
Journal of Physics A: Mathematical and General

On the point spectrum of the linear gas model
To cite this article: P Dita 1984 J. Phys. A: Math. Gen. 17 2145

 

View the article online for updates and enhancements.

You may also like
Elastic waves trapped by a homogeneous
anisotropic semicylinder
S. A. Nazarov

-

ON THE THEORY OF THE DISCRETE
SPECTRUM OF THE THREE-PARTICLE
SCHRÖDINGER OPERATOR
D R Jafaev

-

The spectra of rectangular lattices of
quantum waveguides
S. A. Nazarov

-

This content was downloaded from IP address 18.118.145.114 on 03/05/2024 at 19:18

https://doi.org/10.1088/0305-4470/17/10/027
https://iopscience.iop.org/article/10.1070/SM2013v204n11ABEH004353
https://iopscience.iop.org/article/10.1070/SM2013v204n11ABEH004353
https://iopscience.iop.org/article/10.1070/SM1974v023n04ABEH001730
https://iopscience.iop.org/article/10.1070/SM1974v023n04ABEH001730
https://iopscience.iop.org/article/10.1070/SM1974v023n04ABEH001730
https://iopscience.iop.org/article/10.1070/IM8380
https://iopscience.iop.org/article/10.1070/IM8380


J. Phys. A: Math. Gen. 17 (1984) 2145-2148. Printed in Great Britain 

On the point spectrum of the linear gas model 
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Abstract. The discrete spectrum of the Rayleigh piston is investigated using a WKB method 
for integral operators. Analytic formulae asymptotically valid for eigenvalues and eigen- 
functions are obtained. The discrete spectrum is finite for 0 < y << 1. 

1. Introduction 

The one-dimensional test particle gas problem, or Rayleigh piston, has come into focus 
again in recent years (Hoare 1971, Hoare and Rahman 1973,1974, Barker et a1 1977, 
1981). 

The interest in this model comes from its generality, i.e. it may be viewed as a 
prototype for all linear statistical dynamical models which are sufficiently simple, retain 
some vestiges of reality and embody all subtleties of the mathematical problem. 

One considers an ensemble of frictionless ‘pistons’ of mass M undergoing interac- 
tions with a one-dimensional heat bath of particles of mass m and temperature T. 
Mathematically, the model is described by a singular master equation which takes the 
form of a multiplication operator perturbed by a Hilbert-Schmidt integral operator 
(Hoare 1971). The spectrum of this operator consists of a continuum region to which 
one adds, in some cases, a finite number of eigenvalues. Although there have been 
some attempts to diagonalise this operator (Hoare and Rahman 1973, 1974, Barker 
et a1 1977) the problem has not been solved until now. A precise estimation of the 
first eigenvalues is of great interest, the long-time behaviour of the system being 
dominated by them. A numerical treatment of the discrete eigenvalue problem was 
given by Barker et a1 (1981). 

The aim of this paper is to obtain analytic estimates upon eigenvalues and eigenfunc- 
tions for the case when the parameter y = m/ M is small, 0 s y < 1. 

2. Rayleigh limit 

The master equation has the form (Barker et a1 1981) 

in which Q(x, t )  is the probability density for test particles at velocity x and A y  is a 
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singular integral operator having the kernel A( y ,  x) = K (  y,  x )  - z ( x ) S ( x -  y )  with 

K (  Y ,  x )  = p’lx- yl expi-[( Y - X ) P  + XI’} 
cc 

Z ( X )  = K ( x ,  y )  dy = IF,(-+, 4; -x’) I_, 
/ . - ‘ = 2 y / ( l + y ) .  

‘ F 1 ( a ,  b ;  x)  denotes the confluent hypergeometric function. 

of the independent variable, x = p - l u ,  (1) takes the form 
By using the transformation Q(x, t )  = exp(x2/2y)P(x, t )  followed by a new scaling 

U I  exp[-a( u 2 +  U’) - 2puu]P( U, t )  dv ( l a )  

where 

a = ( y 2 +  1)/( 1 + y)’ and p = ( y ’ -  1)/(1+ 7) ’ .  

If we look for solutions of the form P ( u ,  t )  = exp(-At)f(u), ( l a )  becomes the 
eigenvalue equation 

5 

( z(pp l  U )  - A )f( U )  = Iu - U /  exp[-a( U’ + U’) - 2puu]f( U )  dv. (1b) I, 
The relations ( l a )  and (1 b )  are important since we can take the limit y -+ 0 and 

still obtain well defined operators. In the limit y -$O (1 b )  becomes 

which is a convolution equation. Since its kernel is an even function, the orthonormal 
eigenfunctions are 

(3) 

and they are indexed by a continuous parameter p, p 2 0. Hence the spectrum of the 
operator is [0, CO), and in this way we have obtained a rigorous proof of a result which 
was conjectured some time ago (Barker et al 1981) but, to our knowledge, never 
proved. 

By the substitution of (3) into (2), we obtain A = 1 -lFl(l,  1; -ip’) so that P ( u ,  t )  
has the form 

fp( U )  = 7T-l’’ cos pu 

P( U, t )  = T - ~ ’ ~  e-‘ cos pu exp[ F1 ( l ,&  -ap’) t ]  dp lom 
and is singular for U = 0. 

For y # 0 the right-hand side of (1 b )  is a Hilbert-Schmidt operator, and we shall 
consider it as a perturbation to the multiplication operator z ( p - ’ u ) .  Since the spectrum 
of the multiplication operator is absolutely continuous ( z ( x )  is a continuous function) 
it will remain unchanged when is perturbed by a completely continuous operator; the 
point spectrum may change (Birman and Solomjak 1980). So, for y # 0, the operator 
spectrum is composed from a continuous part [ l ,  CO) and, possibly, a finite number of 
discrete eigenvalues. 
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3. Discrete spectrum 

We shall investigate now the discrete eigenvalues and eigenfunctions in the Rayleigh 
regime, O <  y<< 1, and for this we shall use the WKB method in the form developed by 
Sirovich and Knight (1981) for integral operators. 

Any integral kernel on the full line can be reexpressed as K ( x ,  y )  = K [ x  - y ,  x + Y ] ,  
and the method gives asymptotic results for eigenvalues and eigenfunctions of kernels 
whose dependence upon ( x + y )  is slow. If R ( p , q )  is the Wigner transform of the 
original kernel 

m 

R ~ p , q ) = j _ r X ( q + i u . q - t u )  exp(-iup) du 

A, will be asymptotically an eigenvalue if the closed curve R( p ,  q )  = A, encloses area 
A(A,) = (2n + l ) ~ ,  n = 1,2,. . . . 

Our kernel, in the limit y + 0, becomes a convolution kernel so its dependence 
upon ( x +  y )  is slow for y<< 1. A straightforward calculation shows that 

(4) R ( p ,  q )  = z(p- lq)  - (1 + y)’ exp(-p-’q’) x 1 ~ 1 ( 1 ,  1; -(I  + 7)’ i p ’ ) .  

Since it seems to be difficult inverting the relation E( p ,  q )  = A,, we have made a Taylor 
expansion in (4) retaining terms up to second order only. Thus we found 

A, = - y (  y + 2) + (2n + 1) y(  y + 1)(2y2+4y+4)”’ ,  n = 1 , 2 , .  . . . ( 5 )  

A, = 4 n y + O ( y 2 ) ,  n = 1,2 ,  . . . . ( 5 a )  

f , ( u )  = a ,  exp(-2yu2)~,(2y’/’u)  (6) 

If we retain only the leading term in (5) it takes the simpler form 

In the same approximation the eigenfunctions are (Sirovich and Knight 1981) 

where H , ( x )  are Hermite polynomials and a ,  normalisation constants. 
Formula ( 5 a )  provides us with an explanation to numerical results found by Barker 

et a1 (1981), showing that up to higher-order corrections in y, A,/4y are well 
approximated by integers. Formula ( 5 )  shows that the first discrete eigenvalue appears 
for y < 0.17 value close enough to numerical value y < 0.28 found by the same authors. 

By a suitable choosing of the constants U,  (6) goes to (3) in the limit y +  0. Indeed 
if we choose a,, = (-l)mm’/2/22”m! and take the limits y +  0, m + CC with ym =&p’ 
kept fixed, then 

lim f z m ( u )  = lim e ~ p ( - p ~ u ~ / 8 m ) a , , ~ ~ ~ ( p u / 2 m ” ~ )  = 7 - l ”  cos pu 

a result which confirms the consistency of our approach. 

m-cc m - r  

4. Conclusion 

It is, of course, desirable to find a method for diagonalising the operator entering (1 b ) .  
In this sense the results obtained by Hoare and Rahman (1973, 1974) and Barker er 
a1 (1977) are encouraging. Their results suggest that it would possible to find a 
low-order differential operator that commutes with the integral operator (1 b) .  Since 
z(x) is an even (double-valued on R )  function the spectral multiplicity of our operator 
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is equal to two, so that if such a differential operator does exist it will be of fourth 
order at least (Achiezer and Glazman 1978). In this sense the second-order differential 
operator obtained for the case y = 1 seems to be a pure accident, being peculiar to 
this case. The possible existence of such a differential operator is under study. 
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