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Abstract. The Siklos class of solutions of Einstein’s field equations is investigated by analytical
methods. By studying the behaviour of free particles we reach the conclusion that the spacetimes
represent exact gravitational waves propagating in the anti-de Sitter universe. The presence of a
negative cosmological constant implies that the ‘background’ space is not asymptotically flat and
requires ‘rotating’ reference frames in order to fully simplify and view the behaviour of nearby
test particles. The Kaigorodov spacetime, which is the simplest representative of the Siklos
class, is analysed in more detail. It is argued that it may serve as a ‘cosmological’ analogue of
the well known homogeneous pp-waves in the flat universe.

PACS numbers: 0430N, 0420J, 0430, 9880H

1. Introduction

The first class of exact solutions representing gravitational waves in general relativity was
found by Brinkmann in 1923 [1]. The metrics were later discovered independently by several
authors [2] including Robinson, who in 1956 recognized their physical meaning—these
metrics are now known as pp-waves. In 1925, Beck [3] discovered cylindrical gravitational
waves which were later studied by Einstein and Rosen [4]. In the beginning of the 1960s, the
introduction of new geometrical concepts and methods (algebraic classification, gravitational
ray optics, concept of the news function, spin coefficients etc) had an important influence
on finding new exact radiative solutions. These solutions, such as the plane-fronted waves
[5-7] or the Robinson—-Trautman ‘spherical’ waves [8], are now considered as standard
‘prototypes’ of exact gravitational waves.

An important step in the treatment of gravitational radiation within the full nonlinear
general relativity was made by Penrose. His concept of a smoothly asymptotically flat
spacetime (see [9] and references therein) represents a rigorous geometrical framework for
the discussion of gravitational radiation frapatially isolatedsources. Moreover, the case
of finite sources has an astrophysical relevance so that most of the work on gravitational
radiation has been concerned with spacetimes which are either asymptotically flat (in some
directions at least), cf [10], or contain flat regions explicitly as, for example, in the case of
colliding plane gravitational waves (see [11] for a comprehensive review).

On the other hand, in the last two decades new exact solutions representing
‘cosmological’ gravitational waves in non-asymptotically flat models were found and
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analysed, for example in [12-27] and elsewhere (see [15, 28, 29] for a review of the
main works). Some of these solutions (usually admitting two spacelike Killing vectors) can
be interpreted as spatially inhomogeneous models in which the homogeneity of the universe
is broken due to gravitational waves. They may serve as exact models of the propagation
of primordial gravitational waves and may be relevant for the (hypothetical) cosmological
wave background.

In this work we concentrate on the physical interpretation of the class of exaciMtype-
solutions with a negative cosmological constanfound by Siklos [30]. In general, these
solutions admit only one Killing vector. Moreover, singe< 0, we deal with gravitational
waves ‘in’ an everywhere curved anti-de Sitter universe (the de Sitter and anti-de Sitter
universes are the simplest natural cosmological ‘background’ spacetimes for solutions with
A because they are conformally flat and they admit the same number of isometries as
flat Minkowski spacetime). Our real universe is probably not asymptotically flat and the
whole theory of gravitational radiation should eventually be formulated with other boundary
conditions than those corresponding to asymptotic flatness. Any exact explicit example of a
wave propagating in a spacetime which is not asymptotically flat may give a useful insight.
It may also serve as a ‘test-bed’ for numerical simulations.

In the next section we shall review the Siklos class of solutions. It will be shown
to be identical to one subclass of spacetimes studied by &flzst al [31]. In section 3
we shall analyse the equation of geodesic deviation in frames parallelly transported along
timelike geodesics. It will be demonstrated that this choice (although being the most natural
one) is not suitable for a physical interpretation. The simple interpretation of the vacuum
Siklos spacetimes (here by vacuum spacetimes we understand Einstein spacteswith
presented in section 4, will be given in rotating frames in which the solutions clearly
represent exact gravitational waves propagating ‘in’ the anti-de Sitter universe. A surprising
result is that the direction, in which the waves propagate, rotates with angular velocity
o = /—A/3. In section 5 the Kaigorodov solution [32], an interesting representative of
the Siklos class, will be described (it is a homogeneous fyp&cuum solution witth < 0
admitting five Killing vectors). The explicit form of all geodesics and a general solution
of the equation of geodesic deviation in the Kaigorodov spacetime will be presented in
section 6. Finally, remarks on its global structure will be given in section 7.

2. The Siklos spacetimes

In 1985 Siklos found an interesting class of tyNespacetimes for which the quadruple
Debever—Penrose null vector fiekdis also a Killing vector field [30]. The metric can be
written in the form

/32

ds? = ?(dxz + dy? + 2du dv + H du?), (1)

whereg = /—3/A, A is a negative cosmological constantandy are spatial coordinates,
v is the affine parameter along the rays generate# byd,, andu is the retarded time. If
the vacuum equations (with < 0) are to be satisfied, the functid#(x, y, u) must obey

2
H,xx - _H,x + H,vv =0. (2)
X )

An explicit solution to this equation reads [30]

2i<f+f

H=x
0x X

1 _ _ _
)Eé(f,;-i-fg)(f*‘{)—(f‘f‘f), (3)
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where¢ = x + iy and f(¢, u) is an arbitrary function, analytic ig. From (1) it is clear
that the Siklos spacetimes are conformal to pp-waves. In fact, it was demonstrated in [30]
that they represent the only non-trivial Einstein spaces conformal to non-flat pp-waves.
The metric (1) represents the anti-de Sitter solution wHes 0. Any particular solution
of (2) can have an arbitrary profile(u). Therefore, as for pp-waves, sandwich waves can
be obtained by taking non-zero for a finite period of retarded time. In particular, by taking
h to be a delta function, impulsive waves can be constructed [33].
Note that the Siklos class is identical with the special subala&yg of non-twisting,
non-expanding and shear-free spacetimes of the Kundt type found batB@esal [31] in
the form

1 _ 2 —
ds? = 2 i o —2% du dv — %H@,s,wduz, (4)

wherep = 1+ 4£& andg = (1+,/—46)(1+,/—4&). The limit A — 0 in (4) with #
independent ofA gives immediately the metric of pp-waves. The explicit transformation
converting (4) to (1) is

__ [ 8+l +iy _1\E _ Z\F
5= AG—1/2) +iy’ U=2ya* V=12/3v. ©

so thatd = —4A H/x. Before concluding this brief introductory section, let us present the
Christoffel symbols for the metric (1) in coordinates = (v, x, y, u),

1 1 1 1
FO = -, FO =-H,, Fo =-H,, FO =_-H,
01 X 13 2 s 23 2 sy 33 2 5
1 1 1 H 1
ri, ==, ri=—=, riL,= =, ri,.=—-ZH, (6
03~ 7 11 X 22 X 33 , (6)
1 1
2 2 3
F12=—;, F33=_§H.,,vv I3=—-,

and all independent non-vanishing components of the Riemann tensor and the Weyl tensor,

R1013= R2023 = R3003= R1212=F,
Rizis= $F(QH — xH , + x°H ), Rozza= 3F(2H — xH  +x°H,,), 7

Ri323= %F-sz,xy = C1323, Ci313= —C2323= zllsz(H,xx —H,)),

where F = —pg2/x*,

3. Particles in the Siklos spacetimes

In this section we derive an invariant form of the equation of geodesic deviation for the
Siklos spacetimes which will be used in the next section for a physical interpretation. We
consider an arbitrary test particle freely falling along timelike geode%i¢) with T being

a proper time normalizing the particle 4-velocit§f = dx*/dr so that

u u® =€, (8)
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wheree = —1 (fore = 0 ande = +1 the geodesic would be null or spacelike, respectively).
For the metric (1) the geodesic equations and equation (8) are

; 1
b =20~ — Cx2(iH, + yH.,) — 5C%*H,
X

. . .2 1
()—C> =— [ZCi) + y—2 + C%x? <H - —xH,x>i| ,
X X 2

P ©)
j =2y~ + =C%x*H,, i = Cx?
x 2
)2 2 €
_ . 2.2
where- = d/dtr and C = constant ¢ # 0 for e = —1 since otherwise& = 0 would be in

contradiction to (8)). Some particular solutions for a special fornHowill be presented
later. However, for our purposes, it is not necessary to solve (9) explicitly. Our analysis
will primarily be based on the equation of geodesic deviation

D2zH

= _ _ph azB
e Ry u"Z u’, (10)

an equation for a displacement vect@f (r) connecting two neighbouring free test
particles. In order to obtain aimvariant relative motion we set up an orthonormal frame
{ed) = {u, ey, €2, €@3)}, €4 - € = gupe®el = n,,. By projecting (10) onto the frame we

obtain

56 _ _p

)
0hHoZ” (11)

whereZ® = ¢{) Z+ are frame components of the displacement vector &fid= ¢ 22"

are relative accelerations. We start with a natural choice, namely a frlafte} given by

el(xo) = ua = (baxa _)}7 sz)a

. . 1 . 1 x
tomn(5) o+ ) () (409,

N X y (12)
6(2) = E (-&, 0, 1, 0) s

. 1 .. . 1 x
tomen() o ) o) (400,

that isparallelly transportedalong any timelike geodesic in the Siklos spacetime. The next
step is to calculate the frame components of the Riemann tensor by using (7) and (12).
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Straightforward but somewhat tedious calculations give

A . A .
Roowo = —3 +Ar co <E) , Ro@ae =5 —M cod (E) ’
A . T A ] T
Rao@o =3 + A sir? <E) , Roame =5 +M Sir? (E) ’
A A
Ryewe =7 + A+ Roo@0 = —3 —M.

T
Rayo@© = Ro@@e = —Ax €S 5)

. T
R0 = Ryeme = Axsin| — |,
B
. . (13)
Rowwmae = —A+ COS(g) ; Ro@@@ =M COS(g) ;

. T . T
Roy@a@ = At sin <E> ; Royo @@ = —Msin <E> ,

. T T . T T
Rayo@©0 = —Aysin E cos E ) Ruyo@@ = Msin E cos E ,

. T T
Rowwe = Ro@E@ee = —Axsin 3 cos 5)

T . T
Rom@@ = Ax COS (E) , Ro@m@ = Ax sir’ (E) ; Ro@w@e = Ax,
where

1 H 1 H 1
A, = -z (_) L A=l (—) L M= SCEGH, — Hy).
X Y
(14)

By substituting the components (13) into (11) we obtain

AR %Z(l) — Ay cos(%) [cos(%) AS sin(%) Z(?’)} + A, cos(%) z@,

7@ = %z@ +MZ? 1+ A, [cos(%) z® —sin (%) Z@] : (15)

yASES %Z@ + A, sin (%) [cos(%) Z® —sin (%) Z(3)] — A, sin (%) z?,

The structure of the equations is not simple. It may seem somewhat surprising because the
Siklos solution is of Petrov typ& so that it should describe gravitational waves affecting
motions only in directions perpendicular to the direction of propagation [34]. However,
equations (15) can be simplified with transverse effects becoming evident by a transformation
from (12) to another frame. The idea follows naturally from the components of the quadruple

Debever—Penrose vectgr= 3, kD = p2C sin(%), k® =0, k® = g2C cos(l), which
indicate that thespacelike direction of propagation of the wave rotates uniformly in the
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(eq), ez) plane Thus, we can define a new franie, } = {u, eq), e, ea@)} by

P cos<r> & sin(r> P < 11 00)
e ’ = - g - - e - ___’ _’ 9 b
@) B (1) B 3 BC x’ B

o H T o T o g 1 Lo 2

ey = sin E €(1) + Ccos E €z =\v+ ﬂz—c,x, y,Cx“ ),
in which the vectork has component#® = 0 = k@, ¥® = p2C # 0. The
orthonormal frame{e, } is not parallelly transportedalong any timelike geodesic since
it rotates uniformly with respect to (12). Using (16) we can rewrite (15) as

s A ,
7@ — §z(1)_A+Z(1)+sz(2)’

(16)

20 = 222 4 M2+ A2, (17)

5@ _As@

This can be used for the interpretation géneral Siklos spacetimes. In the following
however, we concentrate only on vacuum solutions (with< 0) describing ‘pure’
gravitational waves in the absence of matter.

4. Vacuum Siklos spacetimes as exact gravitational waves in the anti-de Sitter
universe

Using the field equation (2) and its solution (3) we get

1 H, C? -
AL(r) = _Eszs (7) = —5(; +)°Re{f e} = M,

1 H | C? - (18)
Ay (1) = +§czx5 (7) =50+ DPIM{feec).

Y
System (17) with (18) represents the main result of our analysis. It is particularly well
suited for the physical interpretation of vacuum Siklos spacetimes.

(1) All test particles move isotropically one with respect to the otfif) = 4z®,
i=1,23)if AL =0=A,, ie. if Hx,y,u) = cou) + c1(u)y + cou)(x?> + y?)
corresponding tof .. = 0. No gravitational wave is present in this case. This agrees
with the fact that forH of this form the Siklos solution is conformally flat—the Weyl
tensor vanishes (see (7)). The only conformally flat vacuum solution with O is the
anti-de Sitter spacetime, maximally symmetric solution of constant negative curvature. This
explains the resulting isotropic motions. Thus, the terms proportionalito(17) represent
the influence of thanti-de Sitter background

(2) If the amplitudesA, and.4, do not vanish (which is forf.., # 0) the particles
are influenced (forA — 0) similarly as by standard gravitational waves on Minkowski
background (such as exact pp-waves or linearized waves [35]). Howeves, for0 the
influence of the gravitational wave adds with the anti-de Sitter isotropic background motions
due to the presence of the-terms. This supports our interpretation of the Siklos solution
as anexact gravitational wave in the anti-de Sitter universe

(3) The gravitationalwave propagates in the spacelike direction ef;, and has a
transverse charactesince only motions in the perpendicular directiang, and e, are
affected. The direction of propagationrist parallelly transported—it uniformly rotates with
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respect to parallel frames along any geodesic with angular velocity given-sy/—A/3.
In the limit A — O the effect of rotation vanishes.

(4) The wave haswo polarization modes‘+' and ‘x’ with A, and .4, being the
corresponding two independeamplitudes The amplitudes given by (18) depend on the
proper time of each particle throughit) and H (x(t), y(t), u(t)) wherex*(z) describes
the geodesic. Performing the rotation in the transverse plane

&y = Cosve) + sinvde ), e = —sindeq) + cosde(y), (19)
the motions are again given as in (17), only the amplitudes change according to
A (1) =cos B A, —sin2A,, A (t) =sin29 A, + cos B A,. (20)

Relations (20) represent the transformation (polarization) properties of the wave amplitudes.
They arerr-periodic so that the helicity is equal to 2. Moreover, by special choices of the
polarization parametef = ¢, or ¢ = ¥, one can set up at any event privileged frames

in which eitherA, =0 or A, = 0, i.e. the wave is purely polarized. Singe = - + I,

the two modes arég -shifted.

(5) From (18) it follows that radiative vacuum Siklos spacetimes contain singularities at
¢ +¢ = oo (corresponding ta = oo) since the components (13) of the Riemann tensor are
proportional to diverging gravitational-wave amplitudes. According to definitions presented
in [36, 37] there is a curvature singularity at= oco. Other singularities arise if ;. in
the amplitudes diverges.

We conclude this section by rewriting the equation of geodesic deviation. The form (17)
is well suited for interpretation due to its simple structure but it is not useful for looking

for solutions: Z©) = e)(D?Z"/dr?) is not a total time derivative o£ " () fori = 1,3
sincee), e(z) are not parallelly transported. In fact,
*z0(x)y ., . DelDzr D2e®
—— =704 * = L 21
dr2 + dr dr dz2 (21)
For (16) we obtain by using & /dr =0
1 3
De®™ _ 1 @) De™ _ lem’
dr , B dr / B (22)
D2e® 1 D2%e® 1 @
—— = ——e", ——— = ——e"’.
dr2 B2 dz2 B2
Equations (21) thus take the form
271 3 27(3 1
7@ d?z® + EdZ( : _ iz(l’) 7@ — ¢z _ EdZ( : _ iZ(S’). (23)
dr2 g dr B2 ’ dr2 B dr B2
By combining (23) with (17) we get the following form of the equation of geodesic deviation
?z® 4 , 2
@ _ )
?4—(? +A+(T))Z = A (1)Z —Ecl,
d?z@ 1 .
@ _ @
a2 + (E - A+('C)> Z = Ax (I)Z s (24)

, 2 ,
7@ = E/Z(l)dt + C1t + Cy,

C1, C, being constants. The system can be integrated provided we know the explicit form
of the geodesia*(r) and therefore of the amplitude$, (z), A, (). (In section 6 we shall
present a general solution of (24) for the case wiker= x3.) Let us note here only that
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there always exists a trivial solution (aloray timelike geodesic irany vacuum Siklos
spacetime) given bg®) = 0= 7@, Zz® = p, D being a constant, i.e. (cf (16)),

Z® = Dsin (%) : z@ =0, z® =D COS(@ : (25)

It has a simple interpretation: the particles may alwagsotate uniformly in circleswith
constant angular velocity = /—A /3 around the ‘fiducial’ reference particle (if measured
with respect to parallelly transported frames). Por O the rotation vanishes.

5. The Kaigorodov spacetime

As an interesting particular example of the Siklos-type metric (1) we now analyse a vacuum
solution with A < 0 given by H = x3 corresponding tof = %4“3 (cf (3)),

2
ds® = = (dx? + dy? + 2du dv + x° du®). (26)
X

In fact, such a solution represents the simplest non-trivial vacuum spacetime of the Siklos
type (for f quadratic in¢ one gets just the conformally flat anti-de Sitter spacetime, cf
(18)). Therefore, it can be understood aa a 0 analogue of the ‘homogeneous’ pp-wave

in Minkowski background [7] which is also the simplest vacuum pp spacetime. The solution
(26) was first discovered by Kaigorodov [32] in the form

ds? = (dx2 + e 7P[2dxt dx® + (dx?)?] + e 78 (dx3)2. (27)
Transformation between the Kaigorodov and Siklos coordinates is given by
xt = B, x? = By, x% = Bu, xt=—BIn|x|. (28)

The solution has also been discussed independently in [38—-40] and it is a special case of
the (IV)q class found by Ozsath et al (see (4) and equation (6.17) in [31]),

2 _ 1 z 42 p 2
ds? = 2= dé dE — 2. dU dV + AL dU?2, (29)
p? p? q

the transformation to (26) being given by (5). Other forms of the Kaigorodov solution can
be found in [2], equation (10.33),

12
ds? = N dz2 + 10ke?? dX? + e % dy? — 10U€” dZ dX — 2¢/ dU dX, (30)
resulting from the transformation
10k | B3
x:ﬂezz, u=— FX’ v = fT.keSZU, (31)
and equation (33.2) (there is a misprint in [2]: the coefficigmt.2) 2 should be—3/(Ax?)),
2 dx
ds? = ’8—2(de +dy?) — 2dU (dV +2V—=—x dU> , (32)
X X

resulting from

2 1
u=£U, v=———Vx2 (33)

B V28

The Kaigorodov spacetime is the only homogeneous typselution (the quadruple
Debever—Penrose vector beikg= d,) of the Einstein vacuum field equations with+# 0
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(necessarily withA < 0). It admits a five-parameter group of motions. The Killing vectors
in the Siklos coordinate&, x, y, u) are (see [30])
é(l;_) = (1’ 0» 07 O)a é('ué) = (07 Oa 17 0)7 S(%) = (07 O’ 07 1)’

(34)
‘i:(ljl) = (_y,O,U,O)y é(”s’) = (5U72x92y, _M)v

the corresponding isometries being: )= v + vo, (2) ¥y =y + yo, 3) u’ = u + ug, (4)

v = —%Zu —Ay+v, y = Au+y, 5)v =ePv, x' =ePx, y =y, u = efu

From (34) we see that the quadruple Debever—Penrose null vector is also a Killing vector.
However, it is not covariantly constant.

6. Particles in the Kaigorodov spacetime

or H = x?° representin e Kaigorodov solution, the equations of motion ive
For H = x3 rep ting the Kaigorod lution, the equat f motion (9) g
x2

?7

b= Ax?— st, y= sz, u= Cx2,

xi— %= 3C%" — (2AC + B)x*,

%2 =C%" — (2AC + B)x* + ¢
(35)

A, B, C being real constants of integration. Now we must distinguish two cases.
Case 1.If x = 0 then equations (35) give

v(®) = (Ax§ = Cxt +vo,  x(7) = x0, 6)
y(r) = Bx§T + Yo, u(t) = Cxgt + uo,

wherevg, xo, Yo, uo and A, B, C are real constants satisfying the conditigiGx38° = ¢
and2C%x§ = 2AC+ B2. The first condition implies that fory < 0, C # 0 all the geodesics
are timelike(e = —1) and forxg > 0, C # 0 spacelikele = +1). For C = 0 the geodesics
are null(e = 0) and they have a simple form= Axgt + vg, X = X0, ¥ = Yo, U = ug Since
the second condition giveB = 0 in this case.

Case 2.If x # 0 then the last equation in (35) can simply be omitted (since the first equation
is its integral). The four remaining equations give

T-To= / (1/Xx/C2x5 — (2AC + BH)x? + e/ﬂz) dx,
v(t) = A/xz(r) dr — C f x°(7) dt + vo, (37)

y(t) =B / x2(t) dr + yo, u(t) = C/xz(t) dr + uo,

where 1o, vo, Yo, o, A, B, C are arbitrary constants. For special values of the parameters
the integrations can be performed analytically.
(i) If C =0 then the geodesics must be spacelike. Their form is given either by
B
v(t) = AE exp [A7 — 70)/B] + vo,

x(7) = £expl(r — 1) /B,
y(t) = yo, u(t) = uo,

(38)
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(for B =0), or by

= A tanh
v(T) = BB2 anh [(t — wo0)/B] + vo,
x(t) = +(B|B|coshr — 7o)/ " (39)
1
y(©) = 5B tanh [z — 70)/8] + yo. u(t) = uo,

(for B #0).

(i) If C # 0 it is convenient to further simplify (37) by using the symmetries of the
solution. For a Killing vectog#, the expressiom,&* is the constant of motion for any
geodesic observer having the 4-veloaity. The Killing vectorsé(;, &/, andg( (see (34))
give relations embodied already in (35), the vectffsandé/s imply Bu — Cy = constant
andx/x + ng + By — %Au = constant, respectively. These two relations simplify (37)
into

r— 1= / (1/2V/CBx% = 2AC + BDZ + ¢/p2) v,
2 B
u(®) = C / 2@ detue, ¥ = Gul® + o, (40)

_Z[A_32 _x(z)]+
U(T) = % <E F) M(T) m Vo

(we have reparametrized the constapgsand vg). In the case when2C + B? = 0, the
remaining two integrations can be performed explicithgll geodesics are

4 ., B[ 5 Vs g2
v(t) = ﬁ(r—ro) + C|C|[—§|Cl(r—ro)] —2—C2u0+vo,
x(0) = [-3ICI(r — )] °,
2B[ 5 5 (41)
=——|—=|C — - ,
y(7) |C|[ 2| [(T To)} +Cuo+yo
2C[ 5 5
u(t) = _E[_EM(T - To):| + uo.
Timelike geodesics are
BZ
v(t) = _5,3_C tanr — 2—C2u(r) + vp,
B
x(®) = (BCo0sN 5, y(x) = Zu() + 3o, (42)

u(t) = —2(BC cost)¥5C®> (sint) + uo,

where t = 5t/28 + 10 and the symbolC*’(z) denotes the Gegenbauer polynomial
(generalized for negative values @j which is a particular case of the hypergeometric
function, C"(z) = NP F(—n,n + 2b;b + 3;(1 — 2)/2). (Forn > 0 the standard
normalization coefficient isV(”’ = I'(n + 2b)/(n!T'(2b)); in order to avoid singularities
we defineN” =1 for n < 0. It can be shown that famon-integera,

t
1
/ cos tdr = F(C(_lf‘l/z)(O) — coste 12 (sinty), (43)
0 a
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which we have used in (42) far = —‘5".) Note that forA = 0 = B, the geodesics (42) are
highly privileged since they are perpendicular, & = 0) to the Killing vectorsg,), §s)-
Moreover, foryo = 0 = v they are perpendicular ®, £, too.

Finally, spacelikegeodesics (40) for 2C + B? = 0 take the form

2

(7) 2 cothz B (r) +
VIT) = —— — —=u(T U
58C 2C2 0

x(7) = (BC sinht) /5, y(1r) = gu(r) + o, (44)

u(t) = %(ﬂC)l/E’fsinh"V‘r’tdt + uo.

All the geodesics (41), (42) and (44) are in the regios 0. There are no null and timelike
geodesics of the form (40) with&” + B? = 0 in the regionx < 0; there are only spacelike
geodesics

( )—itanht—B—2 (r) +
(T _SﬁC Zczuf Vo,
x(1) = —(—BC coshr) =%/, y(1r) = gu(t) + o, (45)

u(r) = —%(—ﬁC)1/5fcosh*4/5tdt + uo.

We close this section by investigating tiedative motion of particles in the Kaigorodov
spacetime. The amplitudes (18) adg = —3C2x%, A, = 0 wherex = x(r) depends on
the timelike geodesic, i.e. it is given by (36), (40), or (42) in particular. The frame is now
privileged since the wave looks purely ‘+' polarized. Therefore, (24) decouples into the
‘Schrodinger-type’ equationsd, being a ‘potential’, and explicit solutions can be found.
Case 1.If x = 0 then the geodesics are given by (36) with= —1 implying A, =
—3C%x§ = 1/B2. In this case the general solution of (24) is

, 5 2
Z% = Dcos £r + 10| — =BCy,
B 5
7@ = Eit + Es, (46)
, 2 NG 1
7z® = ~_psin[ == e Co,
JE (ﬁr+ro)+511+ 2

Ci1, Cy, D, E;1, E, being real constants. The test particles move with a constant velocity
E1 in the direction ofe; whereas in th€e), e3)) plane the particles move iellipses

In particular, forC; = D = E1 = E, = 0 we get the solution (25) describing uniform
rotations.

Case 2.If x # 0 then the timelike geodesics are given by (40) wite= —1. Using (35)

one can verify that the solution of (24) is

. 4
a X X , (1
V4 —F<D1+/;(D2x +E> d'L’>,
1
7@ = —<E1 + E; / x2dr>, (47)
X

, 2 ,
z® = E/Z(l)dr + C1t + Co,
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wherex = x(r) follows from (40) and is unigue for any geodesic. Since (47) contains
six independent constants of integration it igeneral solutionof the equation of geodesic
deviation. As in the previous case, f6f = D; = D, = E; = E; = 0 we get the solution
(25). In particular, for the geodesics (42) with= 0 = B we havex(r) = (8C cost)~%/°

for which (47) can be integrated into

Z® = Dy sintcos Y%t + D, cod® 1% (sinr) — 2 pC1cod 1€ (sin),

7@ = E;c08/°t + Eyco8/° 1% (siny), (48)

z® =t / ZMdi + C11 + C,

(we have used (43), the identig”)(z) = (2 — 1) — (2 — 2)z2C%)(z), and we have
redefined the constants of integration). EKar= D, = E; = 0 and D, = E; the motions
are shown in figure 1. Note that fot = 0 = B the amplituded, = (A/2)cos?t is
independent of the geodesic (given by some valu€pfand thatA, — 0 asA — 0.

In such a limit equations (24) reduce t84f"/dr?> = 0, i = 1’,2,3. Considering also
(eq), e@)) — (ew), e@) asA — 0, cf (16), we conclude that test particles move uniformly
as in flat Minkowski space.

1.0+
0.5+
z® o
_D‘S_
L \
—1 .0k
I | | | | | | |

0 z
oz

Figure 1. The trajectories of test particles with respect to the origin where the reference particle
is located. Her&C1 = D, = E; =0andD; = E; =-1,-0.9,...,1.
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7. On the global structure of the Kaigorodov spacetime

In this section we briefly touch upon some global properties of the Kaigorodov spacetime.
The metric (26) indicates that the spacetime is regular everywhere except=atO
and x = oo. All components of the curvature tensor for the Kaigorodov solution in
the orthonormal frame parallelly propagated along timelike geodesics are given by (13)
with Ay = M = —3C%5, A, = 0. Therefore,x = 0 represents only a coordinate
singularity. However, there is aurvature singularity atx = oo; according to [37],
or the classification scheme introduced in [36], it is a ‘p.p. curvature singularity’, or a
‘CO curvature singularity’, respectively. Geodesic observers moving along the timelike
geodesics (40), (42) inevitably reach the singulanty= +oc in a finite proper time
(At ~ [>°x77/2dx ~ [x~®?]% = constant< o0), whereas observers= xo < 0 moving
along (36) escape (there are no timelike observetsxg > 0).

On the other hand, the region= 0 can not be reached by any timelike observer (cf
(35) wherex? ~ —x?/p? asx — 0 would be a contradiction). This indicates that= 0
represents the null and/or spacelike infinity. Indeed, the transformation

n=pcosT/p)/D, x = pcosy/D,

49
y = Bsiny cos#/D, 7z = Bsiny siny cosg/D, (49)

wheren = (u — v)/~/2, z = (u + v)/+/2 andD = sin(T/B) + siny sin® sing, brings the
metric (26) into the form

2 B dr? 2 2
ds :E{ 52 + dy? + sir? x (d9? + sir? 9 dy )}
5
%C;;X { —[1+codT/B — ¢)siny sim}]dFT

+sin(T/B — @) cosy sind dy + sin(T/B — ¢) sin x cosy dv
2
—siny siny[cos(T/B — ¢) + sinx Sinv] d(p} . (50)

This form of the Kaigorodov spacetime shows explicitly that the metric approaches
asymptotically the anti-de Sitter metric in standard global coordinates as O, i.e.

x — =£m/2 (cf section 5.2 in [37] where cosh= 1/cosy). In the literature, these
coordinates are used for the construction of the Penrose diagram of the anti-de Sitter
spacetime—choosing a conformal fac@r= % cosy, the boundary of the anti-de Sitter
manifold given byQ = 0 (x = +x/2) represents null and spacelike infinity which can be
thought of as @imelikesurface sinc& ,Q2* > 0 atQ = 0. Using the same conformal factor
for the Kaigorodov spacetime (50) we conclude that the bounfary 0 corresponding

to x = O represents an ‘anti-de Sitter-like’ scri having the topoldgyk S2. Therefore,

the Kaigorodov spacetime eakly asymptotically anti-de Sitterccording to the definition
given in [41]. This is not true, of course, in regions wh&re= 0 representing singularities

X = Fo0.

The fact thatx = 0 is an infinity for null and spacelike observers is supported by the
asymptotic behaviour of the geodesics described by equation (37). For spacelike geodesics
(e = +1) we get|x| ~ exp(At/B) asx — 0. Similarly, null geodesicse(= 0) are
asymptoticallyx ~ (At)~%° (cf (41)), or |x| ~ (At)~! (for 2AC + B? < 0). Therefore,
the boundary = 0 is reached only at infinite value of the affine parametef null and
spacelike geodesics.
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An important consequence of this is that the Kaigorodov spacetime (26) splits, in
fact, into two disjointed regions > 0 andx < O (corresponding to different signs in
(27)) which cannot mutually communicate. These two regions are quite different. For
example, the singularity = +oco is reached by most of the timelike, null, and spacelike
geodesics it > 0, the singularityx = —oo is reached byonly one (spacelike) geodesic
x(t) = —exp[(t — tp)/B] (cf (38)) ast — oo. Also, the geodesics (36) given by= xo
are spacelike or null ic > 0 whereas they are timelike and null in< 0. Moreover,
gwg{;)g(g) = B2x so that the Killing Vectog 5 = 9, (see (34)) is spacelike for > 0 but
timelike forx < 0. This implies that the Kaigorodov spacetimestationaryin x < 0 with
u being a time coordinate.

Note that, surprisingly, the stationarity does not exclude the presence of gravitational
radiation. For example, standard ‘homogeneous’ (or ‘plane’) pp-waves [2, 7]—a ‘textbook
model’ of exact gravitational waves—are given by the metsitd 2ds d& — 2cu dv — (g +
2) du?, whereg = A(u)£2. Considering the simplest casg, = 1, and introducing real
spacelike coordinates andy by +/2¢ = x + iy, we obtain d = dx? + dy? — 2du dv —

(x2 — y?)du®. This spacetime is also stationary in the regions whefe> |y| since the
Killing vector & = 9, is timelike: it represents a radiation with a constant amplitude rather
than a periodic-like gravitational wave.

8. Concluding remarks

Our study of the Siklos class of exact solutions indicates that a reasonable physical
interpretation of these spacetimes can be given if one investigates the equation of geodesic
deviation in the suitable frame. As in the linearized theory, exact waves of the Siklos
type manifest themselves by typical effects on particle motions (transversality and specific
polarization properties). The spacetimes describe exact gravitational waves propagating in
the anti-de Sitter universe. Somewhat surprising is that, due to the presence of a negative
cosmological constant, the direction of propagation of the waves rotates.

The analysis provided independent arguments for the interpretation suggested by Siklos
[30] of the spacetimes (1) as ‘Lobatchevski pp-waves' (Siklos proved that they admit
a foliation of totally geodesic two-dimensional spacelike surfaces of constant negative
curvature which are the wave surfaces of gravitational waves) and also for lvor Robinson’s
suggestion [40] that the Kaigorodov solution may be interpreted as a ‘plane-fronted
gravitational wave against the anti-de Sitter background’ (since the group of isometries
is five parametric). Therefore, the Siklos spacetimes—and the Kaigorodov solution in
particular—can be understood as natural cosmologitak(0) analogues of the pp-waves
in the flat universe.

We hope that the studied spacetimes can be used in numerical relativity as the test beds
for numerical codes aimed at understanding realistic situations in more general cosmological
contexts.
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