Signature change in general relativity

To cite this article: S A Hayward 1992 Class. Quantum Grav. 9 2543

View the article online for updates and enhancements.

Related content
- Kerr metric endowed with magnetic dipole moment
 V S Manko and N R Sibgatullin
- Kerr metric endowed with magnetic dipole moment
 V S Manko and N R Sibgatullin
- Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis
 V S Manko and N R Sibgatullin

Recent citations
- Isochronous spacetimes and cosmologies
 Fabio Briscese and Francesco Calogero
- Signature change, mixed problems and numerical relativity
 J M Stewart
- Can the Universe create itself?
 J. Richard Gott and Li-Xin Li
Errata

Kerr metric endowed with magnetic dipole moment
V S Manko and N R Sibgatullin 1992 Class. Quantum Grav. 9 L87–92

In the formulae (18) of this paper an incorrect expression for the metric function ω was obtained since, as we have established recently, equation (17) is only valid for the pure vacuum case. The correct form of ω is the following:

$$
\begin{align*}
\omega &= -f^{-1}\left\{ iz A_0 + \sum_{n=1}^{4} \left[i \left(1 + \frac{\alpha_n}{r_n} \right) A_n \right. \\
& \left. - \frac{m \tilde{B}_n}{(m + \alpha_n + i\alpha) r_n} - \frac{ib \Phi \tilde{B}_n}{(m + \alpha_n + i\alpha)^2 r_n} \right] - i(z + m) \right\}
\end{align*}
$$

where B_n and B_0 (the latter does not enter into the expression for ω) are solutions of the linear algebraic equations (10a)-(10e), in the first four of which the right-hand sides should be changed to iz, $-(a + i\alpha)$, $-i$ and $i\alpha$, respectively.

Signature change in general relativity
S A Hayward 1992 Class. Quantum Grav. 9 1851–62

In the second paragraph of section 4, due to a typesetting error, l has been incorrectly used to denote the time coordinate. The time coordinate should be represented by λ. Thus the paragraph should read as follows.

Recall that the usual definition of proper time τ for a curve in M_2 is given by the line element, which gives $d\tau^2 = l^2 d\lambda^2$ for geodesics normal to S, where λ is the time coordinate: $t - s = \theta/\partial \lambda$. It is desired to define an affine parameter τ which gives the usual definitions of proper time and distance in M_2 and M_1 respectively, and is continuous on S. The unique such definition is

$$
d\tau = \sqrt{\varepsilon l^2} \ d\lambda
$$

where the sign function ε is given by

$$
\varepsilon = \begin{cases}
-1 & \text{on } M_1 \\
0 & \text{on } S \\
1 & \text{on } M_2.
\end{cases}
$$

Equivalently, evolution derivatives are given by

$$
\mathcal{L}_{\varepsilon \tau} X = \sqrt{\varepsilon l^2} \dot{X}
$$

where $\dot{X} = dX/d\tau$. Then the field equations may be rewritten in terms of evolution respecting the affine parameter.