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Abstract. The intra-atomic electron-electron Coulomb correlation energy U, which appears 
in the Hubbard Hamiltonian, is shown to be well approximated by the change in eigenvalue 
of a localized Hartree-Fock state that occurs when the occupation of that state is changed. 
A selfconsistent calculation of all the Hartree Fock states within a neutral Wigner-Seitz 
cell is made for three electronic configurations of each of the transition metals. Values of U 
are deduced from the differences in the d electron eigenvalues of the configurations. It is 
found that the ratios Vjct: where W is the bandwidth, show a trend across the transition 
metals which is in excellent agreement with the known magnetic properties of the their 
ground states. 

1. Introduction 

One of the most studied and certainly the simplest model to describe correlation effects 
in metallic crystals is the Hubbard model (Hubbard 1963, 1964a, 1964b, 1965, 1966). 
For simplicity this model was originally formulated as if the conduction electrons were 
all contained in a single narrow s band, and it is in this form that the model has been 
extensively studied (see the conference report on the Hubbard Hamiltonian 1968). The 
model is, however, not limited to such a system and may be used in the more realistic 
situation in which the electrons occupy a degenerate metallic d band (Siegel and Kemeny 
1972, Siegel 1973), and indeed the model was originally introduced to study the properties 
of d bands in transition metals. A general formulation of the model is begun by intro- 
ducing a complete set of atomic orbitals which we shall label ‘a’. Such orbitals may be 
used in a tight binding calculation, and a one electron tight binding Hamiltonian is 
obtained if only the energy E, of each orbital and the overlap integrals between the 
orbitals on atom i and atom j ,  Vk,j,,, are retained. However the Hubbard Hamiltonian 
was specifically intended for the study of correlation effects, and consequently the 
intra-atomic electron-electron interaction, U, is included. In practice and in the present 
calculation, U embraces only the interactions between two d orbital electrons on the 
same atomic site. If the degenerate d orbitals are labelled p, v, cr, 5 . .  . , then the Hamil- 
tonian has the model form 
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Although the model was originally meant for the study of transition metals, its most 
realistic application has been to transition metal oxides and other such narrow band 
materials (Adler 1968, 1970, Mott and Zinanion 1970). The purpose of this paper is to 
calculate a numerical value of the electron-electron interaction, U ,  which may be used 
in either context. 

The common conclusion of analyses of the model is the prediction of a transition 
from a normal band structure to a split band if U - K the bandwidth, and it has been 
shown that such a transition is a consequence of the model by Cyrot (1972a). The value 
of the ratio U/W at which this transition occurs has been the subject of a great amount 
of work ; this work has been reviewed in the references above and some recent calcula- 
t ims have been made by Ikeda et al(1972), Cyrot (1972b) and Johansson (1973). The 
transition causes the material to change from a metal to an insulator, or from a non- 
magnetic material into a magnetic one, and these features af the model may be con- 
sidered to be reasonably well understood. However, in spite of the large amount of 
work which has been expended on this model, there has been little progress made 
towards actually estimating the numerical values of U which may be expected to occur 
in real systems. These are important because the whole success of the Hubbard Hamil- 
tonian depends on correctly choosing the electron-electron interaction energy para- 
meter. 

The analytic expressions giving the matrix elements U in equation (1.1) in ternis of 
fundamental quantities are contained in all the textbooks on many particle theory (eg 
Thouless 1961). In the standard formalism, which is the formalism which has been used 
either directly or indirectly ever since the first Hubbard paper in 1963, the creation 
operator C,Tp creates (in configurational space) a well defined single particle atomic 
orbital, say +,,(r - RJ, on the crystal site i .  The electrostatic energy between two such 
orbitals is 

(1.2) 

and this appears to give a well defined value of U .  
In addition to this energy there is also an exchange term, but we shall ignore this 

term as it is normally considerably smaller than the direct Coulomb term. It should be 
clearly noted that if this definition is taken at its face value and evaluated directly, it 
gives, over a wide range of different shapes for the atomic orbitals, a value for the inter- 
action energy U of about 20 eV. Such a value causes unacceptable disagreement between 
the model’s predictions and experimental observations. 

This failing was realized quite early and it was suggested that the electron-electron 
interaction energy had to be ‘screened’, so that the value given by the definition (1.2) is 
not the value of U which appears in the Hubbard Hamiltonian. An early estimate by 
Herring (1966) suggested that the screened value might be as low as 0.5 eV, but a value 
as low as this is also in disagreement with the experimental results. In fact, very few 
attempts have been made to clarify the reason why the definition (1.2) is unacceptable. 
Instead values of U have been deduced experimentally, and when these values are used 
in the Hubbard Hamiltonian sensible results are obtained. 

The optical spectra of free atoms have been used by Friedel (1969) in order to deduce 
a value for U .  The spectral energy levels in atoms will be different in different configura- 
tions simply because of the electron-electron correlation energy, and hence a con- 
sideration of the transitions between different states of ionization allows an estimate of 
U to be made. This technique appears to be slightly marred by strong dependence on 
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the 4s shell occupation, and the difference between atomic and metallic d orbitals. By 
this method Friedel obtained an upper limit of lOeV for U in nickel. The correlation 
energy is, of course, still present if the transition element is present as a dilute impurity 
in a simple metal and probably the best estimates of U have been obtained using photo- 
emission results from the split virtual d levels of such impurities. These experiments are 
reviewed by Heeger (1969): they give a value of U which is nearly independent of the 
impurity concentration and is about 4 eV. 

This paper presents an a priori calculation of the effective electronelectron inter- 
action energy, the energy which should be used as an input parameter to the Hubbard 
model for the d electrons of the transition metals. The full reasoning behind our calcula- 
tion is given in $2, but in short we take the effective value of U to be the difference 
between the Hartree-Fock energy levels for a local d state in two different configurations 
of that atom. This is not a free atom calculation but is a Hartree-Fock cellular calculation 
with Wigner-Seitz boundary conditions. The details of this calculation are given in $ 3. 

2. On defining U 

Any elementary textbook on many body theory contains a section in which it is proven 
conclusively that a second quantized formalism such as the basic equation (1.1) of the 
Hubbard model (with the matrix elements defined analogously to ( 1.2)) is mathematically 
equivalent to the exact many particle Schrodinger equation in real space. At first sight, 
then, it would appear that (1.2) is a good definition of U ,  and that U should be of the 
order of 20 eV, even if this does disagree with experimental results. This is not correct. 
The equivalence of the second quantized form and the configurational space representa- 
tion of the Schrodinger equation depends on the use of a complete orthonormal set of 
states in the second quantized form, whereas the whole point of the Hubbard model is 
that only a very restricted set of orbitals is actually included. This is exactly the reason 
why the Hubbard model has been so widely studied: it is hoped that this simplified 
model still retains the physically important features of the real problem without having 
the complications of the exact Hamiltonian. When the entire set of the orthonormal 
basis states is not included in (1.1), then equation (1.2) no longer defines the ‘best’ value 
of the parameter U .  This value must be changed (‘renormalized’) in order to allow for 
the fact that the model Hamiltonian precludes any virtual transitions to these excluded 
states. It is the modifications to the wavefunctions which result from these virtual 
transitions to the excluded states which would ‘screen’ the value of U if they had been 
included. Formal expressions for the elimination of any given set of states from a 
Hamiltonian and the Schrodinger equation may be easily written down. but we shall not 
do so here. However, it should be noted that the value of U which is calculated to be 
the best input parameter for the Hubbard model should only include the screening 
from the excluded states and should not include anv effects which result from solving 
the Hubbard Hamiltonian itself. 

In a Hartree-Fock calculation of the energy levels of a free atom sinlilar considera- 
tions apply in that only one orbital per electron is included in the Slater determinantal 
wavefunction. In different configurations of the atom a Hartree-Fock calculation 
predicts different single particle energy levels, which is directly due to the electron- 
electron interaction. Moreover, these calculated levels are in good agreement with the 
observed spectral energy levels, especially on the scale of errors commonly tolerated in 
solid state physics. The Hartree-Fock. calculation allows for the virtual transitions to 
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excluded orbitals by allowing the single particle orbitals themselves to alter with the 
electronic configuration. Unlike the formal theory of second quantization a selfconsistent 
theory such as the Hartree-Fock method allows the single particle states to vary with 
their occupation, and in our calculation a similar idea is used in order to make allowance 
for the excluded virtual transition. 

We have performed a relativistic Hartree-Fock calculation for the elements of the 
first row of the transition metal series (Sc -+ Ni) with boundary conditions being chosen 
to be appropriate to an atom contained in a metallic crystal. The boundary conditions 
assume that the atom is entirely contained by a spherical cell whose volume equals that 
of the atom in the metal, as in the approach of Wigner and Seitz (1933). The boundary 
conditions on the surface of the cell are also those of Wigner and Seitz, heuristically 
modified for a relativistic calculation. The validity and nature of this method has been 
discussed at length for the nonrelativistic case by Brooks (1958). It might be noted that 
such a calculation is entirely structure independent, because only the volume of the 
cell enters into the calculation and not the crystal structure or even whether the structure 
is crystalline. Our results show that the value of U obtained is fairly insensitive to the 
radius of the cell and therefore should be applicable to materials other than just the pure 
metal. On the other hand these boundary conditions certainly alter the eigenvalues from 
those of a free atom (Watson 1960, Abdulnur et al 1972). 

In this local calculation the states ‘relax’ according to the configuration of the cell 
and thereby make allowance for the orbitals excluded from the Hubbard Hamiltonian. 
This alteration of the orbitals with the occupation of the cell implies that the creation 
and destruction operators in the second quantized formalism, C: and C,, are no longer 
associated with some unique orbital, 4.(r) in configurational space, as is usually assumed. 
The occupation of a Slater determinant is changed by such an operator, but at the same 
time all the other individual orbitals are correspondingly changed. Fortunately, the 
formal definition of the creation and destruction operators in terms of single particle 
orbitals is inessential to the validity of all the previous studies of the Hubbard model. 
What is essential is that the algebraic relations between these operators should remain 
the same. It is shown in the appendix that the commutation relations between the 
creation and destruction operators may be defined in terms of an occupation number 
Fock space formalism, and that the states with a given occupation number do  not 
actually have to be Slater determinants at all. 

Historically two local environment or cellular methods have been used in solid 
state physics. One of these is the Wigner-Seitz method which we have used and the 
other is the ‘renormalized atom’ approach of Chodorow (1939) (see also Segall 1962 
and Berggren 1972). In the latter approach the free atom wavefunction is unmodified 
in shape but cut off at the Wigner-Seitz radius and then multiplied by a scaling constant 
to give it the correct normalization. This approach has been used recently by Hodges 
et al (1972) for transition metals and by Herbst et al(1972) for rare earth metals. In the 
latter calculation a value of U = 7 eV was obtained. (The former calculation was not 
directly related to the Hubbard model.) We would like to make the following comment 
here on this technique. Hodges et al found that the position of the d level was shifted 
upwards in value from its free atom value, in disagreement with many previous assump- 
tions. The renormalized atom approach corresponds to the first iteration in our self- 
consistent Hartree-Fock calculation, and we also found this effect. However, on further 
iterations of the Hartree-Fock scheme towards selfconsistency it was found that the 
d levels shifted back towards the free atom values again. It is possible that the re- 
normalized atom approach contains some element of physical reality that we have not 
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captured by a relativistic selfconsistent calculation employing Wigner-Seitz boundary 
conditions, but our calculations indicate a value for the d electron energy level closer to 
the free atom value than does the renormalized atom approach. 

Consider now the occupation number Hamiltonian for a single Wigner-Seitz cell. Let 

(2.1) 

be the deviation of the occupation of the level ct from the expectation value of equilibrium 
(n,),. A simple effective Hamiltonian is then 

A, = n, - (n,), 

H = Eo + E,A, + 1 C U,,, AIAl,  + . . . . 
1 I,,' 

(2.2) 

In practice the interaction term U-, was taken to be nonzero only for electrons in the 
d orbitals as the calculation showed that the 4s eigenvalues altered by at most 0.1 eV 
when the neutral atom configuration was changed. For the reference state I A,  = 0) 

(2.3) H ( A l  = 0) = E,IAl = 0) 

and hence E ,  is the total energy of the ground state configuration. In principle the other 
coefficients could be obtained by calculating the total energy of other configurations for 
which AN # 0, and then fitting these results to the effective Hamiltonian (2.2). However, 
in a metal the 4s electrons are spread over quite wide energy bands whereas our method 
above represents them all as being in a single orbital whose energy is normally assumed 
to be the bottom of the conduction band. If the total energy is to be used, then a correc- 
tion for this must be made. This was the approach of Herbst et al (1972) when they 
calculated the value of U for the rare earth metals; however, as far as the present 
calculation is concerned we felt that the magnitude of the correction was so much larger 
than the effect being sought that such an approach would be quite inaccurate. 

On the other hand the effect of the 4s electrons on the d eigenvalue is expected to be 
quite small and consequently we estimated U from the single particle eigenvalues rather 
than from the total energy. The single particle eigenvalue is given in terms of the effective 
Hamiltonian (2.1) by 

6 H  
- = E ,  + C U l p A p  + . . . . 
6 4  B 

Hence if Al = 0 for all Q the eigenvalue is E,, while if the occupation is altered by one 
unit in the state a0 the eigenvalue is changed to E ,  f Umo. The value of U may be 
estimated from the change in the eigenvalue. 

3. The calculation 

The one electron eigenstates and eigenvalues for a configuration of electrons at a local 
site were calculated in a selfconsistency seeking iterative procedure using a computer 
program. The local site was defined by a sphere whose. volume was equal to the volume 
of the atom in the crystal. The radius of the sphere, the Wigner Seitz radius, was deduced 
from the crystallographic tables of Wyckoff (1948). The Wigner-Seitz radii used for the 
calculations are shown in figure 1. 

The configurations used were chosen to maintain the charge neutrality of the 
sphere. Therefore, the three available configurations for each metal were 3d"4s1, 
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Sc Ti V Cr Mn Fe CO Ni 

Figure 1. The Wigner-Seitz radius used for each calculation. The variation in rws among 
different stable structures that may exist for any particular metal is of the order of 1 Yo. 

3d"- '4s2, and 3dn' '4s'. The selfconsistent one electron eigenenergies were obtained for 
each of these configurations. 

The program itself was a slight modification of one developed by Coulthard (1967, 
1973) for the free atom. This was a relativistic Hartree-Fock calculation for the average 
of configuration (Grant 1970), with magnetic interactions and off diagonal lagrange 
parameters omitted. In fact, the only alterations which were made to the free atom 
program were to substitute a grid which extended only to the Wigner-Seitz radius and 
to include boundary conditions at the sphere's surface. The boundary conditions are 
described below. 

The eigensolutions of the spherically symmetric relativistic one electron Hamiltonian 
can be written (Grant 1970) 

1 

(3.1) 

The relativistic quantum numbers InA, kA, mA) are used to describe a one-electron 
state. The function x ( 0 , d )  is a known spin-orbit eigenfunction, while the radial eigen- 
functions PA(?-) and QA(r) are calculated in the computer program. It was found that 
the minor part QA(r) was typically of the order of a tenth of PA(r) .  The (21 + 1)-fold 
degenerate nonrelativistic state In, 1 )  is split in the relativistic case, for 1 > 0, into two 
states 1 n, k) where 

k = l  for j = I - 4- 
(3.2) k = - ( I  + 1) for j = I + 4.. 

In particular, the tenfold degenerate nonrelativistic 3d state splits into two states, 
3d- (for j = I - i) and 3d' (for j = I + I), which are respectively fourfold and sixfold 
degenerate. However, the difference in energy of these two states is quite small in our 
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case (see figure 2). Since the state 3d- is always lower in energy than the 3d' state, the 
former is always filled first in all the configurations. The unfilled state is then solved 
in the average of all possible spin and orbital angular momentum configurations. 

Because the radial solution P,(r) dominates the term involving Q A ( r ) ,  it is appropriate 
to use boundary conditions on P,(r) alone. The boundary conditions chosen were those 
derived by Brooks (1958) for the spherical cell model in the nonrelativistic case. They are 

P ~ ' r ~ ~ )  if I is even 
= I,, (3.3a) 

and 

P A ( r w s )  = 0 if 1 is odd. (3.3b) 

(These boundary conditions have been used before in a relativistic Wigncr-Seitz cell 
calculation for gold by Tucker et a1 (1969)). The functions PA(?-) and QA(r)  were subject 
to the normalization condition 

(3.4) 

The program was begun with starting potential functions calculated in one of two 
ways. Where they were available, previously calculated selfconsistent relativistic 
Hartree-Fock wavefunctions for the free atom were truncated at  the Wigner-Seitz 
radius and renormalized and the first potential functions constructed from what 
resulted. The behaviour of the eigenvalue in this case is described at the end of this 
paragraph. If such free atom solutions were not available, then Hartree wavefunctions 
were calculated for an approximate potential, and the first potential functions con- 
structed from these. The program was then run until the required selfconsistency was 
achieved. In fact after no more than ten iterations it was found that the d electron and 
conduction electron eigenvalues changed with a further iteration by less than 0.001 eV. 

Sc TI V Cr Mn Fe CO NI 
I I I I I I 1 1 I 

Figure 2. The 3d- and 3d' eigenvalues for each configuration. The lowest eigenvalues are 
for the 3d"-'4s2 configuration, the next are for the 3dn4s configuration, and the highest are 
for the 3d" ' configuration. 0 3d- state. 0 3d' state. 
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I 2 L 4  
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As it was noted in $2, the 3d- and 3d+ eigenvalues did vary by large amounts in the 
early iterations. When the potential functions at the beginning of a run were constructed 
from truncated and renormalized free atom solutions, it was found, for manganese in 
the 3d54s2 configuration, that the 3d- and 3d+ eigenvalues rose after the first iteration 
from their free atom values of - 15.3 eV and - 144 eV to - 10.2 eV and -9.5 eV 
respectively. However, when selfconsistency was achieved the eigenvalues had returned 
to the values - 14.7 eV and - 13.8 eV respectively. 

The calculated d eigenvalues for the different configurations are shown in figure 2. In 
this figure the black dot gives the eigenvalue for the j = I - 9 state while the open 
dot gives the j = I + f state. The different configurations then have somewhat different 
values with the 3d"+'4s0 having the highest eigenvalues, the 3d"4s1 being the intermediate 
set and the 3d"- '4s' configuration having the lowest energies. 

i Cobolt 3d8 4s' Scandium 3d' 452 

L I L -  I 2 3 rw 4 

Figure 3. The 3d- wavefunctions for three values, of rwvs for scandium in the 3d'4s2 con- 
figuration and cobalt in the 3ds4s' configuration. The quantity (P(r)' + Q(r)2)  is plotted, 
which is proportional to the relative probablity of finding the electron in an infinitesimal 
shell at.radius r.  Note that because the boundary condition is satisfied for the quantity 
P(r,)/r, the curves are not flat at rw. Observe also that the height of the peak of each wave- 
function is lowered as rws decreases. 
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The dependence of the results on the choice of Wigner-Seitz radius was investigated 
by repeating the calculations for several of the metals using various Wigner-Seitz radii. 
In general it was found that as rws was increased the greatest increase in the 3d eigen- 
values occurred for the configuration 3d"4s2. A smaller increase was observed for the 
configuration 3d"4s1, while for the configuration 3d"' '4s' nearly no change, or some- 
times even a decrease, was found. The net effect on U was that it varied approximately 
linearly with the Wigner-Seitz radius. At first thought it wuld be expected that as the 
cell size increases the d eigenfunctions should become less concentrated, and thus the 
value of U should decrease. However, it was found that as the cell radius increased the 
wavefunctions actually became more compacted This is shown for scandium and 
cobalt in figure 3, the curves being quite typical. It should be noted that, since the volume 
of the Wigner-Seitz cell varies as the cube of its radius, U has been found to vary quite 
slowly with the metallic density. Thus the values of U predicted by this calculation will 
be much the same for all phases and structures of any one metal. 

- 

4. Conclusions 

The difference between the different eigenvalues for the different configurations in 
figure 2 is due to the electron-electron interaction energy. This interaction energy will 
depend slightly on the actual configurations being considered: it will be different 
depending on whether the change in occupation occurs in a j = 1 - 4 shell or a j = 1 + 3 
shell and it will be different if the number of electrons in the d-shell changes from 3d"4s1 
to either 3d"-'4s2 0r-3d"+'4s0. In the Hubbard model only a single value of U is con- 
sidered and so these slightly different values also were reduced to a single value here. 
For scandium and titanium the average of the only two possible differences was taken 
as the value of U .  For vanadium the only change possible in the lowest energy configura- 
tion of the cell, which maintains the value of j (actually j = I - 4-), is the 3d"4s1 to 

r 

c \. 
'b 

SC Ti V Cr Mn Fe CO Ni 
Figure 4. The values of U (0) obtained are plotted with the band widths, W (o), calculated 
by Fletcher and Nudel (1973). 
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3d”-’4s2, and it was this change in eigenvalue that was taken as being U .  Similarly for 
chromium only the change 3dnC14s0 to 3d“4s1 was used. For the other elements the 
average value of the two possible changes of the j = I + 4- shell was taken. The results 
of this calculation are shown in figure 4. 

The calculated values of U show a steady increase across the transition series, 
varying from 1.35 eV for scandium to 3.3 eV for nickel. This trend in U is to be expected 
on simple physical grounds: the d eigenvalue decreases strongly as one moves from 
scandium (with atonic number Z = 21) to nickel (with Z = 28) so that for the noble 
metal copper it is energetically favourable to fill completely the d shell. With this 
decrease in eigenenergj the d eigenfunction becomes successively more compacted 
inside the atomic cell and hence its electron-electron correlation energy increases. The 
trend is maintained for copper, for which we also calculated U ,  even though it is not a 
transition metal. For copper we obtained a value for U of 4.1 eV, which is considerably 
higher than the value for nickel. 

Careful inspection of figure 4 reveals that the four values of U to the left of and 
including chromium lie on a nearly straight line, and likewise the four values to the 
right of and including manganese. Between chromium and manganese, however, there 
is a pronounced discontinuity. This is an effect of the splitting of the nonrelativistic 
tenfold degenerate 3d state into two relativistic states, 3d- and 3df ,  described in $3. 
The 3d” shell is always occupied for the first time at manganese. 

It is instructive to compare the steady increase in U across the series with the more 
random variations that occur in the band widths of the metals. The d band widths have 
been calculated by Fletcher and Nudel (1973), and their results have been plotted with 
the values of U in figure 4. It is clear that the bandwidth has little correlation with the 
value of U .  This observation may at first seem only a trivial consequence of the boundary 
conditions used in our calculation. The boundary conditions (3.3) are correct only for 
an electron state at the bottom of the band ( k  = 0) and therefore no information about 
the band structure is carried into the calculation other than the dependence of the band 
width on rws. However, since, in $ 3, U was found to vary slowly with the density, and 
because we believe U is roughly insensitive to the boundary conditions, it is apparent 
that it has little dependence at all upon the lattice structure and is nearly wholly a 
function of the metallic atom’s environment alone. 

The intrinsic error of our calculation can be taken as the maximum deviation 
between the various values of U that could be formed from the eigenvalues in figure 2 
and the values that have actually been taken. (It should be stressed that these are syste- 
matic errors, principally due to the approximations surrounding equations (2.2) and 
(2.4). The computations themselves should be correct to many significant figures.) For 
all materials except chromium the maximum deviation is about 0.3 eV. For chromium 
only the change in t h e j  = I + 4 state eigenvalue was used, and the difference between 
this and the maximum change in the j = I - state eigenvalue is 0.6 eV. However, 
although this doubt remains about the magnitude of U for each metal, there can be 
little doubt left that U is a monotonically increasing function of the atomic number Z 
for the transition metals. The shape of the lower curve in figure 4 is clearly established. 

The classical studies of the Hubbard model relate the magnetic properties of these 
materials to the ratio of the repulsive electronic energy between two electrons, the electron- 
electron interaction energy U ,  to the kinetic energy of the electrons as measured by the 
band width W. It is this ratio, U I W  which should determine the behaviour and it is 
plotted for the transition metals in figure 5. 

To understand the full import of figure 5, it is edifying to compare the values of U / W  
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Sc TI V Cr Mn Fe CO NI 

Figure 5. The ratio DiW. 

shown there with the known magnetic properties of the transition metals. The three 
lowest values of U/W belong to the metals scandium, titanium and vanadium, all of 
which are paramagnetic. Cobalt and nickel have the highest UIW ratios, and each of 
these metals is ferromagnetic in all phases. 

For iron and manganese the experimental observations are more complex. The 
stable phase of iron at room temperature is fcc and it is ferromagnetic. Rut iron also 
possesses a high temperature bcc phase, which, when retained to low temperature, is 
observed to be antiferromagnetic. Manganese possesses three important phases. Two of 
these, the complex bcc structured (;I phase which is stable at room temperature and a 
fcc high temperature phase which can be retained at low temperatures, show anti- 
ferromagnetic ordering. The third is another high temperature phase, nearly bcc but 
different in structure to the a phase, and this is a paramagnetic metal at low tenipera- 
tures. From figure 5 it can be seen that manganese and iron have middle range values 
of the ratio U /  W ,  around 045. 

From the preceding paragraphs it appears that the critical value of U/W above 
which one can expect some type of magnetic ordering is given by 

UIW 2 0.45. (4.1) 

However, it should be stressed that the considerations above are restricted entirely 
to localized interactions, and ignore possible band anomalies which themselves may 
lead to magnetic ordering. For example, in the simple picture presented above, one 
would expect that chromium, with a ratio U / W  not greatly larger than those of the 
paramagnets scandium, titanium, and vanadium, might also be paramagnetic. It is in 
fact antiferromagnetic. However, chromium is a very different type of antiferromagnet 
to the usual anti-aligned atomic spin situation in that its magnetism is due to a spin 
density wave whose wavelength is incommensurate with the atomic spacing (Over- 
hauser 1962, Bacon 1961). This has been sucessfully interpreted by Fedders and Martin 
(1966), in terms of the special shape of the Fernli surface in chromium. The Fermi 
surface ‘nests’ in that there are two regions separated by an almost constant vector q 



818 B N Cox, M A Coulthard and P Lloyd 

in reciprocal space, and it is this vector which determines the wavelength of the spin 
density wave. 

The value of U which we have calculated is the input value for the Hubbard Hamil- 
tonian. The critical ratio in (4.1) represents the effect of correlation energy on the 
determination of the magnetism of the ground state. This simple approach has ignored 
band structure, which may have special features such as that which led to the spin 
density wave in chromium. However, the balance of importance seems to lean on the 
side of the atomic environment, rather than band structure. In particular it is interesting 
to note that where U/W is large, the magnetic condition of the ground state is experi- 
mentally observed to be independent of crystallographic phase: when U/W > 0.55 the 
materials are ferromagnetic in all their phases. This suggests that if U/W is large enough 
the magnetic properties are relatively insensitive to band structure. 
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Appendix 

In the standard treatments (cf Thouless 1961) a creation operator, a:, is associated with 
a single particle orbital, 4, (r, a) so that the Fock space vector 1 . .  n, . . ) has a Slater 
determinant as its configurational space representation 

1 1 
~ n ( a m p  IO) = 1 .  . n, . .) =- -det( +,(r,, as)(. J N !  , J N !  

When the overlap between the single particle orbitals is 
n 

(A.1) 

then the creation and destruction operators satisfy the commutation relation 

[a,, a i ]  + = S,,. (A.3) 

For orthonormal single particle orbitals this is the usual commutation relation which 
has been assumed in discussions of the Hubbard model. This is not the meaning of these 
operators in the present paper. 

The Fock space representation does not have to be related to the configurational 
space representation by means of equation (A.1). Whenever there is a one to one corres- 
pondence between a many particle function II/ . . n, . . (r l ,  al : . . .) and a set of ‘occupation’ 
numbers,. . n, . . , then the Fock space vector may be defined as having the configurational 
representation 

(A.4) 

instead of equation (A.1). Correspondences of this form occur quite often: they occur 
whenever the interaction between particles may be adiabatically switched on without 

1 . .  n, . .) 3 $ . . n, . . (r l ,  a1 ; . . .) 
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degeneracies occurring. A correspondence of this type certainly exists with the different 
selfconsistent configurations used in the present paper. 

The creation and destruction operators may be defined such that 

and 

a,+(nl ,n2  ..n,..> = (-1)x;;i ng(l - no1’21nl ..nz + 1 ..>. ( A 4  

The factors imply an assumption that ( a J 2  = 0 = 
defined such that 

and the plus-minus factor is 

(A.7) a,ag + u p ,  = 0 

and 

U:,; + ,;Uz+ = 0 (A.8) 

and 

a,as+ + ais, = dZg. (A.9) 

With this definition the usual transliteration between the operator in configurational 
space and the Fock space operator cannot be used. But, in principle, the effect of any 
operator on a Fock space vector may be expressed as a linear combination of such 
vectors. Equations (A.5), (A.6) then allow the operator to  be written in terms of creation 
and destruction operators. 
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