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Abstract. We consider an inverse problem for electrically conductive material occupying a
domain � in R

2. Let γ be the conductivity of �, and D a subdomain of �. We assume that
γ is a positive constant k onD, k �= 1 and is 1 on� \D; bothD and k are unknown. The problem
is to find a reconstruction formula of D from the Cauchy data on ∂� of a non-constant solution u
of the equation ∇ · γ∇u = 0 in �. We prove that if D is known to be a convex polygon such that
diam D < dist (D, ∂�), there are two formulae for calculating the support function ofD from the
Cauchy data.

1. Introduction

This paper is the sequel to [7] and, as predicted therein, we return to one of the problems treated
by Friedman–Isakov [5]. They considered an inverse problem for electrically conductive
material occupying a bounded domain � in R

2. Let γ be the conductivity of �, and D a
subdomain of � such that D ⊂ �. They assume that γ is a positive constant k on D with
k �= 1 and is 1 on � \D. Let u be a non-constant solution to the equation

∇ · γ∇u = 0 in �. (1.1)

Let ν denote the unit outward normal vector field to � \D.
They considered the following uniqueness problem.

Uniqueness problem

Assume that k is known andD is unknown. Can one determineD from the Cauchy data u|∂�,
∂u
∂ν

|∂�?
They proved that if D is known to be a convex polygon such that

diam D < dist (D, ∂�), (1.2)

the answer to the problem is yes.
A strong point of their result is that there is no additional assumption on the behaviour of

u|∂� or ∂u
∂ν

|∂� at the cost of (1.2). Barcelo et al [3] added such an assumption and dropped (1.2).
Seo [9] proved a uniqueness theorem from two sets of the Cauchy data having an additional
restriction on the behaviour and removed (1.2) and the convexity restriction on D. When
∂D has a special geometry, there are some results. For example, Kang–Seo [8] obtained a
uniqueness result when D is a disc.
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If bothD and k are unknown, the problem becomes more difficult. Alessandrini–Isakov [1]
considered this problem and obtained a uniqueness theorem of a convex polygon D and k
without (1.2). Instead of this assumption they assume that u|∂� or ∂u

∂ν
|∂� has a special property.

From these investigations one can say that the Cauchy data of a solution to (1.1) contain
information about the location of D. However, their proofs do not tell us how to extract such
information from the Cauchy data.

In this paper we consider the following reconstruction problem.

Reconstruction problem

Assume that both k andD are unknown. Find a formula for calculating information about the
location of D from the Cauchy data of u.

This is a purely mathematical problem and remains open. In [6] we considered the
extreme case k = 0, and obtained such formulae provided D was a convex polygon with the
restriction (1.2). In this paper using the idea discovered therein we present such formulae
under the same geometric assumption on D when k > 0, k �= 1.

Now we describe the result more precisely. Let S1 denote the set of all unit vectors of R
2.

Recall the definition of the support function:

hD(ω) = sup
x∈D
x · ω, ω ∈ S1.

From this function one can reconstruct the convex hull of general domain D.
We say that ω ∈ S1 is regular with respect to D if the set

{x ∈ R
2 | x · ω = hD(ω)} ∩ ∂D

consists of only one point.

Remark 1.1. Note that if D is a polygon, the counting number of the set of all unit vectors
which are not regular with respect to D is finite. Therefore, it is very rare for us to choose a
direction ω that is not regular with respect to D; hD(·) is a continuous function. Therefore,
the support function of D is uniquely determined by knowing its restriction to the set of all
unit vectors which are regular with respect to D.

We merely assume that ∂� is Lipschitz and u ∈ H 1(�), and consequently we have to
clarify what we mean by the symbol ∂u

∂ν
|∂�. It is defined as an element of the dual space of

H 1/2(∂�) by the formula〈
∂u

∂ν

∣∣∣∣
∂�

, f

〉
=

∫
�

{1 + (k − 1)χD}∇u · ∇� dx (1.3)

where f ∈ H 1/2(∂�), � is in H 1(�) and satisfies � = f on ∂�. From the definition of the
weak solution we know that it is well defined and one may take � such that �(x) = 0 for x
far from ∂�. This means that ∂u

∂ν
|∂� is uniquely determined by the value of u near ∂�. We

call (u|∂�, ∂u∂ν |∂�) the Cauchy data of u on ∂�. It is a pair of the voltage potential and electric
current distribution on ∂�.

In this paper the following special harmonic functions are extremely important:

v = v(x) = eτx·(ω+iω⊥), τ > 0

where ω,ω⊥ ∈ S1 and satisfy

ω · ω⊥ = 0, det ( ω ω⊥ ) < 0.
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Remark 1.2. Calderón [4] made use of these types of harmonic functions in the inverse
conductivity problem with infinitely many measurements.

Using these functions and the Cauchy data of u on ∂� we give the following definition.

Definition 1.1 (Indicator function). Let u be a weak solution to (1.1). Define

Iω(τ, t) = e−τ t
{〈
∂u

∂ν

∣∣∣∣
∂�

, v|∂�
〉
−

〈
∂v

∂ν

∣∣∣∣
∂�

, u|∂�
〉}
, τ > 0, t ∈ R.

Note that u is fixed. The result is the two following formulae.

Theorem 1.1. Assume thatD is a convex polygon satisfying (1.2) and that u is not a constant
function. Let ω be regular with respect to D. The formulae

{t ∈ R | lim
τ−→∞ Iω(τ, t) = 0} = [hD(ω),∞[ (1.4)

hD(ω)− t = lim
τ−→∞

log |Iω(τ, t)|
τ

, ∀t ∈ R, (1.5)

are valid.

This is a direct corollary of the trivial identity

Iω(τ, t) = eτ(hD(ω)−t)Iω(τ, hD(ω))

and the asymptotic behaviour of Iω(τ, hD(ω)) as τ −→ ∞ described below.

Key lemma. Assume that D is a convex polygon satisfying (1.2) and that u is not a constant
function. Let ω be regular with respect toD. There exist positive constants L and µ such that

lim
τ−→∞ τ

µ|Iω(τ, hD(ω))| = L.

The proof of this lemma is delicate and the outline is as follows. From the regularity of
ω we know that the line x · ω = hD(ω) meets ∂D at a vertex x0 of D. Using a well known
expansion of u about x0 (see proposition 2.1) and a formula which connects Iω(τ, hD(ω))with
an integral on ∂D involving u|∂D (see proposition 3.1), we obtain the asymptotic expansion of
Iω(τ, hD(ω)) as τ −→ ∞ (see proposition 3.2):

Iω(τ, hD(ω)) ∼ eiτx0·ω⊥
∞∑
j=1

Lj

τµj

where 0 < µ1 < µ2 < · · ·. The problem is to show that Lj �= 0 for some j . We see that if
Lj = 0 for all j , u has a harmonic continuation in a neighbourhood of x0 (see lemma 4.1).
Then Friedman–Isakov’s extension argument [5] tells us that u has to be a constant function
and it is a contradiction. Restriction (1.2) is merely employed to make use of their argument.

It would be interesting to apply our method to the three-dimensional problem (see [3]
for a uniqueness result) or a similar problem in the linear theory of elasticity. This will be
considered in subsequent papers. The numerical testing of (1.4) and (1.5) remains open and
we hope that someone performs this task in the future.

Finally, we note that in subsequent sections we always assume that ω is regular with
respect to D.
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2. Preliminaries

2.1. Notation

x0 stands for the only one point of the set

{x ∈ R
2 | x · ω = hD(ω)} ∩ ∂D;

BR(x0) = {x ∈ R
2 | |x − x0| < R}, R > 0;

 stands for the outside angle at the vertex x0 of D and thus π <  < 2π .

2.2. Expansion of u about a vertex

Let u be a weak solution to (1.1). Define

ue = u|�\D
ui = u|D.

We introduce polar coordinates. Let ω⊥ denote the unit-vector perpendicular to ω satisfying
det ( ω ω⊥ ) < 0. Since x0 is vertex of D and ω is regular with respect to D, one may write

B2η(x0) ∩ (� \D) = {x0 + r(cos θa + sin θa⊥) | 0 < r < 2η, 0 < θ <  }
B2η(x0) ∩D = {x0 + r(cos θa + sin θa⊥) | 0 < r < 2η, < θ < 2π}
B(x0, η) ∩ ∂D = 'p ∪ 'q ∪ {x0}
'p = {x0 + r(cospω⊥ + sinpω) | 0 < r < η}
'q = {x0 + r(cos qω⊥ + sin qω) | 0 < r < η}

where η is a small positive number,

−π < q < p < 0

p + = 2π + q

a = cospω⊥ + sinpω

a⊥ = − sinpω⊥ + cospω

det (a a⊥ ) > 0.

Set

u(r, θ) = u(x), x = x0 + r(cos θa + sin θa⊥).
The following proposition is only given for our purpose and the proof is well known. For
example, the reader can find its outline in [2, section 2].

Proposition 2.1. There exist a real number α, a monotone increasing sequence (µj )j=1,... of
positive numbers and sequences {Aej }, {Bej }, {Aij }, {Bij } of real numbers such that:

(1 + k)2 sin2 πµj = (1 − k)2 sin2(π − )µj ; (2.1)(
Aej
Bej

)
=

(
cos 2πµj sin 2πµj

−k sin 2πµj k cos 2πµj

) (
Aij
Bij

)
, (2.2)

(
Aej
Bej

)
=

(
cos2 µj + k sin2 µj (1 − k) cos µj sin µj
(1 − k) cos µj sin µj sin2 µj + k cos2 µj

) (
Aij
Bij

)
, (2.3)

ue(r, θ)− α =
∞∑
j=1

rµj (Aej cosµjθ + Bej sinµjθ),

ui(r, θ)− α =
∞∑
j=1

rµj (Aij cosµjθ + Bij sinµjθ);
(2.4)
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the series are absolutely convergent in H 1(Bsη(x0) ∩ (� \ D)) and H 1(Bsη(x0) ∩ D),
respectively, and uniformly in Bsη(x0) for each 0 < s < 2; moreover for each l = 1 . . . ,∣∣∣∣u(r, 0)− α −

l∑
j=1

rµjAej

∣∣∣∣ � Clrµl+1

∣∣∣∣u(r, )− α −
l∑
j=1

rµj (Aij cos µj + Bij sin µj)

∣∣∣∣ � Clrµl+1 , 0 < r < η.

(2.5)

Note that from (2.2) and (2.3) we have

Aij (cos 2πµj − cos2 µj − k sin2 µj)

+Bij {sin 2πµj + (k − 1) cos µj sin µj } = 0. (2.6)

3. Asymptotic expansion of the indicator function

Proposition 3.1. Let v be a H 2(�) harmonic function. For any constant λ the formula〈
∂u

∂ν

∣∣∣∣
∂�

, v|∂�
〉
−

〈
∂v

∂ν

∣∣∣∣
∂�

, u|∂�
〉

= (1 − k)
∫
∂D

(u− λ)∂v
∂ν
, (3.1)

is valid.

Proof. From (1.3) we have〈
∂u

∂ν

∣∣∣∣
∂�

, v|∂�
〉

=
∫
�

{1 + (k − 1)χD}∇u · ∇v dx〈
∂v

∂ν

∣∣∣∣
∂�

, u|∂�
〉

=
∫
�

∇v · ∇u dx.
(3.2)

Green’s formula (see [6]) yields∫
D

∇u · ∇v dx = −
∫
∂D

(u− λ)∂v
∂ν
. (3.3)

Note that ν is outward to � \D. A combination of (3.2) and (3.3) gives (3.1). �

Proposition 3.2. The asymptotic expansion

Iω(τ, hD(ω)) ∼ (k − 1)ieiτx0·ω⊥
∞∑
j=1

ei π2 µj '(1 + µj)Kjτ
−µj , (3.4)

is valid where

Kj = Aejeipµj − (Aij cos µj + Bij sin µj)e
iqµj .

Proof. For η in section 2 take a positive constant c in such a way that

∂D \ Bη(x0) ⊂ {x · ω � hD(ω)− c}.
It follows from (3.1) that

Iω(τ, hD(ω))

1 − k = e−τhD(ω)
∫
∂D

(u− α)∂v
∂ν

= e−τhD(ω)
∫
'p

(u− α)∂v
∂ν

+ e−τhD(ω)
∫
'q

(u− α)∂v
∂ν

+ O(τe−cτ ). (3.5)
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Since

ν = sinpω⊥ − cospω on 'p

ν = − sin qω⊥ + cos qω on 'q

x · ω = hD(ω) + r sin(θ + p)

x · ω⊥ = x0 · ω⊥ + r cos(θ + p)

∇v = τ(ω + iω⊥)eτ(x·ω+ix·ω⊥),

we have

e−τhD(ω) ∂v
∂ν

= −τe−ipeiτx0·ω⊥
erτ (sinp+i cosp) on 'p

e−τhD(ω) ∂v
∂ν

= τe−iqeiτx0·ω⊥
erτ (sin q+i cos q) on 'q.

(3.6)

From (2.5) and (3.6) we obtain

e−τhD(ω)
∫
'p

(
u− α −

l∑
j=1

rµjAej

)
∂v

∂ν
= O

(
1

τµl+1

)
,

e−τhD(ω)
∫
'q

{
u− α −

l∑
j=1

rµj (Aij cos µj + Bij sin µj)

}
∂v

∂ν
= O

(
1

τµl+1

)
.

(3.7)

A combination of (3.5)–(3.7) gives

Iω(τ, hD(ω))

1 − k = −τe−ipeiτx0·ω⊥
l∑
j=1

Aej

∫ η

0
rµj erτ (sinp+i cosp) dr

+τe−iqeiτx0·ω⊥
l∑
j=1

(Aij cos µj + Bij sin µj)
∫ η

0
rµj erτ (sin q+i cos q) dr

+O

(
1

τµl+1

)
. (3.8)

We make use of the following formulae [7]:∫ η

0
rµj erτ (sinp+i cosp) dr = τ−(1+µj )iei π2 µj eipeipµj '(1 + µj) + O

(
eητ sinp

τ

)
,

∫ η

0
rµj erτ (sin q+i cos q) dr = τ−(1+µj )iei π2 µj eiqeiqµj '(1 + µj) + O

(
eητ sin q

τ

)
.

(3.9)

From (3.8) and (3.9) we obtain (3.4). �

4. Proof of the key lemma

The problem is: what happens when

Kj = Aejeipµj − (Aij cos µj + Bij sin µj)e
iqµj = 0

for all j = 1, . . .?
Since

p + = 2π + q,

we have

ei µj eipµj = ei2πµj eiqµj .
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So Kj = 0 if and only if

Aeje
i2πµj = (Aij cos µj + Bij sin µj)e

i µj . (4.1)

Since Aej , B
e
j , A

i
j , B

i
j are all real, we know that (4.1) is equivalent to

Aij cos µj cos( − 2π)µj + Bij sin µj cos( − 2π)µj = Aej (4.2)

and

Aij cos µj sin( − 2π)µj + Bij sin µj sin( − 2π)µj = 0. (4.3)

In this section we only consider j satisfying(
Aij
Bij

)
�=

(
0
0

)
.

Since Aij and Bij are non-trivial solutions of (2.6) and (4.3), we obtain

L ≡ (cos 2πµj − cos2 µj − k sin2 µj) sin µj sin( − 2π)µj
−{sin 2πµj + (k − 1) cos µj sin µj } cos µj sin( − 2π)µj = 0. (4.4)

Since

L = sin( − 2π)µj × {cos 2πµj sin µj − cos2 µj sin µj − k sin3 µj

− sin 2πµj cos µj − (k − 1) cos2 µj sin µj }
= sin( − 2π)µj {sin( − 2π)µj − k sin µj }
= sin(2π − )µj {sin(2π − )µj + k sin µj }.

Therefore, (4.4) becomes

sin(2π − )µj {sin(2π − )µj + k sin µj } = 0. (4.5)

Moreover, from (4.2) and (4.3) it is easy to see that

Aej sin µj sin(2π − )µj = 0. (4.6)

This is a compatibility condition of the system (4.2) and (4.3). Now we are ready to prove the
central part of this paper.

Lemma 4.1. Assume thatKj = 0 for all j = 1, . . . . There exist an integer a � 2 independent
of j and a harmonic continuation ũ of u from � \D into (� \D) ∪ Bη(x0) such that

ũ

(
r, θ +

2π

a

)
= ũ(r, θ) in Bη(x0).

Proof. The proof is divided into three parts.

Step 1: sin(2π − )µj = 0.
To prove this we assume that sin(2π − )µj �= 0. From (4.5) we get

sin(2π − )µj + k sin µj = 0 (4.7)

and this thus yields sin µj �= 0. From (4.6) we conclude that Aej = 0. Then taking the first
components of (2.2) and (2.3), respectively, we get(

cos 2πµj sin 2πµj
cos2 µj + k sin2 µj (1 − k) cos µj sin µj

) (
Aij
Bij

)
=

(
0
0

)
.
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Since Aij , B
i
j are not trivial solutions for this system, we obtain

0 = cos 2πµj (1 − k) cos µj sin µj − (cos2 µj + k sin2 µj) sin 2πµj
= cos µj(cos 2πµj sin µj − cos µj sin 2πµj )

−k sin µj(cos 2πµj cos µj + sin µj sin 2πµj )

= − (cos µj sin(2π − )µj + k sin µj cos(2π − )µj ). (4.8)

A combination of (4.7) and (4.8) gives

sin(2π − )µj {cos µj − cos(2π − )µj } = 0

and this thus yields

cos µj = cos(2π − )µj .
Therefore, we obtain

| sin µj | = | sin(2π − )µj |. (4.9)

A combination of (4.7) and (4.9) yields

| sin µj | = | sin(2π − )µj |
= k| sin µj |

and hence k = 1. This is a contradiction.

Step 2: µj has to be an integer.
It follows from step 1 that (2π −  )µj = nπ for an integer n. Then (π −  )µj =

−πµj + nπ . This gives

sin(π − )µj = (−1)n+1 sin πµj .

Combining this with (2.1), we obtain

(1 + k)2 sin2 πµj = (1 − k)2 sin2(π − )µj
= (1 − k)2 sin2 πµj .

Since k �= 0, we have the desired conclusion.

Step 3: From step 1 we know that there exits an integer nj such that (2π −  )µj = njπ .
Since µj �= 0, we have

 

π
= 2 − nj

µj
. (4.10)

From step 2 one it concludes that  
π

has to be a rational number. Since π <  < 2π , one may
write

 

π
= 1 +

b

a
(4.11)

where a = 2, . . . , b = 1, . . . with (a, b) = 1. Note that a and b are independent of j .
From (4.10) and (4.11) we get

bµj = a(µj − nj ).
Since (a, b) = 1, there exists an integer lj such that

µj = lj a.
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Then (
θ +

2π

a

)
µj = θµj + 2ljπ, (4.12)

and we have

u(r, θ) = α +
∞∑
j=1

rµj (Aej cos θµj + Bej sin θµj ) in (� \D) ∩ Bη(x0).

By virtue of (4.12), this right-hand side gives a desired harmonic continuation of u. �
Now we are ready to prove the key lemma. Assume thatKj = 0 for all j = 1, . . . . From

a combination of lemma 4.1 and Friedman–Isakov’s extension argument (see [5, p 570, proof
of theorem 1.1]) we obtain a harmonic extension of u into whole �. This yields that u has to
be constant. This is a contradiction. So one can take

m = min{j |Kj �= 0}.
Then from (3.4) we have

Iω(τ, hD(ω)) ∼ (k − 1)ieiτx0·ω⊥
ei π2 µm'(1 + µm)Kmτ

−µm.

This completes the proof.
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