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Abstract
A Killing bubble is a minimal surface that arises as the fixed surface of a
spacelike Killing field. We compute the bubble contributions to the Smarr
relations and the mass and tension first laws for spacetimes containing both
black holes and Killing bubbles. The resulting relations display an interesting
interchange symmetry between the properties of black hole horizons and those
of KK bubbles. This interchange symmetry reflects the underlying relation
between static bubbles and black holes under double analytic continuation of
the time and Kaluza–Klein directions. The thermodynamics of bubbles involve
a geometrical quantity that we call the bubble surface gravity, which we show
has several properties in common with the black hole surface gravity.

PACS numbers: 04.50.Cd, 04.50.Gh, 04.70.Dy

1. Introduction

Kaluza–Klein (KK) bubbles are fascinating objects. The original KK bubble presented
by Witten [1], which describes the non-perturbative decay of the KK vacuum, was highly
dynamical. However, many static KK bubble spacetimes are also known, and these too
display interesting physical properties. For example, it was shown in [2] that two arbitrarily
large black holes can be held apart by a KK bubble. A large group of spacetimes, containing
both black hole horizons and KK bubbles, have been studied in [3]. These spacetimes are
all static and translation invariant in the Kaluza–Klein direction, and fall within the class
of generalized Weyl solutions constructed in [4]. They display an interesting interchange
symmetry between black holes and KK bubbles that arises because static black holes and
KK bubbles are related through double analytic continuation of the time and KK directions.
Under this analytic continuation, the ADM mass M of the spacetime is interchanged with the
product T L of the ADM tension and the length of the compact direction measured at infinity.
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Given the mechanical interplay between black holes and bubbles, it is natural to ask
whether KK bubbles also contribute to the laws of black hole thermodynamics? In particular,
we would like to know whether these laws display the interchange symmetry described above
between black holes and bubbles? We will see that the answer to both these questions is ‘yes’.

It should be noted that, as discussed in [3], the black hole/bubble interchange symmetry is
broken by requiring that the bubbles be smooth. If the period L of the Kaluza–Klein direction
is fixed, then the parameters associated with the KK bubbles cannot be tuned freely. Since
there is no analogous requirement for the black holes, the smoothness condition breaks the
symmetry between them. Since we are particularly interested in the interchange symmetry,
we will not impose the smoothness condition and will allow for conical singularities at the
KK bubbles. Physically, we can think of a conical bubble as being a smooth bubble wrapped
by a p = −ρ brane. A KK bubble is a minimal surface, and therefore the brane equation of
motion will be satisfied for such a configuration. The stress–energy of an idealized wrapped
brane creates the conical singularity at the bubble. A similar construction was used in the
context of branes wrapping Euclidean black hole horizons in [5].

In this paper we will derive Smarr relations for spacetimes containing both black holes
and bubbles. There are two Smarr relations, one corresponding to the time translation Killing
vector and a second one corresponding to the spatial translation Killing vector in the KK
direction. These were derived in the absence of KK bubbles in [6] and [7] respectively. We
will also compute the bubble contributions to the first laws satisfied by perturbations between
black hole/bubble spacetimes. In this case there are also two laws to consider, the ordinary
first law for variations in the mass δM and the first law for variations in the tension δT , which
was derived in the absence of bubbles in [8, 9].

We collect our results here in the introduction. The Smarr relation for the time translation
Killing vector, the first equation below, receives no bubble corrections. Bubbles do contribute
to the Smarr relation resulting from the spatial translation Killing vector, which is given in the
second equation

1

8πG
κHAH = D − 3

D − 2
M − 1

D − 2
T L,

1

8πG
κBABL = D − 3

D − 2
T L − 1

D − 2
M. (1)

Here AH and AB are the areas of the black hole horizon and KK bubble respectively, κH is
surface gravity of the black hole horizon, and κB is the KK bubble surface gravity, which
we will define below. The two Smarr formulae obviously satisfy the interchange symmetry
between bubbles and black holes discussed above, with M being swapped with the product
T L, κH with κB , and AH with the product ABL.

We find that the mass and tension first laws including bubble contributions are given by

δT = 1

8πG
κBδAB − 1

8πGL
AHδκH

(2)

δM = 1

8πG
κHδAH − 1

8πG
LABδκB +

(
T − 1

8πG
κBAB

)
δL.

If we suppose that the length L is fixed, then these relations are symmetric under the same
interchange of quantities as the Smarr relations. One intriguing feature of these formulae is the
intricate interchange between the intensive quantities κH and κB and the extensive quantities
AH and AB . Before the bubble contributions are added in, δM depends on the variations
of the extensive AH , while δT depends on the variation of the intensive parameter κH . The
bubble quantities enter into the mass and tension first laws with the extensive and intensive
contributions reversed.

Allowing L to vary, the mass first law picks up an additional work term, with an effective
tension that includes a contribution from the bubble. This term breaks the interchange
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symmetry, reflecting the distinction that the spacelike KK direction is periodic, with period L,
while the Lorentzian time direction is infinite in extent.

The paper proceeds as follows. In section 2 we establish some basic conventions and
review the properties of the uniform black string and static Kaluza–Klein bubble spacetimes.
In section 3 we show why bubble contributions to the thermodynamic laws should be expected.
In section 4 we discuss necessary aspects of the geometry of KK bubbles, including the notion
of Killing bubbles and the definition of the bubble surface gravity. We show that the surface
gravity is constant over the bubble and that a smooth Killing bubble is a minimal submanifold.
This last result justifies our picture of a conical bubble as a smooth bubble wrapped by a brane.
In section 5 we study the bubble contributions to the Smarr relations. In section 6, we compute
the bubble contributions to the mass and tension first laws. In section 7 we check our results
in a simple example containing both a KK bubble and a black hole.

2. Simple black hole and bubble spacetimes

We consider spacetimes that at infinity are asymptotic to MD−1 × S1 and assume that the
compact KK direction has coordinate z identified according to z ≡ z + L. Such spacetimes
are characterized at infinity by their ADM mass and tension1, which are given in terms of the
asymptotic forms of the metric coefficients

gtt � −1 + ct/rD−4, gzz � 1 + cz/rD−4 (3)

by the formulae [6]

M = �D−3L
16πG

((D − 3)ct − cz), T = �D−3

16πG
(ct − (D − 3)cz). (4)

It is helpful to orient ourselves by considering two simple vacuum solutions, the uniform
black string and the static Kaluza–Klein bubble. Some of the basic properties of these two
spacetimes are as follows. The uniform black string is given by the D − 1 dimensional
Schwarzschild solution crossed with a flat line in the z direction,

ds2 = −f (r) dt2 + dz2 +
dr2

f (r)
+ r2 d�2

D−3, f (r) = 1 − (c/r)D−4. (5)

The uniform black string has a Killing horizon at r = c. Its mass and tension, together with
the horizon area and surface gravity are given by

M = (D − 3)
�D−3L
16πG

cD−4, T = �D−3

16πG
cD−4,

AH = �D−3LcD−3, κH = (D − 4)

2c
.

(6)

The static KK bubble is related to the uniform black string by double analytic continuation
of the time and compact coordinates. It is given by the Euclidean D − 1 dimensional
Schwarzschild solution crossed with a flat time direction,

ds2 = −dt2 + f (r) dz2 +
dr2

f (r)
+ r2 d�2

D−3, f (r) = 1 − (c/r)D−4. (7)

The compact dimension pinches off at the KK bubble r = c, which is a codimension-2 surface.
In the terminology of [10] the KK bubble is a bolt. Following [10], we will associate a surface

1 For simplicity, we assume that the ADM angular momenta and momentum in the compact direction vanish.
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gravity κB with KK bubbles, which is defined in equation (17). For the static KK bubble, the
mass and tension together with the bubble area and surface gravity are

M = �D−3

16πG
LcD−4, T = (D − 3)

�D−3

16πG
cD−4,

AB = �D−3c
D−3, κB = D − 4

2c
.

(8)

Note that in going from the uniform black string to the static KK bubble, the quantities M and
T L are interchanged.

For general values of the parameters c and L the static KK bubble has a conical singularity
at r = c. Smoothness of the KK bubble requires a particular relation between c and L, as
follows. Although we will not require smoothness of Kaluza–Klein bubbles, we will want to
keep track of the smoothness condition. Setting r = c + (D − 4)y2/(4c) and focusing on the
region y � 1 in (7) gives

ds2 � κ2
By2 dz2 + dy2 +

(
c +

(D − 4)y2

4c

)2

d�2
D−3 − dt2 (9)

with κB as in equation (8). The deficit angle is given by

ψ = 2π − κBL. (10)

Hence, the smoothness condition is ψ = 0 or equivalently κBL/2π = 1.

3. Why are bubble contributions to black hole thermodynamics necessary?

In this section we show that the first law for black holes in Kaluza–Klein theory needs to be
modified for spacetimes including KK bubbles. The idea will be to show that starting from
the first law, without any additional KK bubble contributions, we can derive a Smarr relation
that is not satisfied by the basic static KK bubble spacetime (7). The first law without bubble
contributions [9, 11, 12] is given by

δM = 1

8πG
κHδAH + T δL. (11)

For classes of spacetimes having certain types of symmetries, the first law can be used to
derive two independent Smarr relations via scaling arguments, as follows.

First consider the Smarr relation for static spacetimes. Given a static vacuum solution
of general relativity, there always exists a one-parameter family of such solutions related to
one another by changes in the overall length scale (see e.g. [13]). The physical parameters
of these spacetimes scale according to their dimensionalities. For a KK black hole spacetime,
we have a family of solutions in which the parameters associated with the black hole scale as
M = λD−3M̄,AH = λD−2ĀH and L = λL̄. The spacetime may also include a KK bubble,
but the variation of its properties under scaling does not enter into equation (11). Requiring
that the first law (11) holds for variations in the overall scale λ leads to the Smarr relation

1

8πG
κHAH = D − 3

D − 2
M − 1

D − 2
T L. (12)

A second, independent Smarr relation can be derived for spacetimes that are both static
and translation invariant in the compact z coordinate. In this case, given one such solution there
exists a family of solutions related simply by rescaling the length of the compact direction
[7]. If we scale this length according to L = ρL̄, then the physical parameters entering
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equation (11) scale according to M = ρM̄,AH = ρĀH . Requiring that the first law be
satisfied for variations in ρ, we get the Smarr formula

M = 1

8πG
κHAH + T L. (13)

The uniform black string (5) and the static KK bubble (7) are both static and translation
invariant in the compact direction, and therefore should each satisfy both Smarr relations (12)
and (13). It is straightforward to check that this is indeed true for the uniform black string.
However, the KK bubble satisfies (12), but not (13). We therefore conclude that the first law
(11), which was the starting point for the derivations of both (12) and (13), does not hold in
the presence of KK bubbles.

We can get a clue as to the missing element in the second Smarr relation by making one
further manipulation. The Smarr relations (12) and (13) can be combined so as to eliminate
the horizon area, giving

0 = D − 3

D − 2
T L − 1

D − 2
M. (14)

The overall factor of 1/D − 2 is included in equation (14) in order to highlight its similarity
to equation (12). The right-hand sides of the two equations are related by interchanging M
with T L. Recall that these same two quantities are interchanged in going between the uniform
black string and the static KK bubble. However, the left-hand sides of equations (12) and (14)
are not related by any interchange, and it seems reasonable to conjecture that the bubble area
and surface gravity will appear on the left-hand side of the corrected version of (14) to give
an overall duality between the two formulae.

4. Geometry of Killing bubbles

In order to evaluate the bubble contributions to the Smarr formulae and to the mass and tension
first laws, we need to study the geometry in a neighborhood of a bubble. We will focus on
the geometry of a Killing bubble, which we take to be the fixed surface of a spacelike Killing
field Za = (∂/∂z)a , where Za translates around the compact Kaluza–Klein circle.

We will start by assuming that the spacetime geometry in a neighborhood of the bubble
is smooth and that we can introduce coordinates xa in this neighborhood such that the bubble
is the codimension-2 submanifold xI = 0 with I = 1, 2. The 1-forms dxI are then normal to
the bubble at xI = 0. The spacetime metric can be written in the form

ds2 = γIJ dxI dxJ + λαβ(dxα + ρα
I dxI )(dxβ + ρβ

J dxJ ) (15)

where Greek indices run over the range 0, 3, . . . , D − 1. We will also use an orthonormal
frame given by

eÎ = EÎ
J dxJ , eα̂ = Eα̂

β(dxβ + ρβ
I dxI ) (16)

where γIJ = δK̂L̂EK̂
IE

L̂
J and λαβ = ηρ̂σ̂Eρ̂

αEσ̂
β .

It is important to note that the derivative of the Killing vector Za vanishes when
projected onto the bubble. To see this, let V a be a vector tangent to the bubble. Since
the vector Za vanishes identically on the bubble, it follows that V a∂aZb and hence that
V a∇aZb = V a∇[aZb] = 0. Therefore, the derivative of Za at the bubble can be written as

∇[aZb] = κB

(
e1̂
ae

2̂
b − ê1̂

be
2̂
a

)
. (17)

We will refer to equation (17) as the bolt equation using the terminology of [10]. We define
the bubble surface gravity to be the coefficient κB in the bolt equation. At this point it appears
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that κB could be a non-trivial function of the coordinates xα along the bubble. However, one
can show that κB is constant, via the following steps.

Contracting the bolt equation with itself gives the useful expression

κ2
B = 1

2 (∇[aZb])∇[aZb], (18)

where the right-hand side is understood to be evaluated on the bubble at xI = 0. Equation (18)
is quite similar to a standard expression for the black hole surface gravity κH , which is obtained
by flipping the overall sign on the right-hand side and replacing Za with the horizon generating
Killing field. Now, take the derivative of the right-hand side of (18) in a direction tangent to
the bubble. Making use of the facts that ∇a∇bZc = −RbcadZ

d for any Killing vector and
that Za vanishes on the bubble, we see that the derivative of the right-hand side vanishes.
Therefore κB is constant on the bubble. Given its similarities to the horizon surface gravity
κH , it is natural to refer to κB as the bubble surface gravity.

Equation (18) for κB will be used in the computation of the boundary term in the Smarr
formula. Determining the bubble contributions to the mass and tension first laws will require
yet another equivalent expression for κB

κ2
B = lim

xI →0

(
(∇aZ · Z)(∇aZ · Z)

4Z · Z

)
, (19)

where the limit is necessary because both the numerator and denominator vanish on the bubble.
In order to derive equation (19) one notes that the bolt equation implies that near the bubble,

1
2∇a(Z · Z) = κBZb

(
e1̂
ae

2̂
b − ê1̂

be
2̂
a

)
+ · · · (20)

where the terms neglected vanish more rapidly near xI = 0. With this ingredient, construct
the right-hand side of (19) expressing the eÎ in terms of the metric coefficients. Taking the
limit xI → 0 then gives equation (19).

Let ρa = ∇a(Z · Z) and ρ̂a = ρa/
√

ρ · ρ. The 1-form ρ̂a is then orthogonal to Za and
normal to surfaces of constant Z · Z. We can then further process (19) into the statement

κB = lim
xI →0

ρ̂a∇a(
√

Z · Z). (21)

This will be useful in proving the first laws.
We can also use equation (17) to show that a Killing bubble has a vanishing extrinsic

curvature. The bubble is a codimension-2 submanifold, and therefore has two extrinsic
curvature tensors, given by

KÎ
ab = ha

c∇ce
Î
b, I = 1, 2 (22)

where hab is the metric on the bubble, hab = gab − δÎ Ĵ eÎ
ae

Ĵ
b . Now consider taking a derivative

of equation (17) in a direction tangent to the bubble. The derivative of the left-hand side will
be zero, for the same reasons given above, while the derivative of the right-hand side can be
expressed in terms of the extrinsic curvature tensors. On the bubble, we then have

0 = hc
d∇d∇aZb = κBhcd∇d

(
e1̂
ae

2̂
b − e1̂

be
2̂
a

)
= κB

(
K 1̂

cae
2̂
b + K 2̂

cbe
1̂
a − K 1̂

cbe
2̂
a − K 2̂

cae
1̂
b

)
. (23)

Contracting with e1̂a and e2̂a respectively then implies that K 2̂
cb = K 1̂

cb = 0. Smooth Killing
bubbles are therefore minimal submanifolds. The equations of motion for the Nambu–Goto
area action are solved by a static brane wrapping a minimal submanifold. Therefore, as
discussed in the introduction, Killing bubbles with conical singularities can be thought of as
smooth Killing bubbles wrapped by branes.
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4.1. Normal bubbles

As we will see in section 6.2, smooth bubbles do not contribute to the mass first law.
However, bubbles with conical singularities do give nontrivial contributions. Including these
contributions will reveal the symmetry between the mass and tension first laws under the
interchange of black hole and bubbles.

Consider the two-dimensional submanifold with coordinates (ρ, z) where ρ = √
Z · Z,

and the bubble is at ρ = 0. Here we will assume that the spacetime metric near ρ = 0 is block
diagonal, ds2 � dσ 2 + Bαβ dxαdxβ with

dσ 2 � dρ2 + κ2
Bρ2 dz2 (24)

and 0 < κB � 2π/L. That is, the two-dimensional submanifold is either smooth at the bubble
with κB = 2π/L, or it has a deficit angle ψ = 2π − κBL. We will refer to these as ‘normal
bubbles’ because of the block diagonal structure of the metric. It can be checked that the
black hole/bubble example considered in section 7 is a normal bubble, as is the basic static
KK bubble in equation (7). A priori, κB is some parameter. However, substituting into the
definition (19) one can verify that κB in (24) is indeed the bubble surface gravity. Hence, we
see that for normal Killing bubbles, the value of κB is fixed in terms of L and ψ ,

κB = 2π

L

(
1 − ψ

2π

)
. (25)

One might wonder how generic this relation is? That is to say, are bubbles usually normal?
This turns out to require a more detailed analysis of the near-bubble geometry, which we defer
to future work.

5. Smarr formulae via Komar integral relations

The Smarr formulae, including KK bubble contributions, are derived starting from the
geometric Komar integral relations. As discussed in the introduction, we will see that with the
bubble contribution included, the two Smarr relations (12) and equation (32) below are dual
to one another under the double analytic continuation interchanging uniform black strings and
KK bubbles.

A Killing vector ka satisfies −∇c∇cka = Ra
bk

b = 8π
(
T a

b − ga
bT

/
(D − 2)

)
, where the

first equality is a geometric identity, and the second holds for solutions to the Einstein equations.
Let V be a codimension-1 hypersurface with unit normal na , and boundaries ∂Vi . Integrating
over V gives the Komar integral relation

∑
i I∂Vi

= 8π
∫
V

dvkbna

(
T a

b − ga
bT

/
(D − 2)

)
,

where

IS = − 1

16πG

∫
S

dSab∇akb. (26)

For the most part, we will be focused on vacuum spacetimes, for which
∑

i I∂Vi
= 0. However,

we will find an application for the formula with stress–energy in the case of bubbles with deficit
angle.

We first compute the bubble corrections to the Smarr formula (14), which was derived in
the absence of KK bubbles in [7]. Consider a spacetime that is static and z-translation invariant.
Take the Killing vector in (26) to be the z-translation Killing vector Za , and integrate over
the boundaries of a surface of constant z. The additional assumption of staticity is necessary
in order to be able to cancel the contributions from the initial and the final constant time
boundaries. The remaining boundaries of the region of integration are at infinity, at the black
hole horizon, and at the bubble. The boundary integral at the horizon vanishes. This comes

7
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about in the following way. Let la be the Killing generator of the horizon. The normal form
dSab to the black hole horizon within a constant z slice will be proportional to Z[alb] and the
integral (26) at the black hole horizon will therefore include the quantity

Z[alb]∇aZb = kakb∇[alb] = 0, (27)

where we have used the fact that the two Killing vectors commute.
Including a KK bubble introduces a new boundary in the interior of a constant z slice. By

definition the Killing vector ∂/∂z vanishes at a Kaluza–Klein bubble. Surfaces of constant
z come together at the bubble, so for any given surface of constant z we must introduce an
additional boundary at a bubble. Assume that there is only one bubble present. For more than
one bubble, the result is simply the sum of contributions from each individual bubble2.

Now consider the boundary term at the bubble. The bolt equation (17) implies that ∇aZb

is normal to the bubble in both its indices. Since the bubble has codimension 2, we see that
∇aZb must be proportional to the volume form dSab. The correct normalization gives

dSab =
√

2∇aZb√
(∇cZd)(∇cZd)

. (28)

Making use of formula (18) for the bubble surface gravity and using the fact that κB is constant
on the bubble, we then arrive at the result

IB = − 1

8πG
κBAB (29)

where AB is the area of the bubble. The right-hand side of (14) represents the contribution
from the boundary at infinity, which is unchanged in this case. As in [7] we have

I∞ = − �D−3

16πG
(D − 4)cz (30)

= 1

D − 2
((D − 3)T − M/L). (31)

The equation I∞ + IB + IH = 0 then gives the Smarr formula

1

8πG
κBABL = D − 3

D − 2
T L − 1

D − 2
M. (32)

Equation (32) has been multiplied by an overall factor of L to facilitate comparison with
equation (12).

Next we show that equation (12) does not receive any new contributions from KK bubbles.
One might expect this to be the case, since (12) is satisfied by the static KK bubble, and indeed
is true even if the static bubble is not smooth, i.e. with the parameters c and L chosen
independently. In the absence of Kaluza–Klein bubbles, the Smarr formula (12) was obtained
for static spacetimes by taking ka to be the time translation Killing vector la on a constant
time hypersurface, with boundaries at infinity and the black hole horizon [6] . If the bubble is
smooth, then since la is timelike on the bubble (unlike a black hole horizon), there is no need
for a boundary at the bubble, and so clearly there is no contribution. If there is a deficit angle
at the bubble, then we need to check whether that introduces a contribution. We do this in the
following way.

As discussed above, the metric with deficit angle can be considered to be a simple model
for the metric outside a brane that wraps the bubble. Let us replace the conical bubble metric,

2 We have implicitly made a similar assumption that there is a single connected black hole horizon. For more than
one black hole, the result is summed over contributions from the individual black hole horizons.
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by a smooth metric with the stress–energy of the wrapped brane. There is now no boundary at
the bubble, but there is a contribution to the Komar integral relation from the volume integral
over stress–energy terms. The brane is described by an area action Sbrane = ρ

∫ √−B,
where the integral is over the worldvolume of the brane, and Bab is the induced metric
on the worldvolume. The stress–energy tensor is given by Tab = −ρBab and has trace
T = −(D − 2)ρ. If we now evaluate on the brane the combination T a

b − Ba
bT /(D − 2)

that contributes to the Komar relation, we find that it vanishes identically, and hence there
is no stress–energy contribution from the conical bubble. Note that the cancellation to give
zero only works for a codimension-2 brane, as we have here. We comment that, in light of
the results of [14], one generally needs to be cautious about using models with stress–energy
concentrated on submanifolds of codimension greater than 1 in general relativity. However,
in the present case, the high degree of symmetry together with the p = −ρ equation of state
combines to give sensible results.

Having found the bubble contribution to the left-hand side of (32) and established that
equation (12) does not receive any bubble contribution, we see that there is now a duality, or
interchange symmetry, between the two Smarr formulae, reflecting the interchange of black
holes with bubbles under double analytic continuation of the z and t coordinates.

6. Mass and tension first laws for KK bubbles

In this section, we will derive the mass and tension first laws for KK bubble spacetimes using
the Hamiltonian perturbation theory techniques of [8, 15]. We assume that the spacetime
can be foliated by a family of hypersurfaces V specified by the unit normal wa , and that
the surfaces can be described as level surfaces of a coordinate w. We also assume that the
spacetime metric ḡab is a solution to the vacuum Einstein equations with a Killing vector
ka , which we decompose into normal and tangential components to the hypersurfaces V ,
according to ka = Fwa + βa . The mass and tension first laws follow from making different
choices of the Killing vector ka and the normal field wa .

Now we consider that the metric gab = ḡab + δgab is the linear approximation to another
solution to the vacuum Einstein equations. Denote the Hamiltonian data for the background
metric by (s̄ab, π̄ab), the corresponding perturbations by hab = δs̄ab and pab = δπ̄ab, and the
linearized Hamiltonian and momentum constraints by δH and δHa . The following statement
then holds as a consequence of the constraint Einstein’s equations and Killing’s equation in
the background metric [16]

FδH + βaδHa = −D̄aB
a. (33)

Here D̄a is the background covariant derivative operator compatible with s̄ab. The vector Ba

is given by

Ba = F(D̄ah − D̄bh
ab) − hD̄aF + habD̄bF +

1√|s̄|β
b
(
π̄ cdhcd s̄

a
b − 2π̄ achbc − 2pa

b

)
. (34)

Indices are raised and lowered with the background metric s̄ab. For solutions to the vacuum
Einstein equations, we know that δH = δHa = 0. Therefore, equation (33) becomes a Gauss’
law type statement D̄aB

a = 0. Integrating over the hypersurface V and applying Stokes
theorem gives

∑
i

(∫
∂VI

dacB
c

)
= 0 (35)

9
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where ∂Vi are the disjoint components of the boundary of the hypersurface V . For black hole
spacetimes, for example, the boundary of the hypersurface V typically has two components,
one on the event horizon and one at infinity.

Smooth bubbles such as (7) do not introduce interior boundaries to the spacetime.
However, for particular foliations of the spacetime, the Hamiltonian evolution may not be
well defined at the bubble. In order to make use of the Hamiltonian perturbation theory
formalism, it is then necessary to introduce as in [17] an inner boundary surrounding the
bubble. There can then be non-trivial contributions from this boundary to equation (35). Inner
boundary contributions can also arise from perturbations that have conical singularities at the
bubble.

6.1. Bubble contributions to the tension first law

The tension first law requires that the background spacetime have a spatial translation symmetry
along the compact z direction. As above, we take the z coordinate to have period L. We
choose V to be a hypersurface of constant z, and suppose that the spacetime contains a bubble
and possibly also a black hole horizon. Constant z hypersurfaces meet at the bubble and
consequently the Hamiltonian flow is not defined there. As in [17] it is then necessary to
introduce an inner boundary surrounding the intersection of V with the bubble. Let ∂VB ,
∂VH and ∂V∞ denote the boundaries of the hypersurface V at the bubble, at the horizon and
at infinity respectively.

Integration over V includes the time direction. We will take this into account by
considering, as in [8], only background spacetimes ḡab and perturbations δgab that are static.
We then integrate over a portion of V between some arbitrary initial and final times. The
assumption of staticity implies that the boundary terms on the initial and final surfaces of V

cancel. Equation (35) then implies that

IB + IH + I∞ = 0 (36)

where IB = ∫
∂VB

dacB
c, and similarly for IH and I∞.

The boundary term at infinity was computed in [8] and is given by

I∞ = −(16πG)δT �t. (37)

Here δT is the perturbation to the ADM tension and �t is the time interval between the initial
and final time slices in the region of integration.

Now consider the boundary term at the bubble. Near the bubble we choose V such that
its normal is proportional to the Killing vector Za = (∂/∂z)a . The normalization factor F
is then given by F = √

Z · Z. This factor vanishes on the bubble, and therefore the only
non-vanishing terms in (34) are those proportional to the derivative of F. Let ρ̂c be the unit
normal to the bubble within V . From equation (21) we have that ρ̂c∇cF = κB . The boundary
term at the bubble is then given by

IB = −
∫

∂VB

daρ̂c(−hD̄aF + habD̄bF )

= 2κBδAB�t (38)

where AB is the area of the bubble at constant time, and we have used the result that κB is
constant on the bubble. The minus sign in the first line is because the outward normal to ∂V

points in the −ρ̂c direction. If there is a black hole in the spacetime, then there will be an
additional contribution from the horizon boundary, which was found in [8] to be

IH = −2AHδκH

L
�t. (39)

10
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Putting all the boundary terms together as in equation (36) and dividing out the common factor
of the time interval �t , we arrive at the tension first law for black hole/bubble spacetimes

δT = 1

8πG
κBδAB − 1

8πGL
AHδκH . (40)

Note that the bubble term in the tension first law resembles the black hole horizon term in the
mass first law.

6.2. Bubble contributions to the mass first law

We now turn to the derivation of the mass first law. Let the background be a static bubble
spacetime, possibly also including a black hole and take the Killing vector in the Hamiltonian
perturbation theory construction to be the time translation Killing field la = (∂/∂t)a . The
hypersurface V is taken to be spacelike and to approach a constant t slice at infinity. A smooth
bubble does not introduce any new boundary into the interior of V , and therefore smooth
perturbations to smooth bubbles do not lead to bubble contributions to the mass first law.
Nontrivial bubble contributions come only from perturbations that either introduce, or change
the size of the deficit angle3 in the plane orthogonal to the bubble as described in section 4.1.
In this case, one must introduce a boundary surrounding the bubble, which excises the conical
singularity. In the remainder of this section, we will restrict our attention to normal bubbles
as defined in section 4.1.

Accordingly, we consider perturbations that change the parameter κB in equation (24).
Near the bubble, these have the form

hzz � 2κBδκBρ2. (41)

Introduce an inner boundary surrounding the bubble, evaluate the integral (35) and then
take the limit as the boundary shrinks to the bubble. A smooth field will not contribute
in the limit. Evaluating the terms in (34), the only non-zero contribution comes from
D̄bh

ρb = −2δκB/(κBρ). The integral on the boundary surrounding the bubble then gives

IB(δκB) =
∫

∂VB

daρ̂cF D̄bh
cb

= −2ABLδκB (42)

where we have used the fact that the product F da gives the volume element on the bubble,
which then integrates to give the area of the bubble.

There is a second independent contribution to the mass first law that comes from varying
the range of the z coordinate. As discussed in [12], the contribution of variations δL to the
first law can be handled via a coordinate transformation, so that δL appears in the metric
perturbation, rather than in the range of coordinate z. Following this procedure, yields the
metric perturbation hzz = (2δL/L)ḡzz with z identified according to z ≡ z + L. Computing
the boundary integral at the bubble then gives

IB(δL) = −2ABκBδL. (43)

We also need to include the contribution from a possible black hole horizon, which has
the standard form IH = 2κHδAH . Finally, there is the boundary integral at infinity which was
shown in [12] to be I∞ = −16πG(δM−T δL). Collecting all these boundary terms together,

3 For conical bubble backgrounds, one can show that perturbations that do not change the strength of the conical
singularity give vanishing contributions to the mass first law.

11
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we obtain the mass first law for black hole/bubble spacetimes

δM = 1

8πG
κHδAH − 1

8πG
LABδκB +

(
T − 1

8πG
κBAB

)
δL (44)

= 1

8πG
κHδAH + T δL − 1

8πG
ABδ(κBL). (45)

We emphasize that δκB = 0 for smooth perturbations. The δκB contribution comes only from
changes in the deficit angle, as defined in section 4.1. From the second form of the equation,
we see that the bubble contribution to the mass first law is indeed proportional to the variation
in the deficit angle ψ in the plane normal to the bubble. This is clear since κBL = 2π − ψ .
As discussed in the introduction, with the bubble contributions included the mass and tension
first laws, equations (44) and (40), now display the interchange symmetry between bubbles
and black holes.

7. Example: a black hole/bubble chain

We have now derived the bubble contributions to the mass and tension first laws (44) and (40),
as well as the Smarr formulae (12) and (32). It is straightforward to show that all these results
hold in the static KK bubble spacetime (7). In this section, we will check that they hold in a
more intricate example that includes both a KK bubble and a black hole horizon.

A large class of five-dimensional black hole bubble chains is presented and discussed in
[3]. In these spacetimes, black hole horizons alternate with Kaluza–Klein bubbles. We will
focus on the simplest one, which contains just one of each. The metric for this spacetime is
given by

ds2 = −e2U1 dt2 + e2U2 dz2 + e2U3 dψ2 + e2ν(dR2 + dφ2) (46)

where

e2U1 = R1 − ζ1

R2 − ζ2
, e2U2 = R2 − ζ2

R3 − ζ3
, e2U3 = (R1 + ζ1)(R3 − ζ3),

e2ν = 1

23/2R1R2R3

√
Y13Y12Y23

R3 − ζ3

R1 − ζ1
, (47)

ζi = φ − ai, Ri =
√

R2 + ζ 2
i , Yij = RiRj + ζiζj + R2,

where in our notation z is the coordinate on the circle S1. The geometry of the spacetime is
such that on the R = 0 surface the black hole horizon extends from φ = a1 to φ = a2 whereas
the bubble extends from φ = a2 to φ = a3. The rod structure, as discussed in [3], for this
configuration is given in figure 1.

To verify the Smarr relations and the first laws we need to obtain the expressions for the
surface gravity and the area of the bubble in terms of the parameters of the metric. First we
note that the three parameters a1, a2 and a3 can be reduced to two parameters b1 and b2 using
translational invariance in the φ-direction. In other words, one can perform the coordinate
transformation φ → φ + (a2 + a3)/2 suitable for analyzing the near-bubble geometry. Then
the new parameters are related to the old ones by the relations b1 = a1 − (a2 + a3)/2 and
b2 = (a3 − a2)/2. Next we apply a coordinate transformation from the Weyl coordinates
(R, φ) to the polar coordinates (r, θ) given by

R = r sin θ

√
1 − 2b2

r
, φ = (r − b2) cos θ. (48)

12
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2 a

3

t

z

ψ

Figure 1. Rod structure for the black hole/bubble spacetime. The finite rods in the t and z

directions correspond to the black hole and KK bubble respectively, while the semi-infinite rods in
the ψ direction correspond to axes of rotation.

The metric now takes the form

ds2 = −e2U1 dt2 + e2U2 dz2 + e2U3 dψ2 + e2ν(σθθ dθ2 + σrr dr2) (49)

where

σθθ = r(r − 2b2) + b2
2 sin2 θ, σrr = sin2 θ

(r − b2)
2

r(r − 2b2)
+ cos2 θ. (50)

In these coordinates, the location of the bubble is at r = 2b2. In the limit r → 2b2, the various
metric coefficients upto the leading order are

gtt � −b2(1 + cos θ)

b2 cos θ − b1
, gzz � r − 2b2

2b2
, gψψ � 4b2(1 − cos θ)(b2 cos θ − b1)

(51)
grr � − b2 − b1

r − 2b2
, gθθ � −2b2(b2 − b1).

This has the form of the metric for a single static bubble in equation (7) with r → c. Vanishing
of gzz on the bubble shows that the Killing vector Za = (

∂
∂z

)a
vanishes on the bubble surface.

Using expression (19), the surface gravity of the bubble is given by

κ2
B = lim

ρ→2b2

1

4

grr

gzz

(∂rgzz)
2 = 1

8b2(b2 − b1)
. (52)

The area AB of the bubble is found to be

AB = lim
ρ→2b2

∫
dψdθ(e2U1 e2U3 e2νσθθ )

1/2

= 8πb2

√
2b2(b2 − b1). (53)

Now, with the above expressions for the surface gravity κB and the area AB of the bubble
we can check the second Smarr relation (32) for this particular configuration of a black hole
on a bubble in D = 5. Using the expressions (4) for the ADM mass and tension in terms of
the asymptotic forms of the metric coefficients in D = 5 dimensions, the right-hand side of
the Smarr relation (32) becomes −czL/4G. In case of sequence of bubbles and black holes
written in the generalized Weyl form, the parameter −cz is given by the sum of the lengths
of the rods sourcing the bubbles, which in the present parametrization is just 2b2 and the
parameter ct is given by the sum of the lengths of the rods sourcing the event horizons, which
in the present parametrization is −(b1 + b2). The left-hand side of (32) can be computed using
expressions (52) and (53) to obtain b2L/2G. This checks the second Smarr relation.

Next we check the first laws for this solution, including conical bubbles. We do this
by varying all the physical quantities with respect to the three parameters b1, b2 and L. We
will need the values of κH and AH in terms of the bi . To analyze the near-horizon geometry

13
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we choose a different parametrization than the previous one. Let c1 = (a2 − a1)/2 and
c2 = a3 − (a1 + a2)/2 and perform a similar coordinate transformation as (48)

R = r sin θ

√
1 − 2c1

r
, φ = (r − c1) cos θ. (54)

The metric again takes the form (49) with σθθ and σrr given by

σθθ = r(r − 2c1) + c2
1 sin2 θ, σrr = sin2 θ

(r − c1)
2

r(r − 2c1)
+ cos2 θ. (55)

In this parametrization, the location of the event horizon is at r = 2c1. In the limit r → 2c1,
the various metric coefficients are

gtt � − r − 2c1

2c1
, gzz � c1(1 − cos θ)

c2 − c1 cos θ
, gψψ � 4c1(1 + cos θ)(c2 − c1 cos θ),

(56)
grr � c1 + c2

r − 2c1
, gθθ � 2c1(c1 + c2).

The area of the event horizon and the horizon surface gravity are then found to be

AH = lim
ρ→2c1+ε

∫
dφ dψ dθ(e2U2 e2U3 e2νσθθ )

1/2 = 8πLc1

√
2c1(c1 + c2)

(57)
κH = 1

2
√

2c1(c1 + c2)
.

These can be rewritten in terms of the parameters b1 and b2, with the result

κH = 1

2
√

b2
1 − b2

2

; AH = 4πL(−b1 − b2)
3/2(b2 − b1)

1/2. (58)

This is in agreement with the expressions given in [3].
The mass first law is

δM − T δL = 1

8πG
[κHδAH − LABδκB − κBABδL]. (59)

First we note that the mass and the tension are given in terms of the parameters b1 < 0 and b2

as

M = −Lb1

2G
; T = 3b2 − b1

4G
. (60)

Thus the left-hand side of the relation gives

δM − T δL = − L
2G

δb1 − 3b2 + b1

4G
δL. (61)

Now, we use the expressions for κH , κB,AH and AB from (52), (53) and (58), to evaluate the
right-hand side of the mass first law,

1

8πG
[κHδAH − LABδκB − κBABδL] = − L

2G
δb1 − 3b2 + b1

4G
δL, (62)

which verifies the mass first law for the black hole–bubble pair.
Similarly, the variation in tension is given as

δT = 1

4G
(3δb2 − δb1). (63)

Again, using the expressions for κH , κB,AH and AB from (52), (53) and (58) to evaluate the
right-hand side of the tension first law, we get

1

8πG
κBδAB − 1

8πGL
AHδκH = 1

4G
(3δb2 − δb1) (64)

thus checking the tension first law.
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8. Conclusions

We have studied the KK bubble contributions to the Smarr relations and mass and tension
first laws. With the bubble contributions included, the two Smarr relations as well as the
two first laws satisfy an interchange symmetry, between black hole and bubble contributions,
that follows essentially from the exchange of black holes and bubbles under double analytic
continuation. It is interesting that this symmetry extends to the wrapping of branes in the two
cases. The wrapping of classical branes around KK bubbles has an analog in the wrapping of
quantum vortices around Euclidean black hole horizons [5].

There are several open questions. The mass first law depends on the perturbation δκB

to the bubble surface gravity. Since we have only defined κB for Killing bubbles, this means
that the mass first law is restricted to perturbations that preserve translation invariance. To
extend the range of validity, one needs a definition of bubbles and their surface gravity for
non-Killing bubbles. Work in progress indicates that this is possible, and involves further
understanding near-bubble geometry.

More fundamentally, it would be interesting to have thermodynamic interpretations for
the bubble contributions to the Smarr relations and to the mass and tension first laws. One
intriguing connection between minimal surfaces, recalling that bubbles are minimal surfaces,
and thermodynamics comes from recent work in the AdS/CFT context [18]. It is conjectured
that one-quarter the area of a minimal surface (with boundary) in anti-de Sitter spacetime, is
equal to the entanglement entropy of a conformal field theory defined on the boundary. At
this point however, the thermodynamic role of AB and κB is an open question.
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