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Abstract. A survey of theoretical and experimental results on plasmas with strong Coulomb
interactions is given. First the basic theoretical concepts describing nonideality, degeneracy
and screening are introduced. The general structure of the thermodynamic functions and the
phase diagram in the density–temperature plane is explained. Relevant experiments including
shock waves and pulse-produced plasmas are briefly reviewed. Results on the critical data,
thermodynamic and electric properties around the critical point and in supercritical states
are discussed. The existence of high-pressure, high-temperature plasma phase transitions is
investigated. After a brief discussion of transport properties the kinetics of ionization and
reaction processes is studied. The influence of nonideality on ionization and nuclear fusion rates
is investigated.

1. Introduction

More than 90% of matter in the universe and, especially, the stars and the giant planets are
in the state of dense plasmas. In many of these plasmas the mean potential energy is of the
same order of magnitude as the mean kinetic energy. Then we speak about nonideal plasmas,
or sometimes the term strongly coupled plasmas is used. The physical properties of such
plasmas are determined by the Coulomb interaction between the charged plasma particles.
Dense plasmas play an important role in nature, laboratory experiments and in technology.
Correct understanding of the structure and evolution of the most interesting astrophysical
objects such as the Sun, the giant planets, white and brown dwarfs, is impossible without
the consideration of Coulomb effects. The plasmas in alternative fusion concepts based
on pellet compression with laser and heavy-ion beams cross the region of strong coupling.
Ordinary devices like high-pressure discharge lamps used on streets or vacuum-arc cathode
spots which appear in tokamaks as well as in high-current vacuum interrupters involve dense
plasmas. These and other examples are shown in figures 1 and 2. Dense nonideal plasmas
are a difficult, but rather interesting field of modern research [1–4]. Such plasmas also play
a major role in modern technologies. For example, high-energy pulse power technology is at
least partially based on the generation and application of strongly coupled plasmas because
the high energy density connected with this technology requires high particle densities in
the carrier material and also a practically indestructible medium with a short recovery time
after load.

The consequent theoretical treatment of dense plasmas demands quantum statistics of
interacting many-particle systems. The most important physical effects of the Coulomb
interaction and of the quantum-mechanical uncertainty and exchange are: lowering
the border between the discrete and the continuous energy spectrum, thus lowering
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Figure 1. The location of several plasmas from nature, laboratory experiment and technology
in the electron-density–temperature plane. Above the dashed line the electrons in the plasma
are degenerate. The lines0 = 0.1, 1.0, 10 mark the border between ideal and strongly coupled
plasmas.

Figure 2. The location of several plasmas in the pressure–temperature plane. Below we show
additionally the coexistence line and the critical point for the liquid–gas transition in tungsten.
In the centre of the diagram a theoretical result for the coexistence line and the critical point of
the plasma phase transition in hydrogen is shown. At lower temperatures it corresponds to the
metal–nonmetal (M–NM) transition in solid molecular hydrogen.
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the effective ionization and excitation energies, shift and broadening of spectral lines,
exponential enhancement of excitation processes as well as fusion rates, modifications of
the equation of state, pressure ionization and the appearance of new high-pressure phase
transitions.

The structure of this review is as follows. In section 2 we introduce some
dimensionless plasma parameters, outline an elementary theory for the thermodynamic
functions, summarize experimental as well as theoretical results for thermodynamics and
phase transitions. Section 3 is devoted to kinetic processes and, in particular, to reaction
kinetics for electronic and fusion processes. The kinetic equations are given and the nonideal
reaction rates are derived.

2. Thermodynamic properties

2.1. Theoretical plasma thermodynamics

The thermodynamics of nonideal plasmas is quite different from the thermodynamics of real
gases; this is mainly due to the long-range character of the Coulomb potential [6]. For one-
component plasmas consisting of one type of ions and a neutralizing uniform background
the characteristic parameter of nonideality is

0 = (e2/kBT di) (1)

wheredi is the average distance of the ions defined by

(4π/3)d3
i = V/Ni = n−1

i . (2)

Hereni is the ion density andkB is Boltzmann’s constant. In the classical case the interaction
part of the free energy per particle (in units ofkBT ) depends only on0. Quantum effects lead
to important corrections to the classical behaviour; in particular we mention the existence
of bound states and symmetry effects [1, 5]. Recently, the theory of quantum plasmas
succeeded in making considerable progress in the calculation of thermodynamic functions
[7, 9–12, 15]. As is well known, modern theory of quantum plasmas uses a whole spectrum
of methods such as the approach based on Slater sums [7, 11], the Green’s function technique
[1, 11], the density functional technique [9], quantum Monte Carlo methods [17, 18],
wavepacket dynamics [19, 20] and other methods [2, 13, 14, 22]. Several new results
were obtained recently with the help of an approach based on the Feynman–Kac technique
[15]. In general, each of these methods is particularly useful for calculations in specific
parts of the density–temperature plane or for solving special problems. For example, the
technique of Slater sums in combination with cluster expansions is well suited for the low-
density region [7, 8]. The Green’s function method and the density functional method are
more appropriate for the degenerate region [1, 9, 11].

Using the method of Slater sums in 1968–70 the density expansions of the pressure
and the free energy density were studied systematically. In this way exact expressions for
the contributions of the orders O(n3/2), O(n2 logn) and O(n2) were calculated without any
approximations [1, 7]. Further, the order O(n5/2) was calculated approximately [11, 16].
New calculations by means of the Feynman–Kac technique and by the Green’s function
technique reconfirmed these expressions and gave a new result for the contribution of the
order O(n5/2) [15, 21]. In some sense the statistical thermodynamics of plasmas has followed
a similar path to the theory of real gases about a quarter of a century earlier, where the
theory started with virial expansions and arrived more and more at closed expressions [2, 5].
Therefore considerable effort was devoted to the calculation of higher-order contributions to
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the EOS and other thermodynamic functions. The significance of exact expressions for the
higher-order terms in virial expansions is, in particular, connected with the existence of new,
very precise measurements for the EOS based on astrophysical observations [28]. Further,
we also mention the new rather precise shock compression experiments [29, 51]. One may
hope that in the near future new expressions for the higher-order quantum corrections up to
order O(n3) will be available. This would allow us to include the three-particle quantum
effects. A strong argument in favour of these efforts is:

(i) long experience of workers in the theory of real (neutral) gases has shown that the
calculation of higher-order virial coefficients gives a lot of insight into the structure of the
full thermodynamic functions and

(ii) the knowledge of higher-order terms provides good possibilities for constructing
Pad́e approximations [2, 12, 24, 26, 27].

Let us now consider a simple version of the thermodynamic theory, the so-called
Lambda approximation [1, 2, 14, 22, 23]. This approach is closely related to the Debye–
Hückel theory for classical charged hard spheres with a fixed diametera. In the Lambda
approximation we use the same analytical form as the Debye–Hückel theory, but with a
temperature-dependent quantum lengtha(T ) instead of the classical parametera. In addition
to the Debye–Ḧuckel terms, van der Waals terms are also introduced into the thermodynamic
functions. One can easily show by using Heisenberg’s uncertainty relation that a reasonable
choice of the quantum diameter is given by the thermal de Broglie wavelength

a(T ) = 3/8 (3)

3 = h/(2πmekBT )1/2. (4)

In a recent analysis it was shown that the simple analytical structure of the Lambda
approximation yields, at least semi-quantitatively, a correct behaviour in the density–
temperature plane, even including phase transitions [1, 14, 22]. Therefore one can
recommend this simple approximation for a first analysis of the thermodynamic properties
of quantum plasmas. This approximation is, however, restricted to nondegenerate plasmas.
The Debye–Ḧuckel formulae for the thermodynamic functions in the Lambda approximation
are to be completed by a Saha equation. We consider only the simplest caseZ = 1, and
introduce the total number density of heavy particlesn = n0 + ni = n0 + ne. The degree of
ionization is defined byγ = ni/n = ne/n. Now the Saha equation reads

1 − γ

γ 2
= na3

3σ(T ) exp

(
− 1I

kBT

)
. (5)

Here

1I = e2κ
√

γ

kBT (1 + κa(T )
√

γ )
− Wn(2γ − 1) (6)

is the lowering of the ionization energy. Further,W denotes the coefficient of a polarization
contribution which is of particular importance for alkali plasmas and for mercury plasmas
[31].

Let us now briefly discuss a more complicated approach named PACH, which means
Pad́e approximation in the chemical picture [2, 27]. Padé approximations of the interaction
contributions of thermodynamic functions [2] are based on an interpolation between the
analytical expressions at low densities (virial expansions) and the known limits at very high
densities. The simple analytical form of the Padé formulae allows fast access to different
thermodynamic properties over a wide range of density and temperature. The free energy
of the plasma is represented in a similar form to the Lambda approximation but with more
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complicated functions for the Coulomb and for the van der Waals contributions. In order to
find the thermodynamic equilibrium within the Padé approximation in the chemical picture
(PACH) for a given temperature and density one has to minimize the free energy with respect
to the abundancies of the various free and composite particles [30]. After performing this
procedure on a dense grid in the density–temperature plane one can calculate different
thermodynamic properties.

In recent work [27, 30] we have calculated, within the PACH approach, the pressure
factor p/pF

id, wherep is the actual pressure andpF
id denotes the ideal pressure of a fully

ionized plasma derived from Fermi–Dirac statistics. In figure 3 we compare our PACH
results at a fixed density with recent path-integral Monte Carlo simulations from Pierleoni
et al [18], we find a reasonable agreement. In figure 4 the lines of constant pressure factor
in the density–temperature plane taken from [27] are represented for H plasmas. We see
that the nonideality region with respect to the pressure is located in the left-hand lower
corner of the density–temperature plane (the so-called corner of correlations).

Figure 3. The pressure factor over the coupling parameter0 for three different approaches:
ionization equilibrium within the Pad́e approximations in the chemical picture, PACH (full
curve), path-integral Monte Carlo simulations by Pierleoniet al (broken curve), ionization
equilibrium in the Debye model (dashed-dotted curve).

2.2. Phase transitions and experimental investigations

As is well known, real gases with attractive interactions show a first-order phase transition
described in thep–T plane by a critical point C1 and a coexistence line ending at C1.
Assuming that in our expressions for the free energy the Coulombic terms are omitted, a
simple van der Waals type expression is obtained with the critical point

TC1 = 8A

27kBB
nC1 = 1

3B
. (7)
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Figure 4. Lines of constant pressure factor for a hydrogen plasma calculated with PACH. The
values of the pressure factorp/pF

id are: (a) 0.25, (b) 0.35, (c) 0.45, (d) 0.55, (e) 0.65, (f ) 0.75,
(g) 0.85, (h) 0.95.

It is well known that in systems with a long-range Coulomb interaction, besides the classical
first-order phase transition typical for neutral gases, a second first-order phase transition may
appear. In the coexistence region of this transition the system is divided into two phases of
different degrees of ionization and different mass density. This is the so-called plasma phase
transition (PPT). The existence of a phase diagram including a separate PPT was discussed
for the first time in 1943 by Landau and Zeldovich [32]. First calculations of the plasma
phase transition are due to Norman and Starostin [33], Ebeling and co-workers [1, 34]. In
spite of the quantitative corrections with regard to the exact location of the critical points
and the coexistence line [2, 4, 36] there are several statements which are independent of
the nature of the approximations:

(i) In the p–T diagram, the pressure region beyond one gigapascal includes a line of
a first-order phase transition connected with delocalization of electrons. This is the metal–
nonmetal transition or Mott transition [1, 37, 38].

(ii) At lower temperatures this transition corresponds to a dielectric–metal transition
whereas at higher temperatures(T > 103 K) the plasma phase transition occurs.

(iii) Above the critical temperatureTC2 instead of a sharp transition, a soft transition to
full ionization is observed with increasing pressure.

Omitting the van der Waals and the polarization contributions in the Lambda
approximation, the critical point of the PPT may be obtained analytically [1, 14, 22]. We
find the critical temperature

TC2 = e2

8kBaB
' 13 000 K (8)

and the critical density of the free electrons (aB is the Bohr radius)

nC2 = a−3
B ' 2.7 × 1020 cm−3. (9)
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In the general case that all interactions are simultaneously present, investigation of the
critical conditions requires numerical methods. However, under conditions whereTC1 �
TC2, nC1 � nC2 the estimates given by (8) and (9) remain valid, at least approximately.
In real systems this case would correspond to hydrogen [34, 36], helium [14, 24] and to
noble gas plasmas [25]. Recently, the model case of symmetrical plasmas was studied
by Lehmann and Ebeling [22]. This case may be of some interest for applications to
electron–hole plasmas in semiconductors or possibly in the future to electron–positron
plasmas.

In metallic plasmas (such as Cs, Na, K, Rb, Hg) the existence of one first-order phase
transition is a well known fact [39, 43]. There is much experimental and theoretical evidence
that this phase transition in metals is due to a fusing of the van der Waals transition and the
plasma phase transition. We therefore find in metals a transition which is a mixture of both
types. In the simple model given by the Lambda approximation the case of metals would
correspond to the conditions

TC1 ' TC2 nC1 ' nC2. (10)

In metals the thermodynamic properties in the region of the unified phase transition are
determined by van der Waals interactions and by Coulomb interactions. This leads to a
rather complicated behaviour around the critical point [39, 42].

Let us now consider the situation for hydrogen plasmas in more detail. Figure 5
shows the estimatedp–T diagram of hydrogen. In the upper right-hand corner different
lines of coexistence and critical points of the PPT calculated by different authors are
also shown [34, 36] and further data points from shock-wave experiments in hydrogen
(H) and deuterium (D) are shown [50, 51]. With respect to the coexistence line we
note that the slope dp/dT is negative, as a consequence of the effects of pressure
ionization and temperature ionization. As temperature increases the predicted transition
pressure is about one order of magnitude lower than the low-temperature transition pressure
for the nonmetal–metal transition. This can be understood in the light of rather crude
approximations. For high temperatures the Lambda approximation may be used to describe
the behaviour of partially ionized plasmas. At lower temperatures, coexistence between
a molecular dielectric and a metallic liquid is expected. The condition for this transition
was estimated by Marley and Hubbard (MH) [38]. Earlier shock-wave experiments in
hydrogen and deuterium [50] pass the region of interest without showing signs for such
a phase transition (figure 5). These experiments were characterized by calculating the
density and the pressure from shock velocity and the temperature from a model EOS.
Typically, such experiments supply some isolated points in a state diagram rather than
continuous curves. Further, the EOS used in the analysis of the experiment was not
the same as that used in the theoretical predictions. Therefore the conclusions drawn
by these authors about the nonexistence of the described plasma phase transition were
not convincing. Recently, the same group from Los Alamos [51] has measured electrical
conductivity produced by shock waves in the relevant region. A nonmetal–metal transition
has been found; however, not as a sudden jump but as a transition over a certain range
of temperature (2200–3000 K) and pressure (90–140 GPa). Again the authors’ denial
of the whole plasma phase transition on the basis of only these results does not seem
convincing. In fact, a transition to a highly ionized state was observed and it seems to
be too early to draw conclusions about the exact nature of this transition. Moreover, the
experimental result should be discussed critically and attract more theoretical work on this
low-temperature part of the phase transition. The point of view of the present authors
is that the low-temperature nonmetal–metal transition and the high-temperature PPT are
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Figure 5. Phase diagram of hydrogen in the pressure–temperature plane. The notations
are: C1, critical point of the liquid–gas transition; C2, critical point of the plasma phase
transition; Tr1, triple-point dielectric solid/dielectric liquid/dielectric gas; Tr2, triple-point
dielectric solid/dielectric fluid/metallic fluid (dense fully ionized plasma); Tr3, triple-point
dielectric solid/metallic fluid/metallic solid. The dotted curve corresponds to shock-wave data
in hydrogen (H) and deuterium (D). W is the metallization area according to Weiret al (1996).

just two sides of the same thing. We also mention new static high-pressure experiments
in the megabar region resulting in detailed analysis of the phase diagram of deuterium
plasmas at low temperatures [52]. The reason for the existence of two phase transitions
in hydrogen and in noble gases can be found in the large differences between the energies
of dissociation and ionization of these gases (about three orders of magnitude). In metals,
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however, the metal–nonmetal transition is closely related to the liquid–gas transition. Here,
both energies differ by less than one order of magnitude. Using an equation of state for the
environment of the critical point in a metallic fluid derived by Likhalter [42] on the basis of
percolation theory, critical data [43] and data on the metal–nonmetal transition have been
obtained.

3. Kinetic and transport properties

3.1. Transport properties and rate equations

Dense plasmas are collision-dominated; therefore, the laws of irreversible thermodynamics
hold, as a rule, to a very good approximation. There has been a lot of theoretical as well
as experimental work devoted to transport coefficients of dense plasmas. As a survey we
mention several monographs and original papers [2, 29, 31, 49, 54].

The overwhelming majority of theoretical work is focused on the electrical conductivity
which is mainly determined by the mobility of the electrons. If the effective collision
frequency is given byνe then the conductance will be given by

σ = nee
2/(meνe). (11)

The problem now is to calculate the collision frequency which is strongly influenced by
Coulomb effects (see e.g. [49]). Of particular interest for theoretical and practical reasons
is the conductivity of metallic plasmas around the critical point. In an expanding metal,
the electrical conductivity decreases with decreasing density. To some extent, temperature
does not influence the conductivity essentially. During the expansion process, the critical
density will be passed more or less below or above the critical point depending upon
the pressure reached. At this point, the conductivity of the alkali metals rubidium and
caesium [40] remains well above the so-called minimum metallic conductivity [37] of
about 200�−1 cm−1, which means that the vapour—not too far from the critical point—
shows metallic conductivity, or, in other words, the metal–nonmetal transition does not
occur until the critical density has been passed (i.e. at lower than critical density). It is
expected (but experimentally not yet verified) that most other metals behave in a similar
way. Mercury, however, shows quite different behaviour. During the expansion of mercury
by heating, there is a remarkable change in its electrical properties before the critical density
has been reached, i.e. at higher than the critical density [39]. At the critical point, the
electrical conductivity is as low as about 1�−1 cm−1. Mercury is no longer a metal;
the metal–nonmetal transition occurs at higher than the critical density. Mindful of these
circumstances, Young [41] expressed his conviction that ‘. . . the metal–nonmetal transition
and its connection with the liquid–vapour transition is a major challenge both experimentally
and theoretically. Given the experience so far with mercury, it would not be surprising if new
exotic states of matter occurred in hot, expanded metals which are presently inaccessible to
experimental work’. The conductivity of the following elements should show mercury-like
behaviour: the alkaline-earth metal magnesium but not beryllium, strontium and barium (no
data for calcium are available), the metals of the IIB group zinc, cadmium and, of course,
mercury itself, the semi-metals arsenic and antimony (VA; no data are available for bismuth),
and finally selenium and tellurium of the VIA group. For selenium, there already exists
an experimental hint about very low electrical conductivity at its critical point [44]. The
electrical conductivity of tungsten is similar to that of copper [45, 46] at the critical point
higher than 103 �−1 cm−1, and it therefore has metallic character. For zinc, however, there
is a prediction based on a theory of Likhalter [42] that the metal–nonmetal transition will
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occur atρ/ρc = 1.39. As can be seen from figure 6 zinc has, at the corresponding reduced
density, a metallic conductivity comparable to that of tungsten (' 3 × 103 �−1 cm−1).
Although the conductivity of zinc afterwards decreases much faster than that of tungsten
with increasing expansion, it reaches the metal–nonmetal transition (the minimum electrical
conductivity) only atρ/ρc = 0.5 and not at 1.39 as predicted.

Figure 6. Conductivities of tungsten, zinc, caesium and mercury over the reduced mass density.
In this density region the conductivities depend only weakly on the temperature. The horizontal
line marks the Mott conductivity.

Recently, new experimental findings of a conductivity increase over more than three
orders of magnitude in hydrogen between 93 and 140 GPa and corresponding temperatures
between 2200 and 3000 K were reported [51]. Whether these results are already sufficient
for the conclusion ‘that the first-order phase transition predicted to occur at 100 GPa and
10 000 K between weakly dissociated and substantially dissociated fluid phases probably
does not occur’, is so far not convincing.

In contrast, this experiment is located just in the low-temperature range of the predicted
plasma phase transition between the results of Ebeling and Richert (lower values) and
Saumon and Chabrier (higher values), and it is (as we see it) a strong support for the
metal–nonmetal transition which may be modified at lower temperatures by dissociation.

Let us now consider the kinetics of ionization processes. We will assume that the plasma
is thermalized, i.e. the electron and ion velocities are distributed according to a Maxwellian
distribution and that the electron temperature is equal to the ion temperature. In general
this is not exactly true, but dense plasmas are in most cases isothermal, which is due to the
strong coupling between the electrons and the ions. We further assume that all electrons in
bound states are in thermal equilibrium. In order to describe ionization processes we have
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to include impact ionization and three-body recombination:

a+ e → i + e+ e i + e+ e → a+ e. (12)

Here the abbreviations a, i, e denote as above the atomic, ionic and electronic species,
respectively. The kinetic equations describing the ionization process read [2]

ṅ0 = −αnen0 + βn2
eni (13)

whereα is the ionization coefficient andβ the recombination coefficient. The influence of
nonideality on these coefficients will be discussed later.

Ionization processes in multiply charged plasmas and internal electron transitions which
have a large influence on many properties of plasmas may be treated in a similar way [2,
27, 53, 56–58]. We mention here only first attempts to simulate ionization processes in
hydrogen by new methods of quantum molecular dynamics [20].

Finally, let us consider a fusion reaction

d + p → He (14)

occurring in a dense plasma. The rate equations will assume the form

ṅHe = Rnpnd − SnHe (15)

whereR is the fusion rate coefficient andS the decay (fission) coefficient. The influence
of nonideality on these coefficients will be discussed in the next section.

3.2. Nonideality effects in reaction rates

Let us first consider the rate coefficients in ideal plasmas. In this limiting case the rate
coefficients for ionization or excitation of an atom or ion are obtained by averaging a cross
sectionσ(v) over the Maxwell velocity distribution. The cross sections are available from
quantum mechanical calculations and from measurements [54]. For practical calculations
several interpolation formulae are available [20]. Let us now study the influence of
nonideality on the rates. The rate equations for the ionization reaction yield, in the
equilibrium case,

αnen0 = βn2
eni . (16)

The condition that this is consistent with the nonideal Saha equation gives

β

α
= 33σ(T ) exp

(
− 1I

kBT

)
. (17)

Taking into account the ideal case we finally get the condition

α

β
= αid

βid
exp

(
1I

kBT

)
. (18)

In other words, the relation between the ionization and the recombination coefficients is
given by a purely thermodynamic quantity, the lowering of the ionization energy, which
strongly increases with the density. From these considerations we can just find the
corrections to the relations of rates. In order to find the individual rates we need an additional
assumption. In a dense nonideal plasma it can be shown that the recombination coefficients
depend only weakly on the nonideality [2, 53, 59]. Therefore the rate coefficients are given
approximately by

β = βid α = αid exp

(
1I

kBT

)
. (19)
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Here 1I > 0 is the decrease in ionization energy which in the Lambda approximation
is given by (6). This assumption is in agreement with quantum-statistical results of
Klimontovich [53] and other workers [2, 56, 57]. In a similar way one can treat the
more complicated case where transitions between different ionic charges and excitation
processes are included [54, 58]. We mention here only several interesting applications of
these equations to plasmas of practical interest such as, for example, carbon and polyethylene
plasmas [58].

Finally, let us study the influence of nonideality on the rates of fusion reactions. The
rate equations for the fusion reaction yield, in the equilibrium case,

Rnpnd = SnHe . (20)

The condition that this is consistent with the nonideal mass action law yields, in a
similar way as shown above in the Lambda approximation,

R

Rid
= S

Sid
exp

(
e2κ

kBT (1 + κa(T ))

)
. (21)

In other words, the relation between the fusion rate and the decay rate is again given
by a purely thermodynamic quantity. From these considerations we can just find the
corrections to the relations of rates. In order to find the individual rates we need an
additional assumption. According to the investigations of several researchers [60, 61] the
nonideality influences mainly the fusion rates, and leaves the decay rates unchanged. In
other words we get in some approximation the enhancement rate

A = R

Rid
= exp

(
e2κ∗

kBT (1 + κa(T ))

)
. (22)

Several even more general expressions of this type were derived by studying the pair
distribution nucleus–nucleus at small distances [60, 61]. According to Ichimaru [61] the
enhancement factor for fusion processes inside the Sun is estimated asA ' 1.02 according
to a nonideality factor0 ' 0.04. For the case of inertial confinement fusion Ichimaru
estimatesA ' 1.01 according to0 ' 0.01. For the (so far hypothetical) case of low-
temperature fusion in solid metal deuterides Ichimaru obtains very high enhancement rates
log10 A ' 5–10 [61].

Microscopic calculations of the fusion reaction of two nuclei have been done already
by Gamov. Taking into account the Boltzmann distribution of particle energy, heat rates of
thermonuclear syntheses were later obtained by Thompson [63]. There were many attempts
to improve Gamov’s theory by accounting for the influence of surrounding particles on two-
body nuclear reactions. Previously we have mentioned the thermodynamical approaches
(accounting for screening of Coulomb repulsion) which were developed by Jancovici and
further developed by Ichimaru [60, 61].

We will now present a different approach on the basis of Gamov’s microscopic theory
and the theory of microfields. Gamov’s formula for the rate of two-body fusion even if has
been obtained by solution of the Schrödinger equation for nonrelativistic inelastic scattering
exactly coincides (in the exponential part) with the quasiclassical formula for particle
penetration through a potential barrier. Thus, it is possible to avoid the complicated solution
of the Schr̈odinger equation, by using instead the quasiclassical formula. Quasiclassically
the penetration probabilityW through the barrier is expressed by well known dependence

W = exp

(
−(2/π)

∫ b

a

p dr

)
. (23)
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Herea andb are the classical turning points. In our casea = rn is the nuclear radius,
andb = rb is the radius of the barrier.

On the basis of this formula we can account for the influence of surrounding particles
in a rather natural way. Indeed, the fluctuations of the particle positions in the plasma (due
to the thermal motion) lead to fluctuations of the microscopic electric field at each point
of the plasma, according to Holtsmark’s classical work on ideal plasmas. The nonideality
of the plasma leads to quantitative corrections to Holtsmark’s result [62] but there are
no qualitative changes: the value of the root mean square amplitude of this random field
remains large, and is about the strength of the Coulomb field of a unit charge particle at the
characteristic interparticle distancedi [62]. Thus under each act of nuclear fusion the value
of the Coulomb barrier is strongly influenced by the random field potential. This correction
can be accounted for by introducing into the momentum of the reacting particle the value
of the random field potential.

Because all particles in the plasma participate in the thermal motion, the random
microscopic field will have a complicated spectrum. According to Baranger [62], we note
two parts of this field: low-frequency contributions (due to the dynamics of the ions), and
high-frequency contributions (mainly due to the motion of the electrons). It is easy to see
that the time changes of the field should be much slower than the time of fusion, i.e. the
time for one particle to penetrate through the potential barrier of another particle. If the
high-frequency component provides such rapid changes during the fusion time then it is
possible to suppose that this component does not yield a correction for the barrier potential
(because it is totally averaged over fusion times). There is just one exception, namely
the hypothetical process of cold fusion, when this component has a stationary character.
Indeed, the low-frequency component contributes to this correction because the changes of
the random field due to the motion of ions are slow enough.

Now, we will calculate the probability of barrier penetration in the quasiclassical
approximation taking into account the low-frequency component of the random
microscopical field. The momentump is defined by

p = (
(2m)[(Z2e2/r) − ε − ZFer]

)1/2
. (24)

Here ε is the projectile energy,m is the (reduced) mass of projectiles andZ is the ion
charge (we suppose that our plasma contains just one type of ion),r denotes the distance
between the reacting nuclei andF is the field strength. We suppose thata = 0 (the finite
size of nuclei can be easily evaluated if necessary), and introduce the parameter

ζ = 4Z3e3F/ε2. (25)

Then, expression (23) can be rewritten as

W(F, ε) = exp

(
−2(2mε3)1/2

h̄ZeF

∫ d

0

dx((d − x)(x − c))1/2

x1/2

)
(26)

where

d = (1 + ζ )1/2 − 1 c = −(1 + ζ )1/2 − 1. (27)

The integral in the expression forW can be evaluated through complete elliptical
integrals of the first kindK(k) and of the second kindE(k). Here the argumentk is
defined by

k =
(

d

(d − c)

)1/2

(28)
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W(F, ε) = exp

(
2((d − c)mε3)1/2[cK(k) − 2E(k)]

3h̄ZeF

)
. (29)

The mean reaction rates are obtained by averaging over the thermal energiesε and the
random fieldsF . In the case of the absence of electric fields we get Gamov’s result. By
averaging over the thermal distribution ofε, we obtain Thompson’s result [63].

If ζ is small but not equal to zero, we can expand our general formula (29) under the
exponent into a Taylor series. Keeping just the first term with respect toζ we find

W(F, ε) = exp(−π(2m/ε)1/2(Z2e2/h̄)(1 − ζ/96)). (30)

The factor

A∗ = exp(π(2m/ε)1/2(Z2e2ζ/96h̄)) (31)

can be interpreted as the relative enhancement of the fusion rate by the suppression of
the Coulomb barrier by a random (low-frequency) field. However, the validity of this
formula is restricted to the case when the action of this field is small. For example, for the
deuterium–tritium reaction under liquid fuel density and a temperature of 5 keV the value
of A∗ is about 10−6. The caseζ ' 1 for hydrogen plasmas corresponds to the value of
F ' 0.5×1010 CGS. Such fields can be obtained in plasmas at densities of reacting particles
of aboutn ' 1030 cm−3, which is slightly less then the densities inside white dwarfs [61].

Let us now consider another case whenζ is rather large (ζ → ∞). This case is also of
interest for reactions in white dwarfs. Under the condition

ζ → ∞ k →
√

2/2 (32)

we get finally

W = exp

(
−8πK(1/

√
2)

3h̄

(
Z5m2e5

F

)1/4)
. (33)

In this caseW grows slowly with the field strengthF . Practically, we observe a factor
0.9(Z3e3F)1/4 instead of

√
ε in the formula for smallζ values. We note further that the

condition ζ � 1 practically corresponds to the nonideal plasma conditions. In order to
show this, we takeF at the Holtsmark maximum,ζ ' 602, where0 is the parameter of
plasma nonideality. Further, we can determine the relative enhancement of the fusion rate
in the case of largeζ by dividing the value ofW(F, ε) by W(F = 0, ε):

A∗∗ = exp

(
π(2m)1/2Z2e2

h̄ε1/2
− 8πK(21/2/2)

3h̄

(
Z5m2e5

F

)1/4)
. (34)

Let us now estimate the enhancement factors for several examples. As a first
approximation we replace the field strengthF by the maximal value of the low-frequency
ionic field, which is according to Holtsmark’s distribution [62]

Fmax ' 3.9en2/3. (35)

We now consider the field influence for the proton–proton fusion in the interior of the
Sun. Here the density isn = 3.3×1025 cm−3, the plasma temperature is aboutT ' 1.3 keV
[61]. Introducing the maximal low-frequency ionic field, for such conditions we getζ � 1,
and using (31) we findA∗ = exp(0.0011). According to this estimate the enhancement is
about 0.11%, i.e. even smaller than the 2% obtained by Ichimaru [61].

For white dwarfs (WD), let us estimate the enhancement for the carbon–carbon reaction
[61]. Here the density isn ' 1032 cm−3, and the temperature isT ' 4.5 keV, and therefore
ζ � 1. By using Holtsmark’s maximum forF , which yields the estimate 3.9en2/3, the total
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enhancement can be obtained from (34). We find lnA∗∗ = 41.1 (to be compared with the
enhancement factor lnA∗∗ = 23.5 given by Ichimaru [61]). For He–He reactions in white
dwarfs we getn = 1.47× 1031 cm−3 andT ' 0.9 keV, ζ � 1, ln A∗∗ = 22.

Finally, let us consider ICF plasmas. For plasmas compressed 350 times by laser driving
(e.g. by an ICF process for the deuterium–tritium reaction) the characteristic densities are
n = 0.7 × 1025 cm−3 and the plasma temperatureT ' 4.5 keV. Under such conditions we
find with F = 3en2/3, ζ � 1, and, using (31)A∗ = exp(0.000 22), i.e. the enhancement
is about 0.022% (to be compared with 0.4% obtained by Ichimaru [61]). Summarizing we
may state that the estimated enhancement factor obtained from our microfield approach is
in general rather small (even smaller than the values estimated by Ichimaru). It remains,
however, to solve the problem of a more correct account for the nonideality effects in the
microfields.

4. Conclusions

We have demonstrated that a large part of the universe is in a dense plasma state. Under
laboratory conditions plasma nonideality requires rather exotic conditions, in particular a
very high energy density. Nevertheless, several rather interesting phenomena such as arcs
belong to this class. As we have shown, nonideality effects influence thermodynamic,
transport and kinetic properties. Of special importance is the influence of nonideality on
chemical equilibria and on reaction rates. The influence on fusion rates is in general rather
weak, except under the conditions of astrophysical objects.

In spite of the fact that plasma nonideality will not be a central theme of fusion research
we would like to express the hope that the theoretical analysis of nonideality effects and the
experimental expertise developed by researchers in this field will contribute to the solution
of special interesting problems.
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