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Abstract. The combined gravitational-neutrino field equations in general relativity are 
solved under the following two assumptions: (i) space-time is stationary axially symmetric 
and the line element of the metric can be put into a canonical form, (ii) the energy flow 
vector of the neutrino field is time-like or null for all observers. The resulting metric is 
uniquely determined and asymptotically non-flat; the Weyl tensor is of Petrov type D, 
and the Ricci tensor belongs to the class [2T- 2S]z in the Plebanski classification. 

1. Introduction 

The classical massless neutrino field is represented by a two-spinor eA which in a 
curved space-time satisfies Weyl's equation 

(1.1) 
A 

U&[;, = 0 

where u h  are the generalised Pauli matrices and the semicolon denotes covariant 
differentiation. The symmetrised neutrino energy-momentum tensor is given by 

TFY =&&&[A;~ + f f l f [ ~ ; ,  -cc) (1.2) 
and by virtue of the Weyl equation is trace-free. The uniqueness of the expression 
(1.2) for TFY is investigated by Anderson (1974). If we suppose that the neutrino 
field interacts with a classical gravitational field then besides equation (1.1) we must 
also consider the Einstein field equations, which in this case can be written in the form 

R,, = - TkV. (1.3) 
Here, we attempt to resolve the coupled equations (1.1) and (1.3) in the case of a 
stationary axially symmetric space-time. A consequence of the expression (1.2) for 
the neutrino energy-momentum tensor is that the sign of the neutrino energy density 
is observer dependent. Because of this, Wainwright (1971) introduced the two energy 
conditions El and EZ for the neutrino field. We shall consider only the neutrino fields 
satisfying the energy condition Ez.  This condition describes fields with causal 
behaviour and is defined as follows: A field is said to satisfy the energy condition E2 
or equivalently to be of class E:! if its energy flow vector T,,u" is time-like or null 
for all unit, future pointing, time-like vectors U "  at each event for which TFY # 0. 
For the treatment of equations (1.1) and (1 -3) in conjunction with the energy condition 
E2 it appears that the most powerful method is the spin coefficient formalism (Newman 
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750 C A  Kolassis 

and Penrose 1962). Griffiths and Newing (1970, 1971) pioneered the use of the null 
tetrad and spin coefficient formalism for neutrino fields. According to these authors, 
the adaptation of the spin coefficient formalism to the interaction of the neutrino with 
the gravitational field is realised by the introduction of a two-spinor ,yA so that together 
with t A  it forms a spinor frame. This spinor frame gives rise to a null tetrad as follows: 

1” = unxtAs‘“ (1.4a) 

(1.46) 

(1 .4~ )  

(1.4d) 

The vector I” is the neutrino flux vector. The completeness relation for the null tetrad 
reads 

I,K, + lvu, - mw?iiu - m,A, = gwv. (1.5) 

The transformations of the null tetrad which preserve the metric, the neutrino flux 
vector and the neutrino energy-momentum tensor constitute a two-parameter sub- 
group of the proper Lorentz group and are called ‘null rotations about 1” ’ .  They are 
given by 

1” = 1’” ( 1 . 6 ~ )  

K w  = K ~ ~ + q m l ~ + + f i f w + ~ + / f ~  (1.66) 

m ” = m + +1./1” ( 1 . 6 ~ )  

where q is any complex function of the coordinates. With respect to the null tetrad 
the Weyl equation reduces to the following conditions on the spin coefficients 

p = E  ( 1 . 7 ~ )  

p =r .  (1.76) 

The spin coefficients also enter in the expansion of T”,, on the null tetrad; assuming 
that the neutrino field is of class E2 and taking into account the Weyl equation we 
can prove (Wainwright 1971) that by means of equations (1.6a)-(1.6c) the null tetrad 
can be chosen so that 

(1.9) 

At the same time the spin coefficients a, r, K ,  U, y and p must satisfy the following 
conditions 

1 w = ~ i ( p  - b ) .  

a - 2 ? = 0  (1.10) 

K = o  (1.11) 

u = o  (4.12) 

iw(y - 7 )  3 0. (1.13) 

Conversely, if the neutrino energy-momentum tensor is given by equation (1.8) and 
condition (1.13) is fulfilled, then the neutrino field is of class E2. Equation (1.10) is 
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due to the particular choice of the null tetrad while equations (1.11) and (1.12) are 
due to the fact that the neutrino field is of class EZ and have an interesting geometrical 
meaning. The first, equation ( l , l l ) ,  means that the neutrino flux vector is tangential 
to a geodesic null congruence and the second that this geodesic congruence is shear- 
free. Furthermore part of the Goldberg-Sachs theorem can be easily generalised in 
the case of the gravitational-neutrino interaction; so from equations (1.11) and (1.12) 
it follows that the neutrino flux vector forms a repeated principal null direction of the 
Weyl tensor which is algebraically special, i.e., such that 

9 0 = 0  (1.14) 

PI= 0. (1.15) 

(The quantities 9(, i = 0,.  . . ,4 are the tetrad components of the Weyl tensor. For 
their definition, see Newman and Penrose (1962, equations (4.3a)).) Using equation 
(1.8) and the expansion of R,, on the null tetrad we can put the Einstein field equations 
into the equivalent tetrad form 

@oo = 0 ( 1 . 1 6 ~ )  

@01= 0 (1.166) 

@02 = 0 ( 1 . 1 6 ~ )  

@ 11-4w -1 (1.16d) 

@ I 2  = 0 (1.16e) 

(1.16f) @ - 1. 

(The Hermitian quantities Qij,  i, j = 0, 1 , 2  are the tetrad components of the Ricci 
tensor. For their definition, see Newman and Penrose (1962, equations (4.3b)).)  

22 - n(v - 7) .  

2. Stationary axially symmetric space-time interacting with a neutrino field 
of class E2 

A stationary axially symmetric space-time is characterised by the existence of a 
two-parameter abelian group of isometries with Killing vector fields 6” and q @. The 
vector field 6” is time-like with open trajectories surrounding the rotation axis. The 
rotation axis is a time-like two-dimensional submanifold of the space-time on which 
the vector field 7” vanishes. The fact that the isometry group is abelian is expressed 
by the equation 

5%,;” -77”5w;y = 0. (2.1) 
Using equation (2.1) and the Frobenius theorem we can prove that the trajectories 
of the two Killing vector fields form a family of two-dimensional surfaces 9. Further- 
more, equation (2.1) implies the existence of ignorable coordinates x o  and x 3  such 
that 6” = 8,” and 77, = 8;. If B admits a family B* of two-dimensional orthogonal 
two-surfaces then in the system of the coordinates (xo, xl, x2, x3) the line element of 
the metric can be written in the canonical form 

(2.2) ds2 = gmn(x’) dx“ dx” +g,,(x‘) dx4 dx‘ 

where I ,  m, n = 1, 2 and q, r = 0, 3. The existence of the line element (2.2) implies 
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important simplifications for the stationary axially symmetric gravitational field 
equations. For the case of an empty space-time Papapetrou (1966) has proved that 
a line element of the form of equation (2 .2)  always exists. Papapetrou’s result was 
generalised by Carter (1969, 1972) for a non-empty space-time as follows. 

Generalised Pupapetrou theorem. The line element of a stationary axially symmetric 
space-time can be put into the canonical form of equation (2.2) in a simply connected 
subdomain 9 of the space-time which intersects the rotation axes, if and only if the 
following circularity condition is satisfied everywhere in $3 

where the brackets on the indices denote antisymmetrisation. 

In this article we assume that the space-time interacting with the neutrino field 
contains at least a simply connected subdomain 9 into which the line element of the 
metric can be put in the canonical form of equation (2.2).  Therefore, by virtue of the 
generalised Papapetrou theorem and the Einstein field equations, the neutrino energy- 
momentum tensor will also satisfy the circularity condition (equations (2.3u, b ) ) .  For 
convenience, this condition is written in the form 

-4T,,4” = Aty + Bq, ( 2 . 4 ~ )  

-4T,,q ” = rtv + AV, (2 .46)  

where A ,  B ,  r, A are real functions of the coordinates. Equations (2.4a, b ) ,  together 
with the assumption that the neutrino field satisfies the weak energy condition EZ 
constitute all the restrictions we impose on the neutrino field. For the treatment of 
the equations (2.4a, 6 )  we must expand 6” and q” in terms of the null tetrad 

(2 .5)  

(2 .6)  

5” = a/” + bK ” -cm” --few 
q w  =d/”  +eK” -fm” -few. 

As the vector field 6” is time-like and non-vanishing everywhere in 9 we have 

a # O  ( 2 . 7 ~ )  

b # O .  (2 .7b)  
Inserting equations (2 .5) ,  (2 .6)  and (1.8) into the circularity condition (2.4u, b )  and 
taking into account equations ( 2 . 7 ~ )  and (2 .76)  we finally conclude that all the 
possibilities about the form of the neutrino energy-momentum tensor and the 
expansion of 6” and q” on the null tetrad are given by the following three cases. 

Case A 
T = - I ‘  - 

5” =U[” +bK” -cmw - few 
” U  d Y  - Y ) L L  

q” =dl” +eK” -fm” -?e” 
e = h b  f = h c  

where h is a real function of the coordinates. 
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Case B 
T ,U =-${2 i (P - r ) l , lu+2w[g , , -2 (1 ,K ,+ I ,K , ) ] }  

6” =al” +bK’ 

77, =dl’ +eKw. 

Case C 

T,, = -$w[g,u -2([,Kv + lvKcr)I 

6’ = a / ’ + b K ~ - c m ’ - ~ f i w  

~ ” = d l ’ + e K w - f m ” - f f i ”  

d = h a  e = h b  c = g f  

where h, g are real functions of the coordinates. In the following sections the above 
three cases will be treated separately. The case of a ghost neutrino field is not 
considered. 

From a theorem we proved in a previous article (Kolassis 1982), it follows? that 
the Lie derivatives of the null tetrad vectors with respect to the Killing vector fields 
6” and q w  are given by 

=PI’ ( 2 . 8 ~ )  

.5$~, = - p ~ @  (2.86) 

9.m’ = -ism’ ( 2 . 8 ~ )  

( 2 . 9 ~ )  

(2.96) 

9,pW = -iwmw ( 2 . 9 ~ )  

where p, s, U, w are, in general, real functions of the coordinates. If the neutrino field 
is not a pure radiation field then p and U vanish while w and s reduce to real constants. 
With the help of equations (2.5), (2.6) and the Killing equations, equations ( 2 . 8 ~ ) -  
( 2 . 9 ~ )  can be written equivalently in the form 

( 2 . 1 0 ~ )  

(2.106) 

(2.10c) 

b,, = (Iu;, - l , ;y)5” +PI, 
a,, = ( K Y ; ,  - K w , ; v ) ~ ’  -PK, 

C,, = (mu; ,  -m,;,)(” -ism, 
( 2 . 1 1 ~ )  

(2 ,116)  
- 
f,, = (mv; ,  -m,;u)qy -iwm,.  (2.11c) 

Using the expansions of 6’, ncL,  I,;,, K,,;,, and m,;,, on the null tetrad (see the appendix), 
equations (2.10a)-(2.11c) can be written in a form convenient for the calculations 
which follow. 

Db = ( p  + p ) b  ( 2 . 1 2 ~ )  
t If w = 0, the quantity r which enters in equations (111.36) and (111.3~) in this reference can be eliminated 
by a null rotation about 1’. 
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(2.126) 

(2.12c) 

DU = ( y  + 7 ) b  +(i i  -3T)C +(-IT -3?)E-p ( 2 . 1 3 ~ )  

AU = - ( y  + ? ) U  + VC + u t  (2.136) 

6~ = (ii - 3 7 ) ~  + 2% + (/L -k)E ( 2 . 1 3 ~ )  

Dt = (ii + ~ ) b  -62 ( 2 . 1 4 ~ )  

A t  = -(e + 7 ) ~  + IC + (@ + y - 7 ) t  (2.14b) 

6 t = i b  -?E ( 2 . 1 4 ~ )  

& =  ( f i  + y  - 7 ) b  -pa +7c +is (2.14d) 

De = ( p  +p)e ( 2 . 1 5 ~ )  

Ae = - ( p  + p ) d + 2 ~ f + 2 ? f + u  (2.156 1 
Se = 27e + ( p  - 6 ) f  
D d  = ( y  + ? ) e  +(ii - ~ T ) ~ + ( - I T  - 3.T)f-  U 

Ad = - ( y  + 7)d + C f  + ~f 
Sd = (ii - 3 ~ ) d  + Ce + (p  - @ ) f  

(2.166) 

( 2 . 1 6 ~ )  

( 2 . 1 7 ~ )  

(2.176) 

( 2 . 1 7 ~ )  

r f f =  -pd+(k  + y - y ) e  +.rf +iw.  (2.17d) 

Finally, using equations (2.12u)-(2.17d) and the restrictions satisfied by the spin 
coefficients, the components of the equation (2.1) with respect to the null tetrad can 
be written in the form 

e p  - bu + (6d - ue)(p + p )  + ( c f - E f ) ( p  - p )  + 2(ec - b f ) ~  + 2(eE -6 f )T = 0 

(bd - ue ) ( y  + 7) + (cd - a f ) ( . r  + ? - 4.r) + (ec  - b f ) ;  + ( e t  - b f ) v  

( 2 . 1 8 ~ )  

+ ( t d  - U f ) ( i i  + T  -4?) + ( C f - t f ) ( p  - @ )  +UK -dp = 0 (2.186) 

(bd--ue)(++T)-(& - 6 f ) ( f i  + y - y ) - ( E d - u f ) p + ( e c  -6f)h 
-(cf-Ef)r+i(wt - s f ,  = 0.  ( 2 . 1 8 ~ )  

In the sequel, the various restrictions satisfied by the spin coefficients, i.e. equations 
(1.7n), (1.76), ( l . l O ) ,  (1.111, (1.12) etc, the Einstein field equations (1.16u)-(l.l6f), 
the restrictions (1.14), (1.15), (2.7a), (2.76) and equations (2.12u)-(2.17d) will be 
used extensively without explicit reference. The restriction (1.13) is not used in what 
follows. At first sight the energy condition EZ is needed when w = 0, because in this 
case the condition (1.10) cannot be achieved by means of the null rotation ( 1 . 6 ~ ) -  
(1.6c), and consequently the terms i(a -27)(l,mv +l,m,) +cc enter into the expansion 
(1.8) of T*,,. However, a straightforward calculation shows that in this case (i.e. 
K = U  = w = 0) the condition (1.10) follows from the circularity conditions (2.4u, 6)  
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and the restriction (2.76). Therefore the results obtained here are valid not only for 
neutrino fields of class Ez  but for all neutrino fields with geodesic and shear-free rays. 
The reference notation adopted in our previous articles (Kolassis 1982a, b) for the 
Ricci and Bianchi identities is used again here; e.g. (R l )  and (Bl) ,  by which we mean 
the first Ricci identity and the first Bianchi identity, respectively, in the listing given 
by Pirani (1965) or by Flaherty (1976). In the next sections, the Einstein-Weyl 
equations are investigated on 9 for the cases A, B and C separately and the following 
theorem is proved. 

Theorem. If, in a connected subdomain of space-time, the following conditions are 
satisfied: 

(i) the Einstein-Weyl equations hold and the neutrino field has geodesic and 
shear-free rays and 

(ii) the metric is stationary axially symmetric and can be put into a canonical form, 
then the metric is uniquely determined and asymptotically non-flat, the Weyl tensor 
is of Petrov type D, and the Ricci tensor belongs to the class [2T-2SI2 in the Plebanski 
classification. 

3. Case A 

In this section we investigate case A of the preceding section i.e. the interaction of a 
pure radiation neutrino field with a stationary axially symmetric space-time. The two 
commuting Killing vector fields are related by 

e = h b  (3.1) 

f = hc (3.2) 

and 

where h is a real function of the coordinates. As the vector field 6’ cannot be collinear 
with vLl on 9, from equations (3.1) and (3.2) it follows that 

d - h a  f O .  (3.3) 

p = p .  (3.4) 

Because the neutrino field is a pure radiation field we have 

The integrability conditions of equations (3.1) and (3.2) (i.e., their D, A and S 
derivatives) give 

Dh = O  (352)  

bAh = ( p  +p)(ha - d ) + u  -hp (3.5b) 
Sh = O  

C ( U  - hp) + (d - ha)[b(T + ?) - c ( p  +p) ]  = 0 

( 3 5 )  

(3.5d) 

i (w-hs )+(d -ha )p=O.  (3.5e) 
Inserting equations (3.1) and (3.2) into the commutation equations (2.18a)-(2.18~) ,  
we obtain 

u - h p = ( p + p ) ( d - h a )  ( 3 . 6 ~ )  
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UU -pd + (d -hU)[b(y -t 7) + C ( T  -k f - 4 7 )  + E ( f i  f T -4f)]  = o  (3.66) 

(d  - hu)[b(fi + T) -201 + iE(w - hs) = 0. ( 3 . 6 ~ )  

With the help of equations (3.3) and (3.4) equations (3.5u)-(3.5e) and (3.6u)-(3.6c) 
yield 

p = o  (3.7u) 

U = hp (3.8u) 

w =hs (3.8b) 

h = constant ( 3 . 8 ~ )  

p = b ( y  + T) - 4c7 -4E?. (3.8d) 

Now, as on the rotation axis the vector field q W  vanishes, we have e = 0 which by 
virtue of equation (3.1) in turn implies that h also vanishes on the axis. (It is clear 
that a physically significant neutrino flux vector cannot be singular on the rotation 
axis. Therefore the null tetrad will also be non-singular on the axis except perhaps 
at some isolated points.) Therefore, by virtue of equation (3.8c), 

r + ? = O  (3.76) 

h = O  (3.9) 

everywhere in 9, But this last equation has as a consequence that q ’” is collinear with 
Z’” everywhere in 9 and this is in contradiction with our hypotheses. Finally, we can 
conclude that the pure radiation neutrino field is incompatible with a stationary axially 
symmetric configuration of the space-time. 

4. Case B 

In this case the neutrino energy-momentum tensor has the general form corresponding 
to the class E2 fields while the two Killing vector fields satisfy the restrictions 

c = o  (4.1) 
and 

f = O .  (4.2) 
In view of the results of the preceding section we adopt the restriction 

P +P. (4.3) 
This restriction means that the neutrino field cannot be a pure radiation field and 
therefore as a direct consequence we have 

p = u = o  (4.4) 
while the quantities s and w are reduced to real constants. As the two Killing vector 
fields cannot be collinear, the substitution of equations (4.1), (4.2) and (4.4) into 
equation ( 2 . 1 8 ~ )  yields 

p + p = o .  (4.5) 
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But this last equation together with ( R l )  implies that the spin coefficient p vanishes, 
and this contradicts equation (4 .3) .  Thus case B is unrealisable by a neutrino field 
interacting with a stationary axially symmetric space-time. 

5. CaseC 

In this case, apart from the other restrictions satisfied by the spin coefficients, we also 
have 

Y = 7  (5 .1 )  
and 

P #b .  ( 5 . 2 )  

The restriction (5 .2 )  excludes from our discussion the case of a ghost neutrino field. 
As, by virtue of equation (5 .1 ) ,  the neutrino field cannot be a pure radiation field, it 
follows that 

p = u = o  (5.3a) 

s = constant ( 5 . 3 b )  

w =constant. ( 5 . 3 c )  

The two Killing vector fields are related by 

d = h a  ( 5 . 4 ~ )  

e = h b  ( 5 . 4 b )  

C = g f  ( 5 . 4 c )  

where h and g are real functions of the coordinates. It is clear that except perhaps 
for the points on the axis we have on 9 

f # O  ( 5 . 5 )  

otherwise the vector field 7’’ would be time-like on 9. As the two Killing vector 
fields cannot be collinear on 9 we have the additional restriction 

l - h g Z 0 .  ( 5 . 6 )  

For convenience, in addition to the conventions adopted at the end of § 2, we agree 
that in this section the restrictions (5 .1) - (5 .6)  will also be used without explicit 
reference. The integrability conditions of equations (5 .4a ) - (5 .4c )  respectively yield 

( 5 . 7 ~ )  

( 5 . 7 b )  

( 5 . 7 c )  

D h  = O  ( 5 . 8 ~ )  

bAh = 2 ( 1 - h g ) ( ~ f + ? f )  ( 5 . 8 b )  

b8h = (1 - h g ) ( p  - p ) f  ( 5 . 8 ~ )  

a D h  = ( 1  - hg) [ (+  -3T) f  +(T - 3 ? ) f ]  

a Ah = ( 1 - hg )( Ff + v7) 
a8h = ( 1  - h g ) ( p  - f i ) f  
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f D g = ( l - h g ) ( T + ? ) b  

f A g  = -(1 - h g ) ( T  + ? ) U  

f a g  = (1 - h g ) I 6  

f 8 g  = ( l -hg ) ( i i b  -pu)+i(s  -gw). 

(5.9a) 

(5.96) 

(5.9c) 

(5.9d) 

Moreover the commutation equations (2.18u)-(2.18c) can be written respectively 

f T  + f' = 0 

a [ f (T + 7 - 47) + f ( f i  + 7 - 4?)] + 6 (  f c  + f v )  = 0 

(1 - h g ) [ f ( u p  - bE) -bfI]  = i(s - g w ) f .  

(5.10a) 

(5.10b) 

( 5 . 1 0 ~ )  

From equations (5.7a)-(5.10~)  we obtain the following restrictive equations on the 
spin coefficients 

T + ? = O  (5.11) 

f T + f ? = o  (5.12) 

fI7 + f u  = 0 (5.13) 

f2h+fA = O  (5.14) 

up = bp. (5.15) 

In order to obtain further restrictions on the spin coefficients we must consider the 
integrability conditions of equations (5.12)-(5.15). Thus, from the D derivative of 
equation (5.12) and with the help of equation (5.11) and (R3) we obtain 

7 =o .  (5.16) 

From the D derivative of equation (5.13) and with the help of equations (5.11) and 
(5.16) and (R9), (R15) and (R18) we obtain 

u = o  (5.17) 

and 

9 3  = 0. (5.18) 

From the D derivative of equation (5.14) and with the help of equations (5,11), (5.16) 
and (5.17) and (R7) and (R10) we obtain 

A = O  (5.19) 

and 

9 4  = 0. (5.20) 
Finally from the D derivative of equation (5.15) and with the help of equations (5.11) 
and (5.16) and (R l )  and (R8) we obtain 

(5.21) 

Using the Ricci identities and the various restrictions satisfied by the spin coefficients 
we can show by straightforward calculations that the A and 8 derivatives of equation 
(5.15) reduce to identities while from its S derivative it follows that the quantity Sp 

9 2  = 2 yp + 2pp. 
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vanishes. Introducing equations (5.16) and (5.21) into (R12) we obtain 

% l = p c z + Y ( P + p ) .  (5.22) 

From (R6), (R15) and (R17) and with the help of equations (5.16), (5.17) and (5.22), 
we obtain S y  = dy = Dy = 0. On the other hand, substituting equation (5.22) into 
(B11) and taking into account equations (5.16), (5.17), (5.19) and (5.21) and (R14) 
and (R17) we obtain ( p  + p ) A y  = 0 .  From this equation and from the fact that by 
virtue of (R l )  the spin coefficient p cannot be purely imaginary it follows that A y  = 0. 
Therefore, it is clear that 

y = real constant. (5.23) 

We have not used yet the ten Bianchi identities (B1)-(B10) and the commutation 
relations of the D, A ,  6 and d operators acting on scalars, but by straightforward 
calculations we can see that by virtue of the results we have obtained, all these equations 
are identically satisfied. Recapitulating, we can say that in case C all the spin 
coefficients vanish except E ,  p,  CL and y, and the Weyl tensor is of Petrov type D. 
Now, if we wish to proceed we have to introduce a coordinate system and resolve 
the metric equations. The resulting metric will admit at least two commuting Killing 
vector fields and we must check whether or not these Killing vector fields satisfy 
equations ( 5 . 4 ~ ) -  ( 5 . 4 ~ ) .  

Following the methods of Collinson and Morris (1973) we introduce a coordinate 
system ( x l ,  x 2 ,  x 3 ,  x 4 )  adapted to the geodesic null congruence defined by 1”. The 
coordinate x 2  = r is one affine parameter along each null geodesic so that 

1” = A a x ” / a r  (5.24) 

with 

D(1og A )  = p + p  (5.25) 

where A is a real function of the coordinates. The remaining three coordinates of 
the congruence label the geodesics of the null congruence. The null tetrad vectors 
may be considered in the form 

1” =AS: ( 5 . 2 6 ~  ) 

K w  = +xis? (5.26b) 

m@=qDS;+Y‘SY ( 5 . 2 6 ~ )  

where the index i takes the values i = 1 ,3 ,4 .  They are invariant in form under the 
following coordinate transformations 

r f = r  

r ’ = r + f ( x 1 , x 3 , x 4 )  x ” -  - x  ‘ 
r ’ = g ( x 1 , x 3 , x 4 ) r  X I ’  = X I ,  

X ”  = x ’ ( x  l ,  x 3 ,  x 4 )  ( 5 . 2 7 ~ )  

(5.27 b )  

( 5 . 2 7 ~  1 
From equations (5.25) and ( R l )  the spin coefficient p is uniquely determined. It can 
be written in the form 

p = - A / ( r  +ipo) (5 .28 )  

where the superscript is used to denote a function independent of r. The coordinate 
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transformations (5,276) and ( 5 . 2 7 ~ )  can be used to put po = 1. Hence 

p = -A/(r  +i).  (5.29) 

Substituting equation (5.29) into equation (5.25) and resolving the resulting equation 
we obtain 

(5.30) 

The metric equations are obtained by substitution of the coordinates into the N P  
commutation relations. They can be written in the form 

hA - DU = 2yA + ( p  + /5)U (5.31) 

SA - D q  = -pp (5.32) 

A = A o / ( r 2  + 1). 

SU-Aq = p q  (5.33) 

& - S + = ( @ - p ) A + ( p - p ) U  (5.34) 

DX' = - ( p  +P)X' (5.35) 

S X ' - A Y ' = p Y '  (5.37) 

DY'=pY'  (5.36) 

by1 -SF' = ( P  -p )X' .  (5.38) 

Integrating the radial equations (5.35) and (5.36) we obtain 

X' = X 0 ' ( r 2 +  1)  (5.39) 
and 

Y'  = Yo'/(r +i). (5.40) 

By virtue of equation (5.39) the integration of equation (5.31) yields 

U = r ( 4 r 2 +  1)(Xo'/Ao)d,Ao-2yr+ U'. (5.41) 

On the other hand, by virtue of equation (5.40) the integration of equation (5.32) yields 

(5.42) cp = ( r  - i)(r2 + 1)-2[r($r2 + 1)(  Yo'/Ao)&Ao + iqol. 

Inserting equation (5.29) into equation (5.22) we obtain 

g =(~-2yr)(r- i ) ( r2+1)- ' .  (5.43) 

Substituting equations (5.39) and (5.40) into equations (5.37) and (5.38) we obtain 

YO'&pJ = Xo'&yQ (5.44a) 

( Y ' ' /A  O ) ~ , A  OxoJ = o (5.446) 

= 0 (5.44c) 

(Xo'/Ao)&AoYoJ = 0 (5.44d) 

(UO-t)yO' = o  (5.44e) 

= 0 (5.45a) 

( Y ~ ' / A ~ ) ~ , A ~ F ~ ~  = o (5.456) 

(5.4%) 2iAOXOJ + FO'&yO' - yO'&pJ = 0. 
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Now we notice that if c p o # O  from equations ( 5 . 4 4 ~ )  and (5.45a), it follows that 
Xoi = Yo' = 0. But from these two equations and equation (5.33) the contradiction 
cpo = 0 follows. Hence 

(5.46) 

On the other hand if Yo' = 0 then by virtue of equations (5.40), (5.42) and (5.46) the 
vector field m w  will be identically zero on 9. Hence 

0 
cp =o. 

YO' # O  (5.47) 

everywhere on 9. By virtue of equation (5.47), equations (5.44e), (5.44d) and (5.456) 
respectively yield 

(5.48) 

(5.49) 

(5.50) 

Since Xo' and Yo' span the subspace r = constant, from equations (5.49) and (5.50) 
it follows that A' =constant. Thus equations (5.42) and (5.41) reduce to 

(p = o  (5.51) 

and 

U = i - 2 y r .  ( 5 . 5 2 )  

Now equations (5.33) and (5 -34) are identically satisfied. The remaining equations 
( 5 . 4 4 ~ )  and ( 5 . 4 5 ~ )  will be used to determine Xoi  and Yo'. Since Xo' has a non-zero 
magnitude, by performing the transformation ( 5 . 2 7 ~ )  we achieve 

xoi = 8 '  1 .  (5.53) 

r f  = r X l i  = x l s ' l  + q i ( x 3 ,  x4) .  (5.54) 

The remaining coordinate freedom is given by 

By virtue of equation (5.53), equation (5.44) reduces to alYo'=OO. Therefore, the 
coordinate transformation (5.54) can be used to put 

y o 3  = p y o 4  = ip ( 5 . 5 5 )  

where P is a complex function of x3, x4. The remaining coordinate freedom is given 
now by 

r ' = r  ( 5  S 6 a )  

XI1  = x 1 + q ' ( x 3 ,  x4)  

z ' = z f ( z )  

(5.566) 

( 5 . 5 6 ~ )  

where z = x3+ix4.  Considering equation (5.4%) for j = 3 ,4  we obtain P = P(2). 
Then, with the use of equation ( 5 . 5 6 ~ )  we can put 

P = l .  (5.57) 
The remaining coordinate freedom can be written now 

r I = r  ( 5 . 5 8 ~ )  
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x = x + q l ( X  3, x 4, 

2 '  = z +constant. 

Finally, for j = 1 equation (5.452) reduces to 

- - A O ,  
ayo' avo' 

az a f  

(5.58b) 

( 5  S8c)  

(5 .59 )  

Now under the coordinate transformation (5.58u)-(5.58c) the quantity Yo' transforms 
as follows 

(5.60) 

However, we notice that equation (5.59) is just the integrability condition for 4' to 
be chosen so that Y'O' = - $ A o z  +constant, and the constant can be eliminated by 
means of equation ( 5 . 5 8 ~ ) .  Therefore we can put 

yo' = - $ i A o z  (5.61) 

and the only remaining coordinate freedom is x " =  x'+constant. All the metric 
equations are now satisfied. The null tetrad is given by 

y10'= y0'+2--. ad 
a2 

( 5 . 6 2 ~ )  

Now equations (2.12u)-(2.17d) and (5.8u)-(5.8c) can be easily integrated to obtain 
the following uniquely determined solutions 

c = ( r  + i)(C - $si)  ( 5 . 6 3 ~ )  

i(C2 - Cz) - t s z f  + 7 b =-( A0 
r 2 +  1 A 

(5.633) 

(5.64 b ) 

(5.65) 

where C, B, C', B' and H are constants of integration. In order that the circularity 
conditions ( 2 . 3 ~ )  and (2.36) are satisfied, equations (5 .4u)-(5.4c)  and (5.6) must be 
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fulfilled by equations (5.63a)-(5.65). By a straightforward calculation we can see 
that this is so if 

c = gC’ ( 5 . 6 6 ~ )  

and 

B + H  = g B ’ .  (5.66b) 

We have, therefore, a four-parameter group of isometries. The four linearly indepen- 
dent Killing vector fields can be written in the form 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

The line element of the metric written in the coordinate system (XI, x 2 , x 3 , x 4 ) =  
(U, r, $(z + f), &(f - z ) )  assumes the form 

ds2=(2/Ao)F(r)du’+(2/Ao)du dr-$A°F(r)(z df-f dz)’-$(r’+l)dz df 

+i($ dr + F ( r )  du)(z df - f dz) (5.71) 

where 

F ( r )  = (2yr -a)(?+ I)-’, (5.72) 

The investigation of the asymptotic behaviour of the Riemann curvature tensor for 
large values of the radial coordinate r shows that this metric is asymptotically non-flat. 
Let us now introduce angular coordinates 8, cp by 

z = 2 ei’ tan $e. (5.73) 

The line element (5.71) then assumes the form 

ds’ = (2/A0)F(r) du2 + (2/A0) du dr -tan’ $3[2(r2 + 1) -iA°F(r)  tan2 $01 dq2  

-$ ( r ’+ l )~os -~ f f3  d 8 + 8  tan’$e(fdr+F(r) du)dcp (5.74) 

and the two commuting Killing vector fields become 6” = 8: and q” = 6,”. Finally, 
the line element (5.74) can be put into a canonical form by introducing a time 
coordinate t defined by 

1 

Thus, we obtain 

ds’ = (2/A0)F(r) dt’ - tan’ $8[2(r2 + 1) -iA°F(r) tan’ $61 dq’ 

+ 8 F ( r )  tan’$@ dq dt - (1/2A0)(1/F(r)) dr’ 

-&’ + 1) $6 de’. 

(5.75) 

(5.76) 
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6. Discussion 

From the investigations of the previous sections it is clear that there exist no solutions 
of the Einstein-Weyl equations under the following assumptions. 

(i) The neutrino field has geodesic and shear-free rays. 
(ii) Space-time is stationary axially symmetric and the line element of the metric 

can be put into a canonical form. 

A result similar to this, but less general, has been obtained by Trim and Wainwright 
(1974). They proved that under some appropriate restrictions imposed on the 
asymptotic behaviour of the Weyl and Ricci tensors and for a neutrino field with 
geodesic and shear-free rays there exists no solution of the Einstein-Weyl equations 
analogous to the charged Demianski-Newman solutions of the Einstein-Maxwell 
equations. 

Recently, two Kerr-like solutions of the Einstein-Weyl equations were presented 
by Lun (1980). The corresponding neutrino fields are time-independent with geodesic 
and shear-free rays and violate the energy conditions Ez and El  as the restriction 
(1.13) is asymptotically not satisfied. Both metrics are not in contradiction with our 
results as they cannot be put into a canonical form. 

Finally, we must notice that the Einstein-Weyl equations are solved explicitly with 
respect to the affine parameter r and with the only restriction that the neutrino field 
be of class Ez by Trim and Wainwright (1971, see equations (4.1) and (4.2) in this 
reference). The dependence of the metric with respect to the other three coordinates 
is determined by a system of ‘reduced equations’ (see equations (4.6)-(4.8) in this 
reference). The authors pointed out that these equations admit a particularly simple 
partial solution which is actually of the form of equation (5.71). However, his character 
of the unique stationary axisymmetric and canonical solution of the Einstein-Weyl 
equations with geodesic and shear-free rays was not revealed. 

(iii) Space-time is asymptotically flat. 

Appendix 

For convenience, we list the expansions of I,;,, K,;, and m,;, on the null tetrad. 

l,;, = ( E  + E ) ~ , K ,  -K*,K, - Em,K, + (y + F)l,l,, - rtii,l, - bm,l, 

-(G + ~ ) l , f i ,  - (a  +p)l,m, +ptii,m, +pm,tii, +ufi,fi, +em,m, 

K ~ ; “  = - ( E  + E)K,K,  + 7rm,K, + + i t i i , ~ ,  - (y + F ) K , ~ ,  + vm,l, + ijfi,,lv 
- + (G + P ) ~ , f i ,  + (a + P)K,m, - hm,m, - hi,fi, - pm,A, -fifi,m, 

m,;, = -KK,K, ++il,~, - (d - e)m,K, - TKJ, + ijl,l, - (7 - y)m& 

+~~,f i , , - i~, f i , ,  + ( E  -@)m,fi, +pK,m, -fil,m,+@-a)m,m,. 
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