TOPICAL REVIEW

Contributions of plasma physics to chaos and nonlinear dynamics

To cite this article: D F Escande 2016 Plasma Phys. Control. Fusion 58 113001

View the article online for updates and enhancements.

Related content
- Large-Scale Stochasticity in Hamiltonian Systems
 D F Escande
- Wave–particle interaction in a travelling wave tube
 F Doveil, A Macor and Kh Auhmani
- Invariants and stability in classical mechanics
 K J Whiteman

Recent citations
- From thermonuclear fusion to Hamiltonian chaos
 D. F. Escande
Topical Review

Contributions of plasma physics to chaos and nonlinear dynamics

D F Escande

Aix-Marseille Univ, CNRS, PIIM, UMR 7345, case 321, campus Saint-Jérôme, FR-13013 Marseille, France

E-mail: dominique.escande@univ-amu.fr

Received 15 April 2016, revised 22 July 2016
Accepted for publication 18 August 2016
Published 15 September 2016

Abstract

This review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact.

Keywords: history, plasma physics, nonlinear dynamics, classical chaos, quantum chaos

1. Introduction

In the second half of the twentieth century, the magnetic confinement of charged particles in magnetic bottles was studied to heat plasmas to the high temperatures required for controlled thermonuclear fusion. The basic idea was to put particles in magnetic fields whose lines wind upon magnetic surfaces. Rapidly, it turned out that these lines are described by low dimensional Hamiltonian mechanics, forcing physicists to revisit classical mechanics and to get acquainted with the related results mathematicians had started to develop in the first half of the twentieth century. Unfortunately, though very useful, these results were not sufficient to deal with magnetic confinement. Fortunately, the development of computers and of numerical calculations enabled them to visualize dynamics, to compute their features, and to back up the development of non rigorous approaches. While textbooks were full of examples with regular motion, chaos turned out to be an ubiquitous behaviour of classical mechanics!

A parallel endeavour in the second half of the twentieth century occurred in the context of accelerator physics, with the aim of driving particles to the high energies necessary for studying the physics of elementary particles. This means avoiding chaos and not describing it, which limits the scope of studies on this topic. In contrast, the quest for magnetic fusion requires also the study of chaos itself, in order to understand chaotic transport. Indeed, this issue is present in very different parts of the research on magnetic fusion: magnetic field line topology, dynamics of particles in magnetic fields, turbulent transport, radiofrequency heating, ray dynamics, etc. This broad scope of problems naturally triggered a series of contributions to nonlinear dynamics and chaos. These contributions are the topic of the present topical review. In order to limit its length, it focusses on the contributions bringing new methods which are or can be used in other scientific domains. These contributions are of several types. There are those of plasma physicists and those plasma physics inspired to scientists in other fields of science—mathematicians and astronomers in particular. There are also those of plasma physicists initially working on chaos and nonlinear dynamics, who then decided to dedicate their later research to this exciting and challenging topic. Plasma physics may not

1 Morrison (2000b) makes at length the point that plasma physics re-ignited research in classical dynamics.

2 Chaos is at work in particular in anomalous transport of fusion plasmas, when heating magnetized plasmas by cyclotronic waves, and in the deep penetration of lower hybrid rays in such plasmas.
vindicate their whole successive work, but at least the initial impetus it provided them.

This topical review starts with the development of the theory of Hamiltonian chaos in the context of plasmas (section 2). Indeed, this was a turning point in plasma physics, because this development uncovered the then mysterious dynamics underlying phenomena traditionally tackled by statistical approaches; in particular, thanks to images provided by numerical calculations. This induced a strong interest in the whole plasma community, even by non practitioners of chaos.

The dynamics of complex systems generally exhibits a mixture of ordered and chaotic motion. Furthermore, a chaotic orbit needs a sufficient time to really look chaotic. Therefore, there is a large part of the nonlinear dynamics of plasmas which deals with order or quasi order, for instance adiabatic theory. This is the topic of the second part of this topical review (section 3). It deals, in particular, with soliton theory, which is an early landmark of the contributions of plasma physics to nonlinear dynamics.

The following parts are shorter and deal with high dimensional Hamiltonian dynamics (section 4), dissipative dynamics (section 5), quantum chaos (section 6), and possible extensions (section 7).

Writing the history of the contributions of plasma physics to chaos and nonlinear dynamics is a delicate endeavour. Indeed, the beginning of this history corresponds to a literature whose access is often not easy, in particular for linguistic reasons, while the more modern part suffers from the present deluge of publications, where interesting results may be drowned. In order to limit bias, a series of colleagues listed in the acknowledgements kindly provided me with their views on the topic of this topical review. This considerably enriched its initial scope, but it may still be incomplete.

Telling the same story with equations and figures would require a book. The present compact and hopefully close to exhaustive paper is tailored for the plasma physics community, and especially the fusion one, where most concepts underlying this story are well-known. In any event, more exhaustive paper is tailored for the plasma physics community, and especially the fusion one, where most concepts underlying this story are well-known. In any event, more details can be obtained in the roughly 250 quoted references with a simple click. However, in order to help non specialists to access more easily the basics of the main issues, references to sections of review papers and textbooks are provided in the corresponding sections of this review and are indicated with ‘Pedagogy’.

2. Hamiltonian chaos

2.1. How did the story start?

After the second world war, classical mechanics was not fashionable at all among physicists. Why did plasma physics happen to contribute to this field? It is because many plasma physicists were involved in the development of thermonuclear fusion by magnetic confinement. The story can be told as follows.

In 1950, Spitzer invents the stellarator, and in 1951 Sakharov and Tamm invent the tokamak. While the principle of the latter comes with a regular magnetic field, this cannot be taken for granted for the former, a serious issue for a magnetic configuration meant to be a magnetic bottle! This forces theoreticians to start the still on-going study of the nature of magnetic field lines of stellarators. Even if a stellarator looks like a figure of 8, like Spitzer’s, topologically it is a torus. Therefore, the regularity of its magnetic field lines can be checked by looking at their successive intersections with the surface of section defined by a given toroidal angle. A massless charged particle streaming freely along a given magnetic field line crosses such a surface periodically in time. By analogy, it is natural to consider this line as an orbit parameterized by a time which is the toroidal angle. Then, studying the nature of magnetic field lines boils down to the study of the nature of orbits in a torus, and their successive intersections build the so-called Poincaré map of their dynamics. Magnetic flux conservation makes such a map area-preserving, implying a relationship between magnetic field lines and Hamiltonian systems.

While in 1952 Kruskal introduces and iterates area preserving maps for stellarator magnetic field lines (Kruskal 1952), they are fully recognized as Hamiltonian systems only ten years later by fusion physicists (Gelfand et al 1962, Kerst 1962, Morozov et al 1966). However, the general and explicit Hamiltonian description for field lines is provided by Boozer two decades later still (Boozer 1981). Two years after this, a more fundamental description is given by two other plasma physicists, Cary and Littlejohn, in terms of an action principle that depends on the vector potential (Cary and Littlejohn 1983). In 1986, Elsässer completes the picture by showing the equivalence of changes of gauge and of canonical variables (Elsässer 1986).

Having a Hamiltonian description of magnetic field lines is nice, but when coming to the numerical calculation of Poincaré maps, the integration of orbits from differential equations is a formidable task for the computers of the sixties! This motivates physicists to derive explicit area preserving maps corresponding to a full step of the Poincaré map. The paradigm of such maps is the standard map, also called Chirikov–Taylor map. This map appeared first in 1960 in the context of electron dynamics in the microtron (Kolomenskii 1960), a type of particle accelerator concept originating from the cyclotron in which the accelerating field is not applied

3 This technique is also used experimentally. The first instance is the mapping of the magnetic field lines of the model-C Sinclair et al (1970).
4 Kruskal is quoted several times in this topical review. Indeed, he made essential contributions to nonlinear dynamics and chaos. He was also quite influential. In particular in astrophysics, as can be seen in the acknowledgements of the Hénon–Heiles paper where he is thanked (Hénon and Heiles 1964). Indeed, this famous work was performed while Michel Hénon was in Princeton. It describes the non-linear motion of a star around a galactic center where the motion is restricted to a plane, and reveals this motion can be chaotic.
5 Boozer is a plasma physicist whose paper is in Physics of Fluids which published both fluid and plasma papers at that time.
6 Pita and Ortiz (1988) describes how to implement this technique in concrete cases and illustrates its great flexibility.
7 This action principle is present implicitly in Morozov et al (1966) where a zero gyro-radius limit of the particle action was taken.
8 According to the second reference of Melekhin (1975), it appeared ten years earlier in Kolomenskii’s PhD Thesis at the Lebedev Institute.
2.2 Transition to chaos in Hamiltonian systems

In the sixties, numerical simulations show that the phase-space of a typical 1.5 degree-of-freedom Hamiltonian system has intertwined zones of regular and chaotic orbits, a fact known by mathematicians for decades. For plasma physicists, it is important to know how broad are chaotic domains, and the threshold where such domains connect to make sizeable chaotic ‘ seas’ for systems with a control parameter. The latter issue leads Chirikov to derive in 1959 an approximate criterion (Chirikov 1959, 1979), described below, whose use rapidly becomes ubiquitous. This criterion works for Hamiltonians, which are the sum of an integrable part and of a perturbation written in terms of the action-angle variables of the integrable part. Kolmogorov–Arnold–Moser (KAM) theory (Kolmogorov 1954, Moser 1962, Arnold 1963a) reveals that the extension of chaotic domains is bounded by KAM tori. Therefore, a more rigorous approach to the estimate of the width of chaotic domains goes through the estimate of the threshold of breakup of KAM tori. Greene achieves this in 1979 in a very accurate way through a criterion (Greene 1979), described below, which is explicitly implemented for the standard map. As a result, the transition to chaos is then described in two complementary ways, using Hamiltonians and maps. The next two sections tell the corresponding story; the first describes the Hamiltonian approach, which started first historically.

2.2.1 Working with Hamiltonians.

Resonance-overlap criterion. In 1959, Chirikov deals with the confinement of charged particles in magnetic mirror traps. He focusses on resonances between the Larmor rotation of charged particles and their slow oscillations along the lines of force. In agreement with numerical simulations, he hypothesizes that when neighboring resonances overlap, there is a complete exchange of energy among the degrees of freedom of the particle, so that the particle escapes from the trap (Chirikov 1959) (Pedagogy: section 4.2 of Lichtenberg and Lieberman (2013) and section 5.2.2 of Elskens and Escande (2003)); in modern language, this corresponds to a large scale chaotic motion of the particle. This criterion is immediately applied successfully to the determination of the confinement threshold for experiments with plasmas in open mirror traps (Rodionov 1959). This simple to implement criterion rapidly becomes famous among physicists, and especially after Chirikov’s review paper (Chirikov 1979). The resonant domain of a single wave and the overlap of the resonance domains of two waves can be observed in a traveling wave tube, a kind of noiseless beam–plasma system (Doveil et al 2005a). Rechester and Stix, when dealing with magnetic chaos due to weak asymmetry in a tokamak, use this criterion to compute the width of narrow chaotic (‘stochastic’) layers next to the separatrices of an integrable system when it is perturbed (Rechester and Stix 1976).

This criterion is useful for systems with many degrees of freedom too. Indeed, it can be directly applied to determine the energy border for strong chaos in the Fermi–Pasta–Ulam system when only a few long wave modes are initially excited (Chirikov and Izrailev 1966, Chirikov et al 1973). In Escande et al (1994) one computes the Gibbsian probability distribution of the overlap parameter s corresponding to two nearby resonances of the Hamiltonian of a chain of rotators. Requiring the support of this distribution to be above the threshold of large scale chaos gives the precise energy threshold above which the Gibbsian estimate of the specific heat at constant volume agrees with the time average of the estimate given by

5Taylor writes: ‘At the time I was interested in (the standard map), I had just obtained an early desk calculator which could be programmed using three stored addresses (x, y, z), but more importantly it could be connected to a mechanical plotter! One lunch time I set it up to iterate the equations above, and to plot the successive points—which it did at about two per second! When I returned from lunch there was the first picture of regular and chaotic regions. The others followed later. I did not consider this work suitable for publication, but I did include the figures in the Culham Progress report for that year (1968–9). This was noticed and taken up by others, notably Froeschlé (1970) who published the figures (with acknowledgment) and by Stix, who included them in his lectures. So the model became quite well known’. (Taylor 2015).

10Chirikov is quoted repeatedly in this paper for contributions in many different problems of nonlinear dynamics and chaos. A summary of his main contributions can be found in Bellissard et al (1999), published in a special issue of Physica D in his honor.

11Then called ‘stochastic domains’. The change of name is motivated by several reasons. A simple one comes from the inspection of the time evolution of two nearby orbits at initial time. In a chaotic system they diverge exponentially, but not in a stochastic one.

12The quotations of Arnold (1963b) and Moser (1968) show that plasma physics is also a source of inspiration for these mathematicians.

13Greene is quoted repeatedly in this paper for contributions in many different problems of nonlinear dynamics and chaos. A summary of his main contributions can be found in Morrison et al (2008).

14Scalings in Greene (1968) anticipate this result.
the fluctuations of the kinetic energy: one has a self-consistent check of the validity of Gibbs calculus using the observable s!

Renormalization approach. At the end of the seventies, Doveil is working on ion acoustic waves in a multipole plasma device where these waves are dispersive. This leads him to study numerically the (chaotic) dynamics of ions when several waves are present\(^\text{20}\). For simplicity he focusses on the two-wave case. The Poincaré map corresponding to the motion of one particle in two longitudinal (plasma) waves displays a sequence of resonance islands related to higher order nonlinear resonances which become explicit by canonical transformations\(^\text{20}\). Following the philosophy of Chirikov’s review paper (Chirikov 1979), it is then tempting to apply the resonance overlap criterion to two neighboring such resonances. The criterion is easier to apply if the corresponding Hamiltonian is approximated by a simpler one—corresponding to the motion of one particle in two longitudinal waves. The passage from the initial two-wave Hamiltonian to the transformed one is similar to the transform of Kadanoff’s block-spin renormalization group (Escande and Doveil 1981a, 1981b) (Pedagogy: section 4.5 of Lichtenberg and Lieberman (2013) and section 5.4 of Elskens and Escande (2003))—where Chirikov’s criterion is absent! Its practical implementation for more general Hamiltonians is then described in Escande et al (1984) and in sections 3.1 and 4.1 of the review paper Escande (1985).

Appendix B of the latter reference shows how to derive a renormalization for any KAM torus trapped into a resonance island. A one parameter renormalization scheme is derived for ‘stochastic layers’ in Escande (1982a). All these schemes are approximate in a physics sense: the approximations are not mathematically controlled.

Later on several mathematical works try and cope with this shortcoming. A way to make the 1981 renormalization scheme rigorous is indicated in MacKay (1995). The ideas proposed originally in Escande and Doveil (1981a) and (1981b) lead to approximate renormalization transformations enabling a very precise determination of the threshold of break-up of invariant tori for Hamiltonian systems with two degrees of freedom (Chandre and Jausslin 2002); these transformations are similar to the transformation of Kadanoff’s block-spin renormalization, in the sense that they combine a process of elimination and rescaling. In Chandre and Jausslin (2002) the break-up of invariant tori proves to be a universal mechanism and the renormalization flow is precisely described. In 2004, Koch brings this type of approach to a complete rigorous proof (Koch 2004): it is a computer assisted proof of the existence of a fixed point with non-trivial scaling for the break-up of golden mean KAM tori.

\(^{19}\)Computers at that time are slow enough for the successive points of the Poincaré map to come successively on the screen of a monitor. This makes obvious that chaotic motion is not really stochastic. In particular, when islands are present in the chaotic sea, one can see long phases where the orbit appears trapped in the corresponding resonances, a feature incompatible with a stochastic process. This is due to a self-similar structure producing strong correlations and incomplete chaos (Zaslavsky et al 1993).

\(^{20}\)This set of islands has a signature, a ‘devil’s staircase’, which is experimentally observable in a traveling wave tube (Macor et al 2005). The cancellation of a set of islands can build a barrier to transport in the same device (Chandre et al 2005).

Other approaches. For Hamiltonians with zero or one primary resonance, one cannot apply the resonance overlap criterion or the above renormalization approach. Codacciorno et al (1982) shows how to compute the threshold of large scale chaos by using the blow-up of the width of chaotic layers\(^\text{23}\) as computed in Recherster and Stix (1976).

In 2000, the study of the Poincaré map of magnetic field lines in a toroidal confinement configuration called ‘reversed field pinch’ germane to the tokamak is the occasion of a paradoxical discovery: chaos decreases when a magnetic perturbation increases, in contradiction with the prediction of the resonance overlap criterion! This phenomenon stems from a separatrix disappearance due to an inverse saddle-node bifurcation (Escande et al 2000), a process likely to occur in many Hamiltonian systems\(^\text{22}\).

2.2.2. Working with maps. In the seventies, Greene is interested in the nature of magnetic field lines in stellarators, and in their corresponding return area-preserving map. He naturally focusses on the simplest example of such maps, the standard map, which is very easy to iterate on computers of that time. At the end of the 70s, in the same way as it is natural to focus on higher order nonlinear resonances in a Hamiltonian description, it is natural to focus on periodic orbits with a long period in area-preserving maps. These periodic orbits correspond to O-points and X-points of resonance islands. While studying the stable periodic orbits approximating a given KAM torus when truncating the continuous fraction expansion of its winding number at high order, Greene notes they become unstable when the KAM torus breaks up. This leads him to his famous ‘residue criterion’ which provides a method for calculating, to very high accuracy, the parameter value for the destruction of the last torus\(^\text{23}\) (Greene 1979) (Pedagogy: section 3.2a of Lichtenberg and Lieberman (2013)). Defining the threshold of large scale chaos in a given domain of phase space means finding the threshold of break-up of the most robust KAM torus. The continued fraction expansion of their winding number is found numerically to have a special form exhibited in Greene et al (1986)\(^\text{24}\).

Greene’s work is placed in a renormalization group setting by MacKay, then his student (MacKay 1983). This work is closely related to the approximate renormalization described above. This triggers a dialogue between the latter renormalization and the rigorous one under the auspices of Greene’s

\(^{22}\)One of the cases considered is the polynomial Hénon–Heiles Hamiltonian (Hénon and Heiles 1964). However, the technique of Codacciorno et al (1982) is unable to detect integrability. Indeed, it predicts a blow-up of the width of a chaotic layer also for the integrable Hamiltonian obtained from Hénon–Heiles’ one by changing a sign in its formula!

\(^{23}\)It occurred in the discharges at high current of the RFX-mod reversed field pinch, first when stimulated by a modulated edge toroidal field (Lorenzini et al 1986), and then spontaneously (Lorenzini et al 2009).

\(^{24}\)Four theorems show that large parts of this criterion have a firm foundation, but not all cases have been analyzed: for instance, can a non-smooth circle have residues going to infinity (MacKay 1993)? If so, then one cannot infer from residues going to infinity that there is not a circle.

\(^{23}\)Greene’s criterion originates from stellarator studies. In 1984 it feeds back to them by enabling the derivation of Hamiltonian systems that are for all practical purposes integrable, with the particular application to design stel­larators with almost non-chaotic magnetic fields (Hanson and Cary 1984).

MacKay (1989) derives a simple criterion for non-existence of invariant tori. When applied to the Hamiltonian describing the motion of a particle in the field of two waves of section 2.2.1, it gives results in close agreement with those of Greene’s residue method.

Up to now we have considered maps such that the period of the motion on a torus is a monotonic function of the action of the torus: they are twist maps. We now deal with non-twist systems where the period goes through an extremum on a given torus; in such systems, the overlap criterion fails and the KAM theorem cannot be applied. They are introduced in 1984 by Howard, motivated by multifrequency electron-cyclotron-resonance heating in plasmas (Howard and Hohs 1984). He derives an accurate analytic reconstruction threshold of the approximate separatrices of the pairs of islands corresponding to actions symmetrical with respect to that of the extremum period. Motivated by the study of magnetic chaos in systems with reversed shear configurations, del-Castillo-Negrete and Morrison propose a prototype map called the standard non-twist map, and present a detailed renormalization group study of the non-twist transition to chaos (del Castillo-Negrete and Morrison 1992, del Castillo-Negrete et al 1996, 1997): there is a new universality class in this transition. This stimulates a rich series of rigorous mathematical results: in Delshams and la Llave (2000), the proof of persistence of critical circles and a partial justification of Greene’s criterion, as generalized in del Castillo-Negrete et al (1996). In Gonzalez-Enriquez et al (2014), the bifurcations of KAM tori are studied by using the classification of critical points of a potential as provided by Singularity Theory. This approach is applicable to both the close-to-integrable case and the far-from-integrable case whenever a bifurcation of invariant tori has been detected numerically, but the system is not necessarily written as a perturbation of an integrable one.

2.2.3. Finite time mappings for Hamiltonian flows. In view of the many techniques which can be used for area preserving maps, it is interesting to construct a finite time mapping corresponding to a given Hamiltonian flow. In the nineties, motivated by various plasma physics issues, Abdullaev develops to this end his mathematically rigorous ‘mapping method’, based on Hamilton–Jacobi theory and classical perturbation theory, which works for Hamiltonians that are the sum of an integrable part and of a small perturbation (Abdullaev 1999, 2002) (see Abdullaev (2006) and Abdullaev (2014a) for a systematic description of the method). This method can be used to find infinitely many periodic orbits of a perturbed Hamiltonian system, and not only primary ones (see section 7.2.2 in Abdullaev (2014a)). It can also be used as a method of symplectic integration, with an accuracy controlled by the product of the perturbation parameter and of the mapping time step (Abdullaev 2002). The method enables one to derive the canonical versions of mappings widely used in the theory of chaotic Hamiltonian systems and of their applications (see Abdullaev (2004a, 2006), Abdullaev (2007) and references therein).

Using this method, the canonical separatrix mapping describing the dynamics near a separatrix is derived in Abdullaev (2004b) and Abdullaev (2005), while keeping the canonical variables of the corresponding Hamiltonian, an improvement over Chirikov’s separatrix mapping (Chirikov 1979). The new mapping is consistent with the rescaling invariance described in section 2.3.4, and enables the derivation of analytical formulas for the stable and unstable manifolds of the saddle point (Abdullaev 2014a, 2014b).

2.3. Chaotic transport

In Hamiltonian systems with 1.5 or 2 degrees of freedom, when KAM tori break up in a given domain of phase space, chaotic transport sets in. In the sixties, the lack of mathematical results enabling the description of this transport and its quantification leads plasma physicists to assume that chaotic motion is a stochastic one close to a Brownian motion and has a diffusive nature. However, as shown below, this is not the whole story!

2.3.1. Quasilinear diffusion.

As an ansatz. In 1966, Rosenbluth, Sagdeev, and Taylor are interested in the destruction of magnetic field surfaces by magnetic field irregularities (Rosenbluth et al 1966). They state that if there is resonance overlap, ‘then a Brownian motion of flux lines and rapid destruction of surfaces results’. They go to the action-angle variables of the unperturbed magnetic field, and write a Liouville equation for field lines which is very similar to the Vlasov equation. Since the magnetic modes play a role for field lines analogous to that of Langmuir waves for electrons in a plasma, they use the quasilinear estimate of transport corresponding to the latter case. This estimate, introduced in 1961 (Romanov and Filippov 1961), was made popular in 1962 by two papers on the bump-on-tail instability published in two successive issues of Nuclear Fusion (Drummond and Pines 1962, Vedenov et al 1962) (Pedagogy: section 5.4 of Lichtenberg and Lieberman (2013) and section 6.8.1 of Elskens and Escande (2003)). Then, quasilinear estimates are made systematically for chaotic transport for almost three decades without questioning its validity, except for the standard map which exhibits a diffusive behavior with a diffusion constant oscillating as a function of the control parameter of the map about the quasilinear value25 (Chirikov 1979, Rechester and White 1980, Rechester et al 1981, Meiss et al 1983). However, in 1998 the diffusion properties of the Chirikov–Taylor standard map are shown to be nonuniversal in the framework of the wave-particle interaction, because this map corresponds to a spectrum of waves whose initial phases

25 If the orbits inside accelerating islands are also taken into account, one finds a superdiffusive transport (Benkadda et al 1997). Transport becomes diffusive by adding some noise to the mapping (Karney et al 1982).
are all correlated (Bénisti and Escande 1998b). For the sawtooth map, the dynamics is found diffusive for most of the integer values of the perturbation parameter (Cary and Meiss 1981b). This is done by calculating the characteristic functions, and the joint probabilities of the map (Cary et al 1981c).

Quasilinear or not? For a chaotic motion, the perturbative approach used in the original derivation of the quasilinear equations cannot be justified. Therefore, the quasilinear description might not be correct to describe the saturation of the bump-on-tail instability; its inconsistency is shown in Laval and Pesme (1983a) and Laval and Pesme (1983b). In 1984, Laval and Pesme propose a new ansatz to substitute for the quasilinear one, and predict that the velocity diffusion coefficient should be renormalized by a factor 2.2 during the saturation of the instability (Laval and Pesme 1984). This motivates Tsunoda, Doveil, and Malmborg to perform an experiment with an electron beam in a traveling wave tube, in order to avoid the noise present in beam–plasma systems (Tsunoda et al 1987a, 1987b, Tsunoda et al 1991). This experiment comes up with a surprising result: quasilinear predictions look right, while quasilinear assumptions are proved to be completely wrong. Indeed no renormalization is measured, but mode–mode coupling is not negligible at all. This sets the issue: is there a rigorous way to justify quasilinear estimates for chaotic dynamics?

This issue is first tackled by the author of this paper by considering the self–consistent motion of a finite number of waves and particles corresponding to the beam–plasma problem (see the first paragraph of section 4.1). However, the motion of a particle in a prescribed spectrum of waves is mysterious too and deserves a thorough study. For uncorrelated phases, it is natural to expect the diffusion coefficient to converge to its quasilinear estimate from below when the resonance overlap of the waves increases. In 1990 numerical simulations of the motion of one particle in a spectrum of waves performed by Verga come up with a surprising result: for intermediate values of the overlap, the diffusion coefficient exceeds its quasilinear value by a factor of about 2.5 (Cary et al 1990).

Diffusion or not? This result triggers a series of works aimed at understanding whether the diffusion picture makes sense and when the quasilinear estimate is correct. In 1997, Bénisti shows numerically that the diffusion picture is right, provided adequate averages are performed on the dynamics (Bénisti and Escande 1997) (see also section 6.2 of Elskens and Escande 2003, and Escande and Sattin (2008, 2007)); however, this picture is wrong if one averages only over the initial positions of particles with the same initial velocity, in contrast with the 1966 Brownian ansatz: chaotic does not mean Brownian! This motivates Elskens to look for mathematical proofs using probabilistic techniques, and leads him to two results: individual diffusion and particle decorrelation are proved for the dynamics of a particle in a set of waves with the same wavenumber and integer frequencies if their electric field is gaussian (Elskens and Pardoux 2010), or if their phases have enough randomness (Elskens 2012). The intuitive reason for the validity of the diffusive picture is given in Bénisti and Escande (1997): it is due to the locality in velocity of the wave–particle interaction, which causes the particle to be acted upon by a series of uncorrelated dynamics when experiencing large scale chaos. This locality of the wave–particle interaction is rigorously proved by Bénisti in Bénisti and Escande (1998a). On taking into account that the effect of two phases on the dynamics is felt only after a long time when there is strong resonance overlap, it can be approximately proved that the diffusion coefficient is larger than quasilinear, but converges to this value as the resonance overlap approaches infinity (Bénisti and Escande 1997, Escande and Elskens 2002b) (see also Escande and Elskens (2002a, 2003), and Pedagogy: section 6.8.2 of Elskens and Escande (2003)).

For the advection of particles in drift waves or in 2-dimensional turbulence, care must be exerted when trying to define a corresponding diffusive transport. Then one must define the Kubo number K, which is the ratio of the correlation time of the stochastic potential as seen by the moving object to the (nonlinear) time where the dynamics is strongly perturbed by this potential (trapping time, chaos separation time, Lyapunov time, ...) (Ottaviani 1992, Vlad et al 2004). At a given time, the potential has troughs and peaks. If the potential is frozen, particles bounce in these troughs and peaks. When $K \ll 1$, the particles typically run only along a small arc of the trapped orbits of the instantaneous potential during a correlation time (see figure 1(b) of Escande and Sattin (2007)). During the next correlation time they perform a similar motion in a potential completely uncorrelated with the previous one. These uncorrelated random steps yield a 2-dimensional Brownian motion with a diffusion coefficient that can be computed with a quasilinear estimate.

2.3.2. Diffusion with trajectory trapping. If $K \gg 1$, a quasiadiabatic picture works: the particles make a lot of bounces before the potential changes its topography (see figure 1(a) of Escande and Sattin (2007)). The change of topography forces particles to jump to a nearby trough or peak. The successive jumps produce a random walk; the order of magnitude of the corresponding diffusion coefficient can be easily computed (Ottaviani 1992, Escande and Sattin 2007, 2008). In a series of works, Vlad and coworkers clarify the issue of diffusion with trajectory trapping. The simple picture just described is almost correct for a Gaussian spatial correlation function of the potential (Vlad et al 2004). More generally, the frozen potential displays as well ‘roads’ crossing the whole chaotic domain. This enables long flights in the dynamics that bring some dependence upon K into the estimate for the diffusion coefficient. The correct calculation of this coefficient is a much harder task. To this end, one may group together the trajectories with a high degree of similarity, and one starts the averaging procedure over these groups. This yields the decorrelation trajectory method (Vlad et al 1998) and the nested subensemble approach (Vlad et al 2004). These techniques are extensively used for the study of the transport in magnetically confined plasmas (see Vlad and Spineanu (2013) for a recent set of references), and for the study of astrophysical plasmas (Vlad and Spineanu 2014) and of fluids (Vlad and Spineanu 2015). Vlad et al (1998) computes numerically the
diffusion coefficient of particles in a spectrum of waves scaling like k^{-3}, and for Kubo numbers up to 2×10^5. For large K, due to trajectory trapping, the scaling of the diffusion coefficient with K is less than K^3 corresponding to the Bohm scaling. For $1 < K < 10^4$, the results agree with the percolation scaling $K^{0.37}$ (Isichenko 1992), but the scaling $K^{0.64}$ provided by the decorrelation trajectory method better fits the data in the whole domain $1 < K < 210^7$. A diffusion coefficient proportional to $K^{2/3}$, better than the percolation scaling, is obtained by a simple random-walk model using the concept of Hamiltonian pseudochaos, i.e. random non-chaotic dynamics with zero Lyapunov exponents (Milovanov 2009).

Some turbulent plasmas may be modeled by integrable Hamiltonian systems subjected to non-smooth perturbations. Then, chaotic transport occurs at any small magnitude of perturbation. The profile of the diffusion coefficient in the unperturbed action is found to have a fractal-like structure with a reduced or vanishing value of the coefficient near low-order rational tori (Abdullaev 2011).

2.3.3. Pinch velocity. In reality, when the diffusive picture is correct, there is a pinch or dynamic friction part on top of the diffusive part, and the correct model is the Fokker–Planck equation (Escande and Sattin 2008, 2007). For the advection of particles in drift waves or in 2-dimensional turbulence, the direction of this pinch part depends on K (Vlad et al. 2006).

2.3.4. Rescaling invariance of chaotic transport in chaotic layers. Consider a one-dimensional Hamiltonian which is the sum of an integrable part displaying a hyperbolic fixed point X and of a time-periodic perturbation with amplitude ϵ. Its phase-space near X turns out to be invariant with respect to a rescaling of the conjugate coordinates along the eigenvectors of X, of ϵ, and of the phase of the perturbation. In the middle of the nineties, Abdullaev and Zaslavsky show this numerically (Abdullaev and Zaslavsky 1994, Zaslavsky and Abdullaev 1995), and prove it rigorously (Abdullaev and Zaslavsky 1995, Abdullaev 1997) (see also Abdullaev (2000) and Abdullaev (2006)). Since the motion slows down near a saddle point, a particle spends relatively large time intervals there. Therefore, the transport of particles in a narrow stochastic layer about the separatrix related to X is mainly determined by the structure of this layer near this point. It turns out that the statistical properties of chaotic transport are periodic (or quasiperiodic) functions of $\log \epsilon$ (Abdullaev 2000) (see also Abdullaev and Spatschek (1999) and Abdullaev (2006)).

2.3.5. Transport through cantori. In the eighties it becomes clear among plasma physicists that chaotic transport is intrinsically more intricate than diffusion, especially if one considers a single realization of the physical system of interest. In particular, it may be strongly inhomogeneous in phase space due to localized objects restricting it: the cantori described below.

When a KAM torus breaks up, it becomes a Cantor set called a cantorus (Aubry 1978, Percival 1980) (Pedagogy: section II.B of Meiss (2015)). In 1984, MacKay, Meiss, and Percival show that a cantorus is a leaky barrier for chaotic orbits, and that the flux through the cantorus between two successive iterates of the Poincaré map can be computed as the area of a turnstile built in a way similar to homoclinic lobes for X-points (MacKay et al. 1984a) (Pedagogy: section II.A of Meiss (2015)). The above-described renormalization theories for KAM tori provide a critical exponent for this area (MacKay et al. 1984a). The latter can be obtained from the actions of homoclinic orbits (MacKay et al. 1987). A new description of transport in a chaotic domain can be obtained through Markov models combining the fluxes through the discrete set of the most important noble cantori (MacKay et al. 1984b, Meiss and Ott 1985). Such models also enable computing the power law temporal decay of correlations and lifetimes (Hanson et al. 1985, Meiss and Ott 1986) first noted in Chirikov (1979) and Shepelyansky (1981) and Karney (1983). All these ideas turn out to be very useful in the following decades, as explained in Meiss (2015). An approach to barriers in a chaotic domain motivated by plasma physics consists in defining approximately invariant circles26 (Dewar and Meiss 1992).

The Lyapunov exponent measures the mean rate of divergence of nearby orbits inside a chaotic domain. It gives a rough estimate of the decay rate of the exponential part of the correlation functions, which is important in several plasma physics problems (Grebogi and Kaufman 1981). It is generally computed numerically, but analytical estimates are available for some mappings (see Rechester et al. (1979), and sections 5.2 and 6.3 of Chirikov (1979) where it is called Krylov–Kolmogorov–Sinai entropy). It can be analytically computed for the motion of a particle in a broad spectrum of waves with a large amplitude (see section 6.8.2 of Elskens and Escande (2003)).

2.3.6. Symbolic dynamics for chaotic layers. A striking regularity is present in the time series of the long chaotic orbits of the standard map that are in a stochastic layer surrounding a single island and bounded by two KAM tori: the radial coordinate of the moving point oscillates for a certain time in a region adjacent to an island chain, then jumps suddenly to another basin, where it remains for a random time, etc... This behavior can be adequately modelled by a continuous time random walk (CTRW) (Balescu 1997). The issue of the diffusion of magnetic field lines in a tokamak leads to its being reconsidered in Misguich et al. (1985). The associated time series can be described in terms of an algorithm based on a symbolic dynamics. A computer program enables a completely automatic measurement of the waiting times and of the transition probabilities of the CTRW, and therefore the analysis of arbitrarily long time series.

2.3.7 Transport in low shear or shearless systems. As explained at the end of section 2.2.2, the study of magnetic chaos in systems with reversed shear configurations motivated the introduction of the standard non-twist map. On varying the control parameter of this map above the break-up

26 This approach leads in 2008 to the definition of temperature contours for chaotic magnetic fields (Hudson and Breslau 2008). This work quotes a series of studies by non plasma physicists which led to it, with the introduction of ghost surfaces in particular.
of the shearless curve, it is found that transport develops very slowly, because of structures with high stickiness giving rise to an effective barrier near the broken shearless curve (Szezech et al. 2012).

Internal transport barriers in toroidal pinches (tokamak and reversed field pinch) are favored by low or vanishing magnetic shear (del Castillo-Negrete and Morrison 1992). This leads Firpo into the study of corresponding Hamiltonian models for the magnetic field lines, which brings conclusions with a general bearing. Indeed, low shear is shown to have a dual impact: away from resonances, it induces a drastic enhancement of the resilience to chaotic perturbations and decreases chaotic transport; close to low-order rationals, the opposite occurs (Firpo and Constantinescu 2011).

3. Quasi order and order

3.1. Adiabatic theory

When dealing with configurations for the magnetic confinement of charged particles, one often finds that the motion of a particle in such a configuration has multiple scales. For instance, section 2.2.1 considered the case of magnetic mirror traps where a particle has a fast Larmor rotation and slow oscillations along the lines of force. If the dynamics is not in a regime of large scale chaos, it is natural to take advantage of the time scale separation to describe the motion. This leads to tractable analytical calculations if the fast degree of freedom is nearly periodic compared to the slow one: one makes a (classical) adiabatic theory of the motion. In reality, the adiabatic ideas carry over to some non strictly adiabatic cases: this is neo-adiabatic theory. The applications of these ideas are described below.

3.1.1. Classical adiabatic theory. Classical adiabatic theory is formalized in 1937 (Krylov and Bogolyubov 1937). In the 1950s and early 1960s, Kruskal is working on asymptotics and on the preservation or destruction of magnetic flux surfaces. His unpublished work motivates Lenard and Gardner to develop a theory of adiabatic invariance to all orders (Gardner 1959, Lenard 1959). He then develops a Hamiltonian version of adiabatic theory (Kruskal 1962) where adiabatic invariants are related to proper action variables. This technique is used to second order in McNamara and Whitehead (1967) and Northrop et al. (1966). However its implementation is tedious, which prompts the use of other techniques: first the Poisson bracket technique with a methodological contribution from plasma physicists (McNamara and Whitehead 1967), and then the powerful Lie transform method with two important methodological contributions from plasma physicists in 1976: one by Dewar (1976), and one by Dragt and Finn (1976) (Pedagogy: section 2.3 of Lichtenberg and Lieberman (2013)). Adiabatic motion in plasma physics is also a source of inspiration for pure mathematicians, as can be seen in Arnold (1963b) which deals, in particular, with magnetic traps, and quotes Kruskal’s work in his section devoted to adiabatic invariants.

3.1.2. Neo-adiabatic theory. Several problems in plasma physics where there is a slow variation of the system of interest cannot be addressed by classical adiabatic theory. This is in particular the case when this slow variation induces a transition from trapped to passing orbits in magnetic configurations of magnetic fusion or of the magnetosphere. Then orbits cross a separatrix. Since the period of a motion diverges on a separatrix, however slow the evolution of the mechanical system, classical adiabatic theory breaks down in describing this crossing. However, it turns out that one can still take advantage of a separation of time scales for most crossing orbits: those which do not stick too long to the X-point. In 1986, four (groups of) authors come up with the calculation of the change of adiabatic invariant due to separatrix crossing: Neishtadt (1986), Hannay (1986), Vasilev and Guzev (1986), and a group of plasma physicists (Cary et al. 1986). The approaches are very similar (except for the third paper) and constitute what is now called neo-adiabatic theory. The theory also provides explicit formulas for the trapping probabilities in a resonance region.

3.1.3. Adiabatic description of Hamiltonian chaos. Section 2.3.1 considered the case of diffusive transport of a particle in strongly overlapping longitudinal waves. The diffusive picture was justified by the locality in velocity of the wave-particle interaction. This locality is quantified by a width in velocity which grows with the overlap parameter. Then, the diffusive picture is justified if this width is much smaller than the range of the phase velocities of the waves with strong resonance overlap. In the opposite case, the locality in velocity of the wave-particle interaction corresponds to a motion where the trapping time in the frozen potential of all waves is much smaller than the time scale of variation of this potential (this corresponds to the case of a large Kubo number introduced in section 2.3.1). At a given time, the frozen potential displays one or more separatrices which pulsate with time. This issue is of interest to plasma physicists.

The simplest case corresponds to a single pulsating separatrix, as occurs for the dynamics of a nonlinear pendulum in a slowly modulated gravity field. Numerical simulations reveal that the domain swept by the slowly pulsating separatrix in the Poincaré map looks like a chaotic sea where no island is visible (Menyuk 1985, Elskens and Escande 1993) (Pedagogy: section 1 of Elskens and Escande 1993 and section 5.5.2 of Elskens and Escande 2003). As a result one might suppose the limit of infinite overlap to correspond to some ‘pure’ chaos. A fact pushing in this direction is a theorem stating that, in the domain swept by the slowly pulsating separatrix,

27 Cary’s tutorial paper (Cary 1981a) provides a unifying view on Lie transform perturbation theory for Hamiltonian systems together with important applications in plasma physics.

28 Bazzani et al. (2014) provides an extensive list of papers on neo-adiabatic theory. An early work already gave the solution in the case of a pendulum (Timofeev 1978).

29 In 1997, the understanding of adiabatic chaos leads to finding a way of mitigating its effects, such as in the work on omnigenous stellarators, viz. stellarators where all orbits are confined (Cary and Shasharina 1997).
the homoclinic tangle is tight30 (Elskens and Escande 1991). However another theorem tells the total area covered by small islands in the same domain generally decreases when the slowness of the system increases, but remains finite for symmetric frozen potentials (Neishtadt \textit{et al} 1997). This shows that, when taking at random initial conditions in the apparently smooth chaotic sea of the motion of a nonlinear pendulum in a slowly modulated gravity field, there is a finite probability of finding a regular orbit: chaotic does not mean stochastic31. This also shows that chaos is not pure at all, and that the numerical simulation of orbits may provide misleading information32. In the adiabatic limit, successive separatrix crossings are not independent, which significantly affects transport (Bruhwiler and Cary 1989, Cary and Skodje 1989). However the separation of nearby orbits is intuitive, since two such orbits may be separated when coming close to the X-point, one staying untrapped and the other one becoming trapped. The transition from stochastic diffusion in a large set of waves to slow chaos associated to a pulsating separatrix can be detected experimentally in a traveling wave tube (Doveil and Macor 2011).

Adiabatic invariants of slowly varying Hamiltonian systems occur not only for almost periodic orbits, but also for chaotic orbits that wander ergodically over the energy surface of the system. This type of invariant is important in statisti­

cutches and Gremillet 2015). This is done in two steps. First, a perturbative analysis in the wave amplitude provides the change in action up to the time when the action remains nearly stationary after trapping. Then, adiabatic theory is used to describe the subsequent evolution of the orbit: the perturbative and adiabatic descriptions are matched. The method can be generalized to non-sinusoidal potentials and to waves that do not simply grow exponentially in time33. This technique works for particles with a high enough initial velocity. Lower velocities can be described by neo-adiabatic theory (Béniisti and Gremillet 2015).

3.2. Chimeras

Fast ions in a fusion reactor can excite many types of waves, and in particular the energetic particle mode (EPM), which can produce avalanches of such ions. The coherent nonlinear behaviour of an EPM can be described by the complex Ginzburg–Landau equation (equation (2) of Zonca \textit{et al} (2006)), which describes a vast array of phenomena including nonlinear waves, second-order phase transitions, Rayleigh–Bénard convection and superconductivity. In 2014, Sethia and Sen find out that this equation gives chimera states (Sethia and Sen 2014). These states represent a spontaneous breakup of a population of identical oscillators that are identically coupled, into subpopulations displaying synchronized and desynchronized behavior. Till then, they have been found to exist in weakly coupled systems and with some form of nonlocal coupling between the oscillators. The new result shows that neither of these conditions is essential for their existence.

3.3. Solitons and solitary waves

Year 1965 brings a landmark in soliton34 theory: the discovery by Zabusky and Kruskal (1965) that Korteweg–de Vries (KdV) solitary waves survive collision. At that time computers enable computing the collision of two solitary waves (their existence was proved in 1895). The outcome is surprising: after the collision, both solitary waves recover their initial shapes. Two years later, the solution is provided by Gardner, Greene, Kruskal, and Miura, with the inverse scattering transform35 (Gardner \textit{et al} 1967, 1974) which is a key technique of soliton theory with a lot of applications beyond plasma physics. During the period 1970–1982 many experiments on solitons in plasmas are performed (see Longgren (1983) for a review).

In 1970, Kadomtsev and Petviashvili (1970) introduce the first partial differential equation generating solitons in two space dimensions, as a model to study the evolution of long ion-acoustic waves of small amplitude propagating in plasmas under the effect of long transverse perturbations. This equation is a universal model (a kind of normal form) for nonlinear, weakly dispersive waves in an anisotropic medium (Biondini and Pelinovsky 2008).

In 1971, Rogister shows that the evolution of small-amplitude nonlinear Alfvén waves propagating quasiparallel with respect

30When resonance overlap diminishes, at some moment the heteroclinic intersection between manifolds of the two resonances vanishes. This occurs at a threshold approximately given by the resonance overlap criterion if the two resonances are not too different in size and wavelength (Escande and Doveil 1981b, Escande 1985).

31Furthermore, the presence of the small islands induces the apparent intermittent trapping of chaotic orbits in a way analogous to that described in footnote 19.

32If the mathematical model is thought as the approximation of a true physical system, the dynamics of the latter actually undergoes perturbations like noise. These perturbations are likely to smear out the many minuscule waves that do not simply grow exponentially in time. This method can also derive the particles’ distribution function. This allows easy calculation of the nonlinear response of a cold beam to an electrostatic wave (Béniisti and Gremillet 2015).

33This method can also derive the particles’ distribution function. This allows easy calculation of the nonlinear response of a cold beam to an electrostatic wave (Béniisti and Gremillet 2015).

34There is a wealth of textbooks on solitons; the Wikipedia article may be a good pedagogical startpoint.

35The Korteweg–de Vries equation describes long-wavelength water waves and ion-acoustic waves in plasmas.
to the background magnetic field is governed by an equation called the derivative nonlinear Schrödinger equation (Rogister 1971). In 1978, Kaup and Newell prove that this equation has soliton solutions too (Kaup and Newell 1978).

The effect of energy dissipation on solitary waves is important for plasma physics. This starts to be examined in 1969 by Ott and Sudan. Using a multiple time scale technique, they analyze the damping of solitary waves, first for the case of ion acoustic waves (Ott and Sudan 1969), and subsequently for very general types of damping mechanisms (Ott and Sudan 1970).

In 1983, Kaw, Sen and Valeo initiate an approach to the evolution of interacting waves in plasma, which consists in reducing the initial problem stated in terms of partial differential equations into a nonlinear Hamiltonian form with two degrees of freedom only (Kaw et al. 1983). This permits the identification and classification of a rich variety of nonlinear solutions, in particular solitary waves, but also periodic and stochastic solutions (Kaw et al. 1983, 1985, Kaw et al. 1992, Bisai et al. 1996). Kaw et al. (1983) also elicits interest in the nonlinear dynamics community because of the curious square root form of the nonlinear potential, which seems to make the system fully integrable. Eventually the system is shown to be non-integrable by an application of Ziglin’s theorem (Grammaticos et al. 1987).

In 2012, Sen’s research work on solitons in plasmas brings an interesting spin-off. A genetic programming search for equations sharing the KdV solitary wave solution uncovers a KdV-like advection–dispersion equation and an infinite dimensional family of equations with this property (Sen et al. 2012).

4. High dimensional Hamiltonian dynamics

4.1. Self-consistent dynamics

4.1.1. Finite dimension. Self-consistent dynamics is at the heart of the complex behavior exhibited by plasmas. Indeed, the electric and magnetic fields determining the motion of charged particles are generated by the particles themselves. As a result, the particle dynamics in a plasma corresponds to a coupled Hamiltonian dynamical system with a very large number of degrees of freedom. This occurs in particular in the wave–particle interaction. Antoni et al. (1998) and Escande (1991) and chapter 2 of Elskens and Escande (2003) derive the Hamiltonian describing the self-consistent evolution of \(N \) tail particles and \(M \) longitudinal waves, by starting from the \(N \)-body description of a one-dimensional plasma with a finite length (Pedagogy: section 2.1 of Elskens and Escande 2003). As explained in section 2.3.1, this derivation is motivated by a finite dimensional approach to the explanation of the surprising experimental result of Tsunoda et al. (1987a, 1987b) and Tsunoda et al. (1991).

The case with many waves displays a phenomenon known in fluid dynamics as ‘depletion of nonlinearity’: if the tail distribution function is a plateau in both velocity and space, which occurs at the saturation of the bump-on-tail instability introduced in section 2.3.1, the self-consistency is quenched, since the particles are not able to modify the wave amplitudes (see section 2.2 of Besse et al. (2011)). Therefore, their dynamics, even when strongly chaotic, is the 1.5 degree-of-freedom one corresponding to the motion in a prescribed spectrum of waves. Depending on this spectrum, the diffusion coefficient may be quasilinear or not, as recalled in section 2.3.1. This contradicts previous works trying to prove the validity of quasilinear theory (Liang and Diamond 1993a, 1993b, Escande and Elskens 2002b, Elskens and Escande 2003) and the ‘turbulent trapping’ ansatz aiming at the contrary (Laval and Pesme 1984) (see section 2.3 of Besse et al. (2011)). This brings a first element toward understanding the surprising experimental result recalled above.

The derivation for the single wave case \((M = 1)\) was first provided in two seminal papers (Onishchenko et al. 1970, O’Neill et al. 1971). It was also provided in Crawford and Jayaraman (1999), del Castillo-Negrete (1998) and Tennyson et al. (1994) by starting with kinetic descriptions. The single wave case is a paradigm for the interaction of particles with collective degrees of freedom: electrostatic instabilities (Crawford and Jayaraman 1999), interaction of vortices with finite-velocity flow in hydrodynamics (del Castillo-Negrete 2000, 2005, del Castillo-Negrete and Firpo 2002). These references study the corresponding transition to chaos and formation of coherent structures in phase space: order and chaos coexist, a typical feature of complex systems, indicated above by the existence of chimeras. The \(M = 1 \) case also brings the possibility of analytical calculations which are impossible in the full \(N \)-body description of the plasma. Indeed, Gibbs statistical mechanics can be derived in this case, revealing a second order phase transition associated with the Landau damping regime: for nonequilibrium initial data with warm particles, above a critical initial wave intensity, thermodynamics predicts a finite wave amplitude in the limit \(N \to \infty \); below it, the equilibrium amplitude vanishes (Firpo and Elskens 2000).

4.1.2. Inifinite dimension. Due to its interaction with resonant particles, a longitudinal wave in a thermal plasma experiences a non-dissipative damping discovered by Landau in 1946. This effect is of paramount importance in plasma physics. In a Vlasovian approach, it is understood as the consequence of a phase-mixing effect of a continuum of linear modes, called van Kampen modes37. However, one may wonder whether nonlinear effects do not destroy these linear modes and the corresponding phase mixing. Proving the innocuity of nonlinear effects is the equivalent of deriving a KAM theorem for a continuous system (the Vlasov–Poisson one), a tour de force which partly earns Villani the 2010 Fields medal (Mouhot and Villani 2010, Villani 2014). This is a major contribution of plasma physics to the nonlinear dynamics of continuous systems38.

37 Morrison (2000a) solves the dynamics of this continuum in the context of Hamiltonian systems theory, by a canonical transformation to action-angle variables for this infinite-degree-of-freedom system.

38 The physical interpretation of Landau damping is subtle, but can be made completely intuitive by using the above finite dimensional self-consistent approach, which shows that it is due to the synchronization of quasi-resonant particles with the wave (Escande et al. 1996, Elskens and Escande 2003); the synchronization is confirmed experimentally (Dowell et al. 2005b). Within this approach, proving Landau damping in a nonlinear context requires the standard KAM theorem only.
When the electron distribution function is gradually changed, for instance by adding a bump in the tail of the distribution, an instability may appear in the Vlasov–Poisson system describing a spatially uniform plasma. For such a problem, center manifold theory cannot be used because of the existence of a continuum of modes. In order to cope with this problem, in 1989, Crawford and Hislop use the method of spectral deformation, a technique till then used in the theory of Schrödinger operators in quantum mechanics. They derive equations for the nonlinear evolution of electrostatic waves by extending the method to the full nonlinear Vlasov equation, without making the standard assumptions of weak nonlinearity and separated time scales (Crawford and Hislop 1989). In 1994, Crawford overcomes the absence of a finite-dimensional center manifold in this problem, by restricting his analysis to initial conditions where only the unstable mode is initially excited, so that it is not one component of an arbitrary fluctuation. This way, he can treat the Vlasov equation perturbatively, and shows that for a plasma with a neutralizing background of ions, the instability saturates at an amplitude scaling with the square of the growth rate, in heavy contrast with the traditional scaling with the square root. Furthermore, all orders contribute to the saturation, which implies that the equilibrium may be approached in a non monotonic way (Crawford 1994).

As already indicated in section 3.2, the self-consistent interaction of fast ions with waves is an important topic for burning magnetic fusion plasmas. An analogy mapping the previous velocity distribution to the radial distribution of particles in a toroidal plasma provides a description of the corresponding limit case of a uniform plasma by the continuous limit of the above finite dimensional self-consistent model (Zonca et al 2015). In 2015, Zonca and coworkers show that the more general description of the magnetic fusion case is provided by an analogue of Dyson’s equation in quantum field theory, describing particle transport due to emission and reabsorption of toroidal symmetry breaking perturbations, called ‘phase space zonal structures’ (PSZS), by analogy with the meso-scale configuration space patterns spontaneously generated by drift-wave turbulence. The relevant dynamics corresponds to the non-adiabatic (chaotic) case where the particle trapping time is not short with respect to the characteristic time for the nonlinear evolution of PSZS. For a non uniform plasma, there is a convective amplification of wave packets as avalanches, leading to the secular transport of particles over large radial scales inside the toroidal plasma. This physics has analogies with the ‘super-radiance’ regime in free-electron lasers (Zonca et al 2015).

Avalanches are also present in gyrokinetic numerical simulations of tokamak plasmas, which correspond to a reduced Vlasovian description of such plasmas taking advantage of the fact that the magnetic moment of particles is an adiabatic invariant. Avalanches correspond to a description of transport at strong variance with that of a chaotic transport due to turbulent waves. This description is germane to self-organized criticality, the kind of self-organization at work in sandpiles. This view emerged progressively in the last two decades (Dendy and Helander 1997, Dendy et al 2007, Sanchez and Newman 2015).

4.2. Noncanonical Hamiltonian theory

The standard Hamiltonian description of physical systems uses canonical variables. This makes this description awkward for systems that are written in terms of noncanonical variables like ideal fluid and systems with long range interactions when described by Vlasov equation. This motivates Greene and Morrison to introduce in 1980 noncanonical Poisson brackets for fluid systems (Morrison and Greene 1980). Morrison brings this approach to full maturity in the following two decades (see Morrison (1998) for a review). This approach leads in particular to the energy-Casimir criterion of nonlinear stability (see section VI.B of Morrison (1998)). Furthermore, linearly stable equilibria with negative energy modes are shown to be unstable when nonlinearity or dissipation is introduced (see section VI of Morrison (1998) for a global discussion).

5. Dissipative dynamics

While a wealth of plasma physics issues are naturally dealt with by a Hamiltonian approach, dissipative effects are important in plasmas too. This is the case for nonlinear wave coupling. In particular, for the dynamics of an unstable wave coupled nonlinearly to two lower frequency damped waves (Vyshkind and Rabinovich 1976). In 1980, Wersinger et al demonstrate via the Poincaré section technique that this dynamics is well described by a one-dimensional map with a quadratic maximum, which implies chaos with a strange attractor (Wersinger et al 1980). This is the first explicit numerical demonstration of the applicability of such a map from physically motivated differential equations. As a sequel of this work, numerical techniques are used to compute for the first time the fractal dimension of strange attractors in several examples. These dimensions are then compared with the predictions from the Kaplan–Yorke conjecture, which relates an attractor’s fractal dimension to its Lyapunov exponents, thus providing important early confirmation for the conjecture (Russell et al 1980).

In 1982, Bussac publishes an analytical method which accounts for the main features of the asymptotic solution of this coupled wave dynamics for the nonlinear decay of a coherent unstable wave into its subharmonic (Bussac 1982b). This dynamics is shown to be close to a Hamiltonian one. The map providing the mismatch to the corresponding constant energy at each crossing of the Poincaré surface of section exhibits period doubling, and an explicit equation is obtained for the chaotic attractor. The same type of nonlinear wave coupling can lead to another path to chaos called type I intermittency. When the control parameter is varied, the transition to chaos is abrupt, but the quantities which measure the amount of chaos

39 This criterion was introduced first in Holm et al (1985), and in a series of papers where several plasma physicists are present (see note 42 of Morrison (1998)).

41 This type of map exhibits period doubling cascades.
vary smoothly with the control parameter, which implies a continuous character for such a transition (Bussac and Meunier 1982c). Bussac (1982a) yields a complete panorama of the dynamics of the three-wave system involving again a one-dimensional map which is analytically derivable from the original system of differential equations.

In 2003, Firpo shows that the description of the early non-linear regime of the resistive $m = n = 1$ mode of the tokamak can be done by assuming that the perturbation retains the form of the linearly unstable eigenmode, which leads to a Landau nonlinear stability equation (Firpo and Coppi 2003, Firpo 2004, 2005). The difficulty and novelty of this analysis comes from the existence of an inner critical layer whose position is not fixed, in contrast with those occurring next to walls in fluid (Stuart 1958) and other plasma physics problems (Dahlburg 1998) whose solutions follow similar paths. In the much simpler problem of the nonlinear tearing mode where the position of the inner critical layer is fixed, Ottaviani and the author of the present paper show in 2004 that the perturbation can be written as a linear unstable eigenmode plus a higher-order correction ψ whose radial width scales like the linear magnetic island width. This yields a linear differential equation for ψ, which can be solved readily (Escande and Ottavani 2004).

6. Quantum chaos

In 1979, the issue of the chaotic motion of geometric optics rays in plasmas motivates McDonald and Kaufman to study the quantum chaos provided by the two-dimensional Helmholtz equation with ‘stadium’ boundary. In contrast to the clustering found for a separable equation, the eigenvalue separations have a Wigner distribution, characteristic of a random Hamiltonian (McDonald and Kaufman 1979).

The same year, a work involving Chirikov considers the quantum kicked rotator, which is the quantized version of the standard map. In the regime of strong chaos, the rotator energy and the squared number of excited quantum levels appear to grow diffusively in time, as in the corresponding classical system. Only up to a break time though (Casati \textit{et al} 1979), after which the quantum energy excitation is suppressed while the classical one continues to diffuse. This time is proportional to the classical diffusion rate (Chirikov \textit{et al} 1981).

However, even classically small noise can induce quantum decoherence, thus eliminating the quantum saturation of diffusion, and restoring perpetual classical diffusion (Ott \textit{et al} 1984). This type of behavior has been experimentally investigated in atomic physics experiments (Arndt \textit{et al} 1991).

Multi-photon ionization of hydrogen can be treated by classical theory when the initial quantum number is large and the photon energy is small. Then ionization corresponds to the chaotic motion obtained for high photon intensities. However, the quantum ionization threshold may be higher than the threshold of classical chaos, because classical chaos is suppressed by quantum effects when the phase-space area escaping through classical cantori during each period of the electric field is smaller than Planck’s constant (MacKay and Meiss 1988b).

7. Natural extensions

There are natural extensions to this work. In particular, those due to intertwined contributions of plasma physicists with fluid dynamicists about vortex structures (see chapter 6 of Horton and Ichikawa (2002)). Also about the generalized Lagrangian mean, a formalism to unambiguously split a motion into a mean part and a nonlinear oscillatory part, where plasma physicists provided important contributions (Frieman and Rotenberg 1960, Dewar 1970). There is also the use of non-neutral plasmas for the experimental study of vortex dynamics in two-dimensional hydrodynamics (Malmberg 1992, Durkin and Fajans 2000).

8. Conclusion

The main part of this story is borne out of two constraints: the need for a theoretical description of the magnetic confinement of thermonuclear plasmas and the insufficient corresponding mathematical knowledge. However its birth would not have been possible without the development of computer calculations.

Plasma physics is often considered as motivated by its applications. This is wrong, since plasmas belong in complex systems which are of interest on their own, and are a central topic of contemporary physics. This is right, provided one counts applications like its just-recalled numerous contributions to chaos and nonlinear dynamics!

A histogram of the number of published papers quoted in this topical review as a function of time shows that there is a peak of the number of published papers per year in the 1980–1984 period, then a decrease to 60% of this peak in the 1985–2004 period, and to 40% in the 2005–2014 period, with no decrease when going from 2005–2009 to 2010–2014. Therefore, there is still a steady flow of contributions from plasma physics to chaos and nonlinear dynamics.

However, there is less excitement about these new results than in the 1980–1984 period where plasma physicists started to understand chaos. The 1980–1984 results recalled in this topical review bring a reassuring background to the present investigations, but most are not much used explicitly. Indeed, as to fusion theory, the development of massive computer simulations progressively revealed that the complexity of fusion plasmas displays a mixture of order and chaos, for instance in avalanches, that is not suggestive of an elementary quantitative description (so far). Furthermore, numerical calculations are so handy, that it is more reliable to find out a threshold of bifurcation numerically, for instance a threshold of chaos, than to compute it by applying a low dimensional technique after painstaking uncontrolled approximations. The practical success of the simple-minded quasilinear approximation was another incentive to give up more sophisticated descriptions of chaotic transport. Works about nonlinear or chaotic plasma physics have been taking over; a whole series of books would be necessary to summarize their results! However a breakthrough in the fundamental analysis of complex plasma dynamics cannot be excluded ….

12
Acknowledgments

I thank P Diamond, U Frisch, and Y Pomeau for inviting me to study the topic of this topical review. I thank S Abdullaev, D Bénisti, J Cary, D del-Castillo-Negrete, R Dewar, F Doveil, Y Elskens, M-C Firpo, U Frisch, J Krommes, R MacKay, J Meiss, J T Mendonça, J Misguich, P Morrison, E Ott, A Sen, D Shepelyansky, J B Taylor, M Vlad, and F Zonca for their initial inputs to this work and for successive suggestions. Also, Y Elskens, R MacKay, and P Morrison who provided me extensive advice on my manuscript. I thank R Dendy for suggestions and also for questions, which fed the concluding remarks, and L Couèdel for his help in managing the references.

References

Abdullaev S S 1997 Renormalization invariance of a Hamiltonian system near the saddle point Phys. Lett. A 234 281–90
Abdullaev S S 2004a On mapping properties of field lines in a stochastic magnetic field Nucl. Fusion 44 S12–27
Abdullaev S S 2004b Canonical maps near separatrix in Hamiltonian systems Phys. Rev. E 70 046202
Abdullaev S S 2005 Asymptotic forms of canonical mappings near separatrix in Hamiltonian systems Phys. Rev. E 72 046202
Abdullaev S S 2006 Construction of Mappings for Hamiltonian Systems and Their Applications (Berlin: Springer)
Abdullaev S S 2007 Canonical stochastic web map Phys. Rev. E 76 026216
Abdullaev S S 2011 Chaotic transport in Hamiltonian systems perturbed by a weak turbulent wave field Phys. Rev. E 84 026204
Abdullaev S S 2014a Magnetic Stochasticity in Magnetically Confined Fusion Plasmas (Cham: Springer)
Abdullaev S S 2014b Stable and unstable manifolds, and the structure of magnetic footprints Nucl. Fusion 54 064004
Abdullaev S S and Zaslavsky G M 1995 Self-similarity of stochastic magnetic field lines near the X-point Phys. Plasmas 2 4533–40
Antoni M, Elskens Y and Escande D F 1998 Explicit reduction of N-body dynamics to self-consistent particle-wave interaction Phys. Plasmas 5 841–52
Balescu R 1997 Continuous time random walk model for standard map dynamics Phys. Rev. E 55 2465–74
Bellissard J, Bohigas O, Casati G and Shepelyansky D 1999 A pioneer of chaos Physica D 131 8–15
Bénisti D and Gremillet L 2015 Global change in action due to trapping: how to derive it whatever the rate of variation of the dynamics Phys. Rev. E 91 042915
Bussac M 1982a The nonlinear three-wave system, strange attractors and asymptotic solutions Phys. Scr. T 2A 110–8
Bussac M N and Meunier C 1982c Diffusion of particles in a slowly modulated wave J. Phys. 43 585–9
Cary J R and Skodje R T 1989 Phase change between separatrix crossings Physica D 36 287–316

Chirikov B V 1959 Resonance processes in magnetic traps At. Energ. 6 630–38

Chirikov B V 1987a Particle dynamics in magnetic traps Reviews of Plasma Physics (Berlin: Springer) pp 1–91

Chirikov B V 1987b Particle confinement and adiabatic invariance Proc. R. Soc. A 413 145–56

Crawford J D 1994 Universal trapping scaling on the unstable manifold for a collisionless electrostatic mode Phys. Rev. Lett. 73 656–9

Crawford J D and Jayaraman A 1999 First principles justification of a ‘single wave model’ for electrostatic instabilities Phys. Plasmas 6 666–73

del Castillo-Negrete D 2000 Self-consistent chaotic transport in fluids and plasmas Chaos 10 75–88

del Castillo-Negrete D and Firpo M C 2002 Coherent structures and self-consistent transport in a mean field Hamiltonian model Chaos 12 496–507

del Castillo-Negrete D, Greene J M and Morrison P J 1997 Renormalization and transition to chaos in area preserving nonwist maps Physica D 311–29

Dendy R, Chapman S C and Paczuski M 2007 Fusion, space and solar plasmas as complex systems Plasmas Phys. Control. Fusion 49 A95

Dewar R L 1970 Interaction between hydromagnetic waves and a time-dependent inhomogeneous medium Phys. Fluids 13 2710–20

Doveil F, Auhman K, Macor A and Guyomarc’h D 2005a Experimental observation of resonance overlap responsible for Hamiltonian chaos Phys. Plasmas 12 010702

Doveil F and Escande D F 1981 Destabilization of an enumerable set of cycles in a Hamiltonian system Phys. Lett. A 84 399–403

Doveil F, Escande D F and Macor A 2005b Experimental observation of nonlinear synchronization due to a single wave Phys. Rev. Lett. 94 085003

Doveil F and Macor A 2011 Two regimes of self-consistent heating of charged particles Phys. Rev. E 84 045401

Elskens Y and Escande D F 1991 Slowly pulsating separatrices sweep homoclinic tangles where islands must be small: an extension of classical adiabatic theorem Nonlinearity 4 615

Elskens Y and Escande D F 2003 Microscopic Dynamics of Plasmas and Chaos (Bristol: Institute of Physics)

Escande D F 1982a Renormalization for stochastic layers Physica D 6 119–125

Escande D F and Doveil F 1981b Renormalization method for computing the threshold of large-scale stochastic instability in two degrees of freedom Hamiltonian systems J. Stat. Phys. 26 257–84

Escande D F and Elskens Y 2002a Quasilinear diffusion for the chaotic motion of a particle in a set of longitudinal waves Acta Phys. Pol. B 33 1073–84

Escande D F and Elskens Y 2002b Proof of quasilinear equations in the chaotic regime of the weak warm beam instability Phys. Lett. A 302 110–8
Escande D F and Elskens Y 2003 Proof of quasilinear equations in the strongly nonlinear regime of the weak warm beam instability Phys. Plasmas 10 1588–94

Escande D F and Mehr A 1982c Link between KAM tori and nearby cycles Phys. Lett. A 91 327–30

Escande D F and Ottaviani M 2004 Simple and rigorous solution for the nonlinear tearing mode Phys. Lett. A 323 278–84

Escande D and Sattin F 2007 When can the Fokker–Planck equation describe anomalous or chaotic transport? Phys. Rev. Lett. 99 185005

Escande D F and Sattin F 2008 When can the Fokker–Planck equation describe anomalous or chaotic transport? Intuitive aspects Plasma Phys. Control. Fusion 50 124023

Firpo M C 2000 Phase transition in the collisionless damping regime for wave-particle interaction Phys. Rev. Lett. 84 3318–21

Hénon M and Heiles C 1964 The applicability of the third integral of motion: some numerical experiments Astrophys. J. 69 73–79

Horton W and Ichikawa Y 2002 Chaos and Structures in Nonlinear Plasmas (Singapore: World Scientific)

Karney C F F 1983 Long-time correlations in the stochastic regime Physica D 8 360–80

Krylov N V 1954 On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian Zh. Tekh. Fiz. 30 1347

Rechester A B, Rosenbluth M N and White R B 1979
Phys. Rev. Lett. 45 851 (erratum)

Rechester A B, Rosenbluth M N and White R B 1981 Fourier-space
paths applied to the calculation of diffusion for the Chirikov–
Taylor model Phys. Rev. A 23 2664–72

Rechester A B and Stix T H 1976 Magnetic braiding due to weak
asymmetry Phys. Rev. Lett. 36 587–91

Rechester A B and White R B 1980 Calculation of turbulent
44 1586–9

Rodionov S N 1959 An experimental test of the behaviour of
charged particles in an adiabatic trap At. Energ. 6 623
1 247–52 (Engl. transl.)

Roger A 1971 Parallel propagation of nonlinear low-frequency
waves in high beta plasma Phys. Fluids 14 2733–43

Romanov Y A and Filippov G F 1961 Interaction of streams of
Phys. 40 123

Romanov Y A and Filippov G F 1961 Sov. Phys.—JETP 13 87
(Engl. transl.)

Rosenbluth M N, Sagdeev R Z and Taylor J B 1966 Destruction of
magnetic field surfaces by magnetic field irregularities
Nucl. Fusion 6 297–300

Russell D A, Hanson J D and Ott E 1980 The dimension of strange
attractors Phys. Rev. Lett. 45 1175–78

Sanchez R and Newman D 2015 Self-organized criticality and the
dynamics of near-marginal turbulent transport in magnetically
confined fusion plasmas Plasma Phys. Control. Fusion
57 123002

A 22 2649–54

Schmidt G and Bialek J 1982 Fractal diagrams for Hamiltonian
stochasticity Physica D 5 397–404

Sen A, Ahalpara D P, Thayagaraja A and Krishnaswami G S
2012 A KdV-like advection–dispersion equation with some
17 4115–24

Seetha G C and Sen A 2014 Chimera states: the existence criteria
revisited Phys. Rev. Lett. 112 144101

mapping a toroidal magnetic field by storage of phase
stabilized electrons Rev. Sci. Instrum. 41 1552–9

Stuart J T 1958 On the non-linear mechanics of hydrodynamic
stability J. Fluid Mech. 4 1–21

Szezech J D, Caldas I L, Lopes S R, Morrison P J and Viana R L
E 86 036206

Taylor J B 2015 private communication

Tennyson J L, Cary J R and Escande D F 1986 Change of the
56 2117–20

Tennyson J L, Meiss J D and Morrison P J 1994 Self-consistent
chaos in the beam–plasma instability Physica D 71 1–17

Timofeev A V 1978 On the constancy of an adiabatic invariant
when the nature of the motion changes Zh. Eksp. Teor. Fiz.
75 1303

Timofeev A V 1978 Sov. Phys.—JETP 48 656–9 (Engl. transl.)
Tsunoda S I, Doveil F and Malmberg J 1987a Experimental test of
the quasilinear theory of the interaction between a weak
warm electron beam and a spectrum of waves Phys. Rev. Lett.
58 1112–15

Tsunoda S I, Doveil F and Malmberg J 1987b An experimental test
of quasilinear theory Phys. Scr. 40 204–5

Tsunoda S I, Doveil F and Malmberg J 1991 Experimental test of
quasilinear theory Phys. Fluids B 3 2747–57

Vasilev A N and Gusev M A 1986 Particle capture by a slowly

Vedenov A A, Velikhov E P and Sagdeev R Z 1962 Quasilinear
theory of plasma oscillations Nucl. Fusion Suppl. 2 465–75

Villani C 2014 Particle systems and nonlinear Landau damping
Phys. Plasmas 21 030901

Vlad M and Spinuam F 2013 Test particle study of ion transport in
drift type turbulence Phys. Plasmas 20 122304

Vlad M and Spinuam F 2014 Diffusion and stochastic island
generation in the magnetic field line random walk Astrophys.
J. 791 56

Vlad M and Spinuam F 2015 Trajectory statistics and turbulence
evolution Chaos Solitons Fractals 81 463–72

Vlad M, Spinuam F and Benkadda S 2006 Impurity pinch from a
ratchet process Phys. Rev. Lett. 96 085001

Vlad M, Spinuam F, Misguich J H and Balescu R 1998 Diffusion
with intrinsic trapping in two-dimensional incompressible
stochastic velocity fields Phys. Rev. E 58 7359–68

and Itoh S I 2004 Lagrangian versus Eulerian correlations and
transport scaling Plasma Phys. Control. Fusion 46 1051–63

Vyskrh S Y and Rabinovich M I 1976 The phase stochastization
mechanism and the structure of wave turbulence in dissipative
media Zh. Eksp. Theor. Phys. 71 557

Vyskrh S Y and Rabinovich M I 1976 Sov. Phys.—JETP 44
292–9 (Engl. transl.)

Wersinger J M, Finn J M and Ott E 1980 Bifurcations and strange
behavior in instability saturation by three-wave mode coupling
Phys. Fluids 23 1142–54

Zabusky N J and Kruskal M D 1965 Interaction of solitons in
collisionless plasmas and the recurrence of initial states Phys.
Rev. Lett. 15 240–3

Zaslavsky G M and Abdullaev S S 1995 Scaling properties and
anomalous transport of particles inside the stochastic layer
Phys. Rev. E 51 3901–10

Zaslavsky G M and Chirikov B V 1971 Stochastic instability of

14 549 (Engl. transl.)

Zaslavsky G M and Filonenko N N 1968 Stochastic instability of
trapped particles and conditions of application of the quasi-
linear approximation Zh. Eksp. Teor. Fiz. 54 1590

Zaslavsky G M and Filonenko N N 1968 Sov. Phys.—JETP
27 851–57 (Engl. transl.)

Zaslavsky G M, Stevens D and Weitzner H 1993 Self-similar

Zonca F, Briguglio S, Chen L, Fogaccia G, Hahn T S,
Milovanov A V and Vlad G 2006 Physics of burning plasmas
in toroidal magnetic confinement devices Plasma Phys.
Control. Fusion 48 B15–28

Zonca F, Chen L, Briguglio S, Fogaccia G, Vlad G and Wang X
2015 Nonlinear dynamics of phase space zonal structures
and energetic particle physics in fusion plasmas New J. Phys.
17 013052