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Abstract. An operator analogous to the almost tangent structure on a tangent bundle is 
defined on jet bundles of a fibred manifold. This operator is used to construct a Cartan 
form. The construction is unique for first-order Lagrangians and is also mique when 
restricted to higher-order mechanics. 

1. Introduction 

There has recently been some interest in the use of almost tangent structures in  
Lagrangian dynamics (for example, see Crampin 1983, CariIiena and Ibort 1985). An 
almost tangent structure on a 2n-dimensional manifold is a type (1 , l )  tensor field S 
of constant rank n satisfying S2  = 0. If, in addition, the Nijenhuis tensor of S vanishes, 
then the almost tangent structure is termed integrable (Clark and Bruckheimer 1960). 
The reason for the name is that any tangent manifold TE has a canonical almost 
tangent structure, also known as its vertical endomorphism, given by composing the 
tangent bundle projection TTE + TE with the vertical lift TE + TTE. In local coordin- 
ates (q", 4 " )  on TE, this almost tangent structure is given as 

a 
ag" S =-@dq". 

If L :  TE + R is a Lagrangian, then a closed 2-form wL can be defined by w L  = d(S(dL)). 
When L satisfies certain regularity conditions, w L  is symplectic and equal to F L ( w ) ,  
the image of the canonical symplectic form w on T*E under the fibre derivative FL 
of L (de Le6n and Rodrigues 1985). On a higher-order tangent manifold T k E  there 
is a similar construction leading to the first vertical endomorphism S, where now S 
has the property Sk # 0, Sk+' = 0. 

In the time-dependent theory, the vertical endomorphism on the first tangent 
manifold TE may be extended in a standard way to TE x R, and when this is done 
the 1-form S(dL) + L d t  corresponding to a time-dependent Lagrangian is just the 
Cartan form of L:  

(1.2) 

Cartan forms for different Lagrangians may therefore be constructed in a very simple 
way from a single geometrical object defined in TE x R. 

The purpose of the present work is to indicate a generalisation of this construction 
to field theories defined on jet bundles of a fibred manifold. The type (1 , l )  tensor 

S(dL)+ L dt  = (aL/ag")(dq" - 4" d t ) +  L dt. 
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field S (which may of course be regarded as a vector-valued 1-form) is ultimately 
replaced in the case of first-order theories by a vector-valued m-form Sn, where m is 
the dimension of the base manifold (=  number of independent variables) and R is a 
given volume form on that manifold. In the case of higher-order theories, Sn is no 
longer a tensorial object but becomes a differential operator which in general is not 
unique. Using such an  operator, the Cartan form of a Lagrangian can once again be 
written in the simple form Sn(dL)  + LR. 

The structure of this paper is as follows. In § 2 we indicate the notation from the 
theory of jet bundles which will be used. Section 3 shows how to define the vertical 
endomorphism of a jet manifold corresponding to a given closed 1-form on the base 
manifold; this construction is fundamental to the rest of the work. In § 4 we use the 
vertical endomorphism to construct the Cartan form corresponding to a first-order 
Lagrangian; here, the parallel with mechanics is quite straightforward. By contrast, 
in § 5 we follow the work of Kuperschmidt (1980) and replace the manifold J k r  by 
its image in J k - ' r l ,  allowing us to use the first-order operator in an  iterative way. In 
the final section we consider the uniqueness of this construction, obtaining the familiar 
result that the Cartan form is unique if (and only if) either k or m equals one. 

2. Notation 

All manifolds are assumed to be C", finite-dimensional, paracompact and  connected; 
all maps are C". We use the notation A'M to denote the module of r-forms on M 
and C" (M)  to denote the real-valued functions on M. Given f :  N +  M, we write 
Ah(f) for the module generated byf*A'M over C"( N ) .  Similarly, we use the notation 
A;(f) for the module generated by A - ' ( f )  A A'N. 

If r: E + M is a locally trivial fibred manifold and 4 is a local section of r then 
$0 denotes the k-jet of 4 at a point p in its domain, and the set of all such k-jets is 
the kth jet manifold J k r .  The source, target and  I-jet projections are denoted by 
r k  J k r +  M ,  irk,,,: J k r +  E and r k . 1 :  J k r +  J ' r  ( k  > I). 

We shall also be interested in r k  : J h r +  M as a locally trivial fibred manifold in 
its own right, and hence in its r-jet manifold J r q .  The canonical injection L,,k : J r l k r  + 
J r r k  satisfies b , , k ( j i + k 4 )  = j i ( j k 4 ) ,  where j k #  is the k-jet extension of 4. TO avoid an  
abundance of parentheses, we shall also use the notation ry= r, ri = ( 7 r - I ) '  for 
repeated 1-jets. 

As local coordinates on the manifolds M, E and J k r  we take the collections of 
functions (x ' ) ,  (XI, U " )  and (x', U ? )  where lower-case Latin indices run from 1 to m 
(the dimension of M ) ,  Greek indices run from 1 to n (the fibre dimension of E )  and 
Z E  N" is a multi-index. The number I !  is defined to equal IIyz1 ( Z ( i ) ! ) ,  1, is the 
multi-index with 1 in its ith position and zeroes everywhere else, and  I -  1, is the 
multi-index defined by (Z- l , ) ( i )=max{Z( i ) - l ,O} ,  ( I - l z ) ( j ) = I ( j )  for j #  i. In 
coordinate formulae we adopt the usual summation and range conventions for ordinary 
indices, whereas summation over a repeated multi-index Z is always indicated explicitly. 
Coordinates on the repeated jet manifold J k - ' r l  will be denoted (x',  up,, UP, , ) .  When 
referring specifically to mechanics, however, we shall often revert to the more traditional 
notation ( t ,  qp,,) for coordinates on J k r  and ( t ,  qp,,, q p , , )  for coordinates on Jk-'irl .  
The base manifold M will be assumed orientable with a given volume form R and we 
only consider coordinate systems in which R may be expressed locally as d x '  A .  . . A dx" 
(or d t ) .  
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Given a point j :4 E J k r  and a tangent vector 5 E T,M, the holonomic lift of 5 is 
denoted E Tj;-lb ( J h - ' r )  and satisfies g k - '  = ( jk- '4) ,5 .  The horizontalisation 
operator for differential forms is denoted by h : A 1 ( J h - ' x )  + AA( xk) and the correspond- 
ing derivation of type d, (Frolicher and Nijenhuis 1956) mapping r-forms on J k - ' x  
to ( r+ l ) - forms  on J k x  is called the horizontal differential and denoted dh. The 
horizontal differential is important in the study of Lagrangian theories, for if L : J k x  + R 
is a Lagrangian then a Cartan m-form 0, corresponding to L must have the properties 
that ( j * " - ' ~ ) * O ,  = ( jk4)* (  LR) and that the ( m  + 1)-form 

6 L = T T k , k  d(LR)+dh@, (2.1) 

is an element of A r + 1 ( x 2 k . 0 ) .  6L  is called the Euler-Lagrange form associated with 
L, because in coordinates it incorporates the Euler-Lagrange equations familiar from 
the calculus of variations, and hence vanishes along the extremals of L. Construction 
of a suitable Cartan form is therefore one of the main tasks of the theory. 

3. The vertical endomorphism defined by a 1-form 

In Crampin et a1 (1985) the first vertical endomorphism on a higher-order tangent 
bundle is constructed as the composition of two maps, a projection and a vertical lift. 
When studying field theories there is no natural 'vertical direction' in which to perform 
a lift, so we adopt the device of fixing a closed 1-form on the base manifold to specify 
a direction. The resulting operator is a type (1, 1) tensor field which depends in general 
on the derivatives of the coefficients of the 1-form. 

Proposition 3.1. Given a point a E Jkx,  a tangent vector 5 at x k , k - l ( u )  E J k - ' x  vertical 
over M ,  and a closed 1-form w defined in a neighbourhood of x k ( a )  E M ,  then there 
is an intrinsically defined tangent vector at a which is vertical over E.  We denote this 
new vector by the symbol t @ , w  and call it the vertical lift  of5 by U to a. In local 
coordinates, if 

then 

( I  + J +  l , ) !  d" 'w,(  

I ! ( J +  l t ) !  t;,XJ (3.1) 

ProoJ: First, since the 1-form w is closed, there is a function f defined in a neighbour- 
hood of x k ( a )  satisfying df=  w ;  the germ of f  is unique to within an additive constant 
which we specify by requiring f (  x k ( a ) )  = 0. 

Next, we consider the one-parameter families 4, of local sections of x, defined on 
a neighbourhood of x k ( a )  and such that J:;;o)4, is a curve in J k - ' . n  which defines 
the vector 5; this is possible as 5 is vertical over M .  Among all such families we restrict 
attention to those satisfying j k k , a , d o =  a, where the existence of families satisfying this 
additional condition may be seen easily in local coordinates. 

Assuming such a family 4, to have been chosen, we now use the function f to 
define a new family x, of local sections of x by the rule 
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k . k  k 
for p suitably close to r k ( a ) .  Certainly j z i ( , l X O = j z r ( a i ~ O = a ,  so the curve j zL ,o!x ,  
passes through the point a and hence defines a tangent vector in T , ( J k r )  which we 
denote [ @ , W .  Since ( d / a t ) i  rk( a ) )  = 0 this vector is vertical over E. A calculation 
in local coordinates using the chain rule shows that 

making it clear that [@,U depends on the vector 6 rather than the particular choice 
of family 4,. The coordinate expression for €@,U follows immediately. 

Corollary 3.2. For each closed 1-form w on M there is a type (1, 1) tensor field SF1 
defined intrinsically on J k n .  In local coordinates 

(3.4) 

Proof: We define SE' by its action on the vector fields on J k r .  If X is such a vector 
field then, for each a E J A r ,  vA,k-l*(Xu) is a tangent vector to J k - ' r  at r k , k - l ( u ) .  This 
vector need not be vertical over M. However, it has a unique vertical representative 
defined by subtracting the holonomic lift of its image in M to give T ~ , ~ - ~ * ( X , ) -  
( ' T T k * ( X o ) ) k - l .  We then put sLk'(x), = ( ' r r h , k - , * ( X a ) - ( 7 T k * ( x , ) ) k - ' ) ~ , w .  

It is conceptually desirable to distinguish the tensor field S',"' from its action as an  
operator on vector fields and on 1-forms; to d o  so we shall adopt the notation slf", 
SLk) for these operators. It is easy to see that both operators behave well with respect 
to the jet projections, in the sense that r k , / * ( $ k l ( X ) )  = g c ' ( r k , / * ( X ) )  for any vector 
field X on Jk r  which is r k , /  related to a vector field on J ' r ( l <  k ) ,  and that 
SLk'(r?,/(u)) = .n?,,(Slf'(c+)) for any 1-form U on J'r. In  view of this we omit the 
superscript and refer to $,, 3, where no confusion is possible. We also note the 
fundamental property of the operator S,  that its image is always a contact form. 

At this stage it is of interest to compare the tensor field S,,, with the corresponding 
object in mechanics which motivated the present work. The first point to make is that, 
in first-order theories, S, actually depends in a tensorial manner on w. To see this, 
note that the vertical lift of a vector [ on E to a vector &@,w on J 1 r  depends only 
upon the cotangent vector and not on its extension as a 1-form: in coordinates, 
if 

then 

The vertical endomorphism S!,," may therefore be defined for an  arbitrary I-form w 
on M which need not satisfy any differential condition. In fact we could choose to 
consider the 'type ( 2 ,  1) tensor field' S"' defined on J ' r  by its action on a pair of 
1 -forms: 

S " ' ( w ,  U )  = S i J ' ( U )  (3.6) 
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where o E A ' ( M ) ,  C E  A ' ( . ~ ' T )  and the quotation marks indicate that S") is really a 
cross section of the bundle T T (  T M )  0 T ( J ' r )  0 T*(J1r)+ J'T. In coordinates 

(3.7) 

One recovers the case of classical mechanics from this construction when M = R by 
choosing for w the volume form dt, so that 

For higher-order theories the comparison with mechanics, although superficially quite 
similar, is actually rather more subtle. We can no longer construct a type (2, 1) tensor 
field since the action on w is that of a linear differential operator. However, when 
M = R we can still use the volume form d t  as a (closed) 1-form to define a canonical 
type ( I ,  1) tensor field Sdr, which is the first vertical endomorphism described in 
Crampin et a1 (1985) and elsewhere. In coordinates, we have 

(3.9) 

where of course the coefficient of the volume form in any allowable coordinate system 
is constant so that terms containing derivatives no longer appear. This aspect of the 
construction does not occur in field theories. 

As a final remark in this section, we point out that the operators 3, are related to 
certain operators defined by Tulczyjew (1980) in the context of forms on J " n  and 
used to construct the Euler-Lagrange form. These latter operators were called 0, 
(where I is a multi-index) and were defined locally in a particular coordinate system. 
In fact e,, ( T&U) = Sdxl((+), so the present work provides a global construction for 
these operators. 

4. Constructing a Cartan form in first-order theories 

As mentioned earlier, the Cartan form associated in classical mechanics to a Lagrangian 
L may be written as S(dL)  + L dt, where S is the vertical endomorphism regarded as 
acting on 1-forms. Our intention is to generalise this construction to higher-order field 
theories. The two obstacles to be overcome in carrying out this generalisation, namely 
the need to create a mapping from 1-forms to m-forms and the need to incorporate 
higher derivatives, are considered in turn. We therefore start with the first-order case. 

Theorem 4.1. There is a canonically defined vector-valued m-form S,, on the first jet 
manifold J ' T  which satisfies ( j ' q5 ) * (Sn(c ) )  = 0 for each U E  A1(J'.ir) and every local 
section 4 of r (where Cl denotes the volume form on M and also its pull-back to J ' r  
by n,). If L : J ' n - +  R is a Lagrangian function then the Cartan form associated to L 
is given by 

O L =  S,(dL)+LnEAo"(.ir,,,)nIlr"(.ir,). 

Proof: For a fixed 1-form U on J ' T ,  define the operator Scr mapping 1-forms on M 
to 1-forms on J ' T  by the rule SU(W) = $,,(a). &r represents a 'type (1,1) tensor field 
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along T , ' ;  it may be obtained from the type (2, 1) tensor field S"' described in § 3 by 
contraction of U with the second contravariant index. 

We now obtain Sn by letting isu be the derivation of type i, corresponding to Su, 
and writing Snu = is,R. Specifically, the dual operator to sa is defined to be the map 
gu taking vector fields on J 'x  to vector fields along x l  by the rule that, for each vector 
field X on J 'x  and each point a E J'x, the tangent vector & ( X ) ,  E T,,,,,M is defined 

(4.1) 

for each w E A 1 ( M ) .  We then define the vector-valued m-form Sn by the rule that, for 
each 1-form U on J 'T ,  each m-tuple ( X I , .  . . , X , )  of vector fields on J ' T  and each 
point a E J ' T ,  we have 

by 

r l  1 a )(Sa( x I 0 I = ( Su( 0 ) ) a  ( X a  ) 

m 

( S ~ ( U ) ( X I ~ .  . . T  x m ) ) a  = 1 f i r L ( a ) ( T l * X l a , .  . . j  ( S u ( X / ) ) a , .  . T l * X m a ) .  (4.2) 
] = I  

In local coordinates, if U = U, dx'  + uo du" +U: dup and 

x = x ' a / a x ' + x o a / d u " + X P a / a u p  
then 

&(x) = U;(xe - u p x J ) a / a x l  

S n ( u )  = u i (du"  -U,? dx') A (d/dx 'JR).  

(4.3) 

(4.4) 
It is clear that, for every local section C$ of T, ,  we have ( j 'C$)*(Sn(u))=O.  Writing 
0, = Sn(dL) + LR, it is then immediate that 

and 

aL  
OL=;(dun--up dxJ )A(a /dx ' Jn )+LR (4.5) 

a u ,  

which is the standard representation of the Cartan form in first-order theories. 
It follows that @ , E A ~ ( ~ , , ~ ) ~ A I R ( ~ , )  and that d(LR)+d,O,=(aL/au" - 
(d/dx')(dL/duf)) du" A R is an element of A,"+'( x2,,,). 

The proof of this result demonstrates some of the collapsing which occurs in, classical 
mechanics. In first-order theories the vertical endomorphism & (defined by a 1-form 
w )  and the vector-valued m-form Sn represent quite different aspects of the same 
geometric object. When, however, the base manifold is one dimensional with volume 
form dt  then we find that these aspects coalesce and that the operators S d , ,  Sdr are 
identical. 

5. Constructing a Cartan form in higher-order theories 

The construction described in 0 4 for first-order theories cannot be used directly in the 
higher-order case as the map Sw used in the proof of theorem 4.1 becomes a differential 
operator. To make the construction work one would need a tensor which was 
'equivalent' to the differential operator in the sense of integration by parts. Rather 
than proceeding directly along this route, we adapt the technique of Kuperschmidt 
(1980). The method uses induction on the order k by taking advantage of the injection 
Lk-1 .k  : J T +  J k - ' x l .  Since this procedure involves successive differentiations of U, the k 
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resulting operator must be regarded as mapping to m-forms on J k r  (indeed, on J k - ' r )  
with coefficients in J Z k - ' r ,  i.e. the image of Sn will be contained in A r ( n 2 k - l , k - I ) .  
Repeated jets have been used elsewhere in the construction of a Cartan form (Aldaya 
and de Azcarraga 1980) but the method used there is somewhat different. 

First we need two technical lemmas. 

Lemma 5.1. There is a canonical map (also denoted So)  from A r + ' ( n l )  to A r ( n l , o ) n  
AT( r l )  which satisfies &(U A C l )  = S n ( u )  for U E A ' ( J ' r ) ,  and ( j '+)*(S,(  e ) )  = 0 for 
0 E A?"( r l )  where 4 is any local section of 7 ~ .  

Proof: Suppose t 3EAr+ ' ( r l ) .  Define u ~ A l ( J ' n )  to be a representative of 0 if 
0 = U A R. Such a representative always exists for in a coordinate neighbourhood 

is certainly a representative of 6 and a partition of unity can be used to construct a 
global representative U. If ulr u2 are both representatives of e then ( cl - v2) A 0 = 0 
so that - u2 E AA( n l )  and hence Sn(m1) = &(a2). We therefore define S,( e )  to equal 
& ( U )  where & ( U )  where U is any representative of 0. 

Lemma 5.2. The map Sn: Ay"( r l )  + A:( n A;( r l )  can be lifted to a map (also 
called S,)  from Ao"+'(r,,,) n A ? + ' ( r T T , )  to A ~ ( T , , ~ )  n A y ( r 5 ) ,  satisfying 
( j S 4 ) * ( S , (  e ) )  = 0 where 4 is any local section of n. 

Proof: A,"+' (T , ,~ )  n AY+'(nr )  is the module generated by nTl ( A Y + ' ( r I ) )  over C s ( J s n ) ,  
so define S,(nT,(e)) to equal r $ ( S , ( e ) )  and extend by linearity. 

In the following theorem we construct an operator S:': A ' ( J k n )  + A , " ( ~ T ~ ~ - ~ , ~ - ~ )  n 
A y (  nTTZk-') where again we indicate the manifold on which Sa is defined by a superscript. 

Theorem 5.3. Suppose we have a family of tubular neighbourhoods of J k - r r i  in 
nl for 0 s r s k - 2 .  Then corresponding to this family there is a local R-linear 

operator 

j k - r - 1  r + l  

sg) : A ' ( J k T )  + A:( T 2 k - 1 , k - l )  n A y (  T 2 k - 1 )  

satisfying the conditions 

nz"k,k  ( U  A Cl) -I- dh(S:'( U ) )  E A,"+' ( r 2 k , o )  n A I" 772k ( 5 . 2 )  

and, for every local section 4 of n, ( j 2 k - ' r $ ) * ( S g ' ( ~ ) )  = O .  

Proof: When k = 1 this is just theorem 4.1, so suppose k >  1. The induction hypothesis 
is that, for every locally trivial fibred manifold v :  F + M and family of tubular 
neighbourhoods of Jk- ' - ' v ;  in J k - r - 2  v I  r+ '  for O S  r 6 k - 3 ,  there is a local R-linear 
operator $: - I ) :  A ' ( J k - ' v )  + A,"( V 2 k - 3 . k - 2 )  n A;"( V Z k - 3 )  such that, for 6 €  A ' ( J k - ' v ) ,  

(5.3) 
and for every local section +b of v, ( j 2k -3+b) * (S : - " (6 ) )  = 0. 

along 
+ I . ' .  Extend it to the tubular neighbourhood using the neighbourhood's projection 

V ; k - z , k - l ( 6  A f i )+dh(Sg-IJ(6))E A , " " ( ~ 2 k - 2 , 0 ) n  A ; " " ( ~ 2 k - 2 )  

Choose v to be rl : J 'n  + M. Given U E A ' ( J k r ) ,  transfer U to 
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In general we should not expect the operator S'k'fl to be unique as it depends on the 
choices of tubular neighbourhood; this question is considered further in 8 6. However, 
locally we can be specific because each coordinate chart on E defines a local system 
of tubular neighbourhoods. If (XI, U") is the coordinate chart on U c E and if, for 
each s with 1 s s S k, (x', U:) and (x', up,, U:,) are the corresponding charts on U' c J 'T  
and U;-' c Js-'r1 respectively, where 111 S s, I JJ S s - 1, then we can define a projection 
T~ : U;-' + U' by the rule 

x 1 ( 7 , ( u ) )  = x ' ( u )  
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We may extend each 7, to define a tubular neighbourhood of the whole of J 'r in 
J'-'r1. If we then construct the corresponding operator Sg) and consider a Lagrangian 
L :  J'H + R, we find that in the particular coordinate neighbourhood we can 
write S g ' ( d L ) +  r T k - ( , k ( ~ a )  as 

which is the local coordinate expression for a Cartan form given by Shadwick (1982). 
The difference in constant factors arises as a result of a different convention for summing 
over a multi-index. The corresponding Euler-Lagrange form 6L defined by 

then has the familiar form 

l J i = O  
(5.15) 

6. Uniqueness of the Cartan form 

The uniqueness of any global Cartan form in higher-order field theories has been a 
matter of some discussion recently. For example, Shadwick (1982) provides a construc- 
tion which attempts to specify a unique Cartan form, although a review of that paper 
(Chrastina 1984) has pointed out the technique used there is only valid globally for 
first- and second-order field theories. We therefore consider this question in the context 
of the present construction. 

The first observation to make is that, given a Lagrangian L, the Euler-Lagrange 
form SL does not depend on any particular choice of Cartan form OL in cases where 
this latter form is not unique. This implies, of course, that 6L always has the coordinate 
representation given in (5.15) even if the tubular neighbourhoods are not constructed 
in the way described at the end of 9 5. Formally, we have the following result. 

Lemma 6.1. Let L : J'H + R be a Lagrangian and let al, r 2 k - I )  

have the property that both the (m+l)-forms 6L1 = d ( L n ) + d h O I  and 6 L 2 =  
d ( L a ) + d h @ ,  are elements of A ~ + 1 ( r 2 k , 0 )  n A?+l("r2k). Then S L ,  = 6 ~ ~ .  

E A:( 7 r 2 k - , , k - 1 )  n 

Pro05 We use local coordinates to show that dh(@, - 0,) = 0. First, from 0,  -e2 E 

Ar(T2k-l.k-1)n A ? ( r 2 k - 1 )  we may write 

(6.1) 
where the 1-forms 'U are elements of AA(~r2k-(,k-~). If the coordinate representation 
of each 'U is 'U, dx' +XFITio 'U: duy, then 

0, -0, = 'U A (a/ax'_rO) 

d ' o  k-1  

dh'U =- dx" h dx' + c ($$ dx" A du: + 'U: dx" A du:, I ,,, 
dx " / I I = O  

and so 
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Since dh(@, -e2) E Ar'1(r2k,o)  the only non-zero terms in this expression are those in 
du" A R with coefficients -(d/dx')( 'u-) .  From the vanishing of the other terms, we 
find recursively that these coefficients equal Z,,,=,-, ( - l ) k ( d / d x ' + ' ~ ) ( ' u ~ ) .  But for 
each fixed multi-index J with IJI = k, we have Z,+,,=, U ,  equal to the coefficient of 
duy A 0, which is zero. The coefficient of du" A SZ is then a sum of derivatives of the 
coefficients of the du: A R (IJI = k) and so itself is zero. 

, I  

We can now consider the uniqueness question for the various operators S g '  and the 
corresponding Cartan forms. We start with the first-order case. 

Lemma 6.2. The operator Sn defined in theorem 4.1 for first-order theories is the 
unique operator A ' ( J ' r )  + A ~ ( T ~ , ~ )  n A y ( r 1 )  satisfying (j14)*(S,,u) = 0 for every 
local section 4 of r and . r r ~ , I ( u ~ ~ ~ + d h ( S , a ) ~ A ~ + ' ( ~ , , o ) n A ~ ' ' ( . n l ) .  

Proof. Again we use local coordinates. If S is such an operator then for each 
a ~ A l ( J ' r ) ,  since ( S , - S ) u ~ A ~ ( . r r ~ , ~ ) n A ; " ( r , ) ,  we have locally 

(S , -S )u= 'uU du" ~ ( a / a x ' J f l ) + f f l  (6.4) 

for some functions 'u,,f on J ' r .  Since ( j 1 4 ) * ( ( S n - S ) u )  = O  for each local section 
4 of r we find that f = -'uauF. Now 

dh((Sn-S)u)=-(d 'ua/dx' )du"~CL- 'u,  duFr\SZ (6.5) 

and from dh(( S, - S ) a )  E A:+'( it follows that each 'Un = 0. 

Corollary 6.3. The Cartan form in first-order theories is unique. 

We can also show that the Cartan form in higher-order mechanics is unique. 

Lemma 6.4. Suppose the base manifold M is one dimensional. Then the operator 
Sd, : A 1 ( J k r ) +  AA(r2k-l ,k-1)  defined in theorem 5.3 is unique. 

Proof. Suppose SI, S2 are two operators satisfying the conditions given in the theorem. 
Let CTE A ' ( J k r ) ;  then (j2k-'4)*(Sl(u)) = (j2k-14)*(S2(u)) = 0, so that Sl(u) - S 2 ( u )  
is a contact form. By lemma 6.1 we must have d h ( S l ( u ) - S 2 ( a ) )  =0, so locally 
Sl(u) - S 2 ( u )  = dh f for some function f on J 2 k - 2 r .  But from the definition of d, and 
the horizontalisation operator h, rTk,2k-1 dhf= r T k , 2 k - l h  df= h2 d f =  h d h f =  
h ( S , ( u )  - S 2 ( u ) )  = 0 since the horizontal component of any contact form is zero. 

Corollary 6.5. The Cartan form S,,(dL)+ L d t  is unique and has coordinate rep- 
resentation 

On the other hand, the construction for higher-order field theories is never unique. 

Example 6.6. Suppose k = 2 and m = 2. Choose a particular coordinate patch U, let 
SI be an operator Sg' defined using the projection T~ : U + U' defined by equations 
(5.12) and let S2 be an operator defined using the alternative projection r2 where 
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up, (T2(a) )=  u a , , ( a ) + ( u p , 2 ( a ) - u ~ , l ( u ) ) ,  but the other components of T~ and T~ are 
equal. Then in this coordinate patch 

S l ( d u f l )  = (dua - up, dx ' )  A (dldx' An) 
but 

S2(dupl) =(dup-uP,  dx')A (d/ax'Jn+a/dx*Jn)-(du~-u," ,  dx ' )  ~ ( d / d ~ l i n )  (6 .7)  

so that S,, S2 both satisfy the conditions of theorem 5.3, but SI # Sz. A similar example 
can obviously be constructed in cases where k z 2  and m 2 2 .  

Corollary 6.7. The global Cartan form in higher-order Lagrangian field theories is not 
unique. 
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