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Abstract
This paper deals with the problem of a ratio-dependent predator–prey
model. The deterministic and stochastic behaviour of the model system
around biologically feasible equilibria are studied. Conditions for which the
deterministic model enter into Hopf-bifurcation are worked out. Stochastic
stability of the system around positive interior equilibrium is studied. To
substantiate our analytical findings numerical simulations are carried out for
a hypothetical set of parameter values.

Mathematics Subject Classification: 34D05, 34K20, 92D25

1. Introduction

The dynamical relationship between prey and their predators has long been and will continue to
be one of the dominant themes in ecology due to its universal existence and importance [16, 18].
The dynamical problems involved with mathematical modelling of predator–prey systems
may appear to be simple at first sight; however, the detailed analysis of these model systems
often leads to very complicated as well as challenging problems. The most important part of
modelling the population ecosystem is to make sure that the concerned mathematical model
can exhibit well-known system behaviour for the system under consideration. Dynamical
modelling of ecological systems is a frequently evolving process. A systematic mathematical
approach can lead to a better understanding of the plausible models and the exposed
discrepancies in turn lead to the necessary modifications [43].

After the pioneering work of Alfred Lotka and Vito Volterra in the middle of 1920 for
predator–prey interactions, prey-dependent predator–prey models were studied extensively
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[26, 31, 49, 50]. In population dynamics, a functional response of the predator to prey density
refers to the change in the density of prey per unit time per predator as a function of the prey
density. Quite a good number of works have already been performed in ecological systems
[7, 10, 14, 21, 23, 33, 62] where the model systems are based on prey-dependent model systems.
The classical prey–predator models with prey-dependent functional response take the form
(or some equivalent form)

dN

dt
= rN

(
1 − N

K

)
− p(N)P,

dP

dt
= cp(N)P − eP, (1.1)

where p(N) is the so-called prey-dependent functional response (N(t) and P(t) denote prey
and predator population density at any instant of time ‘t’, respectively, and other parameters
have the usual meaning). In most cases prey-dependent functional response p(N) is given
by p(N) = aN/(b + N) or p(N) = aN2/(b + N2) or p(N) = aN2/(b + N + αN2) or
p(N) = aNθ/(b + Nθ) or some equivalent form. These types of classical predator–prey
model systems exhibit not only the well known ‘paradox of enrichment’ formulated by Hairston
et al [34] and Rosenzweig [56] but also the so-called ‘biological control paradox’, which was
introduced by Luck [47]. The ‘paradox of enrichment’ states that enriching a predator–prey
system (by increasing the carrying capacity) will cause an increment in equilibrium density
of predator but not of prey population which in turn destabilizes the interior equilibrium. As
a result it increases the chance of stochastic extinction of the predator population. However,
in nature, it is observed that enriching the system increases the prey density which is not a
factor responsible for destabilizing a stable equilibrium and fails to increase the amplitude of
oscillations in systems that already cycles [1].

The so-called ‘biological control paradox’ states that we cannot have a low and stable prey
equilibrium density, which is in contradiction with many examples of successful biological
controls where the prey population is maintained at low densities compared to its environmental
carrying capacity [4, 6]. A further example is, cactoblastis–opuntia in Australia, where
the crucial factor seems to be pseudo-interference (see, May [49]), and where biological
control has worked and resulted in low and stable pest densities. So this paradox is a pure
artefact, created by simplifying assumptions on functional response. For the rest, the paradox
of enrichment exists, but only in systems where one predator–prey pair exists in isolation
and the predictions radically change when they are embedded in a simple food chain model
[52]. Most of the natural systems are indeed very complex with the predators being exposed to
various degrees of facultative secondary carnivory and interacting with many other subsystems
in various ways. This indicates the fact that the paradox of biological control is not intrinsic
for most predator–prey systems.

There are some good data on simple as well as fairly isolated predator–prey systems,
like Mary Power’s catfish–alga system in the Panamian streams [54] where one can find
the interesting phenomenon that some increment in the resource for prey population at
equilibrium increases the predator density in place of prey abundance. In some predator–prey
systems where the Holling disc is a reasonable assumption for predators (e.g. the weasel–
vole system found in boreal Europe, where voles have a hiding place and weasels have no
alternative resources), we observe large amplitude oscillations of population distribution like
carnivore–herbivore systems [52, 53]. According to the ‘paradox of enrichment’ these types
of large amplitude oscillations are expected in relatively productive areas and in the most
reproductive parts of tundra, while voles inhabiting less productive tundra areas are relatively
stable [55]. High amplitude oscillations were the basic characteristics in high alpine barrens
where the density of predator is low, but at present, rodent time trajectories indicate the
fingerprints of predators [60]. The change in dynamic position of herbivores along productivity
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gradients thus indicates the necessity of reasonable alteration or corrections of simple as well
as traditional food chain models [52]. Recently, predator–prey models with prey-dependent
response function have been facing a great challenge from biological and physiological
researchers [3–5, 32]. At present it is clear that predator abundance also has the ability to
influence the functional response. Arditi and Ginzburg [5] have suggested that, in situations
characterized by strong space and time heterogeneities, the functional response can be
approximated by a function of the prey-to-predator ratio. Several biologists have been able to
establish the fact that functional responses over typical ecological timescales ought to depend
on the densities of both prey and predators, especially when predators have to search for food
and therefore have to share or compete for food. Actually prey-dependent and ratio-dependent
models are extremes or limiting cases; prey-dependent models are based on the daily energy
balance of predators, on the other hand ratio-dependent models presuppose that prey are easy
to find and that predator dynamics are, in essence, governed by direct density dependence, with
prey densities determining the sizes of defended territories. Within the natural environment
both aspects have the ability to influence predator–prey dynamics, and the issue of which of
the two extremes is closer to reality in which system is wide open. Moreover, the pursuit of
the prey-dependent approach has proved more fertile since its ‘paradoxes’ seem to be quite
realistic where the premises for their existence are found, but here opinions may differ and
there is no strong evidence to close one door or another.

Arditi and Ginzburg [5] first proposed the following Michaelis–Menten–Holling type,
ratio-dependent predator–prey system

dN

dt
= rN

(
1 − N

K

)
− αNP

k1P + N
,

dP

dt
= cαNP

k1P + N
− eP . (1.2)

The dynamics of this type of ratio-dependent predator–prey model has been studied by many
researchers (see, e.g., Kuang and Beretta [44], Jost et al [39], Hsu et al [38]).

Major parts of the work in this direction are based on deterministic models of differential
and difference equations. The deterministic approach has, however, some limitations in
biology: it is always difficult to predict the future of the system accurately. Deterministic
models in ecology do not usually incorporate environmental fluctuations based on the idea that
in the case of large populations, stochastic deviations (or the effect of random environmental
fluctuations) are small enough to be ignored. A stochastic model provides a more realistic
picture of a natural system than its deterministic counterpart. A central obstacle in the
stochastic modelling of an ecosystem is the lack of mathematical machinery available to
analyse nonlinear multi-dimensional stochastic models [28, 40, 41]. A quantum leap in the
mathematical sophistication of ecological modelling occurred when May [49] introduced
stochastic differential equations (SDEs) to investigate limits to niche overlap in a randomly
fluctuating environment. Well-known deterministic population models (such as the Lotka–
Volterra model, Gauss type prey–predator model, etc) are the starting points of stochastic
multi-species models which include demographic or environmental stochasticity. The resulting
stochastic models involve nonlinear SDEs whose solutions pose great difficulties. Different
techniques of linearization of nonlinear SDEs giving rise to a set of deterministic moment
equations have been receiving a great deal of attention in different fields of science and
technology [8, 11, 12, 28, 29, 40, 41, 51, 57].

The main objective of this paper is to consider a ratio-dependent predator–prey model
and its stability behaviour around different equilibrium points with special emphasis on the
controversial equilibrium point (0, 0) for the ratio-dependent model. Our next objective is
to develop a stochastic dynamic model for the ratio-dependent predator–prey model and to
examine the stability of the model system under random environmental fluctuations. We make
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a comparative analysis of the stability of the model system within deterministic and stochastic
environments.

2. Deterministic model

The classical model for predator–prey systems can be written in its classical form by a system
of first order nonlinear ordinary differential equations as

dN

dt
= Nf (N) − g(N, P )P,

dP

dt
= h(N, P )P − γP (2.1)

with prey abundance N(t) and predator abundance P(t) at any given instant of time ‘t’.
f (N) is the per capita rate of increase of the prey in the absence of predation and ‘γ ’ is the
food-independent mortality rate of the predator, assumed to be constant. The amount of prey
biomass consumed by each predator per unit of time is described by the function g(N, P ), while
h(N, P ) describes per capita production rate of the predator. There is a considerable amount
of evidence to show that predator production rate can be modelled as simply proportional to
food intake (up to a very good approximation)

h(N, P ) = eg(N, P ), (2.2)

where the constant ‘e’ is interpreted as conversion efficiency and satisfies the condition
0 < e < 1. Specific examples are given by Slobodkin [58] for hydras, by Beddington et al
[13] for numerous arthropods and by Coe et al [24] for large African herbivores in support of
previous assumptions. The trophic function g(N, P ) is the sole link between prey–predator
dynamics [5]. In this paper we will consider the usual logistic form of the growth function for
prey in the absence of predator as

f (N) = r

(
1 − N

K

)
,

where ‘r’ is the intrinsic growth rate of prey and ‘K’ is the environmental carrying capacity.
For the traditional prey-dependent predator–prey models (e.g. (1.1)), the functional response
g(N, P ) depends only on the density of prey population ‘N ’ as we have remarked in the
introduction of this paper. According to Berryman [18], credible and consistent predator–
prey models must be able to satisfy the minimum biological property that ‘when resources
are low relative to population density, the predator per-capita growth rate should decline with
its density’. However, the prey-dependent predator–prey models are unable to satisfy this
criterion due to the fact that the predator per-capita growth rate becomes a function of prey
population ‘N ’ only, which is independent of the density of predators ‘P ’. To overcome this
situation, Arditi and Ginzburg [5] have suggested that for situations characterized by strong
space and time heterogeneities, the functional response can be approximated by a function
of the prey-(N )-to-predator-(P ) ratio (N/P ) and this leads to the ratio-dependent functional
response g(N, P ) as follows:

g := g

(
N

P

)
= α(N/P )

1 + αβ(N/P )
= αN

P + αβN
,

where ‘α’ represents the total attack-rate for predator and ‘β’ is the handling time and the
functional response is known as the Michaelis–Menten–Holling type functional response
[17, 39, 43]. Under these assumptions the dynamics of the ratio-dependent predator–prey
system is governed by the following system of first order nonlinear ordinary differential
equations:

dN

dt
= rN

(
1 − N

K

)
− αNP

P + αβN
,

dP

dt
= eαNP

P + αβN
− γP. (2.3)
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Initial conditions for the system of equation (2.2) are given by N(t = 0) = N0 � 0 and
P(t = 0) = P0 � 0. It is typical for predator–prey systems: positive N -axis, positive P -
axis and the interior of the first quadrant invariant under system (2.3) and the solutions with
positive initial condition continue to be positive for all time ‘t’. As observed by Freedman
and Mathsen [27], Jost et al [39], Kuang and Beretta [44] and Kuang [43], system (2.3) is
not well-defined at the origin (0, 0) and hence the model is unable to capture the idea that
the growth rate of both the populations are zero in the absence of prey as well as predator
population. To overcome this situation, Xiao and Ruan [63] have modified the model system
(2.3) by redefining it as follows:

dN

dt
= rN

(
1 − N

K

)
− αNP

P + αβN
,

dP

dt
= eαNP

P + αβN
− γP when (N, P ) �= (0, 0),

(2.4a)

dN

dt
= 0 = dP

dt
when (N, P ) = (0, 0). (2.4b)

For the sake of simplicity it is convenient to scale the variables as x = N/K , y = P/Kαβ

and consider the dimensionless time τ = tr . The dimensionless equations are then given by

dx

dτ
= x(1 − x) − axy

x + y
≡ F1(x, y),

dy

dτ
= bxy

x + y
− cy ≡ F2(x, y), (2.5a)

F1(0, 0) = F2(0, 0) = 0, (2.5b)

where a = α/r , b = e/βr and c = γ /r . For convenience, in the following, time τ is replaced
by t as the dimensionless time. The initial conditions for the system of equations (2.5) are
given by x(0) = x0 � 0 and y(0) = y0 � 0 which is also biologically meaningful.

2.1. Boundedness

Due to the boundedness of the functional responses, we see that

lim
(x,y)→(0,0)

F1(x, y) = lim
(x,y)→(0,0)

F2(x, y) = 0.

Using equation (2.5b) we can conclude that the functions F1(x, y) and F2(x, y) are continuous
functions on R

2
+ = [(x, y) : x � 0, y � 0]. Straightforward computation shows that they are

Lipschizian on R
2
+. Hence a solution of (2.5) with non-negative initial condition exists and is

unique. It is also easy to see that these solutions exist for all t > 0 and stay non-negative.
In fact, if x(0) = x0 > 0, then x(t) > 0 for all t > 0. The same argument is true for the
y-component. Hence, the interior of R

2
+ is invariant under model system (2.5). Our next task

is to consider the boundedness for the solutions of the model system (2.5).

Lemma 1. All the solutions of the system (2.5) with the positive initial condition (x0, y0) are
uniformly bounded within a region �, where,

� =
{
(x, y) : 0 � x � 1, 0 � x +

a

b
y � L

c

}
with L = c + 1/4.

Proof. From the first equation of (2.5) we get,

dx

dt
= x(1 − x) − axy

x + y
� x(1 − x).

So, x(t) � 1, as t → +∞.
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Let us define the function

W(t) = x(t) +
a

b
y(t).

Calculating the time derivative of W(t) along the trajectories of equations (2.5), we get

d

dt
W(t) = dx

dt
+

a

b

dy

dt
= x(1 − x) − ac

b
y.

Clearly, the maximum value of x(1 − x) is 1/4, whenever 0 � x � 1. Then,

d

dt
W(t) + cW(t) = x(1 − x) + cx � c +

1

4
= L (say).

Thus, as t → +∞, 0 � W(t) � L/c [19]. Hence system (2.5) is dissipative with the
asymptotic bound L/c. This ensures the existence of a compact neighbourhood � which is a
proper subset of R2

+ such that for sufficiently large initial conditions (x0, y0) the trajectories of
the system of equations (2.5) will always be within the set �.

Hence we have shown that the model system (2.5) is dissipative.

2.2. Equilibria

For population models in deterministic environments, with the environmental parameters being
well-defined constants, it is natural curiosity to find the community equilibria where all the
species’ populations have time independent values, that is, where all net growth rates are
zero. Classical two species predator–prey models always possess at least three equilibrium
points: (i) trivial equilibrium, (ii) axial equilibrium and (iii) positive interior equilibrium [45].
Earlier works on ratio-dependent predator–prey models (e.g. [27, 39, 43, 44]) have mentioned
that the model system (2.3) cannot be linearized at (0, 0) and consistent dynamical analysis
for the model system in the vicinity of the origin reveals the rich and complicated dynamics.
Based on the redefined ratio-dependent predator–prey model (2.4) and its non-dimensionalized
version (2.5) we are able to mention that the system of equations (2.5) has two equilibria,
E0(0, 0) and E1(1, 0) on the x-axis for all possible as well as admissible values of the
parameters involved with the model system (2.5). The third and most interesting equilibrium
point (from a biological point of view) is E∗(x∗, y∗) where x∗ and y∗ are non-zero positive
solutions of the equations F1(x, y) = 0 = F2(x, y) and are given by

x∗ = 1 −
[
a(b − c)

b

]
and y∗ =

[
(b − c)x∗

c

]
. (2.6)

Simple mathematical argument shows that x∗ is positive for all a < b/(b − c) and positivity
of y∗ demands an extra condition b > c.

2.3. Behaviour around E0(0, 0)

The study of stability plays a significant role in understanding the structure and functions of
ecological systems. A variety of ecologically interesting interpretations are involved with the
term ‘stability’. The most common meaning corresponds to neighbourhood stability which
means stability in the vicinity of an equilibrium point associated with the deterministic model
system. An equilibrium point is called a stable equilibrium point if, when the populations
are perturbed they will return to the equilibrium point with the advancement of time. The
return may be achieved either as damped oscillations or monotonically. It is common practice
to find the linearized system of equations around the equilibrium point and the sign of
eigenvalues associated with the corresponding Jacobian matrix determines the stability around
the equilibrium point. Before studying the stability of controversial equilibrium point E0(0, 0)
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we would like to remark that mathematical investigation of the nature of the solution for the
model system in the vicinity of origin reveals some interesting dynamical behaviour depending
on the parametric restrictions. This type of dynamical behaviour has never been observed in
classical prey-dependent predator–prey models. Based on the outcome of stability analysis
around E0(0, 0), one can obtain a clear idea of the possibility of extinction of population at low
population density of both prey and predators. In the case of the ratio-dependent predator–prey
model it is not possible to linearize the model system around E0(0, 0). To study the behaviour
of the model system around E0 we follow the technique developed by Arino et al [7]. (For
rigorous calculations and mathematical justification of the said technique, interested readers
may consult the work of Arino et al [7] and the references therein.) For this purpose the model
system (2.5) can be written as

dX

dt
= H(X(t)) + Q(X(t)), (2.7)

where H(.) is C1 except at the origin, is a continuous and homogeneous function of degree
one, i.e. H(sX) = sH(X) for all scalar s � 0, X(t) = (x1, x2) ∈ R

2
+ and Q is a C1 function

and satisfies the condition Q(X) = ◦(X) in the vicinity of the origin. The functions H(.) and
Q(.) are defined by

H(X) ≡ (H1(X), H2(X)), Q(X) ≡ (Q1(X), Q2(X)), (2.8)

H1(X) = x1 − ax1x2

x1 + x2
, H2(X) = bx1x2

x1 + x2
− cx2, (2.9)

Q1(X) = −x2
1 , Q2(X) = 0. (2.10)

Let us assume that X(t) is a solution of (2.7), is bounded such that lim inf t→∞ ‖X(t)‖ = 0.
For this situation it is possible to find a sequence X(tn + .) → 0 uniformly as tn → ∞. Define

yn(s) = X(tn + s)

‖X(tn + s)‖ . (2.11)

Clearly, Yn is a sequence with ‖yn‖ = 1. Applying the Ascoli–Arzela theorem [20], it is
possible to find a subsequence corresponding to yn which converges towards some function
y(t) and the limiting function satisfies the equation

dy

dt
= H(y(t)) − (y(t), H(y(t)))y(t). (2.12)

In equation (2.12), (., .) stands for the standard inner-product in R
2. The steady

states of (2.12) are vectors V satisfying H(V ) = (V , H(V ))V which are solutions of
the nonlinear eigenvalue problem, H(V ) = µV with µ = (V , H(V )). These stationary
solutions correspond to the fixed directions along which the trajectories of (2.12) may converge
asymptotically. Using (2.9), the nonlinear eigenvalue problem becomes

[(1 − µ)v1 + (1 − a)v2]v1, [(b − c)v1 − (c + µ)v2]v2 = 0. (2.13)

Now we are in a position to discuss in detail the possibility of reaching the origin following
fixed directions.

Case 1. v1 = 0 and v2 �= 0
In this case, there is a possibility of reaching the origin along the y-axis, with µ = −c.

Case 2. v1 �= 0 and v2 = 0
In this case, it is possible to reach the origin along the x-axis, with µ = 1.
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Case 3. v1 �= 0 and v2 �= 0
In this case, the possibility of reaching the origin along some fixed direction from the

interior of the first quadrant depends on the existence of a real root of the quadratic equation

µ2 + µ(c − 1) + ab − b − bc = 0. (2.14)

The existence of a real root of the quadratic equation (2.14) demands

c < b <
1

a − 1

[
(c − 1)2

4
+ ac

]
. (2.15)

Again the upper bound for the parameter b will be biologically feasible if and only if
a > 1 or equivalently α > r . This result has the biological significance that if the prey-
catching capacity is higher than the intrinsic growth rate of predator then both the populations
approach total extinction.

Under the three conditions discussed above, it is possible to reach the trivial equilibrium
point E0(0, 0) and hence E0 is an attractor for the model system (2.5).

2.4. Behaviour around E1 and E∗

The Jacobian matrix J (x, y) for the system (2.5) at any point of the first quadrant (x, y), except
at the origin, is given by

J (x, y) =




−x +
axy

(x + y)2
− a(x)2

(x + y)2

b(y)2

(x + y)2
− bxy

(x + y)2


 . (2.16)

The Jacobian matrix evaluated at the boundary equilibrium point E1(1, 0) takes the form

J1 = [J (x, y)]E1 =
[−1 −a

0 b − c

]
(2.17)

and therefore, if the positive interior equilibrium point exists (i.e. b > c), E1(1, 0) is always
stable along the x-direction and unstable along the y-direction and consequently, E1(1, 0) is a
saddle point.

At the interior equilibrium point E∗(x∗, y∗) the Jacobian matrix J∗ is given by

J∗ = [J (x, y)]E∗ =




−x∗ +
ax∗y∗

(x∗ + y∗)2
− a(x∗)2

(x∗ + y∗)2

b(y∗)2

(x∗ + y∗)2
− bx∗y∗

(x∗ + y∗)2


 . (2.18)

The characteristic equation for the Jacobian matrix J∗ is given by

λ2 + A1λ + A2 = 0, where A1 = −Tr(J∗) and A2 = det(J∗). (2.19)

As det(J∗) = ab(x∗)2y∗/(x∗ + y∗)2 > 0 the stability of the equilibrium point E∗ solely
depends on the sign of Tr(J∗) and hence E∗ is stable if Tr(J∗) < 0 and unstable if Tr(J∗) > 0.
It is easy to verify that both the situations are possible for the model system under some
appropriate parameter values. In terms of the parameters the stability condition of positive
interior equilibrium point E∗ is a < b[c + b/(b − c)]/(b + c). We have noted earlier that
a < b/(b − c) and b > c are the necessary conditions for the positivity of E∗. Hence the
stability of equilibrium point E∗ demands the following condition

a < ā ≡ min

[
b

b − c
,

b

b + c

(
c +

b

b − c

)]
with b > c. (2.20)
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Figure 1. The Hopf-bifurcating periodic solution of the model system (2.5) for parametric values
a = 2.0, b = 0.7808 and c = 0.5.

If we increase the value of ‘a’ further such that a > b[c + b/(b − c)]/(b + c) with the
restriction b > c then E∗ becomes locally unstable. Hence by the Poincaré criteria [11] there
exists at least one limit cycle around E∗ within the positive (x, y)-plane. We now deduce the
condition for the existence of a Hopf-bifurcating small amplitude periodic solution.

Lemma. If a = a∗ = b[c + b/(b − c)]/(b + c) with b > c, then the system (2.5) exhibits
Hopf-bifurcation near E∗.

Proof. At the parametric value a = a∗ = b[c+b/(b−c)]/(b+c), Tr(J∗) = 0 and det(J∗) > 0.
When a takes the value a = a∗, the roots of the characteristic equation (2.19) are purely
imaginary. Also we can verify that the result (d/da)[Tr(J∗)]a=a∗ �= 0. Hence both the
conditions for Hopf-bifurcation [9, 22, 36, 48] are satisfied (see figure 1). �

The above result establishes the existence of a small amplitude periodic solution near the
interior equilibrium point E∗. Our next task is to find the condition for stability of the Hopf-
bifurcating periodic solution and for this we have to calculate the first Lyapunov coefficient at
the critical parametric value a = a∗. For this purpose we follow the procedure and standard
notation as introduced by Kuznetsov [46]. First we translate the origin to the equilibrium point
E∗ using the change of variables x = x∗ +h1 and y = y∗ +h2. Substituting this transformation
in (2.5a) and expanding in Taylor series at the critical parametric condition a = a∗
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we get

dh1

dτ
= a10h1 + a01h2 + a20h

2
1 + a11h1h2 + a02h

2
2 + a30h

3
1 + a21h

2
1h2 + a12h1h

2
2 + a03h

3
2 + · · · ,

(2.21a)

dh2

dτ
= b10h1 + b01h2 + b20h

2
1 + b11h1h2 + b02h

2
2 + b30h

3
1 + b21h

2
1h2 + b12h1h

2
2 + b03h

3
2 + · · · ,

(2.21b)

where the aij and bij are given by

aij =
[
∂i+jF1(x, y)

∂xi∂yj

]
a=a∗

, bij =
[
∂i+jF2(x, y)

∂xi∂yj

]
a=a∗

. (2.22)

In the above expansion we are not interested in the coefficients of fourth and higher order
terms as they make no contribution to the calculation of the first Lyapunov coefficient. In
order to make the coefficients of h1 in dh1/dτ and of h2 in dh2/dτ equal to zero we introduce
the non-singular transformation of variables as h1 = (a10/b10)u1 + u2, h2 = u1 in the above
expansion to get the transformed system as

du1

dτ
= α01u2 + α20u

2
1 + α11u1u2 + α02u

2
2 + α30u

3
1 + α21u

2
1u2 + α12u1u

2
2 + α03u

3
2 + · · · ,

(2.23a)

du2

dτ
= β10u1 + β20u

2
1 + β11u1u2 + β02u

2
2 + β30u

3
1 + β21u

2
1u2 + β12u1u

2
2 + β03u

3
2 + · · · .

(2.23b)

The above system can be written in the following form

d

dτ
u = Au +

1

2
B(u, u) +

1

6
C(u, u, u) + · · · , (2.24)

where A denotes the coefficient matrix of linear part with zero as the main diagonal elements;
B(u, v), C(u, v, w) are symmetric multi-linear vector functions of u = (u1, u2), v = (v1, v2),
w = (w1, w2) ∈ R2 and take the following forms:

B(u, v) =
[

2α20u1v1 + α11(u1v2 + u2v1) + 2α02u2v2

2β20u1v1 + β11(u1v2 + u2v1) + 2β02u2v2

]
, (2.25)

C(u, v, w) =
[
c11 + c12 + c13 + c14

c21 + c22 + c23 + c24

]
, (2.26)

where the cij (i = 1, 2; j = 1, 2, 3, 4) are given by

c11 = 6α30u1v1w1, c12 = 2α21(u1v1w2 + u1v2w1 + u2v1w1),

c13 = 2α12(u1v2w2 + u2v1w2 + u2v2w1), c14 = 6α03u2v2w2,

c21 = 6β30u1v1w1, c22 = 2β21(u1v1w2 + u1v2w1 + u2v1w1),

c23 = 2β12(u1v2w2 + u2v1w2 + u2v2w1), c24 = 6β03u2v2w2.

Let λ1,2 = ±iω be the eigenvalues of the matrix A and p, q proper eigenvectors satisfying the
relations

Aq = iωq, ATp = −iωp and 〈 p, q〉 = 1, (2.27)
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where 〈., .〉 means the standard scalar product in C
2 : 〈 p, q〉 = p̄1q1 +p̄2q2. The first Lyapunov

coefficient determining the stability of the Hopf-bifurcating periodic solution is given by [46]

l1 = 1

2ω2
Re(ig20g11 + ωg21). (2.28)

The quantities g20, g11 and g21 are given by

g20 = 〈 p, B(q, q)〉, g11 = 〈 p, B(q, q̄)〉, g21 = 〈 p, C(q, q, q̄)〉. (2.29)

The stability of the Hopf-bifurcating periodic solution depends on the sign of first Lyapunov
coefficient. The limit cycle is called stable if l1 < 0 and is unstable for l1 > 0. The explicit
expression for g20, g11, g21 and hence that of the Lyapunov coefficient l1 in terms of the system
parameters is too lengthy and would take at least two printed pages. Furthermore, it is quite
difficult to conclude about the sign of l1 due to its complicated algebraic expression. For this
reason we present here a numerical example to illustrate the method of calculation for l1. For
numerical calculation of the first Lyapunov coefficient l1, we consider the following model
dx

dτ
= x(1 − x) − 2xy

x + y
≡ F1(x, y),

dy

dτ
= 0.780 776 4064xy

x + y
− 0.5y ≡ F2(x, y).

(2.30)

From the previous analysis, one can easily verify that the positive equilibrium point is
E∗ = (0.280 776 4064, 0.157 670 7808) and the system exhibits limit cycle oscillation at the
critical parametric value a∗ = 2. Let x = 0.280 776 4064 + h, y = 0.157 670 7808 + k, then
system (2.30) becomes
dh

dτ
= 0.179 805 8984h − 0.820 194 1014k − 0.410 097 0509h2 − 2.100 970 508hk

+ 1.870 679 355k2 − 1.345 436 728h3 + 3.446 407 236kh2

+ 0.525 242 6287k2h − 4.266 601 336k3, (2.31a)

dk

dτ
= 0.100 970 5080h − 0.179 805 8985k − 0.230 291 1524h2 + 0.820 194 1016hk

− 0.730 291 1521k2 + 0.525 242 6269h3 − 1.345 436 728kh2

− 0.205 048 5261k2h + 1.665 630 829k3. (2.31b)

Making the non-singular transformation h = (0.179 805 8983/0.100 970 5080)u + v, k = u,
we see that system (2.31) becomes
du

dτ
= 0.100 970 5080v − 0.000 000 001u2 + 0.000 000 002vu − 0.230 291 1524v2

− 0.000 000 01u3 − 0.000 000 11vu2 + 1.460 582 304v2u + 0.525 242 6269v3,

(2.32a)

dv

dτ
= −0.499 999 9995u − 3.171 164 609u2 − 3.561 552 813vu − 0.000 000 002v2

+ 0.000 0013u3 + 0.000 0161vu2 − 6.342 329 213v2u − 2.280 776 405v3.

(2.32b)

λ1,2 = ±iω = ±0.224 689 2386i are the eigenvalues of the coefficient matrix corresponding
to the linear part of (2.32) where the matrix A is given by,

A =
[

0 0.100 970 5080
−0.499 999 9995 0

]
.

The eigenvectors as defined in (2.27) are given by p = (0.175 432 0563, 0.078 835 390 39i) and
q = (0.078 835 390 39, 0.175 432 0563i). Now one can calculate the quantities g20, g11, g21
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Figure 2. Stable limit cycle around the positive interior equilibrium point for the model
system (2.30).

easily by using any mathematical software (e.g. MAPLE) as

g20 = −0.005 279 657 042 + 0.003 107 509 389i,

g11 = 0.005 279 657 042 + 0.003 107 509 388i,

g21 = −0.004 581 433 107 + 0.005 411 288 533i.

Hence the first Lyapunov coefficient l1 is given by

l1 = −0.201 941 0159.

Thus the Hopf-bifurcating periodic solution is stable and all other trajectories around the
limit cycle ultimately approach it (see figure 2).

2.5. Global stability

In the previous section we have obtained the conditions for the existence of positive equilibrium
and its local asymptotic stability conditions. We have observed that instability of the boundary
equilibrium E1 gives support for the existence of positive interior equilibrium point E∗. The
parametric conditions for local asymptotic stability of E∗ are a < ā and b > c. Now we
try to find the condition under which system (2.5) will have no non-trivial periodic solutions
around E∗. For this purpose we recall the divergence criterion for the stability of a periodic
solution for planner systems [35, 37].

Let us construct the function h(x, y) = 1/(xy) such that h(x, y) > 0 for all x > 0, y > 0.
Using the definition of F1(x, y) and F2(x, y) from equation (2.2) we get

∂

∂x
(F1h) +

∂

∂y
(F2h) = − 1

y
− (b − a)

(x + y)2
.
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Figure 3. The phase portrait of the system (2.5) created by MATLAB. E∗ is a global attractor,
where a = 0.7, b = 0.9 and c = 0.8.

Clearly

�(x, y) ≡ ∂

∂x
(F1h) +

∂

∂y
(F2h) < 0 for a < b.

According to the Bendixon–Dulac criterion, there will be no limit cycle in the positive quadrant
of the xy-plane. Now we can state the following lemma.

Lemma. The existence of interior equilibrium point E∗ along with its local stability and the
restriction a < b eliminates the chance of existence of a non-trivial periodic solution
around E∗.

Now we are in a position to prove the global stability of the model system (2.5).

Lemma. If a < a∗ [a∗ = min (b, ā)] and b > c then E∗ is globally asymptotically stable.

Proof. The system (2.5) has no positive periodic solution around E∗ for a < a∗ and b > c.
The boundedness of the solution together with the saddle nature of boundary equilibrium
point E1 and local asymptoticality of E∗ leads to the conclusion that all the trajectories will
approach E∗ with increasing time ‘t’. Hence E∗ is a global attractor and the system is globally
asymptotically stable (see figure 3).

3. The stochastic model

The above discussion rests on the assumption that the environmental parameters involved with
the model system are all constants irrespective of time and environmental fluctuations. In
reality all such parameters exhibit random variations to a greater or lesser extent. In previous
discussions we have dealt with the equilibrium populations and their stability with regard to
the imposition of small disturbances. In this section we consider the effect of environmental
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fluctuations on the model system and the stochastic stability of the coexisting equilibrium point
associated with the model system.

Environmental fluctuations are important components in an ecosystem. Most natural
phenomena do not follow strictly deterministic laws but rather oscillate randomly about some
average value so that the deterministic equilibrium is no longer an absolutely fixed state [5, 9].
May [49] pointed out the fact that due to environmental fluctuations, the birth rates, carrying
capacity, competition coefficients and other parameters involved with the model system exhibit
random fluctuations to a greater or lesser extent. Consequently the equilibrium population
distribution fluctuates randomly around some average value. Elton [25] observed that ‘the chief
cause of fluctuations in animal numbers is the instability of the environment’. Within a
deterministic environment we seek the constant equilibrium population and then investigate its
stability which follows from the dynamics of the interactions between and within the species.
For systems which are driven by environmental stochasticity, it is impossible to find a time-
independent equilibrium point as a solution of the governing SDEs. In this situation it is
reasonable to find a probabilistic ‘smoke cloud’, described by the equilibrium probability
distribution. For the model systems described by the system of SDEs, there is a continuous
spectrum of disturbances generated by the environmental stochasticity, and the system is in
tension between two countervailing tendencies. On the one hand, random environmental
fluctuations are responsible for spreading the cloud and making the probability distribution
move diffusively, while on the other hand, the dynamics of stabilizing population interactions
tend to restore the populations to their mean value in order to compact the cloud [49]. Model
systems with this type of compact cloud of population distribution are called stochastically
stable systems. To study the effect of random environmental fluctuations we have to construct
the stochastic counterpart of the deterministic model system by incorporating environmental
fluctuations.

There are two ways of developing the stochastic model corresponding to an existing
deterministic one to study the effect of fluctuating environment. First, one can replace the
environmental parameters involved with the deterministic model system by some random
parameters (e.g. the growth rate parameter ‘r’ can be replaced by r0 + εγ (t), where r0 is the
average growth rate, γ (t) is the noise function and ε is the intensity of fluctuation). Second,
one can add a randomly fluctuating driving force directly to the deterministic growth equations
of prey and predator populations without altering any particular parameter [8, 11, 59].

Model (2.2) was just a first attempt towards the modelling of predator–prey interaction
with ratio-dependent functional response. In this study we introduce stochastic perturbation
terms into the growth equations of both prey and predator populations to incorporate the
effect of randomly fluctuating environment. We assume that stochastic perturbations of the
state variables around their steady-state values E∗ are of Gaussian white noise type which are
proportional to the distances of x, y from their steady-state values x∗, y∗, respectively [15].
Gaussian white noise is extremely useful to model rapidly fluctuating phenomena [11, 59]. So
the deterministic model system (2.2) results in the following stochastic model system:

dx = F1(x, y)dt + σ1(x − x∗)dξ 1
t , dy = F2(x, y)dt + σ2(y − y∗)dξ 2

t , (3.1)

where σ1, σ2 are real constants and known as the intensity of environmental fluctuations,
ξ i
t = ξi(t), i = 1, 2 are standard Wiener processes independent of each other [30]. In the rest

of this work we consider (3.1) as an Ito stochastic differential system of the type

dXt = f (t, Xt )dt + g(t, Xt )dξt , Xt0 = X0, (3.2)

where the solution (Xt , t > 0) is an Ito process, ‘f ’ is a slowly varying continuous component
or drift coefficient, ‘g’ is the rapidly varying continuous random component or diffusion
coefficient and ξt is a two-dimensional stochastic process having scalar Wiener process
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components with increments 
ξ
j
t = ξj (t + 
t)− ξj (t) that are independent Gaussian random

variables N(0, 
t). In the case of system (3.1),

Xt = (x, y)T, ξt = (ξ 1
t , ξ 2

t )T, f =
[
F1(x, y)

F2(x, y)

]
,

g =
[
σ1(x − x∗) 0

0 σ2(y − y∗)

]
.

(3.3)

Since the diffusion matrix ‘g’ depends on the solution Xt , system (3.1) is said to have
multiplicative noise.

3.1. Stochastic stability of interior equilibrium

The stochastic differential system (3.1) can be centred at its positive equilibrium point
E∗(x∗, y∗) by introducing the variables u1 = x − x∗ and u2 = y − y∗. It looks a very
hard problem to derive asymptotic stability in the mean square sense by the Lyapunov function
method working on the complete nonlinear equations (3.1). For simplicity of mathematical
calculations we deal with the SDEs obtained by linearizing the vector function ‘f ’ in (3.3)
about the positive equilibrium point E∗. The linearized version of (3.2) around E∗ is given by

dU(t) = F(U(t))dt + g(U(t))dξ(t), (3.4)

where U(t) = col(u1(t), u2(t)) and

F(U(t)) =
[−a11u1 − a12u2

a21u1 − a22u2

]
, g(U(t)) =

[
σ1u1 0

0 σ2u2

]
(3.5)

with

a11 = x∗ − ax∗y∗

(x∗ + y∗)2
, a12 = a(x∗)2

(x∗ + y∗)2
,

a21 = b(y∗)2

(x∗ + y∗)2
, a22 = bx∗y∗

(x∗ + y∗)2
.

(3.6)

Note that, in (3.4) the positive equilibrium E∗ corresponds to the trivial solution (u1, u2) =
(0, 0). Let � be the set defined by � = [(t � t0) × R

2, t0 ∈ R
+]. Let V ∈ C2(�) be a twice

differentiable function of time t . We define the following theorem due to Afanas’ev et al [2].

Theorem. Suppose there exists a function V (U, t) ∈ C2(�) satisfying the inequalities

K1|U |α � V (U, t) � K2|U |α, (3.7)

LV (U, t) � −K3|U |α, Ki > 0, i = 1, 2, 3, α > 0. (3.8)

Then the trivial solution of (3.4) is exponentially α-stable for all time t � 0.

With reference to (3.8) the expression for LV (U, t) is defined by

LV (U, t) = ∂V (U, t)

∂t
+ F T(U)

∂V (U, t)

∂U
+

1

2
Tr

[
gT(U)

∂2V (U, t)

∂U 2
g(U)

]
, (3.9)

where

∂V (U, t)

∂U
= col

(
∂V

∂u1
,

∂V

∂u2

)
,

∂2V (U, t)

∂U 2
=

[(
∂2V

∂ui∂uj

)
i,j=1,2

]
. (3.10)

Let us consider the Lyapunov function

V (U(t), t) = 1
2 [u2

1 + ω1u
2
2], (3.11)
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where ω1 is a positive real constant to be chosen later. It can be easily checked that (3.7) holds
for the Lyapunov function defined in (3.11) with α = 2. Now,

LV (U, t) = (−a11u1 − a12u2)u1 + (a21u1 − a22u2)ω1u2 +
1

2
Tr

[
gT(U)

∂2V (U, t)

∂U 2
g(U)

]
.

(3.12)

From (3.5), (3.10) and (3.11) we get,

∂2V

∂u2
=

[
1 0
0 ω1

]
, gT(U)

∂2V (U, t)

∂U 2
g(U) =

[
σ 2

1 u2
1 0

0 ω1σ
2
2 u2

2

]
. (3.13)

Hence from (3.12) we get,

LV (U, t) = −
(

2a11 − σ 2
1

2

)
u2

1 + 2(a21ω1 − a12)u1u2 −
(

2a22 − ω1σ
2
2

2

)
u2

2.

If we choose ω1 = (a12/a21) > 0, then from the above result we get,

LV (U, t) = −
(

2a11 − σ 2
1

2

)
u2

1 −
(

2a22 − a12σ
2
2

2a21

)
u2

2 = −UTQU, (3.14)

where Q = diag[(2a11 − σ 2
1 /2), (2a22 − a12σ

2
2 /2a21)] and the diagonal matrix Q will be a

real symmetric positive definite matrix and hence its eigenvalues λ1 and λ2 will be positive
real quantities if and only if the following conditions hold:

σ 2
1 < 4a11 with a11 > 0 and σ 2

2 <
4a22a21

a12
. (3.15)

If λm stands for the minimum of two positive eigenvalues λ1 and λ2 for the diagonal matrix Q

then from (3.14) we get the following result:

LV (U, t) � −λm|U |2. (3.16)

This leads us to the following theorem.

Theorem. Assume that for some positive real value of ω1 = a12/a21 and the inequalities in
(3.15) hold then the zero solution of system (3.4) is asymptotically mean square stable.

Recall that a < ā and b > c are the conditions for deterministic stability of the interior
equilibrium point E∗. Conditions for deterministic stability of interior equilibrium point along
with the inequalities (3.15) are the necessary conditions for stochastic stability of the model
system under environmental fluctuation. Inequalities (3.15) defines the upper threshold values
for the intensities of the environmental fluctuations ‘σ1’ and ‘σ2’ determined by the system
parameters (i.e. a, b and c) as

σ 2
1 < σ̄ 2

1 = 4

[
b2 − a(b − c)2

b2

]
and σ 2

2 < σ̄ 2
2 = 4(b − c)3

ac
. (3.17)

Thus the internal parameters of the model system and the intensities of environmental
fluctuation have the ability to maintain the stability of the stochastic model system and exhibit
a balanced dynamics at any future time within a bounded domain of (a, b, c, σ1, σ2)-parametric
space. The boundaries of the bounded set in (a, b, c, σ1, σ2)-parametric space are defined by
the following inequalities (which are some implicit functional relations):

a < ā, b > c, σ 2
1 < σ̄ 2

1 , σ 2
2 < σ̄ 2

2 , (3.18)

where the expressions for ā, σ̄ 2
1 and σ̄ 2

2 are given in (2.20) and (3.17), respectively. The
inequalities in (3.17) can be put into an alternative form as

a <

[
b

b − c

]2 [
1 − σ 2

1

4

]
and a <

4(b − c)3

cσ 2
2

. (3.19)
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For a given set of values for b, c, σ1 and σ2 with b > c we can find an estimate for the
parameter ‘a’ which will ensure the deterministic stability as well as stochastic stability of
interior equilibrium point E∗ for the model system (2.5). Defining the upper threshold limit
‘a’ for ‘a’ as

A = min

[
b

b − c
,

b

b + c

(
c +

b

b − c

)
,

[
b

b − c

]2 [
1 − σ 2

1

4

]
,

4(b − c)3

cσ 2
2

]
(3.20)

we can conclude that a < A and b > c are the necessary and sufficient conditions for the
stochastic stability of interior equilibrium point E∗ for the model system under consideration.

3.2. Numerical simulation

In order to give some support to the stability results of the stochastic model system obtained in
the previous section, we numerically simulate the solution of the SDE (3.1). For this purpose
we have to keep in mind that approximated sample paths or trajectories of Ito processes obtained
from direct simulation must be close to those of the original Ito process and these will lead us
to the concept of a strong solution for a system of SDE [21]. To find the approximate strong
solution of the Ito system of SDEs (3.1) with given initial condition we use the Euler–Maruyama
(EM) and Milstein method.

Consider the discretization of the time interval [t0, tf ] with

t0 = 0 < t1 < t2 < · · · < tn < · · · < tN < tN+1 = tf

and the simplest stochastic numerical scheme for the system under consideration is the
EM method

uk,n+1 = uk,n + f (tn, uk,n)�tn + g(tn, uk,n)�ξk
n

with uk,0 = uk0, k = 1, 2 and ūn = [u1,n, u2,n] being the numerical solution at time ‘tn’. In the
above numerical scheme, the increments are given by

�tn = tn+1 − tn,

�ξk
n = ξk

n+1 − ξk
n = ξk(tn+1) − ξk(tn),

where n = 0, 1, 2, . . . , N .
The noise increments �ξk

n are N(0, �tn)-distributed independent random variables which
can be generated numerically by pseudo-random number generators.

An efficient way to evaluate the increments of the Wiener process �ξk
n is to consider

�ξk
n =

√
Ink�tn,

where Ink is the nth realization of Ik and Ik is the Gaussian random variable N(0, 1).
Figures 4 and 5 are generated by using the numerical simulation method discussed above

with the help of MATLAB software.

4. Conclusion

In classical predator–prey model systems, the consumption rate of a single predator (so-
called functional response) is the key component of predation models as it is considered
to determine both the prey death rate and the predator rate of increase. In a continuous-
time predator–prey model with prey-dependent functional response it is a classical assumption
that predators encounter prey at random and that the response function depends solely on
prey abundance. This assumption is true for several cases but is not always appropriate [5].
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Figure 4. Solution of SDE (3.1) with parametric values a = 1.9, b = 1.5, c = 1.2 and
σ1 = σ2 = 0.2.
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Figure 5. Corresponding population distribution around the equilibrium point E∗ = (0.62, 0.156).
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In reality, it is reasonable to assume that the response function depends on the ratio of prey to
predator abundance. There are several field and laboratory observations in support of ratio-
dependent functional response. There is a sharp difference between the two types of response
functions with the variations in prey production or abundance. Ratio-dependent models predict
proportional increase of both populations while prey-dependent models predict the benefit of
predators only from an increase of prey production and abundance.

In this paper we have considered the deterministic analysis of stability for various
equilibrium points of a nonlinear predator–prey system with ratio-dependent functional
response. First we have proved the boundedness of solutions of the model system under
consideration. The origin (i.e. E0(0, 0)) and E1(1, 0) are two equilibrium points lying on the
x-axis for all permissible parameter values. However the model system cannot be linearized at
E0 and hence its local stability analysis is not possible by traditional analysis with a Jacobian
matrix. To overcome this situation we have employed the technique introduced by Arino et al
[7]. Our analysis shows that the trajectories reach the origin and both the populations become
extinct. This may happen in two ways. In one case, absence of prey or predator species is
responsible for extinction of predator and prey species, respectively. In the other case, over-
predation of prey species irrespective of the growth rate of prey drives the system towards total
extinction of both prey and predator species. This result agrees well with the result of Kuang
[42]. Next we have considered the local asymptotic stability of interior equilibrium point
E∗ and established the existence of a small-amplitude periodic solution arising from Hopf-
bifurcation as the parameter ‘a’ passes through its critical value ‘a = a∗’ from lower to higher.
At this position we can conclude that if the consumption ability of the predator is not very high
(i.e. a < a∗) then both prey and predator populations coexist at their steady-state value E∗
and hence the consumption ability and growing ability generate a balanced dynamics for both
the populations. Global stability results are obtained from the condition for non-existence of
a trivial periodic solution around E∗ with the parametric restrictions obtained in the last part
of section 2.

On the other hand, for the stochastic version of the model system we have obtained the
condition for asymptotic stability of equilibrium point E∗ in the mean square sense by using a
suitable Lyapunov function (3.11). These conditions depend on σ1, σ2 and the parameters
involved with the model system. For the deterministic environment, the stability of the
equilibrium point demands that all eigenvalues of the Jacobian matrix lie in the left-hand half
of the complex plane. For the corresponding model within the stochastic environment, this
condition is necessary but insufficient, due to the existence of a relatively compact equilibrium
probability cloud for the populations around the deterministic equilibrium point. The stochastic
stability requires that the stability provided by the interactions (which is measured by the
real parts of eigenvalues of Jacobian matrix) be sufficient to counteract the driving arising
from random environmental fluctuations [49]. Regarding stability and instability of the
stochastic model system, it intuitively seems appropriate to refer to the systems characterized
by large fluctuations in the population numbers as ‘unstable’ and to those with relatively small
fluctuations as ‘stable’. For stochastic model system (3.1) asymptotic stability of E∗ in the
mean square sense depends on the restriction of (3.15). Recall that the feasible values of
the intensities of environmental fluctuations depend on the system parameters, which in turn
decrease with the increase of parameter ‘a’. For a given set of values of a, b and c one
can easily calculate the upper bounds σ̄ 2

1 and σ̄ 2
2 from the relation (3.17). Within the natural

environment it is not possible to control the surroundings in such a way that the intensities
of environmental fluctuations cannot exceed the upper bounds settled for them by the system
parameters. The restrictions (3.15) or equivalently (3.17) are the boundaries determined by the
mathematical methods to obtain a stable population distribution around the equilibrium point
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Figure 6. Solution of SDE (3.1) with parametric values a = 1.9, b = 1.5, c = 1.2 and σ1 = 1.2
and σ2 = 0.8.

0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7
0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

Figure 7. Corresponding population distribution around the equilibrium point E∗ = (0.62, 0.156).
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Figure 8. Solution of SDE (3.1) with parametric values a = 1.9, b = 1.5, c = 1.2 and σ1 = 1.9
and σ2 = 1.8.

within a fluctuating environment. Hence we conclude that to preserve the system stochastically
stable the above restriction should be maintained.

Now, we are in a position to substantiate the analytical findings for the stochastic model
system through numerical experiments. The behaviour of the ecological system depends on the
rapidity of environmental fluctuations. This rapidity of fluctuations can be measured through
the intensity of fluctuations which act as an environmental driving force. The high amplitude
environmental driving force has the ability to change the dynamics of the system from a stable
situation to an unstable one. From this viewpoint we have only varied the intensity parameters
σ1 and σ2, keeping all other parameters unaltered. For the numerical analysis, we choose the
hypothetical set of parameter values a = 1.9, b = 1.5 and c = 1.2 and substituting these
values in (2.6) we obtain E∗ = E∗(0.62, 0.156). Now if we imagine a circular or elliptic
neighbourhood around the equilibrium point E∗(0.62, 0.156), we find that 90% or more of the
population distribution will lie within the said neighbourhood implying the stochastic stability
of the model system (see figure 5). If we increase the intensities of environmental fluctuations
from σ1 = σ2 = 0.2 to σ1 = 1.2 and σ2 = 0.8 with the same parameter values for a, b and
c, we again find a dense assemblage of probability cloud around E∗(0.62, 0.156) depicting
stochastic stability of the model system (see figures 6 and 7). Now, we would like to see how
the behaviour of the system changes for increasing fluctuations. If we further increase σ1 and
σ2 (to σ1 = 1.9 and σ2 = 1.8) we observe that the amplitude of the fluctuations increases,
implying instability of the coexisting equilibrium point within the fluctuating environment
(see figure 8). Thus the intensity of the random environmental driving force may be used as
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a control parameter. These findings agree well with some earlier works [8, 11, 12, 21, 28, 61].
Numerical simulation establishes the fact that the steady state of the stochastic version is not
absolutely fixed but a ‘fuzzy’ value around which the population fluctuates.

Ecological systems are so complex that environmental fluctuations may not always be
controlled. In such a situation, the condition given in (3.20) may provide some feasible way
for controlling the species from extinction. It is clear from (3.19) that σ1 never exceeds the
value 2.0 as the parameter a is positive. Hence for a given set of values of b, c, σ1 and σ2

(with obvious restrictions b > c and 0 < σ1 < 2) if we can employ a mechanism to control
the predator–prey system such that the parameter value ‘a’ lies below the numerical value ‘A’
obtained from (3.20) then the ratio-dependent predator–prey model system will exhibit stable
fluctuation of population distribution around its interior equilibrium point E∗ embedded within
a randomly fluctuating environment.
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