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Abstract
We study the late-time behaviour of spherically symmetric solutions of the
Yang–Mills equations on Minkowski and Schwarzschild backgrounds. Using
nonlinear perturbation theory we show in both cases that solutions having
smooth compactly supported initial data possess tails which decay as t−4 at
timelike infinity. Moreover, for small initial data on Minkowski background
we derive the third-order formula for the amplitude of the tail and numerically
confirm its accuracy.

PACS numbers: 03.65.Pm, 04.20.Ex, 11.15.−q

1. Introduction

In a classical paper [1] Eardley and Moncrief proved that solutions of the Yang–Mills equations
on the 3 + 1 Minkowski spacetime starting from smooth initial data remain smooth for all
future times. A different proof allowing for initial data with only finite energy was given
later by Klainerman and Machedon [2]. Once global regularity was established, the problem
of asymptotic behaviour of solutions for t → ∞ was studied by many authors [3–7] who
obtained various decay estimates using different techniques and assumptions about initial
data. In this paper we are concerned with the simplest possible situation, namely spherically
symmetric initial data with compact support. In this case it follows from the conformal
method of Christodoulou that the Yang–Mills curvature decays as t−4 at timelike infinity [4].
The purpose of this paper is threefold. First, we rederive Christodoulou’s result using the
nonlinear perturbation theory. The advantage of our approach lies in its wide applicability;
in contrast to the conformal method which is very powerful (in the sense of giving sharp decay
rates) only for conformally invariant equations.

Second, we go beyond qualitative decay estimates and give the third-order formula for
the amplitude of solution which provides a precise quantitative information about the tail.
We wish to point out that although our results depend crucially on spherical symmetry, the
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assumption of compact support for initial data is made for simplicity and can be relaxed
by imposing a suitable fall-off condition at spatial infinity (which can be implemented via
appropriately weighted norms). However, some kind of localization condition is necessary in
order to avoid a situation where the tail in time is induced entirely by the tail of initial data at
spatial infinity (due, for instance, to nonzero charge).

Third, we argue that the same tail is present in the scattering of spherically symmetric
Yang–Mills fields of the Schwarzschild black hole. In this case, the global existence of
solutions follows from the work of Chruściel and Shatah [8] who generalized the proof of
Eardley and Moncrief to arbitrary globally hyperbolic Lorentzian 4-manifolds. The late-time
tail of the Yang–Mills field on the Schwarzschild background was studied in [9], however the
fall-off t−5 derived there on the basis of the linear perturbation analysis is not correct. As we
shall see, the error in [9] is due to the fact that the late-time tail is not governed by the linearized
evolution. At first sight this might seem odd but upon reflection it is easy to understand. A
rough intuitive explanation is that the tail is a far-field effect, hence the flat space tail t−4 is
expected to persist in any asymptotically flat spacetime as long as the backscattering on the
curvature does not produce a more slowly decaying tail. A similar example of the failure of
linear perturbation analysis was recently observed in the scattering of skyrmions [10].

2. Minkowski background

We consider the Yang–Mills theory with the gauge group SU(2) and assume the spherically
symmetric ansatz for the connection [11]

A = wτ1 dθ + (cot θτ3 + wτ2) sin θ dφ, (1)

where w = w(t, r) and τi (i = 1, 2, 3) are the usual generators of su(2). The Yang–Mills
equations d ∗ F = 0, where F = dA + A ∧ A is the Yang–Mills curvature, reduce then to the
semilinear radial wave equation

ẅ − w′′ − 1

r2
w(1 − w2) = 0, (2)

where primes and dots denote derivatives with respect to r and t, respectively. For our purposes,
it is convenient to define the function f (t, r) = (w(t, r) − 1)/r and rewrite equation (2) in
the following form:

Lf := f̈ − f ′′ − 2

r
f ′ +

2

r2
f = −f 3 − 3

r
f 2. (3)

Note that L is the radial wave operator for the l = 1 spherical harmonic.
We consider the late-time evolution of solutions of equation (3) for smooth compactly

supported initial data

f (0, r) = εα(r), ḟ (0, r) = εβ(r). (4)

The prefactor ε is added for convenience and to emphasize that our initial data are assumed
to be small. Regularity at the origin is ensured by the boundary condition f (t, r) ∼ b(t)r for
r → 0. As follows from [3] such solutions decay to zero on any compact region of space
as t → ∞. To determine the asymptotic behaviour of solutions we define the perturbative
expansion

f = εf1 + ε2f2 + ε3f3 + · · · , (5)

where εf1 satisfies initial data (4) and all fn with n > 1 have zero initial data. Substituting
expansion (5) into equation (3) up to the third order we get
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Lf1 = 0, (6)

Lf2 = −3

r
f 2

1 , (7)

Lf3 = −f 3
1 − 6

r
f1f2. (8)

We solve these equations recursively. The first-order solution is given by the general regular
solution of the free radial wave equation for the l = 1 spherical harmonic

f1(t, r) = a′(t − r) + a′(t + r)

r
+

a(t − r) − a(t + r)

r2
, (9)

where the function a(ξ) is determined by the initial data

a(ξ) = −1

2
ξ

∫ ∞

ξ

α(s) ds +
1

4

∫ ∞

ξ

(s2 − ξ 2)β(s) ds. (10)

For compactly supported initial data the function a(ξ) has compact support as well (note that
the functions α(s) and β(s) in (10) are odd extensions of initial data to the whole line), hence
f1 has no tail in agreement with Huygens’ principle.

To solve equations for the higher order perturbations we use the retarded Green’s function
of the operator L

G(t − t ′, r, r ′) = [|r − r ′| � t − t ′ � r + r ′]
r2 + r ′2 − (t − t ′)2

4r2
. (11)

It follows from (11) that the solution of the inhomogeneous equation Lf = N(t, r) with zero
initial data has the form (using null coordinates u = t ′ − r ′, v = t ′ + r ′) [3]

f (t, r) = 1

8r2

∫ t+r

|t−r|
dv

∫ t−r

−v

K(t, r; u, v)N(u, v) du, (12)

where the kernel K(t, r; u, v) = (v − t)(t − u) + r2. In the second order, i.e. for equation (7),
representation (12) yields

f2(t, r) = − 3

4r2

∫ t+r

|t−r|
dv

∫ t−r

−v

K(t, r; u, v)
f 2

1 (u, v)

v − u
du. (13)

Somewhat surprisingly, Huygens’ property is preserved in the second order. To see this, let
us assume that a(ξ) = 0 for |ξ | � R. Then, for t > r + R, we may change the order of
integration in (13) and rewrite it as (see figure 1)

f2(t, r) = − 3

r2

∫ R

−R

du

∫ t+r

t−r

(v − t)(t − u) + r2

(v − u)3

(
a′(u) +

2a(u)

v − u

)2

dv. (14)

Performing the inner integral we get

f2(t, r) = 8r

∫ R

−R

a(u)

(t − u)2 − r2

d

du

(
a(u)

(t − u)2 − r2

)
du, (15)

which after integration gives zero. Thus, f2(t, r) vanishes identically for t > r + R and
consequently there is no tail up to the second order.

In the third order, i.e. for equation (8), representation (12) gives f3 = f
(1)
3 + f

(2)
3 , where

f
(1)
3 (t, r) = − 1

8r2

∫ t+r

|t−r|
dv

∫ t−r

−v

K(t, r; u, v)f 3
1 (u, v) du, (16)
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r’

v

R

R

u=−v

(t,r)

v=t+r

v=|t–r|

u

u=
t−r

Figure 1. An illustration of the situation in equations (14), (16) and (17). The observation point
is located at (t, r), where t > r + R. The integration range is given by the intersection of the two
shaded regions which depict the domain of dependence of the observation point and the support of
the solution f1(t

′, r ′).

f
(2)
3 (t, r) = − 3

2r2

∫ t+r

|t−r|
dv

∫ t−r

−v

K(t, r; u, v)
f1(u, v)f2(u, v)

v − u
du. (17)

To calculate f
(1)
3 (t, r) for t > r + R as above, we change the order of integration and perform

the integral over v with the result (using the abbreviation z = (t − u)2 − r2):

f
(1)
3 (t, r) = 4r

∫ R

−R

(
a(u)a′(u)2

z2
+

4(t − u)a′(u)a2(u)

z3
+

4
(
(t − u)2 + 1

5 r2
)
a3(u)

z4

)
du, (18)

which has the following asymptotic behaviour near timelike infinity (r = const and t → ∞):

f
(1)
3 (t, r) ∼ c1rt

−4, c1 = 4
∫ +∞

−∞
a(u)a′(u)

2 du. (19)

In the formula above we replaced R by ∞ in the limits of integration to emphasize that the
result holds not only for strictly compactly supported initial data but also for initial data which
fall off sufficiently fast at spatial infinity.

To calculate the contribution to the tail coming from f
(2)
3 (t, r) we need to know both the

leading and the subleading terms in the asymptotic expansion of f2(u, v) near null infinity
(u = const and v → ∞). This calculation is deferred to the appendix where we show that
near null infinity

f2(u, v) = h′(u)

v − u
+

2h(u)

(v − u)2
+

2g(u)

(v − u)2
+ O(v−3), (20)

where h(u) and g(u) are defined by (A.5) and (A.6), respectively. Note that the first two
terms in (20) represent the ‘free’ part of the iterate f2(t, r); as we shall see in a moment this
part does not affect the behaviour of f

(2)
3 (t, r) at timelike infinity. Substituting (20) into (17)

and proceeding along the same lines as in the derivation of expression (19), we obtain the
following asymptotic behaviour near timelike infinity:

f
(2)
3 (t, r) ∼ c2rt

−4,

c2 = 4
∫ +∞

−∞

[
d

du
(h(u)a(u)) + g(u)a′(u)

]
du = −12

∫ +∞

−∞
a(u)a′(u)2 du,

(21)
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Figure 2. We plot (on log–log scale) the numerical solution f (t, r = 1) of the initial value
problem (3)–(4) for α(r) = r exp(−r2), β(r) = r(2 − r2) exp(−r2) and ε = 0.1, and compare
it with the third-order approximation εf1 + ε2f2 + ε3f3 (produced by solving numerically
the perturbation equations (6)–(8)). These two functions are indistinguishable at the scale of
the figure so both are depicted by the single solid line. The contributions of the individual iterates
are superimposed to demonstrate that the tail comes from f3. The fourth-order iterate f4 serves
as the estimation of the error. Note that f4 has the same late-time slope (decay rate) as f3, in
agreement with remark 2. The fit of the function Ct−γ exp(A/t) to the full solution f (t, 1) for late
times gives γ � 4.001 and C � 2.391 × 10−5 which is around 4% off the third-order prediction
ε3c = ε3155

√
3π/20736 ≈ 2.295 × 10−5 obtained by evaluating the integral in (22).

where the last expression follows from (A.6) and integration by parts. Putting equations (19)
and (21) together we finally get the leading asymptotic behaviour near timelike infinity

f3(t, r) ∼ crt−4, c = −8
∫ +∞

−∞
a(u)a′(u)2 du. (22)

This is our main result. We claim that expression (22) provides a very good approximation
of the tail for solutions having sufficiently small initial data. More precisely, we conjecture
that for any given smooth compactly supported functions α(r) and β(r), one can choose ε

such that for each fixed r > 0 and t → ∞ the remainder |t4f (t, r) − ε3cr| is as small as one
pleases. The numerical evidence supporting this conjecture is shown in figure 2. The obvious
issue remains as to whether the perturbation expansion corresponding to given initial data is
convergent for sufficiently small values of ε. Without a proof of convergence, our analysis
is not mathematically rigorous, nevertheless we believe that it gives a rather convincing and,
most importantly, quantitative description of the late-time tail.

A few remarks are in order.

Remark 1. It should be clear from the above derivation that the simplicity of the final
result (22) is due to some amazing cancellations (notably those occurring in equations (15)
and (21)) which in turn are attributed to the particular form of the nonlinearity of the Yang–
Mills equations. In this respect, the Yang–Mills equations are exceptional and particularly
interesting mathematically; for most other nonlinear perturbations of the wave equation the
tail is a second-order phenomenon which is much easier to analyse (e.g., see [10]).
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Remark 2. Note that all iterates fk behave as O[(v − u)−1] near null infinity and therefore at
each order of the perturbation expansion the sources behave as O[(v−u)−3]. For such sources,
one might expect by dimensional arguments that there would be a t−3 tail. Fortunately, due to
the identity ∫ t+r

t−r

(v − t)(t − u) + r2

(v − u)3
dv = 0, (23)

all coefficients of hypothetical t−3 tails vanish identically and thus all higher order terms in
the perturbation expansion decay as t−4. This fact is crucial since otherwise the third-order
approximation would break down for late times; for instance a nonzero fourth-order term
∼ε4/t3 would make formula (22) useless for times t � 1/ε.

Remark 3. Note that equation (3) has the scaling symmetry: if f (t, r) is a solution, so is
fλ(t, r) := λf (λt, λr). Under this scaling the energy scales as E(fλ) = λE(f ), hence given
any finite energy initial datum one can scale it down to an arbitrarily small amplitude and
energy. Note, however, that for compactly supported initial data such a rescaling spreads the
support by a factor 1/λ and for this reason it cannot make large data smaller in the sense of
our perturbation expansion. This follows immediately from the fact that all iterates fk(t, r)

in (5) scale in the same way. In other words, the rescaling does not change the convergence
properties of the perturbation expansion.

3. Schwarzschild background

On the exterior Schwarzschild spacetime

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2), r > 2m, (24)

the spherically symmetric Yang–Mills equation corresponding to the ansatz (1) takes the form(
1 − 2m

r

)−1

ẅ −
((

1 − 2m

r

)
w′

)′
− 1

r2
w(1 − w2) = 0. (25)

When m = 0 this equation reduces of course to (2). In terms of the new variables

x = r + 2m ln
( r

2m
− 1

)
, h(t, x) = w(t, r(x)) − 1, (26)

equation (25) becomes

ḧ − d2h

dx2
+

(
1 − 2m

r

)
2

r2
h = −

(
1 − 2m

r

)
1

r2
(3h2 + h3), (27)

where r = r(x). Dropping the nonlinear terms on the right-hand side of (27) one gets the
linear (1+1)-dimensional wave equation on the real axis −∞ < x < ∞ with the effective
potential V (x) = 2/r2 − 4m/r3. This equation describes the propagation of the dipole
(l = 1) electromagnetic perturbation of the Schwarzschild black hole. For intermediate times
the linearized approximation is very good; this stage of evolution has the form of exponentially
damped oscillations dominated by the fundamental (i.e., least damped) quasinormal mode. We
recall that quasinormal modes are solutions of the linearized equation satisfying the outgoing
wave conditions h(t, x) ∼ e−ik(t∓x) for x → ±∞. In the case at hand the fundamental
quasi-normal mode has the eigenvalue k = 0.496 53 − 0.184 98i (in units where 2m = 1)
[12].

The quasi-normal mode decays exponentially, so for late times it becomes negligible and
eventually a polynomial tail is uncovered. Since the pioneering work of Price [13] it has been
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Figure 3. Scattering of the Yang–Mills wave off the Schwarzschild black hole (with 2m = 1).
We plot (on a log–log scale) the numerical solution h(t, x = 1.5) of equation (27) for the
initial data of the form of the ‘ingoing’ Gaussian h(0, x) = A exp(−(x − x0)

2/s2), with
A = 0.85, x0 = 3, s = 1.5. Fitting the exponentially damped sinusoid Q(t) = Be−�t sin(�t + δ)

on the interval 30 < t < 60 we get � = 0.184 and � = 0.495, in perfect agreement with
the known parameters of the fundamental quasinormal mode. The fit of the power law decay
P(t) = Ct−γ exp(D/t + E/t2) for times t > 300 gives γ = 3.9997. The sum |Q(t) + P(t)|
(depicted by the dashed line) provides a remarkably good approximation of the full solution for
all t � 20. It should be pointed out, however, that our initial data were tuned a bit to maximize
the effect of the nonlinearity. If the subdominant t−5 tail coming from the potential has a large
coefficient, i.e. the tail behaves as Ct−4 + C̃t−5 with C � C̃, then one has to wait for a long
time before the true asymptotic behaviour sets in (which might be misleading without an analytic
insight).

known that the tail of the lth multipole decays as t−2l−3, thus for the dipole the linearized theory
predicts the tail t−5 and this is exactly the result derived in [9]. We claim that this prediction is
incorrect and the actual tail behaves in the same manner as in Minkowski spacetime, namely
it decays as t−4. Regarding equation (25) as the perturbation (for r � 2m) of equation (2),
one can see from dimensional considerations that the failure of linearization is due to the fact
that the linear terms in (25) corresponding to nonzero curvature (proportional to m) are of
shorter range (using PDE jargon) than the nonlinear terms. Thus, the presence of the black
hole should not alter the flat space tail t−4. The numerical substantiation of this handwaving
argument is shown in figure 3.

Unfortunately, for the Schwarzschild background we were not able to derive a quantitative
formula, analogous to (22), relating the amplitude of the tail to initial data. An attempt to
repeat the perturbation analysis from section 2 encounters serious difficulties on Schwarzschild
background which are caused by the violation of Huygens’ principle in 1 + 1 dimensions and
the presence of the potential. It would be interesting to pursue this problem further, perhaps
borrowing ideas from an approach proposed some time ago by Barack [14]. Although Barack
considered only the linear wave equation, we wish to emphasize that there are many similarities
between his work and our analysis in section 2.

4. Conclusions

Using third-order nonlinear perturbation theory, we determined the late-time tail of spherically
symmetric Yang–Mills equations on Minkowski background. We also gave heuristic
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arguments that the same tail is present on Schwarzschild background. In both cases we
provided numerical evidence supporting our results. We hope that our approach will trigger
more rigorous mathematical analyses of these physically important phenomena.

We remark that the ideas presented here can be applied to other nonlinear wave equations.
For example, one can show by similar methods that for the semilinear wave equation
gµν∇µ∇νφ + |φ|p = 0 on Minkowski background the tail decays as t1−p for p > 1+

√
2, while

on the Schwarzschild background the tail changes its character at p = 4 from linear (Price’s
law φ ∼ t−3 for p � 4 [15]) to nonlinear (φ ∼ t1−p for 1 +

√
2 < p < 4). A systematic

analysis of the competition between linear and nonlinear effects in scattering for semilinear
wave equations in Minkowski spacetime will be given elsewhere [16].
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Appendix

We derive here equation (20). Our starting point is equation (13) in which we relabel
coordinates (u, v) → (u′, v′) and use the retarded time u = t − r:

f2(u, r) = − 3

4r

∫ u+2r

|u|
dv′

∫ u

−v′

u′ + v′ − 2u + (uu′ + uv′ − u′v′ − u2)/r

v′ − u′ f 2
1 (u′, v′) du′.

(A.1)

We let ε = 1/r and define the quantity

I (u, ε) := −3

2

∫ u+2/ε

|u|
dv′

∫ u

−v′

u′ + v′ − 2u + ε(uu′ + uv′ − u′v′ − u2)

v′ − u′ f 2
1 (u′, v′) du′. (A.2)

Expanding this in Taylor’s series I (u, ε) = A(u) + B(u)ε + O(ε2), we obtain

A(u) := I (u, 0) = −3

2

∫ ∞

|u|
dv′

∫ u

−v′

u′ + v′ − 2u

v′ − u′ f 2
1 (u′, v′) du′, (A.3)

B(u) := ∂I (u, ε)

∂ε

∣∣∣∣
ε=0

:= g(u) + h(u), (A.4)

where

h(u) = −3

2

∫ ∞

|u|
dv′

∫ u

−v′

uu′ + uv′ − u′v′ − u2

v′ − u′ f 2
1 (u′, v′) du′ (A.5)

g(u) = 3
∫ u

−∞
a′(u′)2 du′. (A.6)

An elementary calculus exercise shows that

h′(u) = A(u). (A.7)

Putting all the above equations together and noting that r = (v − u)/2, we get equation (20).
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