞ −R R

where

( )
a

E= | | ∇
∼

∞ ∞

⎛
⎝
⎜

⎞
⎠
⎟C C U

h
b P,

1
,

1
, , ,N

W H W H
0

min min
t X

N
t X

N3, 1,

and V,1 1( )ζ  solution of the waves equation

⎧

⎨
⎪

⎩
⎪

h V b

V P

V V b b

,

,

, , , .

t t m

t

t t t t t

1 0 1

1 1

1 0 0 1 0 0 0 0 0

( )

( ) ( ) [ ] ( ( ) )

ζ
ζ

ζ ζ εζ β ψ

∂ +∇ ⋅ = ∂
∂ +∇ = −∇

= = ∂| = | = | = | =

 (51)

Proof. The system (51) is wellposed since it can be symmetrized thanks to the energy

t h V V
1

2

1

2
, .

L L1
2

0 1 12 2( ) ( )ζ= +E

For the inequality, we proceed as in proposition 3.4, differentiating the energy

t h V V
1

2

1

2
, ,N

H
N N

L2
2

0
4

2
4

2N 4 2( ) ( )ζ= + Λ Λ− −
−E

with 2 1ζ ζ ζ= −  and V V V2 1= − . Using Gronwall’s lemma, proposition 3.3 and standard con-
trols, we get result.  □

This model is well-known in the physics literature to investigate the landslide tsunami 
phenomenon (see [27]).

Figure 1. Evolution of the maximum of h, solution of equation  (49), with different 
values of the speed U.

M Benjamin Nonlinearity 28 (2015) 4037



4059

3.2.2. Amplification in shallow waters when β is large. In this part, d  =  1 and we suppose that 
P  =  0. The same study can be done for a non constant pressure. For the sake of simplicity, 
we assume also that initially the velocity of the landslide is zero and hence that b 0t m t 0( )∂ =| =  
(the bottom does not move at the beginning). We transform the system (51) in order to get an 
equation for 1ζ  only. We obtain that 1ζ  satisfies

h b ,t X X t m
2

1 0 1
2( )ζ ζ∂ − ∂ ∂ = ∂ (52)

with 0t1 0( )ζ =| =  and 0t t1 0( )ζ∂ =| = . We wonder now if we can catch an elevation of the sea 

level with this asymptotic model. Therefore, we are looking for solutions of the form

t X t t X, , .2 3( ) ( )ζ ζ= (53)

The following proposition gives example of such solutions for bounded moving bottoms (with 
finite energy).

Proposition 3.7. Suppose that h h 00 min⩾ >  with h H0
1( )∈ R . Let V,3 3( )ζ  be a solution of

⎪

⎪
⎧
⎨
⎩

h V

V

0,

0,
t X

t X

3 0 3

3 3

( )ζ
ζ

∂ + ∂ =

∂ + ∂ =

with ( ) ( )ζ = ′| =V f, 0,t3 3 0  with f H1( )∈ R . Then, t X t t X, ,1 3( ) ( )ζ ζ=  is a non trivial solution of 

(52) with

b t X s X s, 2 , d ,m

t

0
3( ) ( )∫ ζ= (54)

and b t,m( )⋅  is bounded in L d2( )R  and in L d( )∞ R  uniformly with respect to t

b t b t C, , ,m L m L2( ) ( ) ⩽⋅ + ⋅ ∞

where C is independent on t.

Proof. Plugging the expression of ζ and bm in (52), we get the first result. We have to show 
that L L; d

3
1 2( ( ))ζ ∈ +R R . Consider the linear hyperbolic equation

⎧
⎨
⎩

h W

W

0,
0,

t X

t X

0( )η
η

∂ + ∂ =
∂ + ∂ =

with W f, , 0t 0( ) ( )η = −| = . This system has a unique solution W H, ;0 1( ) ( ( ))η ∈ C R R . Further-

more, W L, ;t t
0 2( ) ( ( ))η∂ ∂ ∈ C R R , and W,t t( )η∂ ∂  satisfies the same linear hyperbolic system as 

V,3 3( )ζ . By uniqueness, t3ζ η= ∂  and

b t X t X f X, 2 , 2 .m( ) ( ) ( )η= +

Since, for all t,

t X h X W t X X f X X, , d d ,2
0

2 2( ) ( ) ( ) ( )∫ ∫η + =
R R

and h h 00 min⩾ > , we get the control of b t,m L2( )⋅ . Finally, η satisfies the waves equation

h 0,t X X
2

0( )η η∂ − ∂ ∂ =

M Benjamin Nonlinearity 28 (2015) 4037



4060

with f H, , 0t t
d

0
1( ) ( ) ( )η η∂ = − ∈| = R . Then, for all t,

( ) ( ) ( ) ( ) ( )∫ ∫η η∂ + ∂ = ′
R R

t X h X t X X h X f X X, , d d .t X
2

0
2

0
2

Therefore, H1η  (and Lη ∞ by Sobolev embedding) is controlled uniformly with respect  
to t.  □

In the following, we compute numerically some solutions of equations (52) of the form (53) with 

a finite difference method. We take b X Xtanh0( ) ( )= − , 1

2
β =  and X4 2 et t

X
3 0

2 2( ) ( )ζ∂ = −| =
− . 

The figure 2 is the evolution of the maximum of 1ζ . The figure 3 is the graph at different times 

of the waves and the landslide. The dashed curves are the landslide, the solid curves are the 
waves and the dotted curve is the slope. Therefore, we see that an important elevation of the 
sea level is possible even if we do not consider that the seabed is flat.

Remark 3.8. In order to simplify, we consider that the system is initially at rest. But our 
study can easily be extended to waves with non trivial initial data. In particular, we can study 
a wave amplified by a landslide. This is what happened during the tsunami in Fukushima in 
2011 (see [1]). We compute numerically this amplification. We consider a wave moving with 
a speed equal to 1 (typical speed in the sea after nondimensionalization) that is amplified by 
a landslide. Figure 4 represents the evolution of the maximum of this wave. We can see an 
amplification.

3.3. Linear asymptotic and resonance in intermediate depths

In this case, we consider only that ε, β are small. Physically, this means that we consider small 
amplitudes for the surface and the bottom (compared to the mean depth) and that the depth 
is not small compared to wavelength of the waves. In this part, we generalize the Proudman 
resonance in deeper waters. The asymptotic regime is

Figure 2. Evolution of the maximum of 1ζ , solution of (52), for a non flat bottom b0.
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, , , , 0 , , and 0 ,LWW 0 max{ }( ) ⩽     ⩽ε β λ µ ε β δ βλ ε µ µ= < = <A (55)

with 10δ �  and 0 maxµ< . Using the energy

⎛
⎝
⎜

⎞
⎠
⎟t G

1

2

1

2

1
0, 0 , ,

L
L

2
2

2

( ) [ ]( )ζ
µ

ψ ψ= + µE

and proceeding as in proposition 3.4 (we need also proposition 3.12 in [20]), we get a new 
asymptotic model.

Proposition 3.9. Let t d
0 2
> , N tmax 1, 30⩾ ( )+ , b W H; N d3, ( ( ))∈ ∞ +R R , U E, N0

0 0 0( )ζ ψ= ∈  

and P W H; ˙ N d1, 1( ( ))∈ ∞ + +R R . We suppose that (19) and (29) are satisfied initially. Then, 

Figure 3. Evolution of the surface 1ζ  (solid line), solution of (52), and the landslide bm 
(dashed line).

Figure 4. Evolution of the maximum of h, solution of (52), with non trivial initial data 
and with bm like in figure 3.
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there exists T  >  0, such that for all , , , LWW( )ε β λ µ ∈A , there exists a unique solution 
U E, T

N

0

( )ζ ψ= ∈
δ

 to the water waves equations with initial data U 0. Furthermore, for all 

0, 1

3)⎡⎣α∈ ,

( ) ⩽
( )

( )

ζ ζ ψ ψ δ− +
| |

+| |
−

∼

δ
δ

α−

α

α

∞ −

∞ −

� �
R

R

⎛
⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟ ⎛

⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟

D

D
T C

1
,

L T H
L T H

0, ;
0, ;

0
1 3

N d

N d0

2

0

2

where

( )
a

E µ= | | ∇
∼

∞ ∞

⎛
⎝
⎜

⎞
⎠
⎟C C U

h
b P,

1
,

1
, , , ,N

W H W H
0

min min
max t X

N
t X

N3, 1,

where ,( )ζ ψ� �  is a solution of the waves equation

⎧
⎨
⎪

⎩⎪

G G b

P

1
0, 0 0, 0 ,

,

t t

t

NN[ ]( ) [ ]( )ζ
µ

ψ

ψ ζ

∂ − = ∂

∂ + = −

µ µ
�

�

�

�
 (56)

with initial data U0.

The Proudman resonance is a phenomenon which occurs in shallow water regime. We 
wonder if there is also a resonance in deeper waters. In this part, we only work with a non 
constant pressure and hence b 0t∂ = . The same study can be done for a moving bottom. We 
consider the equation (56) for d  =  1. Since, the initial data does not affect the possible reso-
nance, we suppose in the following that U0  =  0. We transform the system (56) in order to have 
a unique equation for ζ� (in the following we denote ζ� by ζ to simplify the notation)

⎧
⎨
⎪

⎩⎪

G G P
1

0, 0
1

0, 0 ,

0, 0.

t

t t t

2

0 0

[ ]( ) [ ]( )ζ
µ

ζ
µ

ζ ζ

∂ + = −

= ∂ =

µ µ

| = | =

We can solve explicitly the previous equation, we get that

t
μ

μ
P

μ

μ
P

,
i

2

tanh
, e d

i

2

tanh
, e d .

t t
μ

μ

t

t t
μ

μ

t

0

i
tanh

: ,

0

i
tanh

: ,

L

R

( )

( )

( )
| |

| |
( )

| |

| |
( )

( )
| |

| |

( )

( )
| |

| |

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫

∫

ζ ξ ξ
ξ

ξ
τ ξ τ

ξ
ξ

ξ
τ ξ τ

=

−

τ ξ
ξ

ξ

ζ ξ

τ ξ
ξ

ξ

ζ ξ

−

=

−

=

� ������������������������ ������������������������

� ������������������������ ������������������������

� �

�

�

�

In order to find a resonant pressure, we suppose that P has the form Pe ta Di
0

( )− , where a is a 
real smooth odd function which is sublinear, there exists C  >  0 such that a C( ) ⩽ξ ξ| | | |. We also 

suppose that the phase velocity of the disturbance is positive, 0a ⩾( )ξ
ξ

. P0 is a smooth function 

in a Sobolev space with P 0 00( )≠� . We denote tanh( ) ( )ω ξ = ξ
ξ

. A simple computation gives that
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t t P, , .L L L L
01

1
( ) ⩽ ( ) ⩽ζ ζ| ⋅ | | ⋅ |� �

Furthermore, we have

| ( )| ( ) ( )

⩽ ( ) ( )

( ( ) ( ))∫ζ ξ ξω ξ ξ τ

ξω ξ ξ

= τ ξω ξ ξ−� �

�

t μ P

t
μ P

,
1

2
e d

2
,

R

t
μ a

0
0

i

0

with an equality if and only if a μ( ) ( )ξ ξω ξ= . Hence, it is natural to consider that

P t P, e .t μi
0( ) ( )( )ξ ξ= ξω ξ−� (57)

A simple computation gives

t X
t

μ P,
i

2
e e d .R

t μ X
0

i i( ) ( ) ( ) ( )∫ζ ξω ξ ξ ξ= − ξω ξ ξ−�
R

 (58)

We wonder now if a resonance occurs. We need a dispersion estimate for the linear water 
waves equation.

Proposition 3.10. Let f W1,1( )∈ R  such that f 0 0( ) =� . Then,

f
C

t μ
f μ fe e d

1 1
.t μ X

L
L

i i 1
8

3
4

1
1

( ) ⩽ ( ) ( )( )

( ) ( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ ξ ξ

ξ
ξ+′ ′ξω ξ ξ− � � �

R
R R

Proof. We denote I(t),

I t f

μ
f

y

μ
y

: e e d

1
e d .

t μ X

t
μ

y y X
t y

i i

i ( )
( ) ( )( )

( ) ⎛

⎝
⎜

⎞

⎠
⎟

∫

∫

ξ ξ=

=

ξω ξ ξ

ω

−

− −

�

�

R

R

We denote φ,

y y y
X

t
y,( ) ( )φ ω= −

and y0 the unique minimum of ″φ . Figure 5 represents ″φ  on 0,[ [+∞ .

To estimate I(t) we decompose I(t) into four parts.

I t
μ

f
y

μ
y

μ y
z f

y

μ
y

μ
z f

y

μ
y

1
e d

1 d

d
e d d

1
e d d .

y t
μ

y

y

y

y t
μ

z

y

y

y t
μ

z

1
0

i

0

i

0

i

0

0 0

0 0

( )

( )

( )

( )

( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

∫

∫ ∫

∫ ∫

=

= −

= ′

φ

φ

φ

−

−

−

�

�

�
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Then, using Van der Corput’s lemma (see [29]) and the fact that for z y y, 0[ ]∈ ,

( ) ⩾ ( )″ ″φ φ| | | |z y  and ( ) ⩾″φ| |z Cz,

( ) ⩽ ( )

⩽ ( ) ( )

∫

∫

µ µ

µ ξ
ξ ξ

| | ′

′
+∞

�

�

⎛

⎝
⎜

⎞

⎠
⎟I t

C

t y
f

y
y

C

t
f

1
d

1
d .

y

1 3
4 0

0

0

Furthermore, for M  >  y0 large enough,

I t
μ

f
y

μ
y

μ y
z f

y

μ
y

z

μ
f

M

μ μ
z f

y

μ
y

1
e d

1 d

d
e d d

e
d 1

e d d .

y

M t
μ

y

y

M

y
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μ

z

y

M t
μ

z

y

M

y
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μ

z

2
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i
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( )
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⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜
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⎠
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⎜
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⎠
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⎛
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∫

∫ ∫
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Then, using Van der Corput’s lemma and the fact that for z y y,0[ ]∈ ,

( ) ⩾ ( )″ ″φ φ| | | |z y  and ( ) ⩾″φ| | −z Cz
3
2,

Figure 5. Profile of ″φ  .
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⩽ ( ) ( )
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Tending M to +∞ we get the result. The control for 0ξ<  is similar.  □

Therefore, in the linear case, we have also a resonance.

Corollary 3.11. Let P H W0
3 2,1( ) ( )∈ ∩R R  such that XP H0

3( )∈ R  and let

0 max⩽µ µ< . Consider,

t X
t

μ P,
i

2
e e d .R

t μ X
0

i i( ) ( ) ( ) ( )∫ζ ξω ξ ξ ξ= − ξω ξ ξ−�
R

Then,

( ) ⩽ ( ) ( )ζ ⋅ + +∞t C μ
t

μ
P P XP, ,R H L Hmax 0 0 03 1 3

and

t
t C Plim

1
, 0.

t
R 0( ) ⩾ ( )

→
ζ ⋅ >

+∞ ∞

Proof. We take f μ P0( ) ( ) ( )ξ ξω ξ ξ=� � . Then,

f μ P P1 ,0 0( ) ( ) ⩽ ( | |) ( ) | | ( ) ( )ξ ξ ξ ξ ξ+ +′ ′� � �

and the first inequality follows from the previous proposition. For the second inequality, 
we use a stationary phase approximation. We denote ( ) ( )φ ξ ξω ξ= . Let 00ξ > , such that 

P P
L0 0 0 0( )ξ ξ ξ=
∞

� � , and X 0<µ , such that ( )φ ξ =′ μ Xμ0 . Then, we have,

( )
( )

( ) ( )

( )

→ →

( ( ) )
∫

″

ζ
µ

ξω ξ
ξ
µ

ξ

π

µ

ω ξ µ ξ ξ

φ ξ µ
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=
| |

µ µ ξ ω ξ

+∞ +∞

− − µ�

�
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⎛

⎝
⎜
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⎠
⎟
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t tX

t
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lim
1

, lim
2

e d

2

2
.

t
R

t

t X
0

i

1
4

0 0 0 0

0

Since ( ) ⩽″φ ξ ξ| | | |C  and μ C μ0 0( ) ⩾ ( )ω ξ ξ , we get the result.  □

Remark 3.12. Notice that for all s∈R,

( ) ( ) ⩽ζ µ⋅ + ⋅ − ∇′ +t
t

P t t P,
2

.R
H

H0
2

0
s

s 2
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Hence, by tending formally μ to 0, we rediscover the result we get in the shallow water case 
(section 3.1).

Remark 3.13. Notice that for a general pressure term P(t, X) we can show that the amplitude 
ζ satisfying

( )
( | |)

| |
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( | |)
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( | |)
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| |
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2
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, e d ,
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i
tanh

0

i
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t C μ
t

μ
P P XP, .L L L H L Hmax ; ; ;d d d1 3 3( ) ⩽ ( ) ( )( ( )) ( ( ) ( ( )ζ ⋅ + +∞ ∞ + ∞ + ∞ +R R R R R R

Hence, contrary to the shallow water case, we can not hope a linear amplification with respect 
to the time t. Corollary 3.11 also shows that the factor of amplification of t  is optimal.

Hence, we observe that in intermediate water depths, a resonance can occur but with a fac-
tor of amplification of t  and not t. But we saw that in the shallow water case, the resonance 
occurs for a moving pressure with a speed equal to 1, P(t, X)  =  P0(X  −  t). We wonder if this 
pressure can create a resonance. The following proposition shows that the previous pressure 
can create a resonance with a factor of amplification of t

1
3.

Proposition 3.14. Let 0 max⩽µ µ< . Let P L H0
1 1( ) ( )∈ ∩R R  such that P 0 00( )≠� . Consider, 

the amplitude Rζ  created by P(t, X)  =  P0(X  −  t),
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We decompose this integral into 3 parts.
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and the first inequality follows. For the second inequality, we use a stationary phase approxi-

mation. We denote : 1( ) ( ( ) )φ ξ ξ ω ξ= − . We recall that o1

6
3 3( ) ( )φ ξ ξ ξ= − + . Using a gener-

alization of Morse lemma at the order 3, there exists a  >  0 and a a,([ ])ψ∈ −∞C , such that for 
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Therefore,

t
t t

C
Plim

1
, 0 .

t
R1

3
2
3

0( ) ( )
→

ζ
µ

=
+∞

�

  □

Then, in intermediate water depths, a traveling pressure with a constant speed equal to 1 
is also resonant, but it takes more time to obtain a significant elevation of the level of the sea. 
In the following, we compute numerically some solutions. We take P X e X

0
2( ) = − −  and 1µ = . 

The figure 6 is the evolution of a water wave because of a pressure of the form (57). The solid 
curve is the wave and the dashed curve is the moving pressure. The figure 7 is the evolution is 
a water wave when the pressure moves with a speed 1. The figure 8 compares the evolution of 
the maximum of the resonant case and the case when the speed is equal to 1.

Remark 3.15. In our work, we neglect the Coriolis effect. However, in view of the duration 
of the meteotsunami phenomenon, it would be more realistic to consider it. It will be studied 
in a future work ([22]) based on the work of Castro and Lannes ([9] and [10]).
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Appendix A. The Laplace problem

A.1. Formulation of the problems

In this part, we recall some results of chapter 2 in [20] and section 4 of [17] and study the 
Laplace problem (17) in the Beppo Levi spaces. We suppose that the parameters ε, μ and β 
satisfy condition (18). The Laplace problem (17) is

Figure 6. Evolution of the surface elevation Rζ  in (58) (solid line) because of a resonant 
moving pressure P in (57) (dashed line).
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⎪

⎪
⎧
⎨
⎩ b B

0 in ,

0, 1 ,

X z
B

t

z
B

z b
B

n

,

2 2
1

   

β

∆ Φ = Ω

Φ = + |∇ | ∂ Φ =

µ

εζ β| = | =− +

where B bt= ∂ . Notice that n∂  is here the upward conormal derivative

|
⎛
⎝
⎜

⎞
⎠
⎟ Φ∂ Φ = ⋅ ∇ β−

μ
n

I
.

0

0 1
B μ

n
d

X,z z= 1+ b
B

For the study of (15) we refer to [20]. We work with Beppo Levi spaces. We refer to [14] and 
proposition 2.3 in [20] for general results about these spaces. We recall that, for s 0⩾ ,

Figure 7. Evolution of the surface elevation Rζ  in (59) (solid line) because of a moving 
pressure P with a speed of 1 (dashed line).

Figure 8. Evolution of the maximum of Rζ  in the resonant case (solid line) and the 
moving pressure with a speed of 1 (dashed line).
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H L H˙ : , ,s d d s d
loc
2 1( ) { ( ) ( )}ψ ψ= ∈ ∇ ∈ −R R R

that Ḣ 1, 0 /d1( ( ))× −R R is a Hilbert space for the norm X z L, 2|∇ ⋅|  and that Hs d( )R  is dense in 
Ḣ s d( )R . In order to fix the domain, we transform the problem into variable coefficients elliptic 
problem on S : 1, 0d ( )= × −R  (the flat strip). We introduce a regularizing diffeomorphism. 
Let : →θ R R be a positive, compactly supported, smooth, even function equal to one near 0. 
For 0δ>  we define

S
X z X z X z

:
, , , ,

⟶
( ) ( ( ))σΣ = Ω

+�

and

X z z D X z D b X z z D X, : 1 .( ) [ ( ) ( ) ( ( ) ) ( )] ( ) ( )σ θ δ εζ θ δ β εθ δ ζ= | | − + | | + | |

We omit the dependence on t here. In the following, we denote by M a constant of the form

⎛
⎝
⎜

⎞
⎠
⎟M C

h
b

1
, , , .H H

min
max t d t d0 1 0 1( ) ( )µ ε ζ β= | | | |+ +R R

In order to study the Laplace problems in S, we have to treat the regularity in the direction X 
and in the direction z one at a time. We introduce the following spaces.

Definition A.1. Let s∈R. We define H S ,s
s

,1
,1( ( ) )|⋅|  and H S ,s,0

0,1( ( ) )|⋅|

( ) ( ) ( ) | | | | | |= ∩ = Λ + Λ ∂− −H S L H S H H S u u u:  , and  ,s
z X

s
z X

s
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s
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s
z L

,1 2 1 1 2 2 1 2
s,1 2 2
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( ) ( ) | | | |= = ΛH S L H S u u:  , and  .s
z X

s
H

s
L

,0 2 2 2
s,0 2

Remark A.2. We have the following embedding (see proposition 2.10 in [20]) for s∈R

H S L H S .s
z X

s1
2

,1( ) ( )⊂+ ∞

In the following, we fix 0δ>  small enough. Then, we can transform our equations. We 
denote :B Bφ = Φ Σ�  and we get that

⎪

⎪
⎧
⎨
⎩
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0, ,

X z X z
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z
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z
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0 1
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φ φ

∇ ⋅ Σ ∇ =

= ∂ =

µ µ

| = | =−
 (A.1)

with P I Qd d1 1( ) ( )Σ = + Σ+ × +  and

Q

I μ

μ
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.
z d d X

X
t z X

z
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σ σ

σ
σ σ

σ
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∂ − ∇
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+ ∂

×

 (A.2)

Notice that P( )Σ  is well defined if δ is small enough and that e P:n z X,z( ( ) )Σ∂ = ⋅ ∇ ⋅µ . We have 
to know the regularity of P( )Σ . It is the subject of the next proposition (see proposition 2.18 
and lemma 2.26 in [20]).

Proposition A.3. Let t d
0 2
> , b H, t d10 ( )ζ ∈ + R  such that condition (19) is satisfied. Then,

Q Q Q M, , .
H

t
L L S

t
z L L S

1
t

z X z X
0

1
2

,1
0 2 0

2( ) ( ) ( ) ⩽( ) ( )
Σ Λ Σ Λ ∂ Σ−

+ ∞ ∞
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Furthermore, P( )Σ  is coercive. There exist a constant k 0( )Σ >  such that M
k

1 ⩽
( )Σ

 and

X z S P X z k, , , , .d 1 2( ) ( )( ) ⩾ ( )∀Θ∈ ∀ ∈ Σ Θ ⋅ Θ Σ |Θ|+R

We have a variational formulation of the Laplace problem (A.1). We introduce

( ) ( { }) ( { })
| | | |( ) ( )= ∪ = − = ∪ = −D DH S S z S z: 1 1 .0,surf

1 H S H S1 ˙1

See proposition 2.3 (3) in [20] for a proof of the second equality.

Definition A.4. Let B H d1
2( )∈ − R . We say that H S0,surf

1 ( )φ∈  is a variational solution of (A.1) 
if for all H S0,surf

1 ( )ϕ∈ ,

P B, .
S

X z X z z H H, , 1 1
2

1
2

( ) ⟨ ⟩∫ φ ϕ ϕ∇ ⋅ Σ ∇ = −µ µ
| =− −−

We have also the following trace result that we can prove easily using a density argument.

Lemma A.5. For all H S0,surf
1 ( )ϕ∈  we have

D1 2 .z L X z L S1 ,d2 2⩽
( ) ( )

µ ϕ ϕ+ | | ∇µ| =− R

We can now establish existence and uniqueness results.

Proposition A.6. Let B H d1
2( )∈ − R  and b H, t d10 ( )ζ ∈ + R  satisfying (19). Then, the problem 

(A.1) has a unique variational solution named B H S0,surf
1 ( )∈d .

Proof. Because S is bounded in the direction z and that P( )Σ  is uniformly coercive, the re-

sults follow from the Lax–Milgram theorem and Poincaré inequality in H S0,surf
1 ( ).  □

In this part, we study the Laplace problem (17), but the same work can be done for (15) (see 
chapter 2 in [20]) and we can transform (17) as follows

⎪

⎪

⎧
⎨
⎩

P S0 in ,

, 0.
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0 1
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= ∂ =

µ µ
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 (A.3)

In the following, we denote by ψh, the unique solution of (A.3).

A.2. Regularity estimates of the solutions

In this part, we give some regularity estimates.

Theorem A.7. Let t d
0 2
>  and s t0 0

1

2
⩽ ⩽ + . Let b H, t d10 ( )ζ ∈ + R  be such that condition (19) 

is satisfied. Then, for all B Hs d1
2( )∈ − R , we have

B M
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B
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Futhermore, if s tmax 0, 1 0⩾ ( )− , we have

B M
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B
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z X z L S

H

1
,

s

2 ⩽
( ) µ
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+ | |

µ− d
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Proof. Let 0δ>  and χ be a smooth compactly supported real function that is equal to 1 near 

0. We introduce the smoothing operator :s s( )χ δΛ = Λ Λδ . We know that B H S0,surf
1 ( )∈d . There-

fore, using Bs2Λδ d a test function, we have
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( ) ( )∫ ∫∇ ⋅ Σ ∇ Λ = − Λµ µ
δ δ | =−

R
d d d

Since P( )Σ  is symmetric, sΛδ commutes with X z,∇µ  and is independent of z we obtain that
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Then by coercivity of P( )Σ  and trace inequality Lemma A.5
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We have to distinguish two cases.
(a) s t0 0⩽ ⩽  :

The commutator estimate Proposition C.6 (with T t0 0= ) and Proposition A.3 give
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for some 0ε>  small enough ( t d
0 2

ε< − ). Using a finite induction on s and taking the limit 

when δ goes to 0, the first inequality follows. For the second estimate, we only need to give a 
control of Bz

2∂ d. We use equation (A.1) satisfied by Bd. We express P( )Σ  as
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A simple computation gives

q B a B B

B B q B

q

q q

1 1

.

d z X X X z

z X z X z d z

1
2

1

( )( ) ( ) ( )µ µ µ

µ µ

+ ∂ = − ∇ ⋅ + ∇ − ∇ ⋅ ∂

− ∂ ⋅ ∇ − ∂ ∇ ⋅ − ∂ ∂

+

+

d d d

d d d
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We have a q L H Sq, , d z X
t

1
0( )∈+

∞ , q L H Sq,z z d z X
t

1
10 ( )∂ ∂ ∈+

∞ −  and q k1 d 1 ⩾ ( )+ Σ+ . Then, since 

s t1 0⩾ −  and B H SX
s,1( )∇ ∈d , by the product estimates Propositions C.3 and C.4 (with 

T t0 0= ), we obtain the result.

(b) t s t0 0
1

2
⩽ ⩽ +  :

The commutator estimate Proposition C.7 (with T t0 0
1

2
= +  and t1

1

2
> ) and Proposition 

A.3 give

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

k B M B

B
D

B2
1

.

s
X z L S

s t

X z
L S

s t
z X z

L S

s

L

,

1
2

,

1 1
2

,

2

1

2

1

2
2

( ) ⩽
( )

( )

( ) µ

Σ Λ ∇ Λ ∇

+ Λ ∂ ∇ +
Λ

+ | |

δ
µ

δ
µ

δ
µ δ

+ −

− + −

d d

d

We denote t: 1

2 1ε = − . We obtain the first inequality for t s t0 0⩽ ⩽ ε+  thanks to the previous 

case. Furthermore, we saw that

q B a B B

B B q B

q

q q

1 1

.

d z X X X z

z X z X z d z

1
2

1

( )( ) ( ) ( )µ µ µ

µ µ

+ ∂ = − ∇ ⋅ + ∇ − ∇ ⋅ ∂

− ∂ ⋅ ∇ − ∂ ∇ ⋅ − ∂ ∂

µ
+

+

d d d

d d d

We have a q L H Sq, , d z X
t

1
2 0

1
2( )∈+
+ , q L H Sq,z z d z X

t
1

2 0
1
2( )∂ ∂ ∈+
−  and q k1 d 1 ⩾ ( )+ Σ+ . Then, since 

s t1 0⩾ −  and B L H SX z X
s 1

2( )∇ ∈ ∞ −d , by the product estimates Propositions C.3 and C.5 (with 

T t0 0= ), and we obtain the second inequality for t s t0 0⩽ ⩽ ε+ . Using a finite induction, we 
obtain the first and the second inequality.  □

Appendix B. The Dirichlet–Neumann and the Neumann–Neumann operators

We refers to chapter 3 of [20] for more details about the Dirichlet–Neumann operator and sec-
tion 3 in [17] for the study of these operators.

B.1. Main properties

We can express the Neumann–Neumann operator with the formalism of the previous section. 

For Ḣ d
3
2( )ψ∈ R  and B H d1

2( )∈ R  we have

G b e P, ,μ
μ

zz X,z 0
( )[ ]( ) ( )|εζ β ψ ψΣ= ⋅ ∇

=
h (B.1)

and

( )[ ]( ) ( )|εζ β Σ= ⋅ ∇
=

dG b B e P B, .μ
μ

zz X,z
NN

0 (B.2)

Remark B.1. Notice that (see proposition 3.2 in [17])

[ ]( ) | |
( | |)

| |
[ ]( )

( | |)
ψ ψ= =

μ
G D

μ D

μ D
G B

μ D
B

1
0, 0

tanh
and 0, 0

1

cosh
.μ μ

2 NN
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We recall that G b,[ ]εζ βµ  is symmetric and maps continuously Ḣ d
1
2( )R  into ( )

′
R R⎜ ⎟

⎛
⎝

⎞
⎠Ḣ /d

1
2  

(see section 3.1. in [20]). We need an extension result in H d1
2( )− R  in order to give a dual for-

mulation of the Neumann–Neumann operator.

Definition B.2. Let H d1
2( )ϕ∈ − R . We define #ϕ  as

([ ] | |)
( | |)

ϕ ϕ=
+z μ D

μ D

sinh 1

sinh
.#

Remark B.3. #ϕ  satisfies weakly

⎪

⎪
⎧
⎨
⎩

S0 in ,

, 0.

X z

z z

,
#

0
#

1
#

   ϕ

ϕ ϕ ϕ

∆ =

= =

µ

| = | =−

We can prove easily regularity results for #ϕ  similar to ϕh.

Proposition B.4. Let s 0⩾  and Hs d1
2( )ϕ∈ − R . Then,

C D
1

1 .s
X z L S

s
z X z L S H

1
,

# 2
,

#
s2 2 1

⩽
( ) ( )

ϕ
µ

ϕ µ ϕΛ ∇ + Λ ∂ ∇ + | |µ µ− −
−

We can now give a dual formulation of the Neumann–Neumann operator. We introduce the 

Dirichlet–Dirichlet operator, for H d1
2( )ψ∈ R ,

G b, : .z
DD

1[ ]( ) ( )εζ β ψ ψ=µ | =−
h (B.3)

The following result is proposition 3.3 in [17].

Proposition B.5. Let t d
0 2
> , B H d1

2( )∈ − R  and b H, t d10 ( )ζ ∈ + R  such that (19) is satisfied. 

G b,NN[ ]( )εζ β ⋅µ  can be extended to H d1
2( )− R  with the dual formulation

⎧
⎨
⎪

⎩⎪
G b B

H

P B
,

.

d

S
X z X z

NN

1
2

, ,
#

[ ]( )
( ) ⟶

⟼ ( )∫
εζ β

ϕ ϕ
=

Σ ∇ ⋅ ∇
µ µ µ

R R
d

 (B.4)

Furthermore, the adjoint of G b,NN[ ]εζ βµ  is G b,DD[ ]εζ βµ . For all B H d1
2( )∈ − R  and H d1

2( )ϕ∈ R ,

G b B B G b, , , , .
H H H H

NN DD
1
2

1
2

1
2

1
2

( [ ]( ) ) ( [ ]( ))εζ β ϕ εζ β ϕ=µ µ− −− −

In order to study shape derivatives of the Dirichlet–Neumann and the Neumann–Neumann 
operators, we have to introduce the Neumann–Dirichlet operator. For B H d1

2( )∈ − R , we define

G b B B, : .z
ND

1[ ]( ) ( )εζ β =µ | =−
d (B.5)

The following result is a symmetry property and a dual formulation of the Neumann–Dirichlet 
operator.

Proposition B.6. Let B H d1
2( )∈ − R  and b H, t d10 ( )ζ ∈ + R  such that (19) is satisfied. 

G b B,ND[ ]( )εζ βµ  can be view as
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⎧
⎨
⎪

⎩⎪
G b B

H

C P B C
,

.

d

S
X z X z

ND

1
2

, ,

[ ]( )
( ) ⟶

⟼ ( )∫
εζ β =

− Σ ∇ ⋅ ∇
µ µ µ

− R R
d d

 (B.6)

Furthermore, G b,ND[ ]( )εζ β ⋅µ  is a negative symmetric operator and, for all B B,1 2 in H ,d1
2( )− R

( [ ]( ) ) ( [ ]( ) )( ) ( )εζ β εζ β=′ ′µ µ− −− − − −G b B B G b B B, , , , .
H H H H

ND
1 2

ND
2 11/2 1/2 1/2 1/2

We refer to proposition 3.3 in [17] for a proof of this result.

B.2. Regularity estimates

In this part we give some controls the Neumann–Neumann operators.

Proposition B.7. Let t d
0 2
> , s t0 0

1

2
⩽ ⩽ +  and b H, t d10 ( )ζ ∈ + R  such that condition (19) is 

satisfied. Then, G b,NN[ ]εζ βµ  maps continuously Hs d1
2( )− R  into itself

G b B M B, .
H H

NN
s s1

2
1
2

[ ]( ) ⩽εζ β| |µ − −

Proof. This proposition follows by Theorem A.7 and by using the same arguments that theo-
rem 3.15 in [20].  □

We can extend these estimates to w b,[ ]εζ β , the vertical velocity at the surface and to 
V b,[ ]εζ β  the horizontal velocity at the surface. These operators appear naturally when we 
differentiate the Dirichlet–Neumann and the Neumann–Neumann operator with respect to the 
surface ζ. We define

⎧

⎨
⎪⎪

⎩
⎪⎪

w b
H H H

B
G b G b B, :

˙

,
, ,

1
,

s d s d s d
1
2

1
2

1
2

NN

2 2

[ ]
( ) ( ) → ( )

( )
[ ]( ) [ ]( )εζ β

ψ
εζ β ψ µ εζ β εµ ζ ψ

ε µ ζ

=
×

+ + ∇ ⋅ ∇

+ |∇ |
µ µ

+ − −

�

R R R

 

(B.7)

and

⎪

⎪
⎧
⎨
⎩

V b H H H
B w b B

, :
˙

, , , .

s d s d s d
1
2

1
2

1
2[ ] ( ) ( ) → ( )

( ) [ ]( )
εζ β

ψ ψ ε εζ β ψ ζ
= ×

∇ − ∇

+ − −

�
R R R (B.8)

Proposition B.8. Let t d
0 2
> , s t0 0

1

2
⩽ ⩽ +  and b H, t d10 ( )ζ ∈ + R  such that condition (19) is 

satisfied. Then, w b,[ ]εζ β  maps continuously H H˙ s d s d
1
2

1
2( ) ( )×+ −R R  into Hs d1

2( )− R

w b B M B, , .
H H H

3
4s s s1

2
1
2( )[ ]( ) ⩽εζ β ψ µ ψ µ| | | | + | |− −P

Furthermore, if s t1 0⩽ ⩽ , w b,[ ]εζ β  maps continuously H H˙ s d s d1 1
2( ) ( )×+ −R R  into Hs d1

2( )− R

w b B M B, , .
H H Hs s s1

2
1
2

1
2( )[ ]( ) ⩽εζ β ψ µ ψ| | | | +| |− + −P

Finally, we have the same continuity result for V b,[ ]εζ β .
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We can also give some regularity estimates for G b,DD[ ]εζ βµ  since it is the adjoint of 
G b,NN[ ]εζ βµ .

Proposition B.9. Let t d
0 2
> , s t0 0

1

2
⩽ ⩽ +  and b H, t d10 ( )ζ ∈ + R  such that condition (19) is 

satisfied. Then, G b,DD[ ]εζ βµ  maps continuously Ḣ s d
1
2( )+ R  into itself

G b M, .
H H

DD
s s1

2
1
2

[ ]( ) ⩽εζ β ψ ψ∇ ∇µ − −

Finally, we can give some regularity estimates for G b,ND[ ]εζ βµ .

Proposition B.10. Let t d
0 2
> , s t0 0

1

2
⩽ ⩽ +  and b H, t d10 ( )ζ ∈ + R  such that condition (19) is 

satisfied. Then, G b,ND[ ]εζ βµ  maps continuously Hs d1
2( )− R  into Hs d1

2( )+ R

G b B M B, .
H H

ND
s s1

2
1
2

[ ]( ) ⩽εζ βµ + −

In the same way, we can extend also these estimates to w b,[ ]εζ β∼ , the vertical velocity at 
the bottom and to V b,[ ]εζ β∼

 the horizontal velocity at the bottom. These operators appear 
naturally when we differentiate the Dirichlet–Neumann and the Neumann–Neumann operator 
with respect to the bottom b

w b B
B b G b G b B

b
, ,

, ,

1
,

DD ND

2 2
[ ]( )

( [ ]( ) [ ]( ))
εζ β ψ

µ βµ εζ β ψ µ εζ β

β µ
=

+ ∇ ⋅ ∇ +

+ |∇ |
∼ µ µ

 

(B.9)

and

V b B G b G b B w b B b, , , , , , .DD ND[ ]( ) ( [ ]( ) [ ]( )) [ ]( )εζ β ψ εζ β ψ µ εζ β β εζ β ψ= ∇ + − ∇∼∼
µ µ

 
(B.10)

Proposition B.11. Let t d
0 2
> , s t0 0

1

2
⩽ ⩽ +  and b H, t d10 ( )ζ ∈ + R  such that condition (19) is 

satisfied. Then, w b,[ ]εζ β∼  maps continuously H H˙ s d s d
1
2

1
2( ) ( )×+ −R R  into Hs d1

2( )− R

w b B M B, , .
H H Hs s s1

2
1
2

1
2( )[ ]( ) ⩽εζ β ψ ψ µ| | |∇ | + | |∼

− − −

Finally, we have the same continuity result for V b,[ ]εζ β∼
.

B.3. Shape derivatives

Let t d
0 2
> . Given B H d1

2( )∈ R . We denote by Γ the set of functions b,( )ζ  in Ht d10 ( )+ R  satisfying 

(19). We introduce the map

⎪

⎪
⎧
⎨
⎩

G B
H

b G b B
:

, , ,

d
NN

1
2

NN
( ) → ( )

( ) [ ]( )ζ εζ β
= Γ

µ
µ�

R
 (B.11)

which is the Neumann–Neumann operator. We can also define G ( )ψµ , w B,( )ψ  and V B,( )ψ .

Remark B.12. When no confusion is possible and to the sake of simplicity, we write G ( )ψµ , 

G BNN( )µ , w B,( )ψ  and V B,( )ψ  instead of G b,[ ]( )εζ β ψµ , G b B,NN[ ]( )εζ βµ , w b B, ,[ ]( )εζ β ψ  and 

V b B, ,[ ]( )εζ β ψ .
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In order to linearize the water waves equations, we need a shape derivative formula for the 
Dirichlet–Neumann and the Neumann–Neumann operators. The following proposition is a 
summarize of theorems 3.5 and 3.6 in [17] and theorem 3.21 in [20].

Proposition B.13. Let t d
0 2
> , b H, t d10 ( )ζ ∈ + R , Ḣ d

3
2( )ψ∈ R  and B H d1

2( )∈ R . Then, G ( )ψµ  

and G BNN( )µ  are Fréchet differentiable. For h k H, t d10( ) ( )∈ + R , we have

dG h dG B h G b h w b B

h V b B

. , 0 . , 0 , , ,

, , ,

NN( ) ( ) ( ) ( ) [ ]( [ ]( ))
( [ ]( ))

ψ µ ε εζ β εζ β ψ
εµ εζ β ψ

+ = −

− ∇ ⋅
µ µ µ

and

dG k μdG B k μG b k V b B. 0, . 0, , , , .μ μ μ
NN NN( ) ( ) ( ) ( ) [ ]( ( [ ]( )))ψ β εζ β εζ β ψ+ = ∇ ⋅

∼

Furthermore,

dG h μdG B h G b h w b B. , 0 . , 0 , , , .μ μ μ
DD ND DD( ) ( ) ( ) ( ) [ ]( [ ]( ))ψ ε εζ β εζ β ψ+ = −

Thanks to these formulae we can give some controls to the first shape derivatives of the 
operators. For instance, we give an estimate for dw∼ and d V

∼
.

Proposition B.14. Let t d
0 2
>  and b H, t d10( ) ( )ζ ∈ + R  such that condition (19) is satisfied. 

Then, for s t0 0
1

2
⩽ ⩽ + , for Ḣ s d

1
2( )ψ∈ + R  and B Hs d1

2( )∈ − R , we have

d V B h k dw B h k M h k B, . , , , . , , .
H H H H Hs s t s s1

2

1
2 0 1 1

2
1
2( )( ) ( ) ( ) ( ) ⩽ ( )ψ ψ ψ|∇ | +| |∼∼

− − + − −

Proof. This result follows from Propositions B.13 and B.7.  □

We end this part by giving some controls of the shape derivatives of Gµ and GNN
µ . We do not 

use the previous method, we differentiate j times directly the dual formulation of both opera-
tors. We refer to proposition 3.28 in [20] for a control of d G h, k.j ( )( )ψµ .

Proposition B.15. Let t d
0 2
>  and b H, t d10( ) ( )ζ ∈ + R  such that condition (19) is satisfied. 

Then for all s t0 0
1

2
⩽ ⩽ +  and B Hs d1

2( )∈ − R , we have

d G M h k Bh, k B. , .j
H

i
i i H H

NN

1
s t s1

2
0 1 1

2
( )( ) ⩽ ( )

⩾
∏ ε βµ − + −

Furthermore, if s t0 0⩽ ⩽  and B Ht d0( )∈ R ,

d G M h k h k Bh, k B. , , .j
H H

i
i i H H

NN
1 1

2
s s t t1

2
1
2

0 1 0( )( ) ⩽ ( ) ( )
⩾
∏ε β ε βµ − + +

We do not prove this proposition here (which is based on a shape derivative of Bd). We refer 
to [23].

Appendix C. Useful estimates

In this part, we give some useful estimates, product and commutator estimates. We refer to 
appendix B in [19, 20] and chapter II in [6] for the proofs. The first estimates are useful to 

control fP . We recall that D

D1
=

µ

| |

+ | |
P .
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Proposition C.1. Let f H d1( )∈ R  and g H d1
2( )∈ R . Then,

g g f f f f, max 1, and max 1, .L H H L L H

1
4

1
4

1
42 1

2
1
2

2 2 1
2( ) ( )⩽ ⩽     ⩽µ µ µ| | | | | | |∇ | |∇ | | |− −P P P

Proof. The first inequality follows from the fact that 1 ⩾µ ξ µ ξ+ | | | |, the second in-

equality from 
⎛
⎝
⎜

⎞
⎠
⎟max 1,1

1

12 1
4

1
4

⩽( )ξ

µ ξ µ

+ | |

+ | |
 and the third from ⎜ ⎟

⎛
⎝

⎞
⎠max 1,

1

1

1
4⩽ µ

µ ξ

ξ

+ | |

+ | |
.  □

We need some product estimates in dR . The following proposition is proposition 2.1.2 in [6].

Proposition C.2. Let s s s, ,1 2∈R such that s s1⩽ , s s2⩽ , s s 01 2 ⩾+  and s s s d
1 2 2

< + − . 

Then, there exists a constant C  >  0 such that for all f H s d1( )∈ R  and for all g H s d2( )∈ R , we 
have fg Hs d( )∈ R  and

fg C f g .H H Hs s s1 2⩽| | | | | |

We also need some product estimates in S : 1, 0d ( )= × −R . The following proposition is 
the corollary B.5 in [20].

Proposition C.3. Let s s s, ,1 2∈R such that s s1⩽ , s s2⩽ , s s 01 2 ⩾+ , s s s d
1 2 2

< + −  and 

p 2,{ }∈ +∞ . Then, there exists a constant C  >  0 such that for all f L H Sz X
s1( )∈ ∞  and for all 

g L H Sz
p

X
s2( )∈ , we have fg L H Sz

p
X
s ( )∈  and

fg C f g .s
L L S

s
L L S

s
L L Sz

p
X z X z

p
X

2 1 2 2 2( ) ⩽( ) ( ) ( )|Λ | |Λ | |Λ |∞

The following propositions gives estimates for 1/(1  +  g) in the flat strip S. We refer to 
corollary B.6 in [20].

Proposition C.4. Let T d
0 2
> , T s T0 0⩽ ⩽− , k0  >  0 and p 2,{ }∈ +∞ . Then, for all f L H Sz

p
X
s ( )∈  

and g L H Sz X
T0( )∈ ∞  with g k1 0⩾+ , we have

⎛
⎝
⎜

⎞
⎠
⎟f

g
C

k
g f

1

1
, .s

L L S
L H

s
L L S

0
z
p

z X
T

z
p

2

0 2⩽
( )

( )Λ
+

| | |Λ |∞

Proposition C.5. Let T d
0 2
> , s T0⩾−  and k0  >  0. Then, for all f g L H S H S, z X

T s,00( ) ( )∈ ∩∞  
with g k1 0⩾+ , we have

f

g
C

k
g f f g1

1

1
, .

H
L H H s T L H H

0s
z X

T s
z X

T s

,0

0 ,0 0 0 ,0⩽ | | (| | | | | | ){ }
⎛
⎝
⎜

⎞
⎠
⎟

+
+ >∞ ∞

Notice that if s T0⩽ , f H Ss,0( )∈  is enough.

We need some commutator estimates in S. The following propositions are corollary B.17 
in [20].

Proposition C.6. Let T d
0 2
> , 0⩾δ , t0 11 ⩽<  with t T d

1 0 2
< −  and s T td

2 0 1⩽− < + . Then for 

all u L Hz X
T0∈ ∞  and v H Ss t ,01 ( )∈ −  we have

u v C u v, .s
L S

T

L L S
s t

L Sz X
2

0
2

1
2[ ] ⩽( ) ( ) ( )Λ Λ Λδ δ δ

−
∞
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Proposition C.7. Let T d
0 2
> , 0⩾δ , t0 11 ⩽<  with t T d

1 0 2
< −  and s T td

2 0 1⩽− < + . Then for 
all u HT ,00∈  and v L Hz X

s t1∈ ∞ −  we have

u v C u v, .s
L S

T

L S
s t

L L Sz X
2

0
2

1
2[ ] ⩽( ) ( ) ( )Λ Λ Λδ δ δ

−
∞
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