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Abstract
In this paper a one-dimensional piecewise linear map with discontinuous system
function is investigated. This map actually represents the normal form of the
discrete-time representation of many practical systems in the neighbourhood
of the point of discontinuity. In the 3D parameter space of this system we
detect an infinite number of co-dimension one bifurcation planes, which meet
along an infinite number of co-dimension two bifurcation curves. Furthermore,
these curves meet at a few co-dimension three bifurcation points. Therefore,
the investigation of the complete structure of the 3D parameter space can be
reduced to the investigation of these co-dimension three bifurcations, which
turn out to be of a generic type. Tracking the influence of these bifurcations,
we explain a broad spectrum of bifurcation scenarios (like period increment and
period adding) which are observed under variation of one control parameter.
Additionally, the bifurcation structures which are induced by so-called big bang
bifurcations and can be observed by variation of two control parameters can be
explained.

PACS numbers: 02.30.Oz, 05.45.−a, 05.45.Ac

1. Introduction

In recent times the dynamics of piecewise smooth maps have received significant research
attention [1–3] because a large number of systems of practical interest are modelled by such
maps. This includes power electronic circuits [4], systems involving relays [5], mechanical
systems with impacts [6, 7] and stick–slip oscillations [8], cardiac dynamics [9], walking
robots [10], etc. Most of the efforts in developing the theory for border collision bifurcations
have concentrated on piecewise smooth but continuous maps [1–3].
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In contrast, discontinuous maps have received far less research attention even though
many practical dynamical systems have been shown to be modelled by piecewise smooth
maps with discontinuity at the boundary. Such maps occur in situations where there is a
borderline in the Poincaré section such that two arbitrarily close points on the two sides of the
border land far apart at the next observation instant. It has been shown that such a situation
occurs in sigma–delta modulators [11], Colpitts oscillators [12], dc-dc converters [13] and
many other electronic circuits [14]. To study the bifurcations occurring when a fixed point hits
the discontinuity boundary, in [15] the piecewise linear normal form

x̃n+1 =
{
ax̃n + µ̃ for x̃n < 0
bx̃n + µ̃ + l for x̃n > 0

(1)

is considered and the bifurcation structures observed when one parameter (µ̃) is varied are
explored. This work provided the ground for analysing the unexpected sudden transitions in
dynamical behaviour that cannot be explained using the well-developed theory for smooth
maps as well as that for non-smooth but continuous maps. While this work has helped
in understanding the bifurcations observed in practical systems [13], it raised some further
questions. For example, it was shown that under certain conditions, orbits of progressively
higher periodicities in arithmetic progression appear as a parameter are varied. In some
cases the range of existence of subsequent orbits overlaps, resulting in parameter ranges with
coexisting attractors. In other cases there are higher periodic or chaotic orbits sandwiched
between the ranges of occurrence of consecutive periodic orbits in that progression. The
questions arising are the following. What organizes such bifurcation sequences? Do such
sequences continue ad infinitum or do they truncate after some periodicity? When does chaos
occur?

In this paper we probe these questions and show that the answers can be obtained only
when we take a look at the global character of the parameter space rather than by varying one
parameter at a time. For this purpose we consider the map

x̃n+1 =
{
fl(xn) = axn + µ for xn < 0,

fr(xn) = bxn + µ + 1 for xn > 0,
(2)

which is equivalent to system (2) for any l > 0. Hereby the variable x and the parameter
µ have been rescaled using the relations x = x̃/ l and µ = µ̃/ l, to bring the number of
parameters down to three. Due to this equivalence all the bifurcation phenomena observable
in both systems are identical. Note that the earlier work [15] considered both positive and
negative values of the discontinuity, while for the present paper we take up only the case of
the positive discontinuity to probe the specific questions considered in this paper.

Recall that the study of bifurcation phenomena with a variation of more than one parameter
is not new, and the so-called co-dimension-2 bifurcations—which require the variation of more
than one parameter for a complete description—have been reported in many systems. These
bifurcations are discussed in the early works [16–21] and were intensively studied for instance
in [22–26], and it is generally recognized that co-dimension-2 bifurcations are very important
dynamical phenomena. In this paper we show that there can be a special and very interesting
situation where an infinity of bifurcation curves meet at a point in the parameter space, and thus
an infinite number of bifurcations occur as a parameter is varied through that point. We show
that this special class of multi-parametric bifurcation organizes the structure of the bifurcation
diagram in the discontinuous map.

The paper is organized as follows. In sections 2 and 3 we clearly state the notation and
technical meaning of the terms we use throughout this paper. In section 4 we specify the region
of the parameter space of system (2) under consideration. In section 5 we first explore the
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character of the slice of the a × b × µ parameter space through the plane a = 0. In section 6
we explore the general case of nonzero values of a. In section 7 we show that in this system
there can also be 3-parametric (co-dimension-3) bifurcation which organizes the dynamics
in an extended region of the parameter space. The implications of results thus obtained are
illustrated with two examples in section 8, after which we conclude.

2. Notations

For the investigation of periodic orbits, we will use one of the standard symbolic codings for
1D maps (the so-called L/R dynamics, [27], see also [28]). For a point x < 0 we use the
symbol L and for a point x > 0 the symbol R. As usual, for a periodic orbit we write only the
sequence corresponding to one period. For periodic orbits, we use sequences starting with the
symbol L without loss of generality, since the symbolic sequences are shift-invariant. This is
always possible because it can be easily shown that each periodic orbit in system (2) contains
points from both regions x < 0 and x > 0. Additionally, a periodic orbit corresponding
to symbolic sequence σ is denoted as Oσ . The area in parameter space where Oσ exists is
denoted as Pσ . The sequence σ is admissible for system (2), iff Pσ �= ∅.

3. Definitions

3.1. Domain of a bifurcation and multi-parametric bifurcations

Let us firstly summarize the nomenclature we use in this paper. Most of the terms we need
are related to the concept of bifurcations in a multi-dimensional parameter space. As the
domain of a bifurcation we denote the set of parameter values for which this bifurcation
occurs. Sometimes domains of a bifurcation are called the bifurcation sets. Typically,
a bifurcation’s domain represents an (n − 1)-dimensional subspace of the n-dimensional
parameter space. In this case, the bifurcation is called one-parametric, often denoted also as
co-dimension one bifurcation [22]. Particularly, in one-dimensional parameter spaces, there
exist only one-parametric bifurcations and their domains are given by singular points (usually
called bifurcation points). Obviously, in this case there are exactly two different asymptotic
dynamics in the vicinity of the bifurcation point. In 2D parameter spaces the domains of one-
parametric bifurcations are represented by curves, in 3D parameter spaces by surfaces and so
on. Most of the well-known bifurcations, like transcritical, Hopf, pitchfork, flip, etc belong to
this class.

However, in some cases the dimension of the bifurcation’s domain is less than n − 1. We
denote such bifurcation as multi-parametric or as bifurcations with higher co-dimension. More
precisely, if the domain of a bifurcation has the dimension m, then the bifurcation is (n − m)-
parametric or has the co-dimension (n − m). Obviously, such bifurcations can be observed
only by investigation of n-dimensional parameter spaces with n � 2. It is well known that the
co-dimension of a bifurcation is the minimal dimension of the parameter space required for
an adequate description of this bifurcation.

Upto now, most of the known results were related to the case n = 2. In this case, the
domains of one-parametric bifurcations are given by curves, and two-parametric bifurcations
occur at points where one-parametric bifurcation curves intersect each other. An example
of this phenomenon is the Hopf–Hopf bifurcation, which represents the intersection of two
Hopf bifurcation curves. One can say that the Hopf–Hopf bifurcation is induced by two
Hopf bifurcations occurring at the same point in the parameter space. Similarly, there
can be two saddle-node bifurcations occurring at the same point in the parameter space.
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In piecewise–smooth dynamical systems multi-parametric bifurcations are often induced by
border-collision bifurcations.

3.2. Big bang bifurcations and characteristic 1D scenarios

A special type of two-parametric (or co-dimension-2) bifurcation is given by the case where, at
some point in the parameter space, an infinite number of bifurcation curves intersect. In [29]
it was proposed that these specific bifurcations be denoted as big bang bifurcations. The
big bang bifurcations occurring in piecewise-smooth dynamical systems are typically induced
by border-collision bifurcations [30]. However, these bifurcations may be induced by other
bifurcations as well, for instance by flip bifurcations [31].

Typically, in the vicinity of the big bang bifurcation point, there exists an infinite number
of different asymptotic dynamics. However, this property is neither necessary nor sufficient.
On the one hand, an infinite number of bifurcation curves may monotonically converge to
a point without crossing each other and without crossing that point. On the other hand, an
infinite number of bifurcation curves do not imply an infinite number of asymptotic dynamics
in the areas bounded by these curves. This is possible, because at one bifurcation curve the
dynamics may switch from one type to another, then, at the next bifurcation curve, it may
switch back to the first and so on. An example of a map which demonstrates this phenomenon
can be found in [30].

Remarkably, the used definition of the big bang bifurcation does not specify what kind of
bifurcation curves intersect at the bifurcation point and consequently, what kind of asymptotic
dynamics exist in the vicinity of this point. In order to classify the big bang bifurcation more
precisely, in [32] it is suggested to consider the one-parametric bifurcation scenario taking
place along the border of an infinitely small convex open neighbourhood of the bifurcation
point.

Typical bifurcation scenarios observed in the system under consideration, formed by
repeated occurrence of border-collision bifurcations, can be classified into three possible
scenarios. These are period increment with coexistence of attractors, pure period increment
and period adding scenarios. In all three cases, there exists a sequence of periodic attractors,
whose periods form an arithmetical series pn = p0 + n�p with a starting period p0 and an
increment value �p. Let us denote as ηn the parameter value at which the attractor with period
pn is created and as η̄n the value at which it is destroyed. Without any loss of generality, we can
assume ηn < η̄n. ηn+1 and η̄n+1 are the corresponding parameter values for the next periodic
orbit in that sequence. Then, the common property of all three bifurcation scenarios mentioned
above is given by ηn < ηn+1 and η̄n < η̄n+1, whereas the difference between the scenarios
concerns the location of the values η̄n and ηn+1 with respect to each other. In particular, the
scenarios mentioned above correspond to the cases η̄n > ηn+1, η̄n = ηn+1 and η̄n < ηn+1. In
the case η̄n > ηn+1 the sequence of periods pn = p0 + n�p is caused by a sequence of pairs
(ηn+1, η̄n) of border-collision bifurcations. After the first bifurcation within the nth pair, i.e.
after ηn+1, the attractor with period pn+1 emerges, but the attractor with period pn continues to
exist. Then, both attractors coexist between parameter values ηn+1 and η̄n. At η̄n, the attractor
with period n is destroyed. We denote this scenario as ‘period increment with coexistence of
attractors’. If such a bifurcation sequence is observed in the vicinity of a big bang bifurcation
point, then this point is called a ‘period increment big bang bifurcation with coexistence of
attractors’.

In the case η̄n = ηn+1 both bifurcations occur at the same parameter value, so that the
sequence of periods pn = p0 + n�p is caused by a sequence of double border-collision
bifurcations. At the nth bifurcation, the attractor with period pn is destroyed and the attractor
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Figure 1. First layers of the infinite adding scheme generating periods occurring in the period
adding scenario.

with period pn+1 simultaneously emerges. We denote this scenario as ‘pure period increment’
and the corresponding big bang bifurcation point as pure period increment big bang bifurcation
or simply period increment big bang bifurcation.

The last case η̄n < ηn+1 is more complex. In this case between both bifurcations there is a
gap, where the attractor with period pn has already been destroyed and the attractor with period
pn+1 has not yet emerged. In this parameter interval we observe higher-periodic attractors,
whose periods can be calculated based on pn and pn+1 using the infinite adding scheme for
symbolic sequences [30]. The first layers of this scheme are shown in figure 1. The scheme
can be continued layer-wise ad infinitum according to the following simple rule: a symbolic
sequence in the mth layer of the period adding scheme is constructed via concatenation of a
sequence from the (m − 1)th layer with the corresponding direct successor of this sequence.
Note that this infinite sequence adding scheme represents a natural extension of the well-known
Farey trees [33] for the space of symbolic sequences.

Concerning the period adding scenario, let � be the symbolic sequence corresponding
to the attractor with period pn and � the one corresponding to the attractor with period pn+1.
Remarkably, there exists a bijective topology-preserving mapping between the parameter space
and the space of admissible symbolic sequences generated within the infinite adding scheme
described above. Therefore we state that, for instance between periods pn and pn+1, there
exists the period pn + pn+1 (corresponding to the symbolic sequence ��), between periods
pn + pn+1 and pn+1 there exists the period pn + 2pn+1 (corresponding to the symbolic sequence
��2) and so on. We denote this bifurcation scenario as period adding, and the corresponding
big bang bifurcation is denoted as period adding big bang bifurcation.

3.3. Influence areas

Additionally, we use in this work the concept of the influence area of a bifurcation. We define
this area as the contiguous region around a bifurcation point, where the parameter setting leads
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to attractors which are topologically equivalent to the attractors existing in the vicinity of the
bifurcation point. When dealing with 1D parameter spaces, this means simply the parameter
interval between the previous and the next bifurcation.

In higher-dimensional parameter spaces, however, this concept becomes more interesting,
because the influence area of a single multi-parametric bifurcation may cover large parts of
the parameter space. This fact represents one of the main practical reasons for investigating
multi-parametric bifurcations. Determining the type of a multi-parametric bifurcation, i.e.
discovering the structure of its vicinity, one is often able to predict the behaviour of the
investigated system in a large area of the complete multi-dimensional parameter space.

4. Parameter space region under consideration

In order to specify the area in the 3D parameter space, which we will investigate in detail in
the following, let us first summarize some basic results related to the dynamic behaviour of
system (2). A straightforward calculation shows that this system possesses at most two fixed
points, namely,

x∗
L = µ

1 − a
, x∗

R = µ + 1

1 − b
. (3)

Because x∗
L is calculated using the left partial function fl , it exists iff µ/(1−a) < 0. Similarly,

x∗
R exists iff (µ + 1)/(1 − b) > 0. Note, that if a fixed point collides with the border x = 0,

it is destroyed via a border-collision bifurcation. Therefore the parameter planes µ = −1 and
µ = 0 in the 3D parameter space represent planes of border-collision bifurcations. Because
the parameters a and b represent the slopes of the partial functions fl and fr , the fixed point
x∗

L is stable iff |a| < 1 and x∗
R is stable iff |b| < 1. If |a| < 1 and |b| < 1, two stable fixed

points coexist if µ ∈ (−1, 0) and outside this range there is one stable fixed point. If |a| > 1
and |b| > 1 then no periodic orbit can be stable and the attractors can be either chaotic or the
fixed points at ±∞.

In the present paper our point of interest is that part of parameter space where high-periodic
orbits are possible. Therefore we exclude the above regions. Out of the remaining regions in
the parameter space we concentrate on two cases:

P = {(a, b, µ) | |a| < 1, b < −1, µ � 0}, (4)

P ′ = {(a, b, µ) | a < −1, |b| < 1, µ � −1}, (5)

where high-periodic orbits can occur. A preliminary study of the bifurcation phenomena in
these regions of the parameter space was reported in [15]. In this paper we make an in-depth
investigation of the sequences of periodic orbits and demonstrate the occurrence of big bang
bifurcations. Since the parameter space is three dimensional, for the sake of visualization we
analyse b × µ slices of the parameter space for specific values of a.

Note that the system function has the symmetry

f (a, b, µ, x) = −f (b, a, −(µ + 1), −x) (6)

and hence there is a one-to-one correspondence between the bifurcation structures in the regions
P and P ′. This is why in the rest of the paper we concentrate only on the region P .

5. Plane b × µ for a = 0

5.1. Numerical observations

Let us start with the case a = 0. As shown in figures 2(a) and (c), under variation of the
parameter b, system (2) demonstrates a typical period increment scenario with the increment
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Figure 2. Bifurcation and period diagrams in the case a = 0 under variation of one control
parameter. (a), (c) µ = 2, b varied. (b), (d) b = −1.5, µ varied.

value �p = 2. This scenario converges to the boundary b = −1 of the investigated area in the
parameter space. The behaviour under the variation of the parameter µ is similar, however in
this case two period increment scenarios converging to the same accumulation point µc = 2

3
can be observed (figures 2(b) and (d)). Remarkably, both scenarios have the same increment
value �p = 2, but different start values p0 = 2 and p0 = 3. Consequently, one of these
scenarios (shown in the left part of figures 2(b) and (d)) is formed by attractors with even
periods and the other one by attractors with odd periods.

5.2. Emergence of periodic orbits

In order to explain the results obtained numerically, let us consider the mechanism causing
the periodic orbits of system (2) to occur. It can be easily shown that each periodic orbit of
this system contains points lying in the left half-axis x < 0 as well as in the right half-axis
x > 0. Hence, without loss of generality we can consider a start point x0 < 0. Because the
slope of the left partial function fl is equal to zero, each x0 < 0 is mapped to x1 = µ > 0
within one iteration step. After that the orbit performs some number n of iteration steps on the
right and is finally mapped to a point xn+1 < 0. Due to a = 0, this point is mapped to x1 and
hence the orbit becomes periodic. For this reason only sequences LRn are admissible in the
case a = 0.

In order to calculate the existence area of OLRn , we have to take into account the fact
that the bifurcations leading to these orbits are border-collision bifurcations. For OLRn two
such bifurcations are possible. The first occurs if the point x0 collides with the border
x = 0 from the left side. The second one occurs if the point xn−1 collides with the
border x = 0 from the right. Hence, we calculate (in general, i.e. not only for a = 0)
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the values

x0 = −
(
bn+1 − 1

)
µ + (bn − 1)

(abn − 1) (b − 1)
, (7)

xn−1 = abn−2x0 +
(bn−1 − 1)µ + (bn−2 − 1)

b − 1
. (8)

From the conditions x0 = 0 and xn−1 = 0 we obtain the parameter values corresponding to
the border-collision bifurcations

ξ
x0,l
LRn =

{
(a, b, µ)

∣∣∣ − 1 < a < 1, b < −1, µ = −bn − 1

bn+1 − 1

}
, (9)

ξ
xn−1,r

LRn =
{
(a, b, µ)

∣∣∣ − 1 < a < 1, b < −1, µ = −bn−2(1 − a) − 1 + abn

bn−2(b − a) − 1 + abn

}
. (10)

The notation used here guarantees a unique description for border-collision bifurcations of
periodic orbits for dynamical systems with one discontinuity point. It has the following
meaning: the lower index determines which orbit undergoes the bifurcation, and the upper
indices, which point of this orbit collides with the border from which side. As an example,
ξx2,r
σ would denote the parameter values of the border-collision bifurcation which occurs if the

second point of Oσ collides with the border x = 0 from the right side. Note, that ξ
x0,l
LRn and

ξ
xn−1,r

LRn represent bifurcation surfaces in the 3D parameter space a × b × µ.
Let us remark additionally, that for the special case a = 0 the bifurcation curve ξ

x0,l
LRn |a=0

(i.e. the intersection of the bifurcation surface ξ
x0,l
LRn with the plane a = 0) is identical with the

bifurcation curve ξ
xn+1,r

LRn+2 |a=0. Indeed, setting a = 0 and replacing n with n+ 2 in the right-hand
side of equation (10), one obtains the right-hand side of equation (9). For this reason we
observe in the case a = 0 a double border-collision bifurcation which causes one of the limit
cycles to emerge and the other one to disappear at the same parameter value. In contrast to this,
for a �= 0 these two phenomena (emergence of one limit cycle and destruction of the other one)
are independent of each other. Both phenomena are caused by border-collision bifurcations,
but the bifurcations may occur at different parameter values.

Note, that in the case a = 0 all periodic orbits OLRn are stable within their complete
existence area. Moreover, because the derivative of the system function at the point x0 < 0 is
equal to zero, all these orbits are super-stable, i.e. their Lyapunov exponent tends to −∞.

5.3. Emergence of odd and even periods

In order to understand the structure of the parameter plane b × µ for the case a = 0, one
has to take into account the fact that the orbit OLRn , once mapped onto the right half-axis,
performs some kind of circulation around the unstable fixed point x∗

R. This explains the period
increment value �p = 2 mentioned above, because each circulation consists of two points.
One of these points lies between zero and x∗

R whereas the other one is located on the right
side of x∗

R. This circulation around x∗
R is finished at the point xn with fr(xn) < 0. Due to

the negative slope of the function fr , this point lies always on the right side of x∗
R. Therefore,

there are three characteristic cases, depending on the position of the point x1 = µ with respect
to the fixed point x∗

R as follows.

Case x1 = µ > x∗
R: in this case a periodic orbit performs a number m of rotations

around x∗
R, or, equivalently, an even number of steps until it is mapped onto x0 < 0 (see

figure 3(a)). These orbits correspond to admissible sequences LR2m+1.
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Figure 3. Periodical orbits OLR12 and OLR13 in the case a = 0, b = −1.25. As one can see, the
period of the orbit is odd iff µ < x∗

R and even iff µ > x∗
R.

Case x1 = µ = x∗
R: in this case any point x0 is mapped directly on to the fixed point.

Therefore, the behaviour of system (2) is in this case somehow curious: although the fixed
point x∗

R is locally unstable (since |b| > 1), it is globally stable as all orbits converge
to this fixed point. Recall that the initial values leading to an unstable invariant set (for
instance a fixed point) are usually denoted as atypical initial values. Hence, we state that
in the case µ = x∗

R each initial value is atypical.
Case x1 = µ < x∗

R: in this case a periodic orbit performs an additional iteration step
before it performs a number m of rotations around x∗

R. Therefore, the complete number
of iteration steps until the orbit is mapped onto x0 < 0 is odd in this case (see figure 3(b)),
and the corresponding admissible sequences are LR2m.

From equation (3) we obtain that the condition µ = x∗
R is identical with µ = −1/b. Therefore

the situation described above for the case µ = x∗
R occurs for the parameter values belonging

to the bifurcation curve

ξ∞ =
{
(a, b, µ)

∣∣∣ a = 0, b < −1, µ = −1

b

}
= lim

n→∞ ξ
x0,l
LRn

∣∣∣
a=0

. (11)

This curve will play an important role for the explanation of the observed bifurcation structures
(see sections 5.5 and 6.4).

5.4. Big bang bifurcations

As one can see from equation (9), the course of the curves ξ
x0,l
LRn |a=0 (and consequently of

ξ
xn−1,r

LRn |a=0, because for all n these curves are identical with ξ
x0,l

LRn−2 |a=0) depends on whether

the number n is even or odd. For b → −1 the family of curves ξ
x0,l
LRn |a=0 with odd numbers n

converge from the left side to the point

BI(a)|a=0 = {a, b = −1, µ → ∞}|a=0, (12)

whereas the family of curves ξ
x0,l
LRn |a=0 with even numbers n converge to the point

B II(a)|a=0 = {a, b = −1, µ = 0}|a=0. (13)

In the limit case b = −1 the corresponding curves intersect at the points B I(a)|a=0 and
BII(a)|a=0, so that these points represent the special class of two-parametric bifurcations which
we have termed as big bang bifurcations. Recall, that the period of the asymptotic dynamic is
increased by two at each of the curves ξ

x0,l
LRn |a=0. Therefore, the points B I(a)|a=0 and B II(a)|a=0
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Figure 4. Analytically calculated structure of the plane b × µ for a = 0. Shown are the curves ξn

with n = 1.50 and the accumulation curve ξ∞. The dashed lines b = −1.5 and µ = 2 correspond
to figure 2. The dashed line µ = 0.5 corresponds to the example discussed in section 8.2.

(or, more simply, B I(0) and B II(0)) represent pure period increment big bang bifurcations in
the plane b × µ. Additionally, for all n (both odd and even) the bifurcation curves ξ

x0,l
LRn |a=0

converge to the point

B III(a) = {a, b → −∞, µ = 0}. (14)

Hence, in the plane b × µ this point represents a big bang bifurcation as well. Note that the
two points B I(a) and B III(a) can be shifted to finite values by a suitable transformation of the
parameters. This also eliminates the problem regarding the mathematical correctness of the
term ‘infinite small vicinity of the point infinity’.

The type of big bang bifurcation occurring at the point B III(0) does not fit exactly our
definition of the period increment big bang bifurcation, because around the border of a vicinity
of this point two period increment scenarios occur. However, this big bang bifurcation is closely
related to the pure period increment big bang bifurcation. The bifurcation scenario along
an infinite small vicinity of the point B III(0) represents a double period increment scenario
converging to the same accumulation point. As one can see from figure 4, this scenario is
topologically equivalent to the one presented in figures 2(b) and (d).

We remark additionally, that period increment big bang bifurcations occur frequently
pairwise (see for instance an example in [29]). This seems to be the natural way that the
bifurcation lines originating from one of these bifurcations accumulate at the other one (this
can be interpreted as some kind of interaction between the two involved period increment big
bang bifurcations). In the case of system (2) for a = 0 we observe two period increment big
bang bifurcations B I(0) and B II(0), both interacting in the described way with the big bang
bifurcation B III(0).

The phenomenon described above can be understood more easily considering the graph
shown in figure 5. This graph (we call it the structural graph) represents the bifurcation structure
of the 2D parameter plane b × µ for the case a = 0. The vertices of the graph correspond
to the two-parametric bifurcations in this plane. Two vertices are connected by an edge iff
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Figure 5. Schematic representation of the bifurcation structure of the plane b × µ for a = 0.

there exists a bifurcation curve, which originates at one of the involved bifurcations and ends
at the other one. The weight of an edge reflects the number of such curves. According to our
definition, at a big bang bifurcation point an infinite number of bifurcation curves originate.
Of course, all these curves may end at different bifurcation points, but the simplest case is
obtained where all these curves are ‘collected’ by another big bang bifurcation. In this case all
the bifurcation curves are represented in the structural graph by a single edge with the weight
∞. In the structural graph of system (2) for the plane a = 0, there exist two edges with weight
∞ between the big bang bifurcations B I(0) and B III(0) as well as between B II(0) and B III(0)

(compare figure 4). The bifurcations B I(0) and B II(0) are connected by an edge with weight 1,
which corresponds to the bifurcation where the fixed point x∗

R becomes unstable.

5.5. Influence areas

Figure 4 shows the analytically calculated structure of the plane b × µ for the case a = 0.
We state that in the case a = 0 that this area is completely influenced by the two big bang
bifurcations at BI(0) and B II(0). This means that the existence area of any attractor of the
investigated system starts in the case a = 0 at one of these points. In other words, the complete
investigated area in the parameter space is covered by existence areas of attractors emerging
at these bifurcations:

�(BI(0))|a=0 =
∞⋃

n=0

PLR2n+1 =
{
(b, µ)

∣∣ µ > −1

b

}
, (15)

�(B II(0))|a=0 =
∞⋃

n=1

PLR2n =
{
(b, µ)

∣∣ µ < −1

b

}
= P \ �(B I(0))|a=0. (16)

In relation to the used notation, recall that the influence areas �(B I(0)) and �(B II(0)) of the
bifurcations occurring at B I(0) and B II(0) are 3D objects in the parameter space a × b × µ.
With �(B I(0))|a=0 and �(B II(0))|a=0 we denote the intersection areas of these 3D objects
with the plane a = 0. Remarkably, the curve ξ∞, which corresponds to the case x∗

R = µ,
represents a border between the areas influenced by these two bifurcations and hence can be
interpreted as some kind of ‘separatrix’ in the parameter space. Related to B III(0), we state
that the influence area of this bifurcation covers the complete area P:

�(BIII(0))|a=0 = �(B I(0))|a=0 ∪ �(B II)(0)|a=0 = P. (17)
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5.6. Numerical observations revisited

Now the results obtained numerically can be explained easily. The period increment scenario
presented in figures 2(a) and (c) is observed under the variation of the parameter b for fixed value
µ = 2. As one can see, the investigated parameter intervals lie completely above the curve ξ∞,
i.e. within the area �(BI(0))|a=0 (see the horizontal line at µ = 2 in figure 4). Consequently,
the observed bifurcation scenario is formed by a sequence of periodic orbits OLR2n+1 . In
contrast to this, fixing b = −3/2 and varying µ, one crosses the curve ξ∞ (see the vertical
line in figure 4). This leads to two period increment scenarios with a common accumulation
point µc = 2/3 as shown in figures 2(b) and (d). The left scenario (for µ < 2/3) belongs
to �(B II(0))|a=0. One can say that this scenario is caused by the period increment big bang
bifurcation occurring at B II(0), whereas the other one belongs to �(B I(0))|a=0.

6. Plane b × µ for the case a �= 0

As shown in the previous section, if the slope of the left partial function fl is equal to zero, the
investigated area in the parameter plane b × µ is completely covered by areas PLRn . The next
question arising in this context is how the structure of the parameter space is transformed, if
the slope of the function fl becomes non-zero.

6.1. Numerical observations

Let us firstly consider the case a > 0. In this case, investigating the behaviour of system (2)
under the variation of one parameter, one observes a large number of different bifurcation
scenarios. For instance, in figure 6 the behaviour is mainly caused by period adding phenomena.
All attractors existing in the right part of these figures are periodic (figure 6(c)); the values of
the Lyapunov exponent are negative (figure 6(c)) and show a structure typical of the period
adding phenomenon.

In the left parts of figures 6(a)–(c) the behaviour becomes chaotic and one can observe one-
band as well as multi-band attractors. Note that when looking only at the bifurcation diagram it
is difficult to recognize the critical parameter value where the transition to chaos occurs. As one
can see, the overall shape of the high-periodic attractors before and the chaotic attractors after
this transition are similar. Remarkably, there are no periodic windows in this parameter range,
i.e. the chaotic attractors existing below some critical value of b are robust. Note that this critical
value of b depends on the parameters a and µ and can be calculated from equation (25) derived
later. For the values a = 0.2, µ = 0.4 used in figure 6 we obtain the critical value b = −1.8.

Another example of the behaviour observed for a > 0 is shown in figure 7. In this case we
detect the orbits OLR, OLR3 , OLR5 and OLR7 . The observed behaviour has some similarities
with both period increment and period adding scenarios described above. On the one hand, we
observe an arithmetical series of periods: 2, 4, 6, 8, similarly to the case of the period increment.
However, the scenario is truncated: after the period 8 there are no further periods, but only a
sequence of multi-band chaotic attractors. On the other hand, between each pair of periods
there is some ‘free space’ (which means that the situation is similar to the case η̄n < ηn+1

discussed in section 3.2 for the period adding). However, between parameter intervals leading
to corresponding periodic orbits there are intervals leading to chaotic behaviour and not to a
periodic one, in contrast to the case of the period adding scenario.

For a negative value a = −0.05 we observe the complex scenario presented in figure 8.
As one can see, this scenario begins as a typical period adding, followed by a parameter
interval with chaotic dynamics and is continued as a period increment scenario with coexisting
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Figure 6. Bifurcation diagram, period diagram and Lyapunov exponent in the case a = 0.2,
µ = 0.4 under variation of one control parameter b.

attractors. It may be unexpected, but we will show that for all three scenarios presented in
figures 6, 7 and 8 there exists a simple and unified explanation, which is based on two- and
three-parametric bifurcations.

6.2. Emergence of stable periodic orbits

In order to explain the complex behaviour observed numerically, let us consider again the orbits
OLRn . As shown above, the existence areas of these orbits are bounded by the bifurcation
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Figure 7. Bifurcation diagram, period diagram and Lyapunov exponent in the case a = 0.2,
µ = 1.2 under the variation of one control parameter b.

surfaces ξ
x0,l
LRn and ξ

xn−1,r

LRn , given by equations (9) and (10). In contrast to the case a = 0, where
the existence and stability areas of OLRn are identical, in the case a �= 0 a periodic orbit may
become unstable. In general, if NL(σ ) and NR(σ ) are the numbers of symbols L and R in the
admissible symbolic sequence σ , then the Lyapunov exponent of Oσ is given by

λσ = NL(σ ) ln |a| + NR(σ ) ln |b|
NL(σ ) + NR(σ )

. (18)
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Figure 8. Bifurcation diagram, period diagram and Lyapunov exponent in the case a = −0.05,
µ = 0.6 under the variation of one control parameter b. Note the intervals with coexisting attractors
in the right part of the figure.

Using the condition

λLRn = ln |a| + n ln |b|
n + 1

= 0 (19)

we obtain that OLRn loses its stability along the line

bLRn = −|a|−1/n. (20)
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Figure 9. Bifurcation structure of the plane b × µ in the case a = 0.2. (a) Results obtained
numerically, (b), (c) analytical calculated areas PLRn for n � 52. Horizontal dashed lines in (a)
correspond to figures 6 and 7. Analytic results corresponding to the rectangles marked in (a) are
shown in (b) and (c), enlarged.

6.3. Big bang bifurcations

In order to explain the structure of the parameter plane b × µ for the case a �= 0 we have now
to consider the relative positions of the areas PLRn with respect to each other. As in the case
a = 0, we state that the points B I(a) and B II(a) represent big bang bifurcations and that each
area PLRn starts at one of these points. However the type of these big bang bifurcations is
different for the cases a > 0 and a < 0, see figures 9 and 10. More precisely, the following
can be proved analytically.

(i) In the case a > 0 the point B I(a) represents a period increment big bang bifurcation with
coexistence of attractors, and the point B II(a) a period adding big bang bifurcation.
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Figure 10. Bifurcation structure of the plane b × µ in the case a = −0.2. (a) Results obtained
numerically, (b), (c) analytical calculated areas PLRn for n � 52.

(ii) In the case a = 0 both points represent period increment big bang bifurcations.
(iii) In the case a < 0 the point B I(a) represents a period adding big bang bifurcation and the

point B II(a) a period increment big bang bifurcation with coexistence of attractors.

These facts represent the main result of this section and have to be discussed in futher detail.
The case a = 0 has already been explained in the previous section. Let us now consider
the point B I(a) in the case a > 0. Similarly to the case a = 0, the areas PLR2n+1 originate
from this point. However, in contrast to the case a = 0, it can be easily shown that for
a > 0 each two subsequent areas PLR2n+1 and PLR2n+3 overlap (see figure 9(c)). Therefore each
1D parameter scan around this point (for a sufficient large value of µ) is similar to the one
presented in figure 11(a). As shown in this figure, for each two subsequent even numbers there
is a parameter interval where the attractors with corresponding periods coexist. Analogous
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Figure 11. 1D bifurcation scenarios in the plane b × µ around the border of the vicinity of big
bang bifurcation points BI(a) (left) and BI(a) (right) for positive and negative values of a. In the
case a > 0, BI(a) represents a period increment big bang bifurcation with coexistence of attractors
and BI(a) a period adding one. In the case a < 0 the situation is the reverse.

behaviour can be observed around the point B II(a) for a < 0 (i.e. for a sufficiently small value
of µ, figure 11(d)).

The behaviour around the point B II(a) for a > 0 is more complex. Equations (9) and (10)
imply that in this case there is some ‘free space’ between each of the two subsequent areas
PLR2n and PLR2n+2 . It can be shown that this is the space in which the areas Pσ lie, whereby the
sequence σ can be generated from the sequences LR2n and LR2n+2 using the infinite symbolic
adding scheme, as described in section 3.2. These sequences play the most important role for
the description of the bifurcation phenomena occurring in system (2)3. Note that there exist

3 Note that there are several notations related to sequences similar to those we consider in this work. Firstly, in [34,35],
the orbits corresponding to sequences LRn are denoted as maximal orbits. Secondly, in [36] the orbits corresponding
to sequences LmRn are called regular orbits. Finally, in [20, 37] the orbits corresponding to the so-called evenly
distributed sequences are considered. Hereby a sequence is denoted as evenly distributed if it consists only of
syllables of only the forms LRn, LRn+1 or LnR, Ln+1R. Obviously, sequences corresponding to maximal orbits are
a special case of evenly distributed sequences, as well as the sequences corresponding to regular orbits in the case
m = 1 or n = 1. It is important to emphasize two differences between evenly distributed sequences and sequences
which we consider in this work. Firstly, due to the different mechanism leading to the emergence of periodic orbits in
system (2) (see section 5.2), we consider sequences composed of syllables of the forms LRn, LRn+2 or LnR, Ln+2R.
Secondly, not each evenly distributed sequence can be generated by the infinite adding scheme. Consider for instance
the sequences LRnLRn+2LRn(LRn+2)2 and (LRn)2(LRn+2)3. Both of them contain the same syllables, but the first
one can be generated by the infinite adding scheme, whereas the second one cannot.
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some areas in the parameter space where system (2) has stable orbits corresponding to some
other sequences (see for example the sequence L2R3 in figure 15), but in this work we will
not investigate these orbits.

Due to the bijective mapping between the 2D parameter space and the space of symbolic
sequences, it can be shown that between the areas PLR2n and PLR2n+2 lies the area PLR2nLR2n+2 ,
between PLR2n and PLR2nLR2n+2 lies the area P(LR2n)2LR2n+2 , etc. Hence, performing a 1D
parameter scan around the point B II(a) for a > 0, we observe a period adding scenario like
the one presented in figure 11(b). Note that the behaviour occurring around the point B I(a)

for a < 0 is exactly the same (figure 11(c)).
In order to complete the description of the period adding big bang bifurcations occurring

at the points BI(a) for a < 0 and B II(a) for a > 0, it is worth mentioning that in these cases
not only the areas PLRn , but also PLnR originate from the big bang bifurcation points. More
precisely, in the case a < 0 from the point B I(a) originate the areas PL2n+1R, as well as the
areas Pσ , whereby the sequence σ can be generated from L2n+1R and L2n+3R using the infinite
symbolic adding scheme. Similarly, in the case a > 0 from the point BII(a) originate the areas
PL2nR and the areas Pσ , whereby the sequence σ can be generated from L2nR and L2n+2R.
Note that these areas emerge only in the case when the corresponding big bang bifurcation is
of the period adding type. In the cases where the bifurcation is of the period increment type
(with or without coexisting attractors), the corresponding sequences are not admissible in the
influence area of this bifurcation.

6.4. Influence areas

As one can see from figures 9 and 10, in both cases a > 0 and a < 0, a large part of the
investigated area P is covered by the influence areas �(B I(a)) and �(B II(a)). In contrast to
the case a = 0, where the areas �(B I(0)) and �(B II(0)) are separated from each other by
the smooth curve ξ∞, in both cases a > 0 and a < 0 the areas �(B I(a)) and �(B II(a)) are
separated from each other by an extended area Pch leading to a chaotic dynamics. The interior
structure of this area is complex as well; there are one-band and multi-band attractors within.
However, in this work we restrict ourselves to an investigation of periodic orbits caused by
multi-parametric bifurcations. Therefore, the investigation of the structure of Pch is left for
future work.

It turns out that the boundaries of the above-mentioned influence areas have different
properties depending on the type of the corresponding big bang bifurcation. In the case of
period increment big bang bifurcations with coexistence of attractors (�(BI(a)) for a > 0 as
well as �(BII(a)) for a < 0), the influence areas cannot be calculated in a closed form, but
only as

�(B I(a))|a>0 =
∞⋃

n=0

PLR2n+1 , (21)

�(B II(a))|a<0 =
∞⋃

n=1

PLR2n , (22)

whereby the boundaries of the areas PLR2n+1 and PLR2n are given by equations (9), (10) and (20).
In contrast to the case a = 0, the boundaries of �(B I(a)) for a > 0 as well as �(B II(a)) for
a < 0 represent a non-smooth curve. Remarkably, these boundaries consist of two types of
bifurcation curves: along the curves of the first type the corresponding stable periodic orbit
disappears, whereas along the curves of the second type it becomes unstable.
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Figure 12. Influence areas of the big bang bifurcation points BI(a) and BII(a) in the plane b × µ

for several values of a. The influence areas shrink for increasing values of |a|, whereas the area Pch

(lying in-between) grows. Note that the structure of figures (a) and (c) corresponds to the structure
of figure 10, whereas the the structure of figures (b) and (d) corresponds to that of figure 9.

In the case of period adding big bang bifurcations the influence areas can be calculated in
closed form:

�(B I(a))
∣∣
a<0 =

{
(b, µ)

∣∣∣∣ µ >
1 − a

a − b

}
, (23)

�(B II(a))
∣∣
a>0 =

{
(b, µ)

∣∣∣∣ µ <
1 − a

a − b

}
. (24)

Hereby the boundary surface ξ env is defined by

ξ env =
{
(a, b, µ)

∣∣∣ − 1 < a < 1, b < −1, µ = 1 − a

a − b

}
(25)

and follows from the condition fl(fr(0)) = fr(fl(0)). Note that the curve ξ∞ (see
equation (11)) represents the intersection ξ env|a=0 of the surface ξ env with the plane a = 0.
Investigating the behaviour of system (2) for increasing values of |a|, we observe that the
influence areas �(B I(a)) and �(B II(a)) become smaller. In the case a = 0 these areas adjoin
each other, so that there is no area Pch in between. For |a| = 0.05 (see figures 12(a) and (b))
the areas �(B I(a)) and �(B II(a)) cover the most part of P , and the area Pch in between is
comparatively small. As one can see from these figures, for any value of µ there are values
of b where system (2) shows a periodic dynamics with arbitrary high periods. In contrast to
this, for |a| = 0.2 (figures 9 and 10), the influence areas become smaller and for instance for
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µ = 0.6 system (2) is able to demonstrate either two-periodic or chaotic solutions. For further
increasing values of |a|, the influence areas continue to shrink (as shown in figures 12(c) and
(d) for the case |a| = 0.5). However, the areas do not vanish in the complete interval |a| < 1,
and hence for any value |a| < 1 we are able to determine the values of the parameters b and
µ leading to an arbitrary high period.

6.5. Numerical observations revisited

Now the behaviour presented in figures 6, 7 and 8 can be explained easily. The scenario shown
in figure 6 is observed by performing a section of the 2D parameter space from the area Pch

into the area �(B II(0.2)), as shown in figure 9. In contrast to this, figure 7 corresponds to
the area Pch with some periodic windows originating at B I(0.2). In the presented case only
four of these areas are crossed, therefore the period increment scenario is truncated after the
period 8. Note that increasing the value of µ one would cross more of these areas and hence the
period increment scenario would be truncated later. For larger values of µ the coexistence of
attractors would be observed as well. Finally, the mixed scenario consisting of period adding
and period increment with coexistence of attractors, presented in figure 8, emerges, because
for a = −0.05 the presented interval b ∈ [−3, −1], µ = 0.6 crosses both influence areas
�(BII)(−0.05) and �(B II)(−0.05) (see figure 12(a)).

Let us consider additionally the Lyapunov exponents in the case of the period adding
scenarios presented in the right part of figure 7(c) and the left part of figure 8(c). If we interpret
the Lyapunov exponents shown in these figures as a function λ(b) of the parameter b, then this
function is similar to the well-known Cantor–Lebesgue function. As shown above, the period
increment scenario is caused by the subsequent cross-section of an infinite number of areas
Pσ , which start at the period adding big band bifurcations. For a fixed a equation (18) implies
that within each of these areas the function λσ (b) is given by c1 + c2 ln |b| with constant
c1,2. Hence, λσ (b) is differentiable in each area Pσ and therefore almost everywhere (like
the Cantor–Lebesgue function). However, λσ (b) has almost everywhere a negative slope, in
contrast to the Cantor–Lebesgue function, which is almost everywhere constant.

7. Three-parametric bifurcations

Until now we considered the structure of the 2D parameter space and demonstrated that the
structure is dominated by a few co-dimension-2 bifurcations. However, the complete parameter
space of the investigated system is three-dimensional, therefore the results obtained so far have
to be considered in this more general context.

7.1. Three-parametric bifurcation B II(0)

Let us consider for instance the bifurcations occurring along the line B II(a) in the 3D parameter
space. As shown above, for a < 0 each point on this line represents a period adding big bang
bifurcation, whereas for a > 0 it represents a period increment big bang with coexistence of
attractors. For this reason, the bifurcation occurring at the point B II(0) (i.e. in the ‘switching’
case a = 0) is a three-parametric bifurcation.

The description of the structure of the 3D parameter space in the vicinity of the three-
parametric bifurcation point B II(0) is the next task that we have to deal with. This task turns
out to be really complex, although the case a = 0 is already described in section 5. However,
in this section we described the point B II(0) from a pure two-dimensional point of view, and
therefore were not able to recognize the real complexity of the phenomenon. This complexity
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Figure 13. Bifurcation structure of the cylindric surface around the point BII(0). The marked
horizontal lines correspond to the planes b × µ shown in figures 4, 9, 10 and 12.

is reflected in figure 13. In this figure the bifurcation structure in the cylindric surface a × φ

around the line B II(a) in the 3D parameter space a × b × µ is shown, where we use the polar
representation of the parameters b and µ, i.e. b = −1 − R cos(φ), µ = R sin(φ). Recall, that
the values a = −0.5, a = −0.2, a = −0.05, a = 0, a = 0.05, a = 0.2 and a = 0.5 shown in
this picture as horizontal lines correspond to figures 4, 9, 10 and 12.

As one can see from figure 13, the points located along the line a = 0 form an infinite
sequence of period adding big bang bifurcations. These points represent the intersections of
the bifurcation curves ξ

x0,l
LRn |a=0 in the plane a = 0 with the cylindric surface mentioned above.

This fact can be explained taking the following into consideration. Firstly, from equations (9)
and (10) it follows that for all n the bifurcation surfaces ξ

x0,l
LRn and ξ

xn+1,r

LRn+2 intersect along the

curve ξ
x0,l
LRn |a=0. Secondly, for any admissible symbolic sequence σ , which can be derived from

LRn and LRn+2 using the infinite adding scheme, the bifurcation surfaces bounding the area
Pσ intersect along the curve ξ

x0,l
LRn |a=0 as well.

Additionally, the described structure of the 3D parameter space is shown in figure 14.
This 3D representation combines the results shown in previous figures. Namely, the three
horizontal planes a = −0.2, a = 0 and a = 0.2 are shown in figures 10, 4 and 9,
whereas the surface of the cylinder is shown in figure 13. As one can see from figure 14,
all the bifurcation surfaces forming this structure originate from the line B II(a), whereby the
point BII(0) belongs to all these surfaces and represents a three-parametric or co-dimension-3
bifurcation.

Three-parametric bifurcations of this type are already reported in [30, 31]. As described
in the cited works, a three-parametric bifurcation of this type has two characteristic manifolds
in the 3D parameter space, a one-dimensional and a two-dimensional one. Each point on
the 1D characteristic manifold except the three-parametric bifurcation point itself represents
a point of a two-parametric bifurcation, which is a period adding big bang on one side of the
2D characteristic manifold and a period increment big bang with coexisting attractors on the
other side. Additionally, in the 2D characteristic manifold the three-parametric bifurcation
represents a pure period increment big bang bifurcation. Hereby, each of the infinite number
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Figure 14. Structure of parameter space in the 3D vicinity of the three-parametric bifurcation
point BII(0).

of bifurcation curves generated by this pure period increment big bang bifurcation represents
a domain of period adding big bang bifurcations.

As one can see, the three-parametric bifurcation at the point B II(0) fits the presented
general description exactly. The 1D characteristic manifold of this bifurcation is given by the
line B II(a) and the 2D characteristic manifold by the plane a = 0. Above the 2D manifold, the
big bang bifurcations are of the period adding type (compare figure 9); in this manifold they are
of the period increment type (figure 4), and below the manifold they are of the period increment
type with coexisting attractors (figure 10). Additionally, the bifurcation curves ξ

x0,l
LRn |a=0 in the

2D characteristic manifold represent curves in the 3D parameter space, where period adding
big bang bifurcations occur (see figure 13).

7.2. BI(0) and B II(0)

Like the point B II(0), also the point B I(0) represents a three-parametric bifurcation as well.
Moreover, it turns out that the type of this bifurcation is the same as the bifurcation at B II(0),
and that the 2D characteristic manifolds of both bifurcations lie in the same plane a = 0.
The only difference between these two bifurcations is the ‘direction’ of their 1D characteristic
manifolds. For the bifurcation at BI(0) the points at the 1D characteristic manifolds represent
the period adding big bang bifurcation for a < 0 (unlike the case for B II(0) where it is for
a > 0). Analogously, the points at the 1D characteristic manifolds represent period increment
big bang bifurcation with coexisting attractors for a > 0 instead of a < 0, as is the case for
B II(0). Concerning all other aspects both bifurcation points B I(0) and B II(0) are identical.

In conclusion, let us emphasize the importance of the obtained results. As one can see, the
2D bifurcation structures shown in figures 4, 9 and 10 are quite complex. The 1D bifurcation
diagrams like the ones presented in figures 6, 7 and 8 are complex as well. However, all
these results can be explained taking into consideration only two three-parametric bifurcations
occurring at BI(0) and B II(0).

7.3. Remarks on B III(0)

As for the case a = 0, for any a �= 0 the point B III(a) represents a big bang bifurcation as well.
However, the type of this big bang is totally different from all big bang bifurcations investigated
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so far. It can be shown that the existence areas of all periodic orbits emerging at the point of the
period increment big bang bifurcation with coexisting attractors (i.e. at B II(0) for a > 0 and
B I(0) for a < 0) converge towards this point. As stated in section 6.2 (see equation (20)), for
any n there exists a sufficiently large negative value b, so that the corresponding periodic orbit
becomes unstable. Therefore, all periodic orbits originating from the corresponding period
increment big bang bifurcation with coexisting attractors are unstable in the vicinity of B III(a).
Hence, this type of big bang bifurcation, causing the occurence of coexisting unstable periodic
orbits, has important consequences, especially because it seems to be closely related to the
emergence of chaotic attractors. It can also be shown that the properties of this bifurcation
in system (2) change at a = 0. Therefore, the point B III(0) represents a three-parametric
bifurcation. However, a detailed investigation of the bifurcation occurring at B III(0) remains
for future work.

8. Plane a × b

8.1. General remarks

Now let us consider the results obtained so far from a more practical perspective. As shown
above, the structure of the 3D parameter of system (2) is strongly dominated by a few three-
parametric bifurcations. However, as one can see for instance from figures 2, 6, 7, 8 and 11,
it is almost impossible to recognize this structure if one investigates the behaviour of this
system under variation of only one parameter. Investigating 2D parameter planes instead,
one has a much better view of several dynamical features. However, if the investigated 2D
parameter subspaces cross the characteristic manifolds of the three-parametric bifurcations,
the observed structures become strange and may also be very difficult to interpret. Note that
the structures presented in figures 4, 9, 10, and 12 can be interpreted easily mainly because
the presented parameter planes are parallel to the 2D characteristic manifolds of B I(0) and
BII(0). In practical applications, the 2D characteristic manifolds are not necessarily planes,
and their location in the parameter space is not a priori known. For this reason, it is important to
demonstrate what the bifurcation structures may look like if one investigates the 2D parameter
spaces not parallel to the 2D characteristic manifolds of three-parametric bifurcations.

Note further that the discussion presented in the following has two objectives. On the
one hand, it has to aid the investigation of other dynamical systems whose behaviour is
influenced by three-parametric bifurcations of the type presented in this work. If in some
dynamical system the observed bifurcation structures are similar to those discussed in the
following, one can assume that in this system three-parametric bifurcations occur and one has
to determine their characteristic manifolds in order to understand these bifurcation structures.
On the other hand, the following examples demonstrate how the observed structures have to be
interpreted taking into account the knowledge about the three-parametric bifurcations presented
above.

8.2. Example 1: case µ = 1/2

As a typical example of the structure of the plane a × b let us consider the situation in the case
µ = 1/2. As one can see from figure 15, this structure is far from being trivial. It is clearly
observable that there are two main structure-forming elements in this figure.

The first one is the straight line

aenv(b, µ) = µb + 1

µ + 1
= ξ env

∣∣
µ=1/2 (26)
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Figure 15. Complex bifurcation structures (a) in the plane a × b for the case µ = 0.5 get a simple
explanation based on the influence areas of the three-parametric bifurcations occurring at BI(0)

and BII(0) in the 3D parameter space a × b × µ. The rectangle marked in (a) is shown enlarged
in (b), the right part of (a)—in (c).

and the second one is the horizontal line a = 0. The meaning of these two elements can be
explained taking into account the results of the previous sections. Firstly, the line aenv(b, µ)

represents the border between the influence areas �(BI(0))|µ=1/2 and �(B II(0))|µ=1/2 of both
the three-parametric bifurcations described above. Secondly, the line a = 0 represents the
intersection of the presented plane a × b with the 2D characteristic manifolds of the three-
parametric bifurcations occurring at BI(0) and B II(0).

In order to understand the bifurcation structure of the plane a × b presented in figure 15,
note that the horizontal line a = 0 in this figure is identical with the line µ = 1/2 marked
in figure 4. As shown in figure 4, the accumulation curve ξ∞ intersects the line µ = 1/2 at
b = −2. As one can see, this point represents the accumulation point in figures 15(a) and (b).
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Recall that the areas PLR2n+1 for all n are located above the accumulation curve ξ∞ shown
in figure 4. Therefore, these areas belong to the structure presented in figure 15 as well. Here,
above the line aenv(b, µ) these areas have some triangle-like shapes and overlap pairwise for
each two subsequent numbers n and n + 1. The overlapping areas lie above the line a = 0,
because they belong to the influence area �(B I(0)), and according to the direction of the 1D
characteristic manifold of this three-parametric bifurcation, the coexistence of attractors takes
place for a > 0. Note additionally that in figure 15(a) only the first few areas in the sequence
PLR2n+1 can be seen (marked are the areas PLR, PLR3 , PLR5 and PLR7 ). However, in the vicinity
of the accumulation point a = 0, b = −2 there exist areas PLR2n+1 with arbitrary n (see the
enlargement shown in figure 15(b)).

Along the line a = 0 we observe in figures 15(a) and (b) a sequence of period adding big
bang bifurcations. As stated above, these bifurcations occur at points where the bifurcation
curves forming the period increment scenario in the 2D characteristic manifold intersect the
presented plane a × b. Therefore, the corresponding points bn can be found solving for the
considered value µ = 1/2 the equation

µ = − (bn)
n − 1

(bn)n+1 − 1
, (27)

which follows directly from equation (9). For even numbers n the solutions of this equation
lie in the interval [−3, −2] and form for increasing n a sequence which converges to b = −2.
Because the corresponding period adding big bang bifurcations belong to the influence area
�(BI(0)), the period adding structures induced by these bifurcations lie below the line a = 0.
According to the results discussed above, these structures consist of the areas Pσ , whereby the
sequences σ can be derived from LR2n+1 and LR2n+3 using the infinite adding scheme (for
this reason in [38] the sequences LR2n+1 and LR2n+3 are denoted as the generating sequences
of the corresponding period adding big bang bifurcation). For instance, at the point a = 0,
b = b1 = −3 we observe the period adding big bang bifurcation with the generating sequences
LR and LR3. As shown in figure 15(a), between PLR and PLR3 we observe the area PLRLR3 ,
between PLR and PLRLR3 the area P(LR)2LR3 , etc. Similarly, between PLR3 and PLR5 the area
PLR3LR5 can be observed, which begins at the period adding big bang bifurcation point a = 0,
b = b3 ≈ −2.259 921.

A similar situation takes place below the line aenv(b, µ), i.e. in the influence area
�(BII(0))|µ=1/2. For a < 0 we observe the overlapping areas PLRn with even numbers n

(in figure 15(a) the areas PLR6 , PLR8 and PLR10 are marked). At the corresponding points
along the line a = 0 the period adding big bang bifurcations occur, which lead to the period
adding structures between the lines a = 0 and aenv(b, µ). For instance, the area PLR6LR8

begins at the big bang bifurcation occurring at the point a = 0, b = b6 ≈ −1.263 8376.
Solving equation (27) for b ∈ [−1.5, −1] and increasing even numbers n, we can calculate the
parameter values for all further period adding big bang bifurcations which occur in this interval
and accumulate towards b = −1. This explains the bifurcation structure in the right part of
figure 15(a), which is also shown enlarged in figure 15(c). Additionally, solving equation (27)
for b ∈ [−2, −1.5] and increasing even numbers n, we can also calculate the parameter values
for further period adding big bang bifurcations which occur in this interval and accumulate
towards b = −2. This explains the bifurcation structure in the middle of figure 15(a) and
consequently in the right part of the enlargement shown in figure 15(b).

As one can see, most features of the bifurcation structure in the presented region of
the plane a × b are explained so far. However, there is one difference between the areas
below and above the line aenv(b, µ) (i.e. between the influence areas �(B I(0))|µ=1/2 and
�(BII(0))|µ=1/2), which is still not explained. Namely, above the line aenv(b, µ) we observe a
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sequence of areas PLR2n+1 , which begins in the left part of figure 15(a) with n = 0 and converges
for n → ∞ towards b = −2. In contrast to this, below the line aenv(b, µ) we observe two
sequences of areas PLR2n . Both of them begin with n = 3, i.e. with PLR6 . For n → ∞ the
first of these sequences converges to the right towards b = −1 and the second one to the left
towards b = −2. This difference between the structure of the influence areas �(B I(0))|µ=1/2

and �(B II)(0)|µ=1/2 is remarkable and seems to contradict the fact that the properties of both
three-parametric bifurcations occurring at B I(0) and B II(0) are exactly the same.

The difference mentioned above is related to the fact that, for the considered valueµ = 1/2,
equation (27) has one real solution bn for each odd number n, two real solutions b1,2

n for even
numbers n > 4 and no real solutions for n = 2 as well as for n = 4. In order to explain
this, let us consider again figure 4. As one can see from this figure, for all odd numbers n the
curves ξ

x0,l
LRn |a=0 are monotone and therefore intersect the horizontal line µ = 1/2 exactly at

one point. These points form the sequence of big bang bifurcations in the interval [−3, −2]
and are related to the areas PLR2n+1 (located in �(B I(0))|µ=1/2).

In contrast to this, the curves ξ
x0,l

LR2n |a=0 are not monotone but have a maximum. Therefore,
for a specific value of µ each of these curves may possess two, one or no intersections with
the horizontal line µ. In particular, the curves ξ

x0,l

LR2 |a=0 and ξ
x0,l

LR4 |a=0 lie completely below
the considered value µ = 1/2. For this reason, equation (27) has no solutions for n = 2 and
n = 4. Note additionally, that for each n the curve ξ

x0,l

LR2n+2 |a=0 lies above the curve ξ
x0,l

LR2n |a=0.
Hence, the corresponding intersection points with the line µ = 1/2 form two sequences,
one of them converging towards b = −2 and the other one towards b = −1, as described
above.

Note that not all bifurcation phenomena observable in system (2) can be explained based
only on the three-parametric bifurcations occurring at B I(0) and B II(0). For instance, in
figure 15(a) two areas PL2R3 and PLR2LR3 are shown, which do not belong to the influence
areas of these bifurcations. However, most features presented in this figure, including the self-
similarity of its structure, could be explained due to the influence of these two bifurcations.
Note that the bifurcations do not occur in the considered parameter plane, but influence it
strongly. In our opinion, it is not possible to explain the structure of this plane based only
on the bifurcation phenomena occurring within this plane. This situation is similar to the
investigation of the 1D bifurcation scenarios (i.e. scenarios under variation of one system
parameter). This mode of operation is suitable for understanding the occurring phenomena,
as long as they are not influenced by two-parametric bifurcations. In the latter case, it is much
more preferable to investigate these two-parametric bifurcations and their influence areas,
which are typically easier to understand. Only after this one has to reconsider the original
1D scenarios, which then turn out to represent 1D cross-sections of 2D influence areas. A
similar situation is reported above. Due to the presence of three-parametric bifurcations, the
2D parameter sub-spaces like the plane presented in figure 15(a) have to be considered not by
themselves, but as the cross-sections of the 3D influence areas.

As a last remark related to the example presented above, let us emphasize that the
situation described above may be typical when dealing with systems showing multi-parametric
bifurcations. System (2) possesses in the region P two three-parametric bifurcations of the
same type, but the effects caused by these bifurcations in the parameter sub-space (plane a ×b

for µ = 1/2) are different. However, if we observe two multi-parametric bifurcations of the
same type, it means merely that the structure of their vicinities is the same. In particular, for two-
parametric bifurcations, the number of the bifurcation curves starting at these points is the same,
as well as the order of the several asymptotic dynamics, bounded by these curves. However,
this equivalence holds only in a topological sense; it means that the structure emerging at
the bifurcation point remains the same within the complete influence area, but the curvature
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Figure 16. Bifurcation structure of the plane a × b in the case µ = 10−4. This structure can
be easily misinterpreted as being caused by a period increment big bang bifurcation, but in fact is
caused by a period adding big bang bifurcation.

and shape of the specific bifurcation curves may be different. An illustrative example of this
behaviour is given by the bifurcation structure of the plane a = 0, where both 2D characteristic
manifolds of the three-parametric bifurcations occurring at B I(0) and B II(0) are located. Note
that the same property can be observed not only by the two-parametric but by any multi-
parametric bifurcations as well.

8.3. Example 2: case µ = 10−4

In the previous example we have demonstrated how the complex bifurcation structures in
2D parameter subspaces can be explained taking into account the knowledge about three-
parametric bifurcations and their influence on the structure of the complete 3D parameter space.
In the next example we will demonstrate how such structures can be easily misunderstood and
wrongly interpreted, if one does not take this knowledge into consideration.

Figure 16 shows the structure of the plane a × b in the vicinity of B II(0) for a small value
µ = 10−4. Investigating this structure based on the dependence on only one parameter, we
observe bifurcation scenarios like the one presented in figure 17. For a > 0 this scenario looks
similar to the usual period increment scenario, for instance, the one presented in figures 2(a)
and (c). For a < 0 only two asymptotic dynamics are observed, namely, chaotic attractors
and the periodic orbit OLR2 . For a > 0 we observe the areas PLnR with even n. It seems to
be impossible to obtain any further results from figure 16. In fact, these seemingly obvious
results are wrong.

Firstly we recall (see section 6.3), that the areas PLnR originate from the two-parametric
bifurcation at B II(a) in the plane b × µ, which represents for a > 0 a period adding big bang
bifurcation. Hence, the bifurcation scenario shown in the right part of figure 17(a) cannot be
the period increment scenario. In fact, the scenario we observe is the period adding scenario,
whereby the bifurcation lines belonging to higher periods lie so close to each other that these
periods are difficult to detect. This fact is illustrated in figure 17(c), which is calculated using a
sufficiently high sampling rate. As expected, between the parameter intervals belonging to the
areas PL10R and PL12R, we detect parameter values leading to the orbits O(L10R)2L12R, OL10RL12R
and OL10R(L12R)2 .

Next let us compare figure 16 with figures 4, 9 and 10. As one can see, the plane µ = 10−4

is represented in these figures as a horizontal line lying close above the axis µ = 0. Therefore,
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Figure 17. Bifurcation scenario along the line marked in figure 16 (b = −1.5, µ = 10−4). The
scenario in the right part seems to be a usual period increment scenario, but is in fact the period
adding scenario. The arrow in (b) marks the tiny interval shown enlarged in (c).

for negative values of a the parameter area shown in figure 16 contains the pairwise overlapping
regions PLR2n for all n. However, these regions are located very close to the line b = −1 and
can be observed only by using a very high resolution. Similarly, in the upper part of figure 16
(for a > 0) one can observe only periodic behaviour. However, in this figure there is an area
with chaotic behaviour as well. This occurs above the intersection of the plane µ = 10−4 with
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the surface ξ env. Because the line

ξ env
∣∣
µ=10−4 = aenv(b, 10−4) = b + 1000

1001
(28)

separating the chaotic from the periodic regime lies for b ∈ [−2, −1] close to the line a = 1
(i.e. the boundary of the investigated area P), this fact becomes visible only when using a very
high resolution. However, from equation (26) it follows that for any positive value of a there
is a sufficiently large negative value of b, so that the behaviour of the investigated system in
the plane µ = 10−4 is chaotic for these parameter values.

9. Conclusions

In this paper we have investigated a one-dimensional piecewise linear map with a discontinuous
system function, initially introduced in [15]. This map actually represents the normal form of
the discrete-time representation of many practical systems in the neighbourhood of the point
of discontinuity. We have pointed out that the observed one-parameter bifurcation diagrams
showing period increment and period adding scenarios can be properly explained only by
pinpointing a few critical points in the 3D parameter space.

In the 2D sections of the parameter space there exist two-parametric (co-dimension two)
big bang bifurcation points, where an infinite number of bifurcation curves meet. In piecewise
linear maps these curves are caused by border-collision bifurcations. The big bang bifurcation
points have specific influence areas, which determine the character of periodic orbits induced
by this bifurcation. We described the occurrence of three different types of two-parametric
big bang bifurcations, namely the pure period increment big bang bifurcations, the period
increment big bang bifurcations with coexistence of attractors and the period adding big bang
bifurcations. Depending on these types we explained such phenomena as the occurrence
of orbits with progressively higher periodicities in arithmetic progression, with or without
overlapping in the parameter space. The cases where higher periodic or chaotic orbits are
sandwiched between the ranges of occurrence of consecutive periodic orbits in that progression
are expained as well.

Furthermore, we have demonstrated that an infinite number of the two-parametric
bifurcations (especially their types and relative positions) is organized by a few three-parametric
or co-dimension three bifurcation points in the 3D parameter space. It is shown how several
complex bifurcation scenarios and structures, which can be observed under variation of one
or two parameters, can be explained taking into account the influence of the three-parametric
bifurcations.

A few open problems relating to the dynamics of system (2) investigated in this work still
remain. In particular, we stated that the investigated region P is not completely covered by
the areas �(B I(0)), �(B II(0)) and Pch. Our preliminary investigation shows that there exist
some further three-parametric bifurcations in the area P , which have not yet been described
in detail.

Additionally, the two-parametric bifurcations occurring at the points B II(a), which we
detected in this work, have to be investigated as well. Another interesting problem concerns
the structure of the area Pch with chaotic behaviour. We have found that in this area there are
some regions leading to one-band chaotic attractors and some other regions leading to multi-
band chaotic attractors. There is some evidence indicating that the structure of these areas
is strongly influenced by a new class of big bang bifurcation which causes unstable periodic
orbits to occur. This type of big bang bifurcation has not been reported until now and represents
a great challenge for further work.
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