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1. Introduction

Increases in the available laser power and high-energy elec-
tron beams (reaching a few GeV; for e.g. [1–3]) obtained with 
plasma-based accelerators allow us to reach new regimes in 
laser-beam scattering in all-optical configurations [4–6]. The 
scattering of high-intensity lasers on relativistic beams can lead 
to the strong emission of radiation, accompanied by the loss of 
energy by the electrons. Depending on the energy of the par-
ticle and the strength of the field, the energy loss by the elec-
tron during emission may or may not be comparable to its own 
energy. If the emitted photon energy is negligible compared to 
the electron energy, the scattering is purely classical; in the other 
case, the electron momentum changes during emission. This 
recoil is a quantum effect and, depending on its importance rela-
tive to the energy of the electron, can change its trajectory in a 
smooth or stochastic manner. The importance of this and other 
quantum effects on radiation emission can be parameterised by:

χ =
| |µν

νF p

E mc
,

crit
 (1)

which is approximately equal to the ratio between the field 
amplitude in the rest frame of the electron and the Schwinger 
critical field for very relativistic electrons, and [17]

ρ=
ν
ν� k p

m c
,

2 2 (2)

which gives the ratio of the laser photon energy in the rest 
frame of the electron to its rest energy. Here, ( )= �E m c e/crit

2 3  
is the Schwinger critical field, Fµν is the electromagnetic wave 
field-strength tensor, νp  is the electron momentum four-vector 
and νk  is the emitted photon momentum four-vector.

In the presence of laser-fields, the normalised vector 
potential of the laser, given by ( )=a eA m c/0 0 e

2 , describes 
the nature of the dynamics of the electron. For low-inten-
sity lasers, �a 10  to ⩽a 10 , quantum effects can still occur 
but their importance is measured by the parameter ρ [17].  
In the opposite case, for very intense lasers, �a 10 , the elec-
tron dynamics in the laser is nonlinear and radiation is emitted 
at multiple harmonics (nonlinear Thomson [8, 9]/Compton 
[10, 11] scattering). In this regime, the importance of quantum 
effects is determined by the nonlinear quantum parameter χ. 
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When χ� 1 emission occurs through Compton scattering and, 
as the emitted energy becomes comparable to the electron 
energy, the trajectory becomes stochastic; at  χ ∼ 1 processes 
such as pair production become significant and at χ> 1 spin 
effects in the radiation become non- negligible. However, for 
χ� 1, the trajectory of the electron can still be described clas-
sically if one accounts for the radiation reaction force. The 
emission process is Thomson scattering, the classical analogue 
of Compton scattering. In the above paragraph, the definition 
for nonlinear Thomson/Compton scattering from [12] is used.

In this work, the regime of radiation emission with χ� 1 
to <1, �a 10  and γ� 1 will be studied, where γ is the 
Lorentz factor of the electron. In it, radiation damping is non-
negligible but can be described classically and the higher har-
monics of nonlinear Thomson scattering extend to energies 
approaching the energy of the electron, such that the clas-
sical emissivity formula derived from the Liénard–Wiechert 
potentials may not be valid anymore. The question then arises 
of how to model radiation emission in this scenario.

Several techniques have been used, such as semi-classical 
calculations [13–16], QED perturbation theory [18], the 
introduction of functions that correct the equation of motion 
and the radiated power/spectrum [18–20], and Monte-Carlo 
methods, either based on the cross sections for Compton scat-
tering [21, 22] or on the emission probability function and 
spectrum of synchrotron radiation combined [23–26, 27].

In this paper we show how to derive a quantum corrected 
emissivity formula for arbitrary observation directions using 
the generalised method of Fermi–Weizäcker–Williams, first 
developed by Lieu and Axford [29]. This formula is imple-
mented in the post-processing radiation diagnostic code 
JRad [29], which will be referred to as JRad-QC when using 
the quantum corrected emissivity formula. It is then used to 
explore the changes that occur in the Thomson scattering 
spectrum in the transition from the classical to the weakly 
quantum regime (χ� 1). In this regime, the recoil experi-
enced by the electron is not negligible but the trajectory can 
still be described by the Landau and Lifshitz equation  of 
motion, and effects such as pair production and spin effects 
in radiation emission are not important. For convenience, 
the designation quantum regime will be used in the rest of 
the paper, in the sense of weakly quantum regime (or in 
the designation of Sokolov et al QED-weak fields [30]). It 
should be noted that the transition from the classical to the 
(weakly) quantum regime is not sharply defined.

This paper is structured as follows: in section 1, a quantum 
corrected emissivity formula is derived. In section  2, com-
parisons are shown between the spectrum computed with this 
technique and the spectra obtained through a QED probabil-
istic approach [26] for synchrotron radiation. In section 3, we 
explore nonlinear Thomson scattering in the transition from 
the classical to the quantum regime with JRad and trajectories 
obtained from the integration of the equation of motion with 
the radiation reaction force [31]. We show that under certain 
conditions a unique signature of the quantum corrections is 
observed, which is not seen if only the radiation damping is 
taken into account in the trajectory. In section 4 we state the 
main conclusions of the paper.

2. Radiation emissivity with quantum corrections

The method of Lieu and Axford consists of an extension of the 
method of virtual photons (the FWW method) [28]. This method 
was originally applied to problems such as bremsstrahlung radia-
tion, where the electron was considered to be in uniform motion. 
The application of the FWW method to scenarios such as an 
electron gyrating in a uniform and static magnetic field is not 
possible, since there is no single rest frame for the electron. Lieu 
and Axford proposed a method to overcome this issue [28]. Their 
solution relies on splitting the electron trajectory into a series of 
infinitesimal segments in which the electron velocity is approxi-
mately constant and therefore the method of virtual photons can 
be applied. They then derive the classical results of synchrotron 
radiation by determining the Thomson scattering spectrum in this 
series of instantaneous rest frames, transforming the emissivities 
back to the laboratory and then adding them coherently. Quantum 
corrections associated with the recoil of the electron during the 
emission process are added by replacing the Thomson scattering 
cross section by the Compton cross section and ω by ω η/ , where 
η is the Compton shift. Although Lieu and Axford have extended 
their work to three-dimensional scenarios and inhomogeneous 
magnetic fields [32], their 3D emissivity formula only reduces 
(in the absence of quantum corrections) to the general classical 
emissivity result for certain angles of observation.

In the following, it is shown that by introducing an addi-
tional generalisation to the method of Lieu and Axford, it is 
possible to obtain a quantum corrected emissivity formula 
which reduces to the three-dimensional classical emissivity 
(in the far field) within the limit of a negligible Compton shift 
for arbitrary directions of observation. For the sake of com-
pleteness, the essential steps in the derivation are presented 
here; further details can be found in references [28–33].

First, the trajectory is split into infinitesimal segments. 
A coordinate transformation is performed in the laboratory 
frame such that the segment to be analysed has its beginning 
at the origin. A Lorentz transformation is then performed to 
the instantaneous rest frame of the electron for this segment. 
In this frame, the component of the Poynting flux for the fre-
quency ω′, ( )ω′ ′S  is given by:

( ) ∫ω
π

=′ ′ ′ ′ω′ ′S c tE
1

2
e d ,ti

2

 (3)

where c is the velocity of light, ′E  is the incident electric field, 
′t  is time and the primed variables refer to quantities in the 

instantaneous rest frame.
In this infinitesimally small segment the electron will 

remain non-relativistic and the electric field can be related to 
the electron velocity by the equation of motion =′ ′⊥m ev E˙ , 
where m and e are the mass and charge of the electron, ′⊥v̇  is 
the acceleration of the electron and γ∼ cte. Here, the suffix ⊥ 
indicates the vector components perpendicular to the electron 
velocity in the laboratory frame β. In the following calcula-
tions it is assumed that the field components in the direction 
of the electron momentum are negligible, i.e. that the fields 
the particle is subject to are approximately perpendicular to 
its velocity. This can also be stated in terms of a condition on 
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the particle acceleration, i.e. that in the infinitesimal segment 
under consideration ∥′ ′⊥�a a . This is equivalent to the condi-
tion in the laboratory that ∥ γ ⊥�F F , where F is the external 
force the particle is subject to.

Assuming that the field can be decomposed into a series 
of plane waves, it can be written as (for a given spectral 
component):

ω= − ⋅′ ′ ′ ′ ′ ′⊥ ⊥ ⊥E tE k r eexp i .( ) (4)

If the particle moves negligibly in the wave propagation direc-
tion in the interval ∆ ′t  and if the field changes in a time scale 
slower than ∆ ′t , the time variation in ⋅′ ′k r  can be neglected 
in the integration calculation. The electric field can then be 
expressed in terms of the electron velocity (using the equa-
tion of motion):

( )ω ω ω= = =′ ′ ′ ′ ′ ′ ′ ′⊥ ⊥ ⊥ ⊥
m

e

m

e
v t

m

e
E v e v˙ i exp i i , (5)

Given the above considerations and since the interval ∆ ′t  is 
considered to be infinitesimal, the integral in (3) can be taken 
to be approximately the integrand times the time interval:

ω
ω= =′ ′

′ ′

′
′ ′ ′ ′ ′⊥

⊥
⊥ ⊥ ⊥t

e

m

t
t

m

e
tv

E
e E v

i
i ,( )

( )
⇔ ( ) ( ) (6)

where ∆ ′t  is the time the electron takes to cross the infini-
tesimal segment.

The emissivity at a frequency ω′ (energy radiated at a fre-
quency ω′ per unit of frequency and per unit of solid angle) in 
the infinitesimal segment of trajectory, α∆ ′, is given by the 
product of the incident radiation flux and the Compton cross 

section ( ) [ ( )]′σ ηΩ = ⋅′ ′ ′ ′ε εe mcd /d /C
2 2 2

out in

2
, where ′ε in and 

′ε out are the polarisation vectors of the incident and outgoing 
photons and

( )η
ω

= − − Ψ′
′

′
�

mc
1 1 cos

2 (7)

where Ψ′ is the Compton scattering angle [28]. In the labora-
tory coordinates this can be expressed as:

η
ω

γ
−�
�

mc
1

2 (8)

where the approximation involves an error of order ( )γO 1/ 2  
[28, 32]. To account for the Compton shift corrections, ω′ is 
replaced by ω η′ ′/  and the associated substitution [28]:

α α η∆ ∆′ ′ ′2⟶ (9)

is made, where α∆ ′ is a contribution to the emissivity 
( )′α ω= Ω′ ′Id / d d2  from the infinitesimal segment of trajec-

tory. The emissivity in the associated instantaneous rest frame 
with the quantum correction is then given by:

( )
( )

( )′α ω
ω
π η

Ω∆ =
⋅

∆′ ′
′ ′ ′

′
′ ′ ′

ω
η⊥

′
′
′ε εe

c
t tv,

4
e .

t
2 2

2 3
out in i

2

 (10)

To transform this result back to the laboratory frame it is 
useful to note that the dot product ⋅′ ′ε εout in, ( ) α ω∆ ∆′ ′ ′ ′ ′⊥ t tv , / 2  

are invariants and ( ) ( )η ω η ωΩ ≡ Ω′ ′ ′, , , as pointed out by 
Lieu and Axford [28]. To facilitate the calculations, these 
two quantities are determined in the rest frame of the par-
ticle but expressed in terms of the variables in the lab frame 
[28]. The transformation of the time and frequency yields 

( )ω ω= − ⋅′ ′t t t cn vi i /  and when transforming back from the 
simplified reference frame to the original laboratory frame 
the term ⋅ tn v  in the exponent yields ⋅n r.

To obtain the emissivity in the laboratory, the contributions 
to the total radiation spectrum from each segment α∆  need to 
be Lorentz transformed to this frame and added coherently by 
summing them before taking the square of the modulus [28] 
in equation (10):

( )∫α
ω

ω
π η

=
Ω
=

⋅ ω
η⊥ − ⋅εI e

c
t

vd

d d 4
e d .t cn r

2 2 2

2 3
out i /

2

 (11)

To facilitate the calculations, the direction of the velocity 
can be taken to be in the positive x direction and spherical 
coordinates will be used. A natural choice of unit vector in 
the observation direction for the outgoing radiation is then 
= | |′ ′ ′n e e/r r , i.e. ( )θ θ φ θ φ=′ ′ ′ ′ ′ ′n cos , sin sin , sin cos , where 

θ′ is the angle between the wave vector of the outgoing radia-
tion and the velocity and φ′ is the angle between the two trans-
verse components of the observation direction, z and y. The 
polarisation vectors can then be given by the other unit vectors 
in the spherical coordinates triad, ′θe  and ′φe , which in terms of 
the laboratory frame angles gives:

( )
( )

( )
( )

( )
θ

γ β θ
θ β φ
β θ

θ β φ
β θ

=
−
−

−
−

−
−

′ε
⎛
⎝
⎜

⎞
⎠
⎟

sin

1 cos
,

cos sin

1 cos
,

cos cos

1 cosout
1

 

(12)

0, cos , sin .out
2 ( )φ φ= −′ε (13)

The displacement in the rest frame can be expressed in 
terms of the laboratory quantities:

( ) ( ( ) )γ∆ ∆ ∆ = − ∆ ∆ ∆′ ′ ′x y z v v t v t v t, , , , ,x y z

where γ is the Lorentz factor of the electron, vx, vy and vz are 
the components of the velocity of the electron in the labora-
tory in the trajectory infinitesimal segment.

Substituting the rest frame displacement and the outgoing 
radiation polarisation vectors into equation  (10) the specific 

emissivities in the polarisation directions 
1

out′ε  and 
2

out′ε , 

denoted by α1 and α2, respectively, can be computed. The two 
contributions can be summed inside the modulus since they 
are perpendicular to each other and the complete emissivity 
formula is obtained:

⎡
⎣⎢

⎤
⎦⎥

I e

c
t c t

n n
n r

d

d d 4
exp i / d .

2 2 2

2 3

2
( ) ( )∫

β
ω

ω
π η

ω
ηΩ

=
× ×

− ⋅

 
(14)

This formula recovers the result of Sokolov et al [18], i.e. the 
changes in the spectrum due to recoil (neglecting spin-effect 
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contributions) are given by replacing the vector amplitude of 

emission ( )ωA  by A /1/ ( )( )η ω η  in the classical emissivity 

formula [30]:

I e

c
A

d

d d 4
.

2 2 2

2
2( )

ω
ω
π

ω
Ω
= | | (15)

It also reduces to the classical emissivity in the limit →η 1, 
whereas the three-dimensional result of Lieu and Axford [32] 
did not when φ≠ 0. The emissivity obtained here is then 
applicable to an arbitrary observation direction. The changes 
in the above calculations which allowed this generalisation 
were two: setting the unit vector of observation direction ′n  
to = | |′ ′ ′n e e/r r  and extending the perpendicular displacement 
vector ∆ = ∆′ ′ ′⊥ tr v  to three dimensions. We also note that in 
doing the integration by parts in the calculation of α1, the term

( ) ω
η

− ⋅

ω
η
ω
η

−∞

+∞⎡

⎣

⎢
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦

⎥
⎥
⎥

t
cn r

exp i

i
exp i / (16)

was neglected compared to

( )∫
β
η

ω
η

⋅
− ⋅

⎡
⎣⎢

⎤
⎦⎥

t c t
n

n rexp i / d , (17)

which is reasonable for sufficiently high values of ω given that 
⩽η<0 1. Since we are interested in radiation from very rela-

tivistic particles, a significant part will be at ω� 1. Neglecting 
this term facilitates the comparison of the result with the clas-
sical emissivity in the far field. However, this term can be 
included to deal with the lower frequencies. This has been 
done in JRad-QC.

It is important to stress that the only quantum effect con-
sidered here is the electron recoil, which leads to the Compton 
shift in the emitted frequency and the change in the scattering 
cross section. In the present work, the changes introduced in 
the radiation spectrum due to spin are not accounted for (since 
the Compton cross section  for spinless particles is used). 
Although this could be overcome by considering the Compton 
cross section  for spin-1/2 particles [28], this is expected to 
give a significant difference at χ> 1 where the Landau and 
Lifshitz equation  of motion will not be applicable anymore 
due to the increased importance of stochastic effects, pair pro-
duction and emission of hard photons.

Equation (14) can be implemented in post-processing radi-
ation diagnostic codes such as JRad [29], which is the one 
used in this work. The particle trajectories can be obtained 
from particle-in-cell codes or from the integration of the equa-
tion of motion, including the radiation reaction force.

Two considerations must be taken into account when 
applying this method to practical cases with the post-pro-
cessing numerical tool. The first is that both the choice of 
time-step ∆t and of the total time interval of integration affect 
the ranges of emitted photon frequencies that can be modelled. 
The maximum frequency that can be modelled is determined 
by the fact that there must be a sufficient number of points to 
resolve the photon formation time ( τ∆ �t form), which is the 

time it takes for the radiated photon to separate itself from the 
electron that emits it [18, 35, 36]. For synchrotron scenarios, 

τ ∼
ω γform

1

L
 [37], where ωL is the synchrotron gyro-frequency. 

In the case of scattering of a laser pulse from an electron, an 
estimate for the photon formation time can be found from 

equation  (21) in [18], which is of the order of τ ∼ λ
γa cform

0

0
 

(for χ� 1), where λ0 is the laser wavelength. A more general 
approach to obtaining the maximum frequency at which one 
can obtain the emissivity in a general field configuration given 
a set time resolution (fixed ∆t) is detailed in [35].

While resolving the photon formation time leads to compu-
tationally demanding resolution requirements for PIC simula-
tions, an alternative method has been proposed [18, 30, 35] to 
model the frequencies beyond the limit set above for the time-
step. It uses the fact that when relativistic particles are subject 
to fields slowly varying in a photon formation time and linear 
acceleration emission can be neglected, radiation emission 
can be determined from the local synchrotron emissivity [18, 
30, 35]. The second consideration is that the minimum fre-
quency that can be computed with this method is such that a 
few photon formation times are contained in the total interac-
tion time T given by the integration limits, i.e. the minimum 
frequency that can be obtained is approximately a few times 
γ T/2  [35].

3. Comparison with QED results obtained with a 
probabilistic method

As a test to the quantum corrected diagnostic (JRad-QC), the 
synchrotron radiation of an ultra-relativistic electron in an 
ultra-intense magnetic field was computed with both JRad-QC 
and with OSIRIS-QED [26–39]. The latter calculates the QED 
probability of radiation emission and determines the photon 
energy to be emitted using a Monte-Carlo method and the 
QED synchrotron radiation spectrum.

In this benchmark the spectrum of an electron with γ = 200 
subject to a magnetic field of = ×B 5.7 1010 G (which cor-
responds to χ = 0.26) is compared with the result from 
OSIRIS-QED without damping. The case without damping is 
presented for reference since the theoretical radiation spec-
trum is known, and therefore can easily be used for bench-
marking purposes. In this case, the damping is turned off in 
OSIRIS-QED; hence the spectrum comparison tests solely 
whether the quantum correction in the model of Lieu and 
Axford reproduces the results obtained for photon produc-
tion according to a QED calculation of nonlinear Compton 
scattering.

An analytical trajectory (without damping) was produced 
according to the classical equations of motion for an electron 
in a static magnetic field (see for example [40]). The post-
processing diagnostic with quantum corrections was used 
to obtain the emitted spectrum as a function of a solid angle 
along a line perpendicular to the trajectory plane, at a dis-
tance of about 150 ωc/ r from the gyration circumference (the 
precise value is not relevant as long as it is in the far field),  
where ω = ×1.88 10r

15 rad s−1 is the normalisation frequency, 
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equivalent to ω= ��E 1.24r  eV. These spectra were then 
integrated into the solid angle to obtain ωId /d  (seen in red 
in figure  1). The result shows excellent agreement between 
the OSIRIS-QED and the JRad-QC spectra (which had been 
shown to be in agreement with the theoretical result for the 
synchrotron in the QED regime). We observe that compari-
sons with the QED calculations need to be done with careful 
consideration since the method is only valid for ultra-relativ-
istic particles and sufficiently high fields [41–43].

4. Transition from the classical to the quantum 
regime

To explore the nonlinear Thomson scattering spectrum in the 
transition to the quantum regime, trajectories from ultra-relativ-
istic electrons colliding with plane waves and laser pulses were 
produced by numerical integration of the equation of motion of 
Landau and Lifshitz with a Runge–Kutta method of integration 
of fourth order [31]. The radiation diagnostic JRad-QC / JRad 
was then used to compute the radiation spectra at line detectors 
in the far-field region with/without quantum corrections.

To investigate when quantum effects start to signifi-
cantly affect the radiation spectrum a series of spectra has 
been computed for the case of a circularly polarised plane 
wave with a normalised vector potential of a0  =  0.88, 1.77, 
7.07 scattering off an electron with γ = 103 (travelling in 
the  + x1 direction) in counter-propagating geometry, which 
corresponds to the nonlinear quantum effects parameters of 
χ = 0.0043, 0.0086, 0.034, respectively. The plane wave is 
preceded by a rising ramp but the electron energy is adjusted 
so that γ� 103 at the beginning of the flat part of the wave, 
which lasts for �t 38flat  �T 1270  fs, where T0 is the wave 
period. The virtual detector is a line at x3  =  0 and the normali-
sation frequency is the same as the frequency of the mono-
chromatic wave ω = ×1.88 100

15 rad s−1 (which corresponds 
to 1 μm wavelength or ω= ��E 1.240  eV).

Two effects are readily observed in the spectra in figure 2. 
First, in the case of a0  =  0.88 a shift in the frequency of the 
harmonics can be seen. Second, in all the cases, a reduction 
of the radiated energy at higher frequencies is observed, as 

expected [14, 15]. The energy lost by the electron over the 
interaction time for the case of a0  =  7.07 was about 21%, 
which gives an average energy loss rate of 0.55% per period of 
oscillation. This slow energy loss rate is the reason behind the 
almost symmetric profile in the spectra, which would not be 
expected if the electron were to change its energy by a signifi-
cant amount during an oscillation period. It is then possible 
to estimate the total energy captured by the detector by doing 
an integration in a solid angle and in photon energy, assuming 
cylindrical symmetry around the direction defined by the ini-
tial momentum direction of the electron, in this example the 
line in the  +x1 direction, at x2  =  0 and x3  =  0. Doing so, one 
obtains 271 keV from the integration of the detector without 
quantum corrections, 104 keV for the detector with quantum 
corrections and 109 keV from the direct measure of the energy 
loss by the particle in its trajectory. The energy captured in 
the detector with the quantum corrections is very close to 
the value measured in the track, which further supports the 
validity of the formula for the quantum corrected emissivity.

Regarding the other values of a0 investigated, the energy 
captured in the detector with quantum corrections is also 
closer to the energy difference measured in the track but the 
difference is smaller, which could be anticipated from the fact 
that the observed differences in the spectrum are also less sig-
nificant than in the highest a0 case.

In the scenario explored here quantum stochasticity effects 
have not been taken into account. It has been shown in the 
literature that even at χ< 1 or even �1 these effects can play 
a role and lead to an increased energy spread and increased 
spread in transverse momentum compared to the observed 
values in the trajectory obtained with the Landau and Lifshitz 
equation  of motion [44, 45]. To understand the possible 
impact of these effects for the case of a single electron, an 
ensemble average of OSIRIS-QED simulations with an elec-
tron counter-propagating with a wave with the same param-
eters as used in the case with a0  =  7.07 was performed. It was 
found that the estimated maximum spread in perpendicular 
momentum was on the order of ∆ ∼⊥p 2 mc and in γ it was 
about γ∆ ∼ 200. The maximum deviation in the divergence 
should then be approximately  ∼( ) ( )γ∆ < >⊥p t/ f , which gives 
about  ∼3 mrad, or in terms of spatial spread in our detector 

Figure 1. (Left) Spectrum determined over a line perpendicular to the synchrotron trajectory plane determined from the JRad diagnostic 
with quantum corrections (JRad-QC). (Right) The red line represents the synchrotron spectrum obtained with JRad-QC and the black line 
is the result obtained with OSIRIS-QED.
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30 ωc/ 0. For a more realistic beam with an initial energy and 
momentum spread, the analytical formulas in [44] can be used.

5. Laser pulse scattering

The scattering of a linearly polarised laser pulse from an 
electron with γ = 1030 (travelling in the  +x1 direction) in 
counter-propagating geometry was also explored, in a con-
figuration similar to [4]. In the scenario studied here, the laser 

pulse has a 1 μm wavelength, 26.5 fs duration and a peak nor-
malised vector potential of a0  =  10, 20, 30 (corresponding to 
χ� 0.035, 0.071, 0.106 for the initial electron energy used) 
and is linearly polarised in the x2 direction. The spectra com-
puted for a line positioned at =x 101

4 ωc/ 0 and x3  =  0 ωc/ 0 
with and without quantum corrections are depicted in figure 3. 
From the results, it can be seen that as the peak a0 increases 
the shape of the spectrum with quantum corrections changes 
more and more significantly, especially at higher angles of 

Figure 2. Spectra of the scattering of a circularly polarised plane wave with a0  =  0.88 (1), a0  =  1.77 (2) and a0  =  7.07 (3). The plots 
labelled (b) refer to the calculation with quantum correction (JRad-QC) and those labelled (a) to the classical emissivity calculation (JRad). 
The white lines represent the spectra integrated in a solid angle assuming cylindrical symmetry.

Figure 3. Spectra of the scattering of a linearly polarised laser pulse with a0  =  10 (1), a0  =  20 (2) and a0  =  30 (3). The plots labelled 
(b) refer to the calculation with quantum correction (JRad-QC) and those labelled (a) to the classical emissivity calculation (JRad).
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observation (higher x2 values in the detector axis). In addition, 
at the highest a0 case, spike structures are clearly seen. These 
are correlated with the maxima in the transverse momenta, 
where the derivative of γ is zero (see figure 4), and also exist 
in the classical case. However, the quantum corrections lead 
to a stronger decrease in radiated energy between the spikes, 
making them appear more clearly.

The spectrum changes are more complex and seem more 
dependent in the angle in the laser pulse scattering setup com-
pared with the plane wave scenario. This will be explored in 
more detail in a future publication.

As mentioned in the previous section, the calculations pre-
sented here do not include stochastic effects. These will lead 
to the smearing of the features observed in figure 4. Stochastic 
effects will in general lead to an increase in divergence and 
energy spread. This can counter the observed narrowing in 
angular interval where most of the emitted radiation is observed 
according to panel (b3) in figure  4. Through OSIRIS-QED 
simulations it was possible to estimate this effect for an elec-
tron (or a beam with zero energy and momentum spread). For 
the case with a0  =  30 a maximum spread in momentum of the 
order of  ∼6 mc and in energy of γ∆ ∼ 350 was obtained, and 
an estimate for the maximum change in angular angle of emis-
sion of t/ f( ) ( )ρ γ∆ < >⊥   ∼8 mrad which translates to  ∼80 
ωc/ 0 in the spatial units of our detector. This seems to indi-

cate that a reduction in the angular divergence of the radiation 
would still be observable in comparison with the purely clas-
sical calculation plotted in (a3), but for a realistic experiment a 
more detailed estimate of these effects needs to be undertaken 

accounting for the actual expected electron beam properties. 
The fine structures of the spectrum observed here will most 
likely be smeared out and not observable in that case since 
they are much narrower than the central part of the spectrum 
where most of the emitted energy is observed.

6. Conclusions

In this paper it was shown that by extending the generalised 
FWW method of Lieu and Axford, the emissivity with 
quantum corrections due to the electron recoil can be derived, 
which had been obtained by a different approach by Sokolov 
et al [18], through QED perturbation calculations.

The quantum corrected emissivity was implemented in the 
numerical diagnostic JRad [29] and was used to determine 
the nonlinear scattering spectrum of relativistic electrons with 
ultra-intense laser pulses and plane waves. It was found that 
only when the quantum corrections are introduced does the 
energy captured in the virtual detector spectrum become con-
sistent with the energy loss by the particle (as measured from 
the integration of its equation of motion).

The analysis of the scattering of ultra-intense linearly 
polarised laser pulses from relativistic electrons revealed that 
the changes in the transverse momenta and energy of the elec-
tron during the interaction led to a complex spectrum shape. 
For larger angles of observation, spike features are observed 
in the spatially resolved radiation spectrum, surrounded by 
regions of lower radiation emission. The shape changes reflect 
the changes in the Compton shift during the interaction, which 

Figure 4. Evolution of the electron transverse momentum ( p2) (top left pane) while interacting with a laser pulse with a0  =  30 and of 
the position in the detector to which it points (bottom left pane). The line spectrum from the scattering of the laser pulse off the electron 
is shown (right pane). The dashed lines show the peaks in the spectrum originate from points in the trajectory where γ =td /d 0, which 
correspond to the peaks in the transverse momentum.
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were much more significant in the laser pulse scenario than 
in the plane wave case for the parameters used. This can be 
attributed to a combination of stronger radiation damping and 
bigger changes in the field amplitude experienced by the elec-
tron in the laser pulse scattering scenario with higher peak a0 
as compared to the plane wave cases.
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