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Abstract. Singularity theory involves the classification of singularities up to some 
equivalence relation. The solution to a particular recognition problem is the 
characterisation of an equivalence class in terms of a finite number of polynomial 
equalities and inequalities to be satisfied by the Taylor coefficients of a singularity. 

into a unipotent group and a group of matrices. Building upon results of Bruce and 
co-workers, we show for contact equivalence that in many cases the unipotent problem 
can be solved by just using linear algebra. We give a necessary and sufficient condition 
for this, namely that the tangent space be invariant under unipotent equivalence. We then 
develop efficient methods for checking whether the tangent space is invariant, and give 
several examples drawn from equivariant bifurcation theory. 

The recognition problem can be simplified by decomposing the group of equivalences 

1. Introduction 

Golubitsky and Schaeffer (1979a,b) introduced the idea of applying singularity- 
theoretic methods to the study of equivariant bifurcation problems. Subsequently, 
many authors have produced classifications up to some codimension in a given 
context. These classifications include the following three components. 

(i) A list of normal forms, with the property that all bifurcation problems up to 
the given codimension are equivalent to precisely one normal form. 

(ii) The universal unfolding of each normal form. 
(iii) The solution to the recognition problem for each normal form. 
The recognition problem is one of the least explored facets of singularity theory 

and it is with this third component that we deal in this paper. We are interested in 
knowing precisely when a bifurcation problem is equivalent to a given normal form. 
Hence we must find a characterisation of the orbit of the normal form under the 
group of equivalences 9. This problem can often be reduced to one of finite 
dimensions via a key idea from singularity theory, that of finite determinacy. Many 
smooth map germs are determined up to 9 equivalence by finitely many coefficients 
in their Taylor expansion. Modulo other high-order terms 9 acts as a Lie group. It is 
well known that the orbits under the resulting Lie group are semi-algebraic sets, so 
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we can characterise the orbit as comprising those germs whose Taylor coefficients 
satisfy a finite number of polynomial constraints in the form of equalities and 
inequalities. This characterisation is the solution to the recognition problem. 

We will always assume that the bifurcation problems under discussion are finitely 
determined. Indeed, finite codimension implies finite determinacy, see lemma 2.1, 
and so for the purpose of classifying bifurcation problems up to low codimension, 
this assumption is always valid. The next step is to discover precisely which terms 
are high-order terms. Gaffney (1986) uses results from Bruce et al (1985) in 
providing the answer to this problem. However an additional assumption is 
required, namely that 9 acts linearly. The group of (contact) equivalences used in 
studying bifurcation problems does indeed act linearly and the results in this paper 
require the same assumption. In fact, the linearity of the group action is the key 
hypothesis in our results which hold equally well for the recognition problem under 
the right equivalence and contact equivalence in classical singularity theory. 

Because of the Lie group structure of 9, we can speak of the tangent space to the 
orbit of a bifurcation problem f ,  or the Lie algebra at f 

T ( f ,  9) = L 9 f  = (d(b,f)/dtl,=, 1 6, E 9, 60 = l}. (1.1) 
Most of the low-codimension classifications in the literature have been per- 

formed in the presence of a group of symmetries r acting absolutely irreducibly (the 
only linear maps commuting with the group action are real multiples of the identity). 
Such classifications include bifurcation problems in one state variable with no 
symmetry up to codimension seven (Keyfitz 1986) and with Zz symmetry up to 
codimension three (Golubitsky and Schaeffer 1984), in two state variables with D4 
symmetry up to topological codimension two (Golubitsky and Roberts 1986), and in 
three state variables with CD symmetry up to topological codimension one (Mel- 
bourne 1988). Apart from these, the most exhaustive classification in the literature is 
that performed by Dangelmayr and Armbruster (1983) who consider an action of Z2 
on [ w 2  which is not irreducible. They go up to codimension four. 

It is shown in 93 that provided r acts absolutely irreducibly, then the group of 
equivalences 9(r) can be decomposed into a group U(T) of equivalences whose 
linear parts are the identity and a group S(T) of linear equivalences (which hence 
must be scalar multiples of the identity). We refer to these as the group of unipotent 
equivalences and the group of scalings and define the unipotent tangent space 
T ( f ,  U(T)) in an analogous way to T ( f ,  9((r)). 

Examination of the solutions of the recognition problem in the aforementioned 
classifications leads to the following observations. 

(i) Calculating the effect of the scalings alone is easy, although the results look 
complicated and are often very nonlinear. 

(ii) If we consider the recognition problems with respect to unipotent equiv- 
alences alone, the solutions consist only of equalities. 

(iii) In many cases, these equalities are linear. 
(iv) The linearity of these equalities is usually disguised when the effect of the 

The following remarks on these observations are in order. 
(i) If r does not act absolutely irreducibly then it is possible for the effect of the 

linear equivalences to be rather complicated (for example, two-state variable 
problems with no symmetry, Golubitsky and Schaeffer 1984). This complexity does 
not occur provided linear equivalences are forced by the action of r to be diagonal 

scalings is included. 
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matrices; see 97. In this paper we study only such examples. 
(ii) This property is in fact always true and is stated algebraically in proposition 

3.3 of Bruce et a1 (1985) and theorem 3.2(a) of this paper. 
(iii) The main result of this paper, theorem 4.4, gives a necessary and sufficient 

condition for this property of linear determinacy to hold. The condition is that 
T ( f ,  U(T)) should be invariant under U(T). In this case the orbit of funder U(T) is 
simply the affine space f + T ( f ,  U(I')). 

(iv) A graphic example is given in example 6.4. In the light of this and other 
examples, it seems reasonable to solve the unipotent part of a recognition problem 
separately, whether or not the bifurcation problem is linearly determined. 

The organisation of this paper is as follows. Section 2 sets up the necessary 
background. In H3 we show that 9(r) can be decomposed into U(T) and S(T), and 
that the recognition problem can be similarly decomposed. We then give a theory 
for U(T) equivalence that is almost identical to that developed by Gaffney (1986) for 
9(r) equivalence. In particular, results by Bruce et a1 (1985) lead to a characterisa- 
tion of a module of high-order terms. Section 4 contains our main result which gives 
a criterion for a bifurcation problem to be linearly determined. In 95 we give results 
which make it easier to check whether or not this criterion holds. Even if the 
bifurcation problem in question is not linearly determined, the calculations discussed 
in 95 are still necessary in order to determine the module of high-order terms. 

In 96 we solve the recognition problem for many linearly determined bifurcation 
problems. A common link between these examples is that r acts absolutely 
irreducibly. We conclude by discussing briefly in 97 the complications that can be 
introduced into both the U(r) and the S(T) recognition problems when r does not 
act absolutely irreducibly. 

2. Background 

We summarise the main concepts that will be needed, and establish the notation. 
The notation is the same as that used in Golubitsky and Schaeffer (1984), 
Golubitsky et a1 (1988), Melbourne (1987), Golubitsky and Roberts (1986) and 
Stewart (1987). Let be a compact Lie group acting on R". A smooth map germ at 
0, g : R" x R - R" is said to be r equivariant if 

g(Yx, A) = Y d x ,  A) for all y E r ,  x E R", A E R. 

We denote the space of all such mappings by gx,h(r). The variable x = (xl, . . . , x,) 
is called the state variable and A is the bifurcation parameter. Let 55x,A(r) be the ring 
of all r-invariant smooth function germs at 0 , f :  R" x R + R; that is, those f 
satisfying 

xhen $x,h(r) is a module over %'x,x,h(r). We must also consider the %x,h(r) module 
&n(r), which consists of the germs at 0 of all smooth-matrix-valued maps 
S :  [w" x R --$ L(R" ,  R") satisfying the condition 

f(% A) = f ( x ,  A) for all y E r, x E R", A E R. 

y - l s (yx ,  A ) y  = S(X, A) for all y E r, x ER", A E R.  

A result of Schwarz (1975) ensures that there exists a finite set of invariant 
generators u l ,  . . . , U ,  E %'x,h(I') such that any element f E %x,h(r) can be written as a 
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function of u l ,  . . . , U,. In other words gX,*(r)  = The ring has a unique 
maximal ideal Adu,* = ( u l ,  . . . , U,, A )  comprising all invariant functions that vanish 
at the origin. The kth power of the maximal ideal consists of all invariant 
functions whose derivatives in U and A up to any degree less than k vanish at the 
origin. Similarly we can define @,n(r) to be the space of equivariant maps whose 
derivatives in x and A of degree less than k vanish at the origin. A bifurcation 
problem with symmetry is an equation g(x ,  A) = 0  where g E J & ~ , * ( ~ )  and 

The group of r equivalences acting on AX,*@?) is defined in the following way. 
Let Z ' ( r ) O  denote the connected component of Homr(lW") fl GL(R") containing the 
identity, where Homr( R n )  is the vector space of all r-equivariant linear mappings 

R". Then g, h E Ax,*@) are r equivalent if there exists a triple (S, X ,  A) E 

(dxg)o = 0. 

%x,A(r) x &,A(r) = such that 

h(x, A) = S(x, A)g(X(x, A), %A)) S(O), (dXX), E = W ) O ,  A" > 0. 

Let 

q r )  = {(s, x, A) E Km x A X , m  x &A I s m ,  KX), E 9(0~, AV> > 01. 
Then, under a suitable multiplication, the group action of 9(r) on AX,*(r) induces 
the required equivalence relation. If we write qI = (Xi, A,) i = 1, 2, then the 
multiplication is given by 

(SZ, V2) O (&, Vl)  = (SZ * 6 0  VZ), V1 O VZ) 

SZ . (Sl O VZ)(X, A) = U x ,  A) * Sl(V,(X, A)) 
V1 O V&, A) = (Xl O VZ(A A), A1 O M A ) ) .  

T(f, Bar)) = w, 9d(T)) + g*nw 

where 

A calculation using (1.1) shows that the tangent space is given by 

(2. l a )  

where 

w, gar)) = {Sf + ( d f W  I (S, X )  E G x . m  x Ax,*(rn. (2. l b )  

Note that p(f, gar)) is an gX,*(r) module, but this is not necessarily so for 
T(f, 9((r)). Equation (2.1) gives an alternative 'formal' definition for T ( f ,  9(T)) .  
Unlike in (1.1) we do not require 9 (T)  to be a Lie group. The following result is a 
fundamental lemma from singularity theory relating the concepts of finite deter- 
minacy and finite codimension. 

Lemma 2.1. The following are equivalent. 
( a )  T ( f ,  9(T))  has finite codimension in gX,*(r), that is 

T(f, m)) e3 v = %(r) 
for some finite-dimensional vector space V .  

( b )  f is finitely determined, that is there is some k > 0 such that 

f + P  E *f for all p E At,A(r). 
If ( a )  and ( b )  hold then 9(r) can be considered as acting modulo At,A(l?). The 
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induced action is that of a Lie group acting algebraically. The Lie algebra defined in 
(1.1) coincides with the tangent space defined in (2.1). 

Proof of ( b )  is implied by ( a )  by theorem 10.2 of Damon (1984). The converse is 
proved by an easy calculation and is not in any case used in this paper. The 
consequences of (a )  and (b )  are well known (see Thom and Levine 1971). 

Definition 2.2. A bifurcation problem f has finite r codimension if T ( f ,  9(r) has 
finite codimension in @x,h(r). 

3. Unipotent actions and the recognition problem 

Let 9(r) be'the following group of r equivalences acting on 

q r )  = w, x, A) E g X . m  x &,m x JG I s(o), (dxx), E - q r ) o ,  AV) > 01. 

n : Z x , m  x &,m x A*-+ E m  x Jii,,m x A h  

Consider the map projecting equivalences onto their linear parts 

4% x, A) = (S(O), (dxX)0, A'(0)). 
Let S(T) = 2 ( r ) O  X LE'(r)' x R'O where R"' is the set of positive real numbers. It is 
easy to check that 

"Iqr): gar)-+ s(r) 

U(T) = {(S, X ,  A) E 9(r) 1 S(0) = 1, (d,X), = 1, A'(0) = l }  

is a group epimorphism. Its kernel 

(3.1) 
is therefore a normal subgroup of 9((r). We can decompose 6 E 9 ( T )  as 

6 = SUI = u2s 

s = n(6) U1 = n(6)-16 U 2  = 6n(8)-'. 

n(6) = n(s)n(u1) = s. 

where s E S(T), u l ,  u2 E U(r). To do this we set 

Furthermore the decomposition is unique since 

Note however that in general u1 # u2. 
The group U(T) consists of unipotent diffeomorphisms, whose linear parts are 

unipotent matrices. (In general, a unipotent matrix is one that in some coordinate 
system can be written as an upper triangular matrix with ones on the diagonal. We 
have the special case where there are no non-zero superdiagonal entries.) In 
consequence we can use the methods of Bruce et aZ(1985), from algebraic geometry. 

Remark 3.1. 
(a )  The decomposition described above allows us to solve a 9(r) recognition 

problem by combining the solutions of the corresponding U(T) and S(T) recognition 
problems in the following way. Our method is to compute S(T) an for a given 
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normal form n, and then to calculate U(T) .f for all f E S(r) * n. Since 

q r )  n = u(r) s(q a n 

we have g E 9 ( T )  . n if and only if g E U(T) .f for some f E S(T) * n. 
The elements of S(r) are linear, hence we might hope to solve the S(T) 

recognition problem without too much difficulty. This hope is not always realised; 
see ch IX of Golubitsky and Schaeffer (1984) for the case of two state variables 
without symmetry. However, in the examples which we consider in this paper, r 
acts in such a way that S(T) is scalar, that is 2?(r)' contains only diagonal matrices 
(in some coordinate system). In 07 we give a criterion for S(T) to be scalar in terms 
of the action of r. In these cases solving S(T) recognition problems is a trivial 
matter. In the remainder of this section we concentrate on the U(T) recognition 
problem. From now on we usually suppress the T dependence. 

to have finite codimension. 
It is not necessary to specify whether this i3 finite codimension with respect to 9 or 
U. A calculation shows that 

( b )  Our results require bifurcation problems f E 

( 3 . 2 ~ )  

where 

By (2.1) and (3.2) 

where 

w = R {Sf + (d , f )X  + Ah 1 S, d,X E 2}, 
tf tf 

Now Ax,, and %,,A are finitely generated as modules over gX,,, say by 

X I ,  . . . , xr, SI, . . . > ss 

(theorems XII,5.2 and XII,5.3, and exercise XIV,1.3 of Golubitsky et a1 (1988)) and 
so 2? is spanned by 

(dXXl)O, . ' ' > (dxXr)"; SI@), . ' 1 , Ss(0). 

Therefore W is a finite-dimensional vector space and hence, byJ3.3), it follows 
that the two tangent spaces have finite or infinite codimension in 

(c) The results in 003 and 4, in particular corollary 3.9 and theorem 4.4, hold in 
a more general setting. Here U and S can be any subgroups of 9 satisfying the 
following three properties: 

together. 

for all 6 E 9, 6 = su for some U E U ,  s E S ,  
U acts unipotently, 
the codimension property (3.3) holds with W finite dimensional. 

We will require the following two results from algebraic geometry. They deal 
with actions of unipotent groups and are proposition 3.3 and corollary 3.5 
respectively of Bruce et a1 (1985). 
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Theorem 3.2. Let U be a unipotent affine algebraic group over R acting algebrai- 
cally on an affine variety V .  Then 

( a )  The orbits of U are Zariski closed in V ;  
( b )  If x E V and W is a U-invariant subspace of V then x + W is contained in an 

orbit of U if and only if LUX 3 W. 

Theorem 3.2 is restated in our particular context in corollary 3.6. 

Definition 3.3. For f E Ax,,, 
M(f7 U ) = b E J i i , , A l f + P N f )  

= {uf - f I u E U } .  

Remark 3.4. Notice that g E Uf if and only if g - f E M(f, U ) .  Hence, solving the 
U-recognition problem amounts to computing M(f, U ) .  

Definition 3.5. A subspace of Ax,* is U intrinsic if it is invariant under the action of 
U .  If a subset M of Ax,, contains a unique maximal U-intrinsic subspace, then this 
subspace is called the U-intrinsic part of M and is denoted Itr, M .  

Note that a U-intrinsic subspace of Ax,, is automatically an submodule of 

Clearly Itr,M exists for any'subspace M .  In proposition 3.8 we see that 
Ax,, since it is closed under multiplication on the left by S = hI  for any h E 2&,. 

Itr, M ( f ,  U )  always exists provided f has finite codimension. 

Corollary 3.6. Suppose f E Ax,, is of finite codimension. Then 
( a )  The orbit Uf is determined by a finite system of polynomial equations 
( b )  Suppose M is a U-intrinsic subspace of Then 

= M(f, U )  if and only if M c T(f, U ) .  

Proof. By lemma 2.1 we can work modulo A:,,, some k > 0, and so regard U as an 
algebraic group acting algebraically. Now ( a )  and ( b )  are then just rewordings of 
theorem 3.2(a) and ( b )  respectively. 

We now define a module of high-order terms 8(f ,  U )  which is analogous to the 
module 8 of high-order terms in the 9 context (see Gaffney 1986). 

Definition 3. Z S(f, U )  = { p  E Ax,, 1 g + p E Uf for all g E Uf }. 

Proposition 3.8. Iff has finite codimension then 

Proof. We have to show that 8(f, U )  is the unique maximal U-intrinsic subspace 
contained in M(f, U) .  The proof is identical to that of proposition 1.7 in Gaffney 
(1986) with one exception. Closure under addition is still straightforward: if 
p l , p z E 9 ( f , U )  and g E U . f  then g + p l E U - f  and so ( g + p , ) + p 2 E U . f  by 
definition. The problem is closure under scalar multiplication. However, consider 
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the set 

T = { ~ E R  / g + t p ~ U f }  

where p E S(f,  U), g E Uf. By the property of closure under addition, we have 
N c T. However by corollary 3.6(a), U . f  is determined by finitely many polyno- 
mials. Therefore t E T if and only if t is a simultaneous zero of a finite set of 
polynomials. However, T contains N, an infinite set, and so T = R as required. 
Therefore 9(f, U )  is a subspace. 

The rest of the proof proceeds as expected. Suppose g E 9(f, U), U E U. Then 
g + up = u(u-lg + p )  E Uf, so up E S(f, U): Therefore S(f, U )  is a U-intrinsic 
subspace. Clearly 9(f, U )  c M ( f ,  U ) .  Suppose P c M ( f ,  U )  where P is U intrinsic. 
Let p E P and g = uf, U E U. Then 

g + p  = uf + p  = u(f + u - l p )  E U .  f. 
Thus P E S(f, U )  and P(f, U )  is maximal and unique. 

Corollary 3.9. Iff has finite codimension then 

S(f> U )  = Itr, T(f, U ) .  

Proof. Taking U-intrinsic parts in corollary 3.6(b) and applying proposition 3.8 
yields 

M = P(f, U )  if and only if M c Itru T ( f ,  U )  

for any U-intrinsic subspace M .  Setting M =  P(f, U )  and M=I t r ,  T ( f ,  U) in turn 
gives the result. 

4. linearly determined bifurcation problems 

In remark 3.4, we observed that the computation of M ( f ,  U )  would solve the 
U-recognition problem. By corollary 3.6(a), M ( f ,  U) is determined by a finite set of 
polynomial equations. We concentrate on the simplest case when these equations 
are linear, so that M ( f ,  U )  is a vector subspace of finite codimension. Note that this 
codimension is the same as that of T ( f ,  U ) ,  because 

codim T ( f ,  U )  = number of defining equations for Uf 
= codim M ( f ,  U ) .  

Definition 4.1. A bifurcation problem f E Ax,h of finite codimension is ZinearZy 
determined if M ( f ,  U )  is a vector subspace of 

Remark 4.2. Linearly determined bifurcation problems are by no means rare. 
Indeed in examples that have been studied up to now, the majority of bifurcation 
problems are linearly determined. In the context of one state variable with no 
symmetry, nine out of the thirteen bifurcation problems of codimension 4 or less are 
linearly determined, whilst if r = Z2 all problems up to at least codimension 3 are 
linearly determined. In this section we give a simple criterion for linear determinacy. 
If this is satisfied, then M ( f ,  U) is immediately known. 
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Proposition 4.3. f is linearly determined if and only if M ( f ,  U )  = S(f, U ) .  

Proof. We have to show that M ( f ,  U )  is a subspace if and only if it is a U-intrinsic 
subspace. One implication is trivial. To prove the converse suppose p E M ( f ,  U) and 
g E Uf, so that there exist U, U' E U such that 

f + p = u f  g = u'f. 

(g +PI -f = ( U 7  -f> + (uf -f) E M(f, U ) .  

Then 

Therefore g + p  E Uf and so p E S(f, U ) .  

Theorem 4.4.  f is linearly determined if and only if T ( f ,  U )  is U intrinsic, in which 
case 

M(f, U )  = T ( f ,  U ) .  

Proof. Suppose that f is linearly determined. Then by proposition 4.3, 

M(f, U )  = S(f, U )  c T(f, U ) .  

T(f, U )  = M(f, U> = .wf, U )  

But M ( f ,  U )  is a subspace with the same codimension as T ( f ,  U ) .  Therefore 

the latter being a U-intrinsic subspace. The converse can be proved directly in the 
case when U ( T )  is defined as in (3.1). However the proof is quite unwieldy. Wall 
found a more natural setting for the result in lemma 4.5. The upshot of this lemma is 
that T ( f ,  U )  = M ( f ,  U) .  However, T ( f ,  U )  = S(f, U )  and so f is linearly determined 
by proposition 4.3. 

In the remainder of this section we revert to the notation of theorem 3.2. We 
recall that the Lie algebra LU at f and the tangent space T ( f ,  U )  are the same 
space. 

Lemma 4.5. Let U be a unipotent group acting linearly on a vector space V ,  and let 
v E V be such that LU U is a U-invariant subspace of V. Then U .  v is the affine 
subspace v + L U .  U .  

Proof. (Wall 1986). Let N I ,  . . . , Nk be a basis of the Lie algebra LU. Since this is 
nilpotent, there is an integer r such that any product of more than r of the Ni is zero. 
The tangent space LU v is spanned by the Njv.  Since it is invariant, any N&u also 
belongs to LU v (see proposition 5.1). 

It suffices to show that U * v c v + LU U for these have the same dimension. As 
U .  U is closed, it follows that it is the whole space. Because the exponential map for 
U is surjective, it is enough to show that for any N = AiNi in LU,  eNv belongs to 
U +LU.v. But 

and since any N i ~ v  is a linear combination of the Niv it follows by induction that 
each term except the first lies in LU U .  
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Corollary 4.6. Let U be a unipotent group acting linearly on a vector space V and 
let v E V. Then LU v is a U-invariant subspace of V if and only if 

U .  v = v + L U .  U. 

Proof. It remains to prove that if U v = v + L U .  v then L U .  v is U invariant. 
Suppose that M E LU, U E U. We must show that uMv E L U .  U. The hypothesis 
implies that v + LU v is invariant under U and so 

u(v +Mu) E V  + L U .  U. 

Therefore 

uv + UMV - v E LU * U .  

But uv E U v and so uv - v E LU U. Hence we have 

UMV E LU * v 

as required. 

5. Tools for calculating maximal U-intrinsic subspaces 

In order to calculate S(f, U )  we need an efficient method for calculating the 
U-intrinsic part of a subspace. The first result gives a necessary and sufficient 
condition for a subspace to be U intrinsic. 

Proposition 5.1. If M c Ax,, is a subspace of finite codimension then M is U 
intrinsic (9 intrinsic) if and only if LU M c M (159 M c M ) .  

Proof. By the finite codimension of M we can work modulo At,*, k > 0 ,  and so 
regard U as a Lie group or as an algebraic group acting algebraically. For a 
unipotent group U ,  the exponential map 

exp: LU+ U 

is continuous and surjective (lemma 3.1 of Bruce et a1 (1985)), so U is the 
continuous image of a connected space. Therefore U is a connected Lie group acting 
smoothly on Ax,,. Hence by lemma 2.2 of Bruce et a1 (1985) we obtain the required 
result for U. The result holds also for 9 since 9 is a connected Lie group by lemma 
2.3, Melbourne (1987). 

In general verifying the condition in proposition 5.1 is a laborious task. A better 
method is to recognise that a ‘large part’ of a subspace is U intrinsic and then apply 
proposition 5.1 as a last resort on whatever is remaining. 

equivalence to a monomial p E dx,A(r) cannot reduce 
the overall degree of p .  Furthermore, because the A part of a r equivalence is only 
allowed to depend on A ,  the degree of p in A alone can also not be reduced. Hence 
for all k,  I > 0, the subspace 

It is clear that applying a 

Je,m ( A‘ ) (5.1) 
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is both 9 intrinsic and U intrinsic. By the linearity of the action of 9, sums of 
subspaces such as in (5.1) are also intrinsic. 

In the examples considered in 06, the action of r is irreducible. Suppose further 
that the action is non-trivial. The fixed point subspace 

V =  { U  E R" I yz, = U  for all y E r }  

is a r-invariant subspace of R" and so is just (0). Now suppose X E $?x,h(r). Then 

yX(0,  A) = X ( y  * 0, A) = X(0 ,  A) for all y = I'. 

Hence X(0,  A) E Vr and so X(0,  A) = 0. Thus the following useful hypothesis is often 
satisfied: 

X(0,  A) = 0 for all x E gXx,*(r). ( 5 4  
Condition (5.2) implies that the degree in x is preserved by r equivalence in the 
same way as the degree in A is preserved. Therefore it is useful to define a space of 
germs vanishing up to some specified degree in x .  For k 2 1, we define 

The following result is elementary. 

Proposition 5.2. Suppose condition (5.2) holds. Then sums of subspaces of the form 

A k ( r )  (A' ) k 3 1 , l a O  

are 9 intrinsic and U intrinsic. 

Note that 

gX(r) = = Alp-) 3 &(r) 2 3 .  . . . 
These inclusions need not be strict. For example, consider r = Z2 acting on R.  Then 
gX(Z2) consists only of odd functions and so 

JUG) = &k+@2)  for all k 3 1. 

For k > 1, let k -  denote the largest integer less than k such that Jii,(r) is strictly 
contained in k - ( r ) .  

Remark 5.3. 
is a compact Lie 

group acting on R" and so is a subgroup of O(n).  Hence there is always an invariant 
of degree two, the norm IIxII. In consequence, there is an equivariant of degree r for 
any odd number r .  Furthermore, the existence of an equivariant of degree two 
would guarantee the existence of an equivariant of any given degree. Hence we have 
the following: 

( a )  k -  is either k - 1 or k - 2. This is due to the fact that 

either k -  = k - 1 for all k > 1 

( b )  Both cases in (5.3) can obtain for Vr = (0). The examples in 66 all satisfy 
3- = 1, but if r = S, acting on C as the symmetries of an equilateral triangle, then i2  
is an equivariant of degree two (see Golubitsky and Schaeffer 1983). 

or 3- = 1. (5 .3)  
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Theorem 5.4. Suppose (5.2) holds. Let V be a subspace of 

Akl-(r) { A ~ T  - 1 ) + . . . + AkF(r) ( ills - I), k i > l , l f > O , i = l , .  . . , s .  

Then 

Ak1(r)( A [ ~ - I )  + 2ki(r) ( A[>) + . . . + Aks(r) ( A ' S - ' )  + AkF(r) ( A ' S )  + v 
is U intrinsic. 

Proof. By proposition 5.2 

H = Akl(r)(A[l-l) + Jkki(r)(A[l) + . . . + 2ks(r)(ts-1) + Ak;(r)(il[s) 

is U intrinsic. Hence by proposition 5.1 it suffices to show that 

L U - V C H .  

We show that if p E &-(I-)( A'-') then 

~ ( p ,  U )  c H~ = Ak(r) ( A[-') + &(r) (2). 

SP + ( d p ) ~  + 
The result follows by linearity of the 9 action. Now 

1- I (s, x ,  A) E g X , m  x JX,*(r) x ~lln 
= (" = [ S ( 0 )  = 0, (dX) 0 - - 0, A'(0) = 0 

It is easy enough to see that 

s p  E H,, ~p~ E &-(r)(Iz[) c H,. 

To show that (dp)X E Hc, we have to use remark 5.3(a). By (5.3) we have two cases 
to consider. 
Case 1. k -  = k - 1 for all k > 1. Now p is of degree at least k - 1 in x and at least 
1 - 1 in A, and so dp is of degree at least k - 2 in x and at least 1 - 1 in A. Also we 
nave X E &(r)& + &(r)(A) since X(0, A) = 0 and (dX), = 0. Thus 

(dp )xE  +Ak-l(r)(A1) = H, 
as required. 
Case 2. 3-=1. This time X E J & ( ~ ) % ~  +&(r)(A). Hence 

( d p ) x  E Jik-+2(r) ( A/-') + i k - ( r )  (2). 
By remark 5 .2 (a ) ,  k -  + 2 2 k and so the result is proved. 

If (5.2) does not hold then the property of 'preservation of degree in x' does not 
stand, However we can prove a weak analogue of theorem 5.4 which holds true for 
all compact Lie group actions. Note that 

gXJn(r) = k:,,(r) I> i&(r) I> i:,l .(r) 3 .  . . . 
This time each inclusion is strict. 

Theorem 5.5. Let W be a subspace of 

i2x,A(r) ( ~ [ o )  + A&(q ( t 1 - I )  + . . . + JiZA(r) ( ~ k - l )  ki > 0, ii > 0. 
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Proof. This is similar to that of theorem 5.4. However we have only 

x E JkA(r) + e d )  (A) 
rather than dx,A(l?) + Ax,A(r)(A) as in case 1 of the proof of theorem 5.4. In 
particular 

x(x, A) = aa a E R "  

is a possibility now that the restriction X(0,  A) = 0 no longer holds in general. This 
accounts for the slightly weaker result. 

6. Examples with r acting absolutely irreducibly 

6.1. One state variable. No symmetry (Keyfitz 1986) 

Up to codimension 4, all bifurcation problems fall into one of the following families: 

E X k  + S A  k 3 2  codim = k - 2 
E X k  + SxA k 2 3  codim = k - 1 
E X 2  + SAk k 3 2  codim = k - 1 
E X 3  + SA2 codim = 3. 

(See table IV2.2 and exercise IV2.1 of Golubitsky and Schaeffer (1984).) Our 
methods apply to all the above germs except those in the third family. Indeed even 
the solutions to the full recognition problems consist of linear defining and 
non-degeneracy conditions. Furthermore, in these cases the unipotent tangent 
spaces are invariant not only under unipotent equivalences but under the full group 
of equivalences. For this reason, the solution of these recognition problems is almost 
trivial even without making use of the results in this paper. Therefore it is necessary 
to go up to higher codimension to find instructive examples. First, however, we must 
calculate the unipotent tangent space T ( f ,  U ) .  By definition 

T ( f ,  U )  = {(d/dt)UzJt=o jut E U ,  uo = 1} 
= {Sf + (4f)X + Ah1 (S, x, A) 

E g x , ~  X Ax,* X ddA, S(0) = (d ,X) ,  = A'(0) = O } .  

Therefore 

T ( f ,  U )  = qf, U )  + g*h(A.2h) (6. l a )  

where 

w, U )  = &,*{xf, Af, X 2 f X >  AL}. (6.1b) 

Tangent space T ( f ,  U )  is the same as LMAX in corollary 1.9 of Gaffney (1986). 
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Example 6.1 
(i)  EX^ + 6xA2, k 3 4 ;  codim = 2k - 1. This is the family II.5,2 in table 1 of 

Keyfitz (1986). The lowest codimension in the family is seven. First we calculate the 
orbit of &xk + 6xA2 under scaling equivalences (S, X ,  A) where 

S(X,  A )  = #U X ( x ,  A )  = YX A(A) = LA #U) Y, 1 > 0. 

It is easy to ascertain that the orbit is 

{ # U Y k E X k  + pv126xA2 1 #U, Y ,  1 O} 

and that f is contained in this orbit if and only if 

f = axk + bxA2 sign a = E sign b = 6. 

Now consider the unscaled germ 

f ( x ,  A) = axk + bxh2 a ,  b#O k L 4. 

By (6.1) we have 

T(f9 U )  = w, U )  + W 2 h }  
where 

T(f, U )  = W X 2 f X ,  Afxx, X f ,  

= %'x,A{kaxk+' + bx2A2, kaxk-'A + bA3, axk+' + bx2A2, axkA + bxA3}. 

The first and third generators simplify to xk+' and x2A2 and then it is easy to obtain 

T ( f ,  U )  = Adk+' + &'(A') + R{kaxk-'A + bA3) 

where & = = ( x ,  A )  is the maximal ideal in %'x,A. Note that 

S(f, 9) = Ak+l + &"A">. 
Now kaxk-'A + bA3 4 S(f, 9)) for if we apply the scaling 

Aw2A 

then 

kaxk-'A + bA3 H 2(kaxk-'A + 4bA3) 4 T ( f ,  U ) .  

Hence T ( f ,  U) is not 9 intrinsic. However 

R (kaxk-'A + bA'} c Adk-' ( A )  + ( A 3 )  

and 

T( f, U) 3 Ak (A) + Ak-2( A 2 )  + A (A') 
and so by theorem 5.5 

P(f7 U )  = T(f9 U ) .  
Hence by theorem 4.4, f is linearly determined and 

Uf =f + T(f, U )  
= axk + bxA2 + A(kaxk-'A + bA') + Ak+' + A2(A2). 
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Further, g E U .f if and only if 

The equations in ( 6 . 3 ~ )  are equivalent to the condition 

k!ag,,,  - 6bgXk-ih = 0 (6 .3d )  

We have now solved both the unipotent recognition problem (6 .3a ,b ,d )  and the 
scaling recognition problem (6 .2 ) .  Combining the two solutions gives the solution to 
the full recognition problem. Hence we see that g is 9 equivalent to &xk + &A2 if 
and only if 

g = gx = . . . = g x k - l  = 0 
sign g , k  = E 

g, = gxh = , . . = gxk-’h = 0 gi>. = 0 
sign gxhh = 6 

and 

gxkhghhh - 3 g x k - l S x h h  = 0. 

Although the defining conditions for the unipotent problem are linear, the defining 
and non-degeneracy conditions for the corresponding full problem are not linear. 

(ii) & ( x 2 +  6A)’+ oxs, codim=5.  (See table 3.5 of Keyfitz (1986) and example 
1.13 of Gaffney (1986).)  It is easy to check that f is equivalent by scalings to 
&(x2  + 6A)’ + ox5 if and only if 

f = a(x’ + bA)’ + cxs sign a = E sign b = 6 sign c = o. 

(6 .4)  
Consider 

f ( x ,  A) = a(x’ + bA)’ + cxs a, b,  c # 0.  

Computations show that 

T ( f ,  U )  = ?(f, U )  = H + R {x5 + bx3A, x3A + bxA2} 

where 

H=A6+&4(A) +&’(A’) + ( A 3 )  

qf, U )  = T(f, U ) .  

and that 

However P(f, 9) is only H .  Gaffney shows that in this case a sufficient condition for 
g to be 9 equivalent to f is that g =f mod T ( f ,  U ) .  In fact theorem 4.4 shows that 
this condition is necessary and sufficient for U equivalence. Hence 

U .f = ax4 + 2abx2A + ab2A2 + exs + A(xS + bx3A) + B(x3A + bxA2) + H 
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and g E U .  f if and only if 

g = g x  = g x x  = g x x x  = 0 g, = gxA = 0 

gxxxx = 24a &,A = 4ab gA), = 2ab2 ( 6 . 5 )  
gxxxx,  = 1 2 0 ( c  + A )  gxxx,  = 6 ( A b  + B )  gx,A = 2Bb. 

Conditions ( 6 . 5 )  are equivalent to 

&! = g x  = g x x  = gxxx = 0 
gxxxx = 24a 

g, = g x h  = 0 
2 

6gxx* = bgxxxx gxxxxg,, - 3gxx ,  = 0 
and 

gxxxxx &xxA gxAA +,=c. 
120 6b 2b 

Combining this with ( 6 . 4 )  yields the required result: g E 9f if and only if 

g = g x  = g x x  = gxxx = 0 g, = g x ,  = 0 
2 

sign gxxxx = E sign gxxi = E S  gxxxxgAA - 3 g x x A  = 0 

Note that example 6.l(ii) is the first member of the infinite family 

E ( X 2  + 6A)* + axi 1 5 ,  codim = I 
in Keyfitz ( 1 9 8 6 ) .  In fact it is the only member of the family that is linearly 
determined. 

6.2. One state variable. r = Z2 (Golubitsky and Schaeffer ( 1 9 8 4 )  ch VI) 

Here r acts on R as multiplication by -1. The ring of I?-invariant polynomials in x is 
merely the ring of even polynomials, while the module of r-equivariant polynomials 
just consists of odd polynomials. Every odd polynomial can be written as an even 
polynomial multiplied by x ,  and so the module of r-equivariant polynomials is 
generated over the ring of r-invariant polynomials by the single element x. Results 
of Schwarz ( 1 9 7 5 )  and PoCnaru ( 1 9 7 6 )  state that these properties are shared by 
smooth germs. Thus if we let U = x2, then 

% ( ~ 2 )  = %U,* 

@ x , h ( G )  = %U,* x.  

Suppose f E gx,A(Z2),  f ( x ,  A) = r (u ,  A) x ,  r E The unipotent tangent space 

( 6 . 7 ~ )  

is given by 

T(f, U ,  Z2) = F(f, U ,  &) + %{A% e x }  

where 

T(f, U ,  z~) = % u , h { ~ r ,  hr, U%,, d r , }  . x .  ( 6 . 7 b )  

A list of  &equivariant germs up to codimension 3 is given in table VI,5.1 of 
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Golubitsky and Schaeffer (1984). It turns out that all but one of the eleven 
bifurcation problems satisfy 

S(f, 9, Z,) = S(f, U ,  Z,) = T(f, U ,  Z,), 

The missing problem is linearly determined but P(f, 9, Z,) is strictly contained in 
T ( f ,  U,  Z,). This means that there is a distinct advantage in considering the 
unipotent recognition problem separately and we choose this as our next example. 

Example 6.2. (&(U + 6A)’ + 0u3)x, codimz, = 3. Now f is equivalent by scalings to 
[&(U + 6A)’ + 0u3]x if and only if 

sign a = E f = [a(u + bA)3]x sign b = 6 sign c = 0, 

(6.8) 
Consider the germ 

f ( x ,  A) = r(u, 

where 

r(u, A )  = a(u + bA)’+ cu3 a, b, c # 0. 

A computation using (6.7) shows that 

T ( f ,  U ,  Z,) = T(f, U, Z2) = H + V 

where 

H = gU,A{u4, u3A, u’P, uA3, A4} * x 

and 

V = R {u3 + bu2A, u’A + buA2, uA’ + bA3} * X .  

Notice that u4 - x E H and hence H contains any monomial of order 9 or more in x. 
Therefore H 3 &(Zz)&. In this way we see that 

H = &(&)%A + &(Zz)(A) + &(Zz)(A’) + &&)(A3)  + J & ( Z Z > ( A ~ )  

and so by proposition 5 . 2  

qf, 9,Z’) = H. 

v = J%(z,P~ +&MA) + A 3 ( Z 2 > ( A 2 )  + & ( ~ 2 ) ( ~ 3 )  

Now 

and since there are no equivariants of even order 9- = 7, 7- = 5 ,  5 -  = 3 and 3- = 1. 
Thus, by theorem 5.4 

T ( f ,  U,  Z2) H + V 

is U intrinsic and so f is linearly determined. Therefore 

U - f = (au’ + 2abuA + ab2A2 + cu3) x 
+ [A(u3 + bu2A) + B(u2A + buA2) + C(uA2 + bA3)] x + H. 
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Hence g(x ,  A) = s(u, A)x is U equivalent to f if and only if 

s = s, = S A  = 0 

s,, = 2a s,,, = 2ab s,,~ = 2ab2 (6.9) 
s,,, = 6(c + A )  s,,A = 2 ( A b  + B )  s,AA = 2(Bb  + C )  sAAA = 6Cb. 

Equations (6.9) can be replaced by 

s = s, =s,, = 0 
s,, = 2a s,A = bs,, S,,Sh,, - S2UA = 0 (6.10) 

Together with (6.8) this gives the necessary and sufficient conditions for g to be Z2 
equivalent to &(U + 6A)’ + 0u3,  namely 

s = s, =s,, = 0 
sign s,, = E sign s,,, = ~6 

6.3. Two state variables. r = D4 (Golubitsky and Roberts 1986) 

Here D4 is taken to be acting on R2 as the symmetry group of the square and is 
generated by the symmetries 

( X , Y > * ( %  -Y ) ,  ( X , Y ) “ ( Y , X ) .  

8 x x , y , h ( D 4 )  = %N,A,A 

The ring of D,-invariant germs is given by 

where 

N = x 2  + y 2  and A = (x’ - y2)’. 

$?x,y,A(D4) is generated as a module over 8x,y ,A(D4) by 

Hence every D,-equivariant map germ can be written as 

We adopt the ‘invariant coordinate’ notation 

f = [ P ,  TI .  

Table 2.1 of Golubitsky and Roberts (1986) gives a list of the fifteen bifurcation 
problems with D4 symmetry of topological codimension 2 or less. Of these, ten are 
linearly determined. We remark that these are precisely those bifurcation problems 
satisfying the non-degeneracy condition r(0) # 0. An analogous situation exists in 
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the 0-symmetric context; see 06.4. Of the linearly determined gems, S(f, U, D4) is 
strictly larger than S(f, 9, D4) for all but cases I and 11. We treat problem XII. 

Example 6.3. [EN + 6A2 + UA + mNA, E ] ,  m2 # 46~7, top.codim,, = 2. The scaling 
problem is not quite as trivial as in the previous examples. f is equivalent by scalings 
to [EN + 6A’ + a A  + mNA, E ]  if and only if 

f = [UN + bA2 + CA + dNA, a ]  ( 6 . 1 1 ~ )  

and there are positive numbers p, Y, 1 such that 

cpv3 = a 6pv1’ = b apv5 = c mpv31 = d. 

Clearly we require 

sign a = E sign b = 6 sign c = a. 

A short computation shows that in addition we require 

d 

(6.11b) 

(6. l l c )  

As usual we now consider the unscaled germ 

f = [UN + bA2 + CA + dNA, a ]  d2 # 4bc. 

In example 9.2 of Golubitsky and Roberts (1986) it is shown that 

T ( f ,  0,) 3 H 
where 

H = [ A 3 + A ( A ) ,  A’+ (A)] 

A being the maximal ideal ( N ,  A, A )  in % N , A , A .  In fact 

T ( f ,  U ,  0 4 )  = H + W[N2, NI, [A, NI, A I ) .  (6.12) 

In order to translate (6.12) into the notation of 05, we first note that H is generated 
as an module by 

[N3, 01, [A‘, 01, [A3 ,  01, [ N 2 k  01, [NA, 01, [AA, 01, [O, N’], 10, AI, [O, A’], [O, NA]. 
(6.13) 

Ignoring factors of il we start to list monomials in $$x,,,,(D4) in order of degree in 
( x ,  y ) .  Note that N and A have degrees 2 and 4 and that [ l ,  01 and [O, 11 have 
degrees 1 and 3. 

Order [*,O] 10, *I 

5 N2, A N 

1 1 
3 N 1 

7 N3,  N A  N 2 ,  A etc 

Glancing at (6.13) we note that the only monomials in ( x ,  y )  which are missing are 

[ I ,  01, [ N ,  011 [N’l 01, [A, 011 [O, 11, [O, NI. 
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These are all terms of degree 5 or less in (x, y )  and hence 

-“&(D4)gA. 
In this way it is easily seen that 

H = -“&@w* + &D4)(A) + &(D4>(A2) + .ii1(D4)(A3). 

UN2, NI, [ A ,  NI, [NA, A]} = 2 5 ( 0 4 ) % *  + Jiig(D4)(A) 

Thus by proposition 5.2 H is U intrinsic and so is contained in S(f, U ,  D4). 
Furthermore 

and so by theorem 5.4, S(f, U ,  D4) = T ( f ,  U ,  D4). Therefore by theorem 4.4 we 
have 

U .f = [aN + bA2 + C A  + dNA, a ]  + A [ N 2 ,  NI + B [ A ,  NI + C[NA, A] + H.  

Hence [ p ,  r ]  E U .f if and only if 

P = P ~ = Q  P N = a  PhA = 2b P A = C + B  
p ~ h = d + C  P ” = 2 A  r = a  r N = A + B  rA=C 

that is if and only if 

P = P ~ = Q  p N = a  phA=2b p N - r = 0  
(6.14) 

Combining (6.14) with (6.11) we see that [ p ,  r ]  is D4 equivalent to [ E N  + 6A2 + 
ah + mNA, E ]  if and only if 

p = P A  = 0 signpN = E signphh = 6 p N  - r = 0 
sign(pNN + 2pA - 2rN) = a 

m =  

P N ~  - rh = d P N N  f - 2 r ~  = 2C. 

~ ( P N A  - TA) 

I P ~ A ( P N N  + 2pA - 2~N)ll’~ ‘ 

6.4. Three state variables. r = 0 (Melbourne 1988) 

We take 0 to be acting as the symmetry group of the cube. The action is generated 
by 

( x ,  Y ,  2 )  * ( - x ,  Y ,  2 )  

% , , z h ( 0 )  = %u,v,w,h 

U = x 2  + y2  + 2 2  

(x,  Y ,  2 )  - ( Y ,  x ,  2 )  (x, Y ,  2 )  * ( x ,  2, Y ) .  
We have 

where 

21 = 2 y r ”  + y222 + Z 2 X 2  w =x2y2z2 

and gx,y,z,h(0) is generated as a 8u,y,w,A module by 
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It turns out that there are seven bifurcation problems with 0 symmetry of 
topological codimension 1 or less, and all but one of these are linearly determined. 
As in the D,-symmetric context, linear determinacy holds for these low-codimension 
problems if and only if the coefficient of the third-order equivariant generator is 
non-zero at the origin. We include an example'which gives a graphic illustration of 
the complications which can be introduced at the scalings stage. The equations for 
the unipotent recognition problem are not that pleasant but they are at least linear. 

Example 6.4. [-&U + &A + uuk + p u k + l ,  E ,  01, k 3 2,  top. codimo = k - 1. This is 
family 3 in Melbourne (1988). Now f is equivalent by scalings to [-&U + 6A + auk - 
puk+', E ,  01 if and only if 

(6.15) f = [ -UU + bA + C U ~  + dUk+', U, 01 

and there exist positive numbers p, Y and I such that 

&,MY3 = a (6.16~) 

(6.16b) 

(6.16~) 

p p ~ ~ ~ + ~  = d. (6.16d) 

Conditions (6.16~) b,c) yield 

sign a = E sign b = 6 sign c = U. (6.17) 

In addition ( 6 . 1 6 ~ ) ~ )  can be solved for p and Y in terms of la/ and IcI and 
substituting in (6.16d) yields 

(6.18) 

The calculations for this bifurcation problem in Melbourne (1988) yield the 
following: 

[ P ,  Q ,  RI E U([-UU + bA + C U ~  + dUk+', U, 01) 

if and only if 

P = P, + Q = . . . = P,k-1 + ( k  - l > Q , k - 2  = 0 
Q = U ,  PA = b, P,k + kQ,k-1= k!c  

b 
P,k+i + ( k  + l)Quk + ( k  - 1) 

( k  + l)! U 

Combining this result with (6.15), (6.17) and (6.18) we have that [P ,  Q ,  RI is 0 
equivalent to [-&U + 6A + ouk +puk+' ,  E ,  01 if and only if, letting T, = Pur + T Q , ~ - ~ ,  
we have 
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7. Examples with r not acting absolutely irreducibly 

In 96 we considered examples where r acts irreducibly. Using theorem 5.4 or 
theorem 5.5, we were able to show that the unipotent tangent spaces of certain 
bifurcation problems are U intrinsic. Then by theorem 4.4 the unipotent recognition 
problems can be solved using only linear algebra. Furthermore it is then trivial to 
recover the solution to the full recognition problem because the group S(r) of linear 
r equivalences just consists of scalar multiples of the identity. In other words, the 
triviality of the S(r)-recognition problems in 36 relies on the absolute irreducibility 
rather than the irreducibility of the r action. 

Schur's lemma (theorem 2, p 119 of Kirillov 1976) states that if r acts irreducibly 
on V and Homr(V) denotes the space of linear maps on V that commute with I', 
then 

Homr(V) = R, C or W. 
If Homr(V) = R, then r acts absolutely irreducibly, whereas if Homr(V) = C or W, 
then there is no coordinate system in which Homr(V) consists only of diagonal 
matrices. 

Definition 7.1. Suppose r is a compact Lie group acting on R". We say that S(T) is 
scalar if in some coordinate system 

Homr( R ") c {diagonal matrices}, 

Proposition 7.2. Suppose r acts irreducibly on R". Then S(T) is scalar if and only if 
r acts absolutely irreducibly. 

Suppose now that r does not act irreducibly. By theorem 3.20 of Adams (1969), R" 
can be decomposed into irreducible subspaces 

R"=V1@. . . @V,. 

Lemma 7.3. S(T) is scalar if 
(i) the actions of r on Vi and 
(ii) Homr(K) -- R 

are not isomorphic for i # j ;  
i = l , .  . . , k.  

Proof. Suppose L E Y(r)' c Homr(R"). Then, as in proposition 4.2 of Stewart 
(19871, 

L(&) c r/: i = 1 , .  . . , k 

and so L has the block matrix structure 

where each Li E Homr(&). Furthermore, since each Homr(&,) = R we have 

Li = piz Pi E R i = l ,  . . . ,  k. 

In this paper we consider only examples where S(T) is scalar. A non-scalar problem 
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is studied by Golubitsky and Schaeffer (1984) ch IX. They look at the non- 
degenerate bifurcation problems in two state variables with no symmetry. Their 
result for high-order terms is easily recovered using corollary 3.9; indeed the 
problems are linearly determined. However it is in the S-recognition problem that 
all the difficulties lie. 

In the remainder of this section we look at a straightforward example where r 
does not act irreducibly but where S(T) is scalar. 

7.1. r = Z2 acting on R2, by reflection on one copy of [w, trivially on the other 
(Dangelmayr and Armbruster 1983) 

The Z2 action is generated by 

(x ,  Y )  - (4 -Y ) -  
Every &-equivariant germ can be written in the form 

where 

f l(x, Y ,  A) = p ( 4  U ,  A) h ( X ,  Y )  a> = T ( U ,  21, A)Y 
2 U = x  v = y .  

In the invariant coordinate notation 

f = [P, rl- 

T ( f ,  U ,  Z2) = qf, U )  Z2> + q A 2 [ P h t  ml>  
In this notation the unipotent tangent space 

where F(f) U, Z,) is generated as a %‘u,u,h module by 

z [ p ,  01 Z[O, rl Z [ V P U ,  %I z = u , v o r A  
[O, PI [ U T )  01 U 2 [ U P u ,  urul U [ % ,  UTUI A [ v u ,  urul. 

Let JU = (U, V, A )  denote the maximal ideal in Let I and J consist of sums 
and products of ideals of the form JU) ( U )  and ( A ) .  Then it is easily seen from the 
tangent space generators that ( I ,  J )  is an intrinsic module if and only if 

V J C Z C J .  

This characterisation of ‘obvious’ intrinsic modules proves more useful in this 
particular case than the more general theorem 5.5. 

It turns out that the methods of this paper simplify calculations for relatively few 
of the bifurcation problems. Linear determinacy holds for three out of the five 
problems of topological codimension 1 or less , but for only three of a further twelve 
problems of topological codimension 2. There are two types of equivalence that 
restrict the number of intrinsic subspaces: 

x ++x + A and [ p ,  01 ++ [0, p ] .  

The first of these types also occurs when there is one state variable without 
symmetry and causes bifurcation problems of low codimension to fail to be linearly 
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determined. This does not happen when there is reflectional symmetry present. For 
example in our present context we do not have equivalences of the form 

Y H Y  + A or [O, 41"[4,01. 

(x, Y )  " (-& Y 1 
We would expect the action of Z2 (3 Zz on R2 

(x,  Y )  (x,  -Y 1 
to behave far better, in much the same way that Z2 behaves better than Q when 
acting on R. 

Example 7.4. [U" + elA + e3v, E ~ U '  + U], m 3, top. codimzz = m - 1. This is 
family (3)m2 of Dangelmayr and Armbruster (1983). First we solve the S(Z2)- 
recognition problem. Note that S(Z2) is scalar: 

We ususally require that 

S(O), (dW0 E - w 2 > o  A'(0) > 0 

9(Z2)' being the connected component of Hom,,(R2)nGL(R2) containing the 
identity (see chapter XIV, 01 of Golubitsky et a1 (1988)). Then 

Dangelmayr and Armbruster (1983) impose the alternative restrictions 

det S(0) # 0 ( d m "  > 0 A'(0) > 0. 

In other words ( S ,  X ,  A) E S(Z2) must satisfy 

where pl, p2#0 ,  vl,  vZ, 1 > O .  It can be shown that f is S(Z2) equivalent to 
[U" + &,A + e3v, E ~ U ~  + U ]  subject to the following conditions: 

f = [sum + bA + cv, du2 + ev] 

sign(de) = e2 sign(ac) = e3 sign(&) = el if m is even 

(7 . la)  

(7.16) 

sign(de) = e2 sign(&) = e1e3 if m is odd. (7 .  IC) 

As always we now consider the unscaled bifurcation problem 

f = [ a u m + b A + c v , d u 2 + e v ]  m > 3 , a , b , c , d , e # O .  

A simple calculation reveals that 

T ( f ,  U ,  Z2) = [ I ,  J ]  + LQ { [ O ,  bA. + CUI} 
where 

I = Admi1 + &(U, A) J = Ju3 + &(U, A). 
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Clearly uJ c I c J and so P(f, U ,  Z,) I) [ I ,  J ] .  Furthermore it is easily checked from 
the tangent space generators that if p E R { [0, bA + cv]} then 

Vp, U ,  = [I, JI. 
By theorem 4.4 

U * f = f + A [ O ,  bA+cv]+[I ,J] .  

Thus [p, r ]  E U .f if and only if 

p =pu =.  . . =pum-l = 0 
Pum = m!a PA = b PI, = c r,, = 2d 
r u = e + A c  rA =Ab.  

r = r , = O  

These conditions are equivalent to 

p =pu = , . . =pu,-l = 0 
p u m  = m!a PA = b Pu = c r,, = 2d 

PA'U - rAPu = p2.e. 

r = r , = O  

Hence by (7.1) [p, r ]  is Z2 equivalent to [um + E J  + ~ ~ v ,  E ~ U ~  + v]  if and only if 

p =pu = . . . =pum-1 = 0 r = r , = Q  
sign(ruuP*(P*ru - rAPu)) = E 2  

and 

sign(P,mPtJ) = E 3  Sign(PumPA) = E1 if nt is even 

sign(pApu) = & l E 3  if m is odd. 
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