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Abstract. The field equations of vacuum quadratic Poincar6 gauge field theory 
(QPGFT) are solved for purely null tratorial torsion. Expressing the contortion tensor 
for this case as K+, = - 2 ( g ~ , , a ,  - g A u a p ) ,  where U,, is null, one can prove that 
any solution of vacuum QPGFT,  whose V, part is also a solution of Einstein’s vacuum 
field equations with a cosmological constant, is necessarily of algebraic type N with 
respect to the generalised Weyl tensor. This class of exact solutions has an expansion- 
free, shear-free and twist-free autoparallel repeated principal null congruence. The 
relationship between this class and a similar class with null axial vector torsion is 
also discussed. 

1. In t roduc t ion  

In a previous paper (Singh and Griffiths 1990), the field equations of vacuum quadratic 
PoincarB gauge field theory (QPGFT) (see Hehl 1980, Hehl e t  a1 1980, Baekler e t  a1 
1982, 1983 and references cited therein) for the purely quadratic Lagrangian density 
first proposed by von der Heyde (1976) 

were expressed in the Newman-Penrose (N-P) formalism involving spin coefficients. 
The two gauge field strengths F p I  (torsion tensor) and FpJ j  (curvature tensor) along 
with the so-called modified torsion tensor T p i ,  e and the coupling constants k and 1 
are defined in Singh and Griffiths (1990), as are the conventions and notation used in 
this paper. Arguments in favour of the choice given by equation (1) for the Lagrangian 
density may be found in Hehl (1980), von der Heyde (1976) and Hehl e t  a1 (1978), 
and will not be discussed here. 

The field equations of vacuum QPGFT given in Singh and Griffiths (1990) must 
be used in conjunction with those given by Jogia and Griffiths (1980) in which the 
formalism of Newman and Penrose (1962) had previously been extended to include 
spacetimes with torsion in any theory. 

The aim of this work is to use the technique given in Singh and Griffiths (1990) to 
obtain a class of exact solutions of the field equations of vacuum QPGFT with purely 
null tratorial torsion. The case of purely null axial torsion has already been considered 
in Singh (1990). The technique developed is designed to produce a more general class 
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of exact solutions than would be possible via the double duality ansatz of Baekler 
et  a1 (1982, 1983)) Baekler and Mielke (1988) and Lenzen (1984). Such a class of 
exact solutions of algebraic type N with an expansion-free, shear-free and twist-free 
autoparallel repeated principal null congruence is presented. 

First assume that the contortion tensor is tratorial, i.e. semi-symmetric. In which 
case one may describe it in terms of a vector a p  defined by 

then 

In addition, a!-’ is assumed to  be a continuously defined null vector. The tetrad vec- 
tor l p  is then aligned with u p .  This requires that the individual components of the 
contortion tensor, in the notation of Jogia and Griffiths (1980), satisfy 

(4) CY1 = p1 = E l  = K1 = A, = v1 = T1 = p1 = u1 = T1 = 0 

71 = -5P1 P1 = P1 1 

and the contortion is thus completely described by the real component pl. 

of Einstein’s vacuum field equations with a cosmological constant, A,, i.e. 
As in Singh (1990), assume that the V4 parts of the curvature tensor are solutions 

where A= = -6A0 = -+Roe Of course, the Ricci identities and the Bianchi identities 
for the curvature in V4 must also hold. 

2. The class of exact solutions 

Under the assumptions of section 1 the following theorem can easily be proved. 

Theorem 1. Any solution of the field equations of vacuum QPGFT, with a p  null, whose 
V4 part is also a solution of Einstein’s vacuum field equations with a cosmological 
constant, is necessarily of algebraic type N ,  with an expansion-free, shear-free and 
twist-free autoparallel repeated principal null congruence. 

The class of exact solutions satisfying the assumptions of section 1 is given by the 
metric 

(6) 
1 

2 P 2  
ds2 = 2du(-Udu + dv + W d t  + W d t )  - - d z d t  

where the metric function P is a real function of t and t only satisfying 

4P2(ln P),zz = Ao (7) 
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and the metric functions U and W are given by 

U = (P24,"  r$,E +Ao)v2 - v + U o  

w = 47, v 
where 4 = 4(u, t, 2) = 4 and U o  = U o ( u ,  z ,  2 )  = oo satisfy, 

A suitable complex null tetrad may be taken in the form 
1P = 6; 1 = 61 

P P  

r n P  = ~ ( - 2 W 6 ;  + 6: + is$) 
np = 6: + U6;.  

It is mentioned in passing that a particular solution of ( 7 )  is 
P = A + B Z  + Bz+ czz 

where A and C are real constants and B is a complex constant, such that 
AC - !BIZ = i A o .  

The only non-zero components of the contortion tensor are 

Pl = n y1 = - i n  
where n is an arbitrary real function of U and the non-zero spin coefficients are 

= $(W, +2p,, ) ( 1 4 4  

P = $(PA2 -2p ,z  1 ( 1 4 6 )  

7 = - (P24,"  4,z +Ao)v + ad,, - $ n  ( 1 4 4  

p = n  ( 1 4 4  
v = -Prp,uz v - 2PUO,, -2P4, ,  u' ( 1 4 4  

lr = -P& ( 1 4 f )  

r = P & .  ( 1 4 d  

*, = -2P[2PU0, , ,  +2(2P,,  + P 4 , ,  )U0, ,  + P ( 4 , ,  )2u0] ( 1 5 a )  

Q I 2  = -nPq5,, ( 1 5 b )  

QZ2 = 2n(P24, ,  4,z +Ao)v - +n2 - n, ,  ( 1 5 c )  

A = Ao = k /812 .  ( 1 5 4  

The only non-zero components of the curvature tensor are 

One may note that when the torsion vanishes, these solutions reduce to the K ( X )  
wave solutions of Diaz and Plebaliski (1981). 
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3. Discussion 

The class of exact solutions obeying theorem 1 has 

Thus, a, = -frnl, can be written as the gradient of a real scalar function $ = $(U), 
namely, 

a, = $1, 

where ~5 satisfies 

1 $," = -5n.  

The real scalar function $ is sometimes known as the torsion (or contortion) potential 
function or the 'tlaplon' field (Hojman e t  a1 1978). The contortion tensor now reads 

This is the type of contortion considered in the Brans-Dicke theory with torsion 
(Smalley 1978) and the theories with propagating torsion of Hojman et  a1 (1978, 
1979) and Mukku and Sayed (1979). 

Ni  (1979) has shown, however, that  the implications of the theory with the prop- 
agating torsion of Hojman e t  a1 (1978, 1979) disagree with the experimental findings 
of Roll et  a1 (1964) and Braginsky and Panov (1971, 1972). 

Unlike the propagating torsion theory of Hojman et  a1 (1978, 1979), the PoincarC 
gauge field theory does not allow the coupling of internal gauge bosons, like the electro- 
magnetic potential A, ,  to  the torsion fields. Otherwise gauge invariance] in the case 
of A,, U(1) invariance, would be violated. This is by no means an ad hoc assumption 
of Poincark gauge field theory, but a reflection of the fact that  physical fields seem 
to divide naturally into matter fields and gauge potentials. Consequently, exempting 
internal gauge bosons from coupling to  the set (e',,y'',) should not be viewed as a 
problem. 

Consider the class of exact solutions of vacuum QPGFT obeying theorem 1. In this 
case the torsion of the spacetime, which is generated by the torsion potential function 
$(U), represents a propagating plane torsion wave with retarded null time coordinate 
U. The gravitational field is represented by the so-called K ( X )  wave solutions of Diaz 
and Plebariski (1981) with the metric given by equations (6) to  (9). 

The class of exact solutions obeying theorem 1 is remarkably similar t o  that  ob- 
tained for null axial vector torsion by Singh (1990). It may be noted that the metric, 
and hence the V, parts, are identical. The solutions only differ in the type of torsion 
that  they contain and their values of A', In view of this observation and in spite of 
the fact that  the theory is non-linear, one may ask whether or not it is possible to  
combine these two types of torsion with the same metric to obtain a more general 
class of exact solutions. 

Consider a contortion tensor which is a sum of axial and tratorial pieces, namely, 
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where m and n are arbitrary real functions of U. In which case the only non-zero 
components of the torsion tensor are 

p1 = n + im 

y = -(P2d12 q512 +A')v + $j,, -;(n + im) 

y1 = - f ( n  + im). (21) 
Suppose that the metric is given by equations (6) to (9). Using the same tetrad, the 
spin coefficients are exactly as in equation (14) except that now 

(22a) 

(22b) p = n + im. 
The non-zero components of the curvature tensor are then easily calculated from the 
Ricci identities, the Bianchi identities for the torsion and the appendix in Jogia and 
Griffiths (1980), and read 

Qf4 = -2P(2PU0,,, +2(2P,, +PhZ )U0 , ,  +P(q5,* y U o )  (23a) 

Q12 = -nPq5,Z (23b) 

Q22 = 2n(P24,,  q5,z +Ao)v - ;nq5,u -nlU +n2 - m2 (23c) 

A = A' = constant ( 2 3 4  

el, = -mPq5,Z (23e) 

e,, = 2m(P24,,  q5,Z +Ao)v - $mq!Jlu -mlU +2mn. (23f 1 
Unfortunately, the two classes of exact solutions in question may not be combined 

in the context of vacuum QPGFT, as the following theorem will show. 

Theorem 2. In vacuum QPGFT (for the purely quadratic Lagrangian density V 
of equation ( l ) ) ,  the contortion tensor (20) is not consistent with the metric given 
by equations (6)-(9), unless KxPv  is either purely axial ( n  = 0) or purely tratorial 
( m  = 0). 

Proof. Equations (29) and (309) in Singh and Griffiths (1990) imply either 

Q12 = 0 (24) 

A' = k/812. (25) 

AD = 0. (26) 

Pl = 0 (27) 

or 

If Q12 _= 0,  then equation (23b) implies either n = 0 or q5,z = 0. Suppose q5,Z = 0,  
then q5 = q5 requires q5,, = 0, in which case q5 = q5(u) and so equation (9b) gives 

Then from equation (311) in Singh and Griffiths (1990) 

i.e. the solutions reside in V,-which contradicts the fact that only solutions with 
non-zero torsion are being investigated here. Otherwise 

n = 0.  (28) 

m = O  (29) 
which completes the proof. 

If A' = lC/8l2, then equations (29) and (30j) in Singh and Griffiths (1990) imply 

Of course, that theorem 2 implies that the two classes of exact solutions in question 
may not be superposed, goes without saying. 
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