A direct imaging method using far-field data

To cite this article: Songming Hou et al 2007 Inverse Problems 23 1533

View the article online for updates and enhancements.

Related content
- A direct imaging algorithm for extended targets
 Songming Hou, Knut Solna and Hongkai Zhao
- The use of constraints for solving inverse scattering problems
 Massimo Brignone and Michele Piana
- Robust imaging of localized scatterers using the singular value decomposition and ell 1 minimization
 A Chai, M Moscoso and G Papanicolaou

Recent citations
- MUSIC algorithm for location searching of dielectric anomalies from S -parameters using microwave imaging
 Won-Kwang Park et al
- An improved imaging method for extended targets
 Songming Hou and Sui Zhang
- Guangmin Zhang and Yue Song
A direct imaging method using far-field data*

Songming Hou¹, Knut Solna² and Hongkai Zhao²

¹ Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA
² Department of Mathematics, University of California at Irvine, CA, 92697, USA

E-mail: mickey@math.msu.edu, ksolna@math.uci.edu and zhao@math.uci.edu

Received 18 January 2007, in final form 7 May 2007
Published 25 June 2007
Online at stacks.iop.org/IP/23/1533

Abstract
We present a direct imaging algorithm for extended targets using far-field data generated by incident plane waves. The algorithm uses a factorization of the response matrix for far-field data that is derived from physical considerations and a resolution-analysis-based regularization. The algorithm is simple and efficient since no forward solver or iteration is needed. Efficiency and robustness of the algorithm with respect to measurement noise are demonstrated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
Probing a medium using incident plane waves and recording the far-field pattern is a classical inverse scattering problem that has been studied in depth. The objective is to find the location and geometry of the targets using the far-field pattern of the scattering operator, that is, using the relation between incident plane waves and scattered outgoing plane waves.

There are essentially two types of method that have been presented to solve such an inverse problem: iterative methods and direct methods. Iterative methods treat the inverse problem as a nonlinear optimization problem. Usually, for each iteration, an adjoint forward problem needs to be solved. Direct method gives a characterization/visualization of the geometry by designing an imaging function that peaks near the target boundary.

For example, the MUltilpe SIgnal Classification (MUSIC) algorithm [6, 8, 10, 15, 16] is a direct imaging function which can locate small targets using an array of transducers that can send and receive signals. The MUSIC algorithm is generalized in [9] to image the shape of extended targets for near-field data. In this paper, we present a simple extension of the

* This research is partially supported by ONR grant N00014-02-1-0090, DARPA grant N00014-02-1-0603, NSF grant 0307011 and the Sloan Foundation.
MUSIC algorithm in [9] to the inverse scattering problem using only far-field data. This method is a direct method that is very efficient and robust. It can be parallelized easily since the evaluation at different search points are independent. We show that the resolution-analysis-based regularization in [9] can also be applied to far-field data, in particular, the singular value pattern for near-field and far-field data with a point source or plane incident wave is almost identical.

The linear sampling method, first proposed in [4], is also a direct imaging algorithm for the inverse scattering problem. The method is based on a characterization of the range of the scattering operator for the far-field pattern. It is shown that the far-field pattern of a point source located inside the object is in the range of the scattering operator. Kirsch presents a factorization of the scattering operator in [11] and uses this factorization for imaging. The relation between the MUSIC and the linear sampling method is studied in [2, 12]. A good review of the recent development of the linear sampling method is presented in [1, 3]. As in the case of the linear sampling method our approach is based on a frequency domain formulation. The approach presented here differs from the linear sampling method. First, our algorithm is based on a different factorization. Second, a resolution-based thresholding is used for regularization, which is very robust with respect to noise.

The outline of the paper is as follows. In section 2, we briefly explain the original MUSIC algorithm and apply it to far-field data to find the locations of small targets, that is, the data we use is low frequency data so that the target size is much smaller than the wavelength. In section 3, we formulate the generalized MUSIC algorithm for far-field data. Then, in section 4, we discuss the generalized MUSIC imaging function for sound-hard targets. Finally, we provide numerical experiments in section 5 to demonstrate the efficiency and robustness of our imaging algorithm.

2. Imaging the location of point targets

In this section, we generalize the basic MUSIC algorithm to the case with small targets in a situation with far-field data. We shall analyse the situation with a general non-symmetric response matrix and define next the multi-static response matrix for far-field data in the frequency domain. Consider an array of transducers that can send out plane incident (probing) waves and record outgoing (scattered) plane waves in various directions (angles). Assume that we have a set of incident plane waves with incident angles (directions) $\hat{\alpha}_i, i = 1, \ldots, m$. The scattered waves are recorded at outgoing angles $\hat{\beta}_j, j = 1, \ldots, n$. Here $\hat{\alpha}_i, \hat{\beta}_j$ belong to the unit sphere $S^d, d = 2, 3$. These measurements form the $m \times n$ response matrix P. The response matrix can be regarded as a discrete version of the scattering operator. Also we define the physical resolution of the array in the same way as in [6, 9]: consider the far-field signal generated by a point source that is time reversed (phase conjugated in the frequency domain) and sent back, the focusing size of the resent signal is the physical resolution of the array. The resolution is related to the wavelength and the aperture of the array. If the array has full aperture so that the full angular variation is resolved, then the resolution of the array is the wavelength. In general, the physical resolution of an array can be determined using physical experiments or multiple-frequency data [9].

If the dimensions of the targets are much smaller than the physical resolution of the array then the targets can be regarded as point scatterers. The structure of the response matrix is then greatly simplified since the geometry and material properties of the targets are neglected. The following formulation is similar to that in [12], it is more general in that the incoming and outgoing directions may be different.
Assume that there are \(M \) point targets located at \(y_1, \ldots, y_M \in \mathbb{R}^d \), \(d = 2, 3 \). For an incident plane wave coming in from the direction \(\hat{\theta} \in S^d \),

\[
u^i(x, \hat{\theta}) = e^{i k x \cdot \hat{\theta}},
\]

where \(k \) is the wave number, the scattered wave field is

\[
u^s(x, \hat{\theta}) = \sum_{l=1}^M \tau_l e^{i k y_l \cdot \hat{\theta}} G(x, y_l),
\]

if multiple scattering among point targets are neglected. Here \(G(x, y) \) is Green’s function for the Helmholtz equation which has the far-field pattern

\[
G(x, y) = \gamma_2 \frac{e^{i k |x|}}{|x|^{(d-1)/2}} e^{-i k \cdot x} + O(\|x\|^{-(d+1)/2}), \quad \|x\| \to \infty,
\]

where

\[
\hat{x} = \frac{x}{\|x\|}, \quad \gamma_2 = \frac{1 + i}{4 \sqrt{k \pi}}, \quad \gamma_3 = \frac{1}{4 \pi}.
\]

The far-field pattern of the scattered field is accordingly defined by

\[
u_\infty(\hat{x}, \hat{\theta}) = \sum_{l=1}^M \tau_l e^{i k y_l \cdot (\hat{\theta} - \hat{x})},
\]

so that the elements of the response matrix are

\[
P_{ij} = \nu_\infty(\hat{\beta}_j, \hat{\alpha}_i) = \sum_{l=1}^M \tau_l e^{i k y_l \cdot (\hat{\beta}_j - \hat{\beta}_i)}.
\]

The response matrix can therefore be decomposed in the form

\[
P = \sum_{l=1}^M \hat{g}_i^l [\hat{g}_o^j]^H,
\]

where \(H \) denotes the Hermitian. If we assume \(M < \min(m, n) \), the response matrix \(P \) is of rank \(M \). The column space is spanned by the following illumination vectors with respect to the incident wave directions:

\[
\hat{g}_i^l = [e^{i k \hat{\alpha}_i \cdot y_l}, \ldots, e^{i k \hat{\alpha}_m \cdot y_l}]^T, \quad l = 1, 2, \ldots, M.
\]

The row space is spanned by the following illumination vectors with respect to the outgoing wave directions:

\[
\hat{g}_o^l = [e^{i k \hat{\beta}_l \cdot y_l}, \ldots, e^{i k \hat{\beta}_n \cdot y_l}]^T, \quad l = 1, 2, \ldots, M,
\]

with \(T \) denoting the transpose.

Now we define our imaging function which is similar to the original MUSIC algorithm and is based on the singular value decomposition of the response matrix. We can either use the first \(M \) left singular vectors \(u_l, l = 1, 2, \ldots, M \),

\[
I_L(x) = \frac{1}{1 - \sum_{l=1}^M |\hat{g}_l^i(x)^H u_l|^2}, \quad (1)
\]

or use the first \(M \) right singular vectors \(v_l, l = 1, 2, \ldots, M \),

\[
I_R(x) = \frac{1}{1 - \sum_{l=1}^M |\hat{g}_l^o(x)^H v_l|^2}, \quad (2)
\]
or combine both. Here \(\hat{\mathbf{g}}_{i0}(x) \) and \(\hat{\mathbf{g}}_{o0}(x) \) are normalized illumination vectors at \(x \) with respect to the incoming and outgoing directions, respectively. From the above analysis of the response matrix the imaging function will peak at the locations of the point targets.

Remark 1. The essential difference between the above algorithm and the original MUSIC is the use of the far-field pattern of Green’s function in the illumination vector. Note also that if the incoming and outgoing directions are the same the above two imaging functions become the same.

Remark 2. The above imaging function will also work in the case with multiple scattering among point targets. It is shown in [8] that the column and row spaces are not changed by multiple scattering using the Foldy–Lax formula.

3. Imaging extended target

We next discuss the properties of the singular value decomposition of the response matrix in the general case. In general, the singular value decomposition of the response matrix can have the following three patterns.

For point targets whose sizes are much smaller than the array resolution, the number of significant singular values equals to the number of targets and the response matrix only contains location information.

For small targets whose sizes are smaller than, but comparable to the array resolution, the pattern of singular values becomes more complicated as explained in [17]. The response matrix contains location and some size information.

For extended targets whose sizes are larger than the array resolution, the response matrix contains both location and geometry information of the target. In [9], a direct imaging algorithm is developed for extended target. The key idea in the imaging algorithm is to determine:

1. the illumination vector based on a physical factorization of the scattered field;
2. the signal space and its dimension (thresholding) based on a resolution analysis.

In the following, we will show the proper form of the illumination vector for far-field data, that is, when using plane wave data. Let us first deal with sound-soft targets with Dirichlet boundary condition at the target boundary. For simplicity, we assume here that the outgoing directions we measure are the same as the incoming directions, \(\hat{\theta}_1, \ldots, \hat{\theta}_n \). The scattered far field is then [5]

\[
\mathbf{u}_\infty(\hat{x}) = -\frac{1}{4\pi} \int_{\partial D} \frac{\partial u}{\partial \nu}(y) e^{-ik\hat{x} \cdot y} \, ds(y),
\]

where \(\partial D \) is the boundary of the targets, \(\hat{x} \) is a unit vector that defines the far-field direction, \(u \) is the total field, \(\nu \) is the outer normal direction on the boundary of the targets. The constant \(-\frac{1}{4\pi}\) corresponds to three-dimensional problems and it is replaced by \(-\frac{\mu k}{\sqrt{8\pi\rho k}}\) for two-dimensional problems. In our setup, the element of the response matrix \(P_{ij} \) corresponds to the far-field pattern of the scattered field in the \(j \)th direction due an incident wave coming from the \(i \)th direction, e.g.,

\[
P_{ij} = u_\infty(\hat{\theta}_j; \hat{\theta}_i) = -\frac{1}{4\pi} \int_{\partial D} \frac{\partial u}{\partial \nu}(y; \hat{\theta}_i) e^{-ik\hat{\theta}_j \cdot y} \, ds(y),
\]

where the total field is due to incident plane wave coming from the direction \(\hat{\theta}_j \). In matrix form

\[
P = -\frac{1}{4\pi} \int_{\partial D} \frac{\partial \mathbf{u}}{\partial \nu} \hat{\mathbf{g}}^H(y) \, ds(y),
\]

(4)
A direct imaging method using far-field data

\[g(y) = [\text{e}^{ik_{\hat{\theta}_1} \cdot y}, \ldots, \text{e}^{ik_{\hat{\theta}_n} \cdot y}]^T, \]

where \(g(y) \) is the vector of total fields corresponding to the incident plane waves from \(\hat{\theta}_1, \ldots, \hat{\theta}_n \).

Equation (4) gives a physical factorization of the scattered field into known and unknown parts. The far-field pattern is a superposition of the far-field patterns of point sources located on the boundary of the target, however, we do not know the weight function which depends on the total field. In other words, the scattering at the target boundary acts as sources for the scattered field. In this far-field setup, it is natural to use \(g(y) \) as the illumination vector. The signal space of the response matrix should be well approximated by the span of the illumination vectors \(g(y) \) with \(y \) on the well-illuminated part of the boundary of the targets.

The next step is to determine the signal space, which is spanned by appropriate singular vectors of the response matrix. It has been shown in [9] that by using a resolution-analysis-based thresholding we could determine a threshold \(r \) and use the first \(r \) singular vectors to image the shape of the targets for point source and near-field measurement. The key idea is that the dimension of the signal space is proportional to the ratio between the size of the target and the physical resolution of the array. The singular value decomposition procedure and thresholding-based regularization can extract information effectively and robustly with respect to noise.

Now we show relations among the response matrices corresponding to different setups. We consider a simple array geometry, e.g., circular array with full aperture measurement with equal spacing angles for the following four cases: (i) point sources and near-field data, forming a response matrix \(P_1 \), (ii) point sources and far-field data, forming a response matrix \(P_2 \), (iii) plane waves and near-field data, forming a response matrix \(P_3 \), (iv) plane waves and far-field data, forming a response matrix \(P_4 \). In the following, we analyze relations among these response matrices and the corresponding singular values.

The near-field (scattered field) \(u' \) and far-field pattern \(u^{\infty} \) are related by

\[u'(x, k) = \frac{\text{e}^{ik|x|}}{\|x\|^{d/2}} \left(u^{\infty}(\hat{x}, k) + O \left(\frac{1}{\|x\|} \right) \right), \]

where \(d = 2 \) or \(3 \) is the dimension. Therefore,

\[P_1 = \frac{\text{e}^{ik|x|}}{\|x\|^{d/2}} \left(P_2 + O \left(\frac{1}{\|x\|} \right) \right), \]

\[P_3 = \frac{\text{e}^{ik|x|}}{\|x\|^{d/2}} \left(P_4 + O \left(\frac{1}{\|x\|} \right) \right). \]

This means that the first few dominant singular values of \(P_1 \) and \(P_2 \) have almost the same pattern (up to a constant scaling) in the regime when \(\|x\| \) is large, and correspondingly for \(P_3 \) and \(P_4 \).

Furthermore, we have the mixed reciprocity relation [14]

\[P_2 = \beta P_3^T, \]

where \(\beta = \frac{1}{4\pi} \) for \(d = 3 \) and \(\beta = \frac{\pi}{4\sqrt{8}\pi k} \) for \(d = 2 \). This implies \(P_2 \) and \(P_3 \) have the same singular values up to the constant \(\beta \).

We use numerical experiments to further demonstrate that the singular value patterns for the four response matrices are very similar, i.e., the dominant singular values are almost proportional, even for relatively moderate magnitudes of \(\|x\| \). We use \(k = 7 \) and \(R = 5 \) in the test, where \(R \) is the distance from the point source or near-field measurement locations to
the centre of the target. The target is chosen to be of a kite shape. We use 32 directions of equal spacing for both near-field and far-field data. Figure 1 shows the numerical result for the singular value plots for the four response matrices.

Theoretically, from (7), (8) and (9), we know the following hold approximately for small i:

$$
\sigma_{i,1} = \frac{1}{\sqrt{R}} \sigma_{i,2} = 0.4472 \sigma_{i,2},
$$

(10)

$$
\sigma_{i,3} = \frac{1}{\sqrt{R}} \sigma_{i,4} = 0.4472 \sigma_{i,4},
$$

(11)

$$
\sigma_{i,2} = \frac{1}{\sqrt{8\pi k}} \sigma_{i,3} = 0.0754 \sigma_{i,3},
$$

(12)

where $\sigma_{i,j}$ is the ith singular value for P_j.

Numerically, we have

$$
\sigma_{1,1} = \frac{1}{\sqrt{R}} \sigma_{1,2} = 0.4524 \sigma_{1,2},
$$

(13)

$$
\sigma_{1,3} = \frac{1}{\sqrt{R}} \sigma_{1,4} = 0.4521 \sigma_{1,4},
$$

(14)
Figure 2. The singular value plot for the response matrix with $k = 0.5$ (size of the two targets much smaller than wavelength) for clean data, two dominant singular values are observed.

Figure 3. The singular value plot for the response matrix with $k = 0.5$ (size of the two targets much smaller than wavelength) for data with noise, two dominant singular values are observed.

\[
\sigma_{1,2} = \frac{1}{\sqrt{8\pi k}}\sigma_{1,3} = 0.0754\sigma_{1,3}. \tag{15}
\]

Similar agreements hold for the next few singular values except for the last few small singular values.

The above arguments and numerical evidence show that the resolution analysis and the thresholding strategy developed in [9], which characterizes the signal-to-noise ratio, are
Figure 4. MUSIC imaging function with $k = 0.5$ for data with noise, the locations for the kite-shaped and circular-shaped sound-soft targets are found but no shape information.

Figure 5. The singular value plot for the response matrix with $k = 7$ (size of the two targets larger than wavelength) for clean data, a ‘continuous’ spectrum is observed.

generic and can be used for far-field data. The thresholding for a special case with circular shape target for far-field data is also discussed in [7].

Remark 3. Although the pattern of dominant singular values for the response matrices is very similar, the corresponding singular vectors and hence the shape space are not. So in each different setup it is crucial to choose the right form of the illumination vector in the imaging function.
Let v_1, \ldots, v_r be the first r leading singular vectors for the response matrix, the MUSIC imaging function for far-field data can be defined using the illumination vectors for far-field data given in (5):

$$I(x) = \frac{1}{1 - \sum_{j=1}^{r} |\hat{g}_0(x)^H v_j|^2}$$

where \hat{g}_0 is the normalized illumination vector.

We could combine the imaging functions for different frequencies to improve robustness of the result. The multiple-frequency MUSIC imaging function reads

$$I(x) = \frac{1}{m - \sum_{q=1}^{m} \sum_{j=1}^{r_q} |\hat{g}_q(x)^H v_j|^2}$$

where m is the number of frequencies used.

Remark 4. If the set of incident angles coincide with the set of outgoing angles the response matrix is symmetric due to reciprocity. Otherwise the column signal space of the response matrix is spanned by the illumination vectors corresponding to the incident angles and the row signal space is spanned by the illumination vectors corresponding to the outgoing angles. In this case, both spaces can be used in imaging. See [9] for a more detailed discussion.

4. Neumann boundary condition

For a sound-hard target, the far-field pattern of the scattered field is

$$u_{\infty}(\hat{x}) = -\frac{1}{4\pi} \int_{\partial D} u(y) \frac{\partial}{\partial v(y)} ds(y),$$

where u is the total field induced by an incident wave. So, the response matrix is of the form

$$P = -\frac{1}{4\pi} \int_{\partial D} \bar{u}(y) \frac{\partial \hat{g}^H(y)}{\partial v(y)} ds(y).$$
This shows that the signal space of the response matrix P should be well approximated by the illumination vectors of the form $\frac{\partial \hat{g}(y)}{\partial \nu(y)}$ with y being well-illuminated points on the boundary of the targets. However, the normal direction ν of the boundary is not known. Therefore, we use the same strategy as in [9] and incorporate a directional search among a few fixed directions in our imaging function.

The MUSIC imaging function is

$$I(x) = \frac{1}{1 - \max_j \sum_{i=1}^r \left| \frac{\partial \hat{g}_q(x)}{\partial \nu_j} v_i \right|^2}$$

where v_j is a search direction for the normal direction and $\frac{\partial \hat{g}_q}{\partial \nu_j}$ is the normalized illumination vector for sound-hard targets. By taking the maximum over a few fixed directions we are able to find the correct normal direction on the boundary and use it for imaging. Note that we can combine the imaging functions for different frequencies to improve robustness of the result.

The corresponding multiple-frequency MUSIC imaging function is

$$I(x) = \frac{1}{m - \sum_{q=1}^m \max_j \sum_{i=1}^{r_q} \left| \frac{\partial \hat{g}_q(x)}{\partial \nu_j} v_i \right|^2}.$$

Remark 5. If we use the MUSIC imaging function for sound-soft targets to image sound-hard targets, we will observe double-edge images, e.g., using two layers of monopole to approximate one layer of dipole and vice versa. This issue is discussed in [9].

5. Numerical experiments

We present some numerical examples to illustrate how our direct imaging method is capable of imaging sound-soft and sound-hard targets and its robustness with respect to noise. The multiplicative noise is modelled as follows.

$$P_{new}(i, j) = \text{real}(P(i, j)) \cdot a_{ij} + \text{imag}(P(i, j)) \cdot b_{ij},$$

where a_{ij}, b_{ij} are independent random numbers uniformly distributed in $[1 - c, 1 + c]$, where c is 100% in all our experiments. This corresponds to a signal-to-noise ratio of approximately 3. (The signal-to-noise ratio is the square of the ratio between the root-mean-square amplitude of the signal and noise.)

We implemented the method in [5] to generate the far-field data $P(i, j)$ for sound-soft targets and the method in [13] to generate the data for the far-field data $P(i, j)$ for sound-hard targets.

In all images we use the grid size $h = 0.1$ and the search domain is chosen to be a 100×100 sub-grid.

Consider a kite-shaped sound-soft target and a circular-shaped sound-soft target. The size of each target is about 2. The separation distance between the targets is about 3. We use the wave number $k = 0.5$, that is, a wavelength of $2\pi/0.5$, much larger than the size of the targets. We use 32 incident plane waves and 32 far-field directions with equal angles to generate the response matrix. Moreover, we use Nordström’s method [5] to generate our forward data and corrupt the data with the multiplicative noise corresponding to a signal-to-noise ratio of approximately 3 as explained above. Figures 2 and 3 show the singular value plot of the response matrix with and without the noise. Since the size of the targets are much smaller than the wavelength, there are two dominant singular values in each of the plots, corresponding to the two targets. Note that the noise perturbs the singular values but does not change the pattern significantly. Figure 4 shows the MUSIC imaging function (1) with $M = 2$. The location of the two targets are found. However, there is no shape information in the response matrix.
Next we consider the same setup as above but use $k = 7$. This time the wavelength $2\pi/7$ is smaller than the size of the targets. Therefore, the targets can be considered to be extended targets and the shape information is included in the response matrix. Figures 5 and 6 show the singular value plot of the response matrix with and without the noise. Since the sizes of the targets are larger than the wavelength, a ‘continuous’ spectrum is observed. Again the noise perturbs the singular values but does not change the pattern significantly. Figure 7 shows the MUSIC imaging function (16) with $r = 14$, which is estimated by the resolution-
Figure 9. Multiple-frequency MUSIC imaging function with $k = 5, 6, 7$ for data with noise, the shape for the kite and circle for sound-soft targets is reconstructed. The image is clearer than the single frequency reconstruction.

Figure 10. Multiple-frequency MUSIC imaging function with $k = 5, 6, 7$ for data with noise, the shape for the kite and circle for sound-hard targets is reconstructed. The image is clearer than the single frequency reconstruction.

analysis-based thresholding in [9]. We clearly see the kite and circular shapes even with the multiplicative noise.

Now we consider the same setup with a kite and a circle but use sound-hard targets. Figure 8 shows the MUSIC imaging function (17) for sound-hard targets.
A direct imaging method using far-field data

Next, we show how multiple-frequency data can help to improve the imaging. We now combine the imaging functions for $k = 5, 6, 7$ for the sound-soft targets and sound-hard targets. Figures 9 and 10 show the improved imaging functions (20) and (21) for sound-soft and sound-hard targets.

Finally, we illustrate the case with two targets that are very close to each other. Figure 11 shows the imaging function (16) with $k = 5$ and $r = 10$. The separation distance between the kite-shaped and circular-shaped targets is about 0.5 (smaller than half wavelength) and is below the physical resolution. In this case, the two objects cannot be clearly separated. That is, features below the physical resolution is sensitive to noise and is lost due to the threshold-based regularization.

6. Conclusions

We propose a direct imaging algorithm for far-field data based on a physical factorization of the scattering operator. The algorithm is simple and efficient because no forward solver or iteration is needed. Physical resolution-based thresholding is used for regularization, which is robust with respect to measurement noise. We show that the singular value pattern for the response matrices for near and far-field data is almost identical, therefore the thresholding in [9] can also be applied to far-field data. The algorithm can also deal with different material properties and different types of illuminations and measurements. Furthermore, parallelization can be applied naturally since the evaluation at different search points is independent. Due to the projection nature of the MUSIC algorithm, phase information is lost. This makes the algorithm unsuitable for limited aperture problems. We are currently working on multi-tone imaging algorithm which can superpose both phase and spatial information coherently for limited aperture data. We will report this elsewhere.
Acknowledgment

We would like to thank Russel Luke for helpful discussions on far-field data.

References

[17] Zhao H 2004 Analysis of the response matrix for an extended target SIAM Appl. Math. 64 725–45