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Abstract. The Siklos class of solutions of Einstein’s field equations is investigated by analytical
methods. By studying the behaviour of free particles we reach the conclusion that the spacetimes
represent exact gravitational waves propagating in the anti-de Sitter universe. The presence of a
negative cosmological constant implies that the ‘background’ space is not asymptotically flat and
requires ‘rotating’ reference frames in order to fully simplify and view the behaviour of nearby
test particles. The Kaigorodov spacetime, which is the simplest representative of the Siklos
class, is analysed in more detail. It is argued that it may serve as a ‘cosmological’ analogue of
the well known homogeneous pp-waves in the flat universe.

PACS numbers: 0430N, 0420J, 0430, 9880H

1. Introduction

The first class of exact solutions representing gravitational waves in general relativity was
found by Brinkmann in 1923 [1]. The metrics were later discovered independently by several
authors [2] including Robinson, who in 1956 recognized their physical meaning—these
metrics are now known as pp-waves. In 1925, Beck [3] discovered cylindrical gravitational
waves which were later studied by Einstein and Rosen [4]. In the beginning of the 1960s, the
introduction of new geometrical concepts and methods (algebraic classification, gravitational
ray optics, concept of the news function, spin coefficients etc) had an important influence
on finding new exact radiative solutions. These solutions, such as the plane-fronted waves
[5–7] or the Robinson–Trautman ‘spherical’ waves [8], are now considered as standard
‘prototypes’ of exact gravitational waves.

An important step in the treatment of gravitational radiation within the full nonlinear
general relativity was made by Penrose. His concept of a smoothly asymptotically flat
spacetime (see [9] and references therein) represents a rigorous geometrical framework for
the discussion of gravitational radiation fromspatially isolatedsources. Moreover, the case
of finite sources has an astrophysical relevance so that most of the work on gravitational
radiation has been concerned with spacetimes which are either asymptotically flat (in some
directions at least), cf [10], or contain flat regions explicitly as, for example, in the case of
colliding plane gravitational waves (see [11] for a comprehensive review).

On the other hand, in the last two decades new exact solutions representing
‘cosmological’ gravitational waves in non-asymptotically flat models were found and
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analysed, for example in [12–27] and elsewhere (see [15, 28, 29] for a review of the
main works). Some of these solutions (usually admitting two spacelike Killing vectors) can
be interpreted as spatially inhomogeneous models in which the homogeneity of the universe
is broken due to gravitational waves. They may serve as exact models of the propagation
of primordial gravitational waves and may be relevant for the (hypothetical) cosmological
wave background.

In this work we concentrate on the physical interpretation of the class of exact type-N

solutions with a negative cosmological constant3 found by Siklos [30]. In general, these
solutions admit only one Killing vector. Moreover, since3 < 0, we deal with gravitational
waves ‘in’ an everywhere curved anti-de Sitter universe (the de Sitter and anti-de Sitter
universes are the simplest natural cosmological ‘background’ spacetimes for solutions with
3 because they are conformally flat and they admit the same number of isometries as
flat Minkowski spacetime). Our real universe is probably not asymptotically flat and the
whole theory of gravitational radiation should eventually be formulated with other boundary
conditions than those corresponding to asymptotic flatness. Any exact explicit example of a
wave propagating in a spacetime which is not asymptotically flat may give a useful insight.
It may also serve as a ‘test-bed’ for numerical simulations.

In the next section we shall review the Siklos class of solutions. It will be shown
to be identical to one subclass of spacetimes studied by Ozsváth et al [31]. In section 3
we shall analyse the equation of geodesic deviation in frames parallelly transported along
timelike geodesics. It will be demonstrated that this choice (although being the most natural
one) is not suitable for a physical interpretation. The simple interpretation of the vacuum
Siklos spacetimes (here by vacuum spacetimes we understand Einstein spaces with3 < 0),
presented in section 4, will be given in rotating frames in which the solutions clearly
represent exact gravitational waves propagating ‘in’ the anti-de Sitter universe. A surprising
result is that the direction, in which the waves propagate, rotates with angular velocity
ω = √−3/3. In section 5 the Kaigorodov solution [32], an interesting representative of
the Siklos class, will be described (it is a homogeneous type-N vacuum solution with3 < 0
admitting five Killing vectors). The explicit form of all geodesics and a general solution
of the equation of geodesic deviation in the Kaigorodov spacetime will be presented in
section 6. Finally, remarks on its global structure will be given in section 7.

2. The Siklos spacetimes

In 1985 Siklos found an interesting class of type-N spacetimes for which the quadruple
Debever–Penrose null vector fieldk is also a Killing vector field [30]. The metric can be
written in the form

ds2 = β2

x2
(dx2+ dy2+ 2du dv +H du2), (1)

whereβ = √−3/3, 3 is a negative cosmological constant,x andy are spatial coordinates,
v is the affine parameter along the rays generated byk = ∂v, andu is the retarded time. If
the vacuum equations (with3 < 0) are to be satisfied, the functionH(x, y, u) must obey

H,xx − 2

x
H,x +H,yy = 0. (2)

An explicit solution to this equation reads [30]

H = x2 ∂

∂x

(
f + f̄
x

)
≡ 1

2
(f,ζ + f̄,ζ̄ )(ζ + ζ̄ )− (f + f̄ ), (3)
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whereζ ≡ x + iy andf (ζ, u) is an arbitrary function, analytic inζ . From (1) it is clear
that the Siklos spacetimes are conformal to pp-waves. In fact, it was demonstrated in [30]
that they represent the only non-trivial Einstein spaces conformal to non-flat pp-waves.

The metric (1) represents the anti-de Sitter solution whenH = 0. Any particular solution
of (2) can have an arbitrary profileh(u). Therefore, as for pp-waves, sandwich waves can
be obtained by takingh non-zero for a finite period of retarded time. In particular, by taking
h to be a delta function, impulsive waves can be constructed [33].

Note that the Siklos class is identical with the special subclass(IV )0 of non-twisting,
non-expanding and shear-free spacetimes of the Kundt type found by Ozsváth et al [31] in
the form

ds2 = 2
1

p2
dξ dξ̄ − 2

q2

p2
dU dV − q

p
H̃ (ξ, ξ̄ , U)dU2, (4)

wherep = 1+ 3
6 ξ ξ̄ andq = (1+

√
−3

6 ξ)(1+
√
−3

6 ξ̄ ). The limit 3→ 0 in (4) with H̃
independent of3 gives immediately the metric of pp-waves. The explicit transformation
converting (4) to (1) is

ξ = −
√
− 6

3

(x + 1/2)+ iy

(x − 1/2)+ iy
, U = 1

3

√
3

2
u, V = 12

√
2

3
v, (5)

so thatH̃ = −43H/x. Before concluding this brief introductory section, let us present the
Christoffel symbols for the metric (1) in coordinatesxµ = (v, x, y, u),

00
01 = −

1

x
, 00

13 =
1

2
H,x, 00

23 =
1

2
H,y, 00

33 =
1

2
H,u,

01
03 =

1

x
, 01

11 = −
1

x
, 01

22 =
1

x
, 01

33 =
H

x
− 1

2
H,x,

02
12 = −

1

x
, 02

33 = −
1

2
H,y, 03

13 = −
1

x
,

(6)

and all independent non-vanishing components of the Riemann tensor and the Weyl tensor,

R1013= R2023= R3003= R1212= F,
R1313= 1

2F(2H − xH,x + x2H,xx), R2323= 1
2F(2H − xH,x + x2H,yy),

R1323= 1
2Fx

2H,xy = C1323, C1313= −C2323= 1
4Fx

2(H,xx −H,yy),
(7)

whereF = −β2/x4.

3. Particles in the Siklos spacetimes

In this section we derive an invariant form of the equation of geodesic deviation for the
Siklos spacetimes which will be used in the next section for a physical interpretation. We
consider an arbitrary test particle freely falling along timelike geodesicxα(τ ) with τ being
a proper time normalizing the particle 4-velocityuα = dxα/dτ so that

uαu
α = ε, (8)
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whereε = −1 (for ε = 0 andε = +1 the geodesic would be null or spacelike, respectively).
For the metric (1) the geodesic equations and equation (8) are

v̈ = 2v̇
ẋ

x
− Cx2(ẋH,x + ẏH,y)− 1

2
C2x4H,u,(

ẋ

x

)·
= −

[
2Cv̇ + ẏ

2

x2
+ C2x2

(
H − 1

2
xH,x

)]
,

ÿ = 2ẏ
ẋ

x
+ 1

2
C2x4H,y, u̇ = Cx2,(

ẋ

x

)2

= −
(

2Cv̇ + ẏ
2

x2
+ C2x2H − ε

β2

)
,

(9)

where· ≡ d/dτ andC = constant (C 6= 0 for ε = −1 since otherwisėu = 0 would be in
contradiction to (8)). Some particular solutions for a special form ofH will be presented
later. However, for our purposes, it is not necessary to solve (9) explicitly. Our analysis
will primarily be based on the equation of geodesic deviation

D2Zµ

dτ 2
= −Rµαβγ uαZβuγ , (10)

an equation for a displacement vectorZµ(τ) connecting two neighbouring free test
particles. In order to obtain aninvariant relative motion we set up an orthonormal frame
{ea} = {u, e(1), e(2), e(3)}, ea · eb ≡ gαβeαa eβb = ηab. By projecting (10) onto the frame we
obtain

Z̈(i) = −R(i)(0)(j)(0)Z(j), (11)

whereZ(i) ≡ e(i)µ Zµ are frame components of the displacement vector andZ̈(i) ≡ e(i)µ D2Zµ

dτ 2

are relative accelerations. We start with a natural choice, namely a frame{ea(τ )} given by

eα(0) = uα = (v̇, ẋ, ẏ, Cx2),

eα(1) = sin

(
τ

β

)(
v̇ + 1

β2C
, ẋ, ẏ, Cx2

)
− cos

(
τ

β

)(
1

βC

ẋ

x
,− x
β
, 0, 0

)
,

eα(2) =
x

β

(
− ẏ

Cx2
, 0, 1, 0

)
,

eα(3) = cos

(
τ

β

)(
v̇ + 1

β2C
, ẋ, ẏ, Cx2

)
+ sin

(
τ

β

)(
1

βC

ẋ

x
,− x
β
, 0, 0

)
,

(12)

that isparallelly transportedalong any timelike geodesic in the Siklos spacetime. The next
step is to calculate the frame components of the Riemann tensor by using (7) and (12).
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Straightforward but somewhat tedious calculations give

R(1)(0)(1)(0) = −3
3
+A+ cos2

(
τ

β

)
, R(2)(3)(2)(3) = 3

3
−M cos2

(
τ

β

)
,

R(3)(0)(3)(0) = −3
3
+A+ sin2

(
τ

β

)
, R(1)(2)(1)(2) = 3

3
+M sin2

(
τ

β

)
,

R(1)(3)(1)(3) = 3

3
+A+, R(2)(0)(2)(0) = −3

3
−M,

R(1)(0)(2)(0) = R(1)(3)(2)(3) = −A× cos

(
τ

β

)
,

R(2)(0)(3)(0) = R(1)(2)(1)(3) = A× sin

(
τ

β

)
,

R(0)(1)(1)(3) = −A+ cos

(
τ

β

)
, R(0)(2)(2)(3) =M cos

(
τ

β

)
,

R(0)(3)(1)(3) = A+ sin

(
τ

β

)
, R(0)(2)(1)(2) = −M sin

(
τ

β

)
,

R(1)(0)(3)(0) = −A+ sin

(
τ

β

)
cos

(
τ

β

)
, R(1)(2)(2)(3) =M sin

(
τ

β

)
cos

(
τ

β

)
,

R(0)(1)(1)(2) = R(0)(3)(2)(3) = −A× sin

(
τ

β

)
cos

(
τ

β

)
,

R(0)(1)(2)(3) = A× cos2
(
τ

β

)
, R(0)(3)(1)(2) = A× sin2

(
τ

β

)
, R(0)(2)(1)(3) = A×,

(13)

where

A+ = −1

2
C2x5

(
H,x

x

)
,x

, A× = 1

2
C2x5

(
H,x

x

)
,y

, M = 1

2
C2x3(xH,yy −H,x).

(14)

By substituting the components (13) into (11) we obtain

Z̈(1) = 3

3
Z(1) −A+ cos

(
τ

β

)[
cos

(
τ

β

)
Z(1) − sin

(
τ

β

)
Z(3)

]
+A× cos

(
τ

β

)
Z(2),

Z̈(2) = 3

3
Z(2) +MZ(2) +A×

[
cos

(
τ

β

)
Z(1) − sin

(
τ

β

)
Z(3)

]
,

Z̈(3) = 3

3
Z(3) +A+ sin

(
τ

β

)[
cos

(
τ

β

)
Z(1) − sin

(
τ

β

)
Z(3)

]
−A× sin

(
τ

β

)
Z(2).

(15)

The structure of the equations is not simple. It may seem somewhat surprising because the
Siklos solution is of Petrov typeN so that it should describe gravitational waves affecting
motions only in directions perpendicular to the direction of propagation [34]. However,
equations (15) can be simplified with transverse effects becoming evident by a transformation
from (12) to another frame. The idea follows naturally from the components of the quadruple

Debever–Penrose vectork = ∂v, k(1) = β2C sin
(
τ
β

)
, k(2) = 0, k(3) = β2C cos

(
τ
β

)
, which

indicate that thespacelike direction of propagation of the wave rotates uniformly in the
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(e(1), e(3)) plane. Thus, we can define a new frame{ea′ } = {u, e(1′), e(2), e(3′)} by

eα(1′) = cos

(
τ

β

)
eα(1) − sin

(
τ

β

)
eα(3) =

(
− 1

βC

ẋ

x
,
x

β
, 0, 0

)
,

eα(3′) = sin

(
τ

β

)
eα(1) + cos

(
τ

β

)
eα(3) =

(
v̇ + 1

β2C
, ẋ, ẏ, Cx2

)
,

(16)

in which the vectork has componentsk(1
′) = 0 = k(2), k(3

′) = β2C 6= 0. The
orthonormal frame{ea′ } is not parallelly transportedalong any timelike geodesic since
it rotates uniformly with respect to (12). Using (16) we can rewrite (15) as

Z̈(1
′) = 3

3
Z(1

′) −A+Z(1′) +A×Z(2),

Z̈(2) = 3

3
Z(2) +MZ(2) +A×Z(1′),

Z̈(3
′) = 3

3
Z(3

′).

(17)

This can be used for the interpretation ofgeneral Siklos spacetimes. In the following
however, we concentrate only on vacuum solutions (with3 < 0) describing ‘pure’
gravitational waves in the absence of matter.

4. Vacuum Siklos spacetimes as exact gravitational waves in the anti-de Sitter
universe

Using the field equation (2) and its solution (3) we get

A+(τ ) = −1

2
C2x5

(
H,x

x

)
,x

≡ −C
2

32
(ζ + ζ̄ )5Re{f,ζζζ } =M,

A×(τ ) = +1

2
C2x5

(
H,x

x

)
,y

≡ −C
2

32
(ζ + ζ̄ )5Im {f,ζζζ }.

(18)

System (17) with (18) represents the main result of our analysis. It is particularly well
suited for the physical interpretation of vacuum Siklos spacetimes.

(1) All test particles move isotropically one with respect to the other(Z̈(i) = 3
3Z

(i),
i = 1′, 2, 3′) if A+ = 0 = A×, i.e. if H(x, y, u) = c0(u) + c1(u)y + c2(u)(x

2 + y2)

corresponding tof,ζζζ = 0. No gravitational wave is present in this case. This agrees
with the fact that forH of this form the Siklos solution is conformally flat—the Weyl
tensor vanishes (see (7)). The only conformally flat vacuum solution with3 < 0 is the
anti-de Sitter spacetime, maximally symmetric solution of constant negative curvature. This
explains the resulting isotropic motions. Thus, the terms proportional to3 in (17) represent
the influence of theanti-de Sitter background.

(2) If the amplitudesA+ andA× do not vanish (which is forf,ζζζ 6= 0) the particles
are influenced (for3 → 0) similarly as by standard gravitational waves on Minkowski
background (such as exact pp-waves or linearized waves [35]). However, for3 < 0 the
influence of the gravitational wave adds with the anti-de Sitter isotropic background motions
due to the presence of the3-terms. This supports our interpretation of the Siklos solution
as anexact gravitational wave in the anti-de Sitter universe.

(3) The gravitationalwave propagates in the spacelike direction ofe(3′) and has a
transverse charactersince only motions in the perpendicular directionse(1′) and e(2) are
affected. The direction of propagation isnot parallelly transported—it uniformly rotates with
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respect to parallel frames along any geodesic with angular velocity given byω = √−3/3.
In the limit 3→ 0 the effect of rotation vanishes.

(4) The wave hastwo polarization modes: ‘+’ and ‘×’ with A+ andA× being the
corresponding two independentamplitudes. The amplitudes given by (18) depend on the
proper time of each particle throughx(τ) andH(x(τ), y(τ ), u(τ )) wherexµ(τ) describes
the geodesic. Performing the rotation in the transverse plane

ẽ(1′) = cosϑe(1′) + sinϑe(2), ẽ(2) = − sinϑe(1′) + cosϑe(2), (19)

the motions are again given as in (17), only the amplitudes change according to

Ã+(τ ) = cos 2ϑA+ − sin 2ϑA×, Ã×(τ ) = sin 2ϑA+ + cos 2ϑA×. (20)

Relations (20) represent the transformation (polarization) properties of the wave amplitudes.
They areπ -periodic so that the helicity is equal to 2. Moreover, by special choices of the
polarization parameterϑ = ϑ+ or ϑ = ϑ× one can set up at any event privileged frames
in which eitherÃ× = 0 or Ã+ = 0, i.e. the wave is purely polarized. Sinceϑ× = ϑ+ + π

4 ,
the two modes areπ4 -shifted.

(5) From (18) it follows that radiative vacuum Siklos spacetimes contain singularities at
ζ + ζ̄ = ∞ (corresponding tox = ∞) since the components (13) of the Riemann tensor are
proportional to diverging gravitational-wave amplitudes. According to definitions presented
in [36, 37] there is a curvature singularity atx = ∞. Other singularities arise iff,ζζζ in
the amplitudes diverges.

We conclude this section by rewriting the equation of geodesic deviation. The form (17)
is well suited for interpretation due to its simple structure but it is not useful for looking
for solutions: Z̈(i) = e(i)µ (D2Zµ/dτ 2) is not a total time derivative ofZ(i)(τ ) for i = 1′, 3′

sincee(1′), e(3′) are not parallelly transported. In fact,

d2Z(i)(τ )

dτ 2
= Z̈(i) + 2

De(i)µ
dτ

DZµ

dτ
+ ZµD2e(i)µ

dτ 2
. (21)

For (16) we obtain by using Dea/dτ = 0

De(1
′)

dτ
= − 1

β
e(3

′),
De(3

′)

dτ
= 1

β
e(1

′),

D2e(1
′)

dτ 2
= − 1

β2
e(1

′),
D2e(3

′)

dτ 2
= − 1

β2
e(3

′).

(22)

Equations (21) thus take the form

Z̈(1
′) = d2Z(1

′)

dτ 2
+ 2

β

dZ(3
′)

dτ
− 1

β2
Z(1

′), Z̈(3
′) = d2Z(3

′)

dτ 2
− 2

β

dZ(1
′)

dτ
− 1

β2
Z(3

′). (23)

By combining (23) with (17) we get the following form of the equation of geodesic deviation

d2Z(1
′)

dτ 2
+
(

4

β2
+A+(τ )

)
Z(1

′) = A×(τ )Z(2) − 2

β
C1,

d2Z(2)

dτ 2
+
(

1

β2
−A+(τ )

)
Z(2) = A×(τ )Z(1′),

Z(3
′) = 2

β

∫
Z(1

′) dτ + C1τ + C2,

(24)

C1, C2 being constants. The system can be integrated provided we know the explicit form
of the geodesicxµ(τ) and therefore of the amplitudesA+(τ ), A×(τ ). (In section 6 we shall
present a general solution of (24) for the case whenH = x3.) Let us note here only that
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there always exists a trivial solution (alongany timelike geodesic inany vacuum Siklos
spacetime) given byZ(1

′) = 0= Z(2), Z(3′) = D, D being a constant, i.e. (cf (16)),

Z(1) = D sin

(
τ

β

)
, Z(2) = 0, Z(3) = D cos

(
τ

β

)
. (25)

It has a simple interpretation: the particles may alwayscorotate uniformly in circleswith
constant angular velocityω = √−3/3 around the ‘fiducial’ reference particle (if measured
with respect to parallelly transported frames). For3→ 0 the rotation vanishes.

5. The Kaigorodov spacetime

As an interesting particular example of the Siklos-type metric (1) we now analyse a vacuum
solution with3 < 0 given byH = x3 corresponding tof = 1

4ζ
3 (cf (3)),

ds2 = β2

x2
(dx2+ dy2+ 2du dv + x3 du2). (26)

In fact, such a solution represents the simplest non-trivial vacuum spacetime of the Siklos
type (for f quadratic inζ one gets just the conformally flat anti-de Sitter spacetime, cf
(18)). Therefore, it can be understood as a3 < 0 analogue of the ‘homogeneous’ pp-wave
in Minkowski background [7] which is also the simplest vacuum pp spacetime. The solution
(26) was first discovered by Kaigorodov [32] in the form

ds2 = (dx4)2+ e2x4/β [2dx1 dx3+ (dx2)2] ± e−x
4/β(dx3)2. (27)

Transformation between the Kaigorodov and Siklos coordinates is given by

x1 = βv, x2 = βy, x3 = βu, x4 = −β ln |x|. (28)

The solution has also been discussed independently in [38–40] and it is a special case of
the (IV )0 class found by Ozsv́ath et al (see (4) and equation (6.17) in [31]),

ds2 = 2
1

p2
dξ dξ̄ − 2

q2

p2
dU dV +3p

q
dU2, (29)

the transformation to (26) being given by (5). Other forms of the Kaigorodov solution can
be found in [2], equation (10.33),

ds2 = −12

3
dZ2+ 10ke2Z dX2+ e−4Z dy2− 10UeZ dZ dX − 2eZ dU dX, (30)

resulting from the transformation

x = βe2Z, u = −
√

10k

β3
X, v =

√
β3

10k
e5ZU, (31)

and equation (33.2) (there is a misprint in [2]: the coefficient 2(3x)−2 should be−3/(3x2)),

ds2 = β2

x2
(dx2+ dy2)− 2dU

(
dV + 2V

dx

x
− x dU

)
, (32)

resulting from

u =
√

2

β
U, v = − 1√

2β
V x2. (33)

The Kaigorodov spacetime is the only homogeneous type-N solution (the quadruple
Debever–Penrose vector beingk = ∂v) of the Einstein vacuum field equations with3 6= 0



Interpretation of the Siklos solutions 727

(necessarily with3 < 0). It admits a five-parameter group of motions. The Killing vectors
in the Siklos coordinates(v, x, y, u) are (see [30])

ξ
µ

(1) = (1, 0, 0, 0), ξ
µ

(2) = (0, 0, 1, 0), ξ
µ

(3) = (0, 0, 0, 1),

ξ
µ

(4) = (−y, 0, u,0), ξ
µ

(5) = (5v, 2x, 2y,−u), (34)

the corresponding isometries being: (1)v′ = v + v0, (2) y ′ = y + y0, (3) u′ = u+ u0, (4)
v′ = −A2

2 u − Ay + v, y ′ = Au + y, (5) v′ = e5Bv, x ′ = e2Bx, y ′ = e2By, u′ = e−Bu.
From (34) we see that the quadruple Debever–Penrose null vector is also a Killing vector.
However, it is not covariantly constant.

6. Particles in the Kaigorodov spacetime

ForH = x3 representing the Kaigorodov solution, the equations of motion (9) give

ẋ2 = C2x7− (2AC + B2)x4+ ε x
2

β2
,

v̇ = Ax2− Cx5, ẏ = Bx2, u̇ = Cx2,

xẍ − ẋ2 = 5
2C

2x7− (2AC + B2)x4,

(35)

A,B,C being real constants of integration. Now we must distinguish two cases.

Case 1.If ẋ = 0 then equations (35) give

v(τ) = (Ax2
0 − Cx5

0)τ + v0, x(τ ) = x0,

y(τ ) = Bx2
0τ + y0, u(τ ) = Cx2

0τ + u0,
(36)

wherev0, x0, y0, u0 andA,B,C are real constants satisfying the conditions3
2C

2x5
0β

2 = ε
and 5

2C
2x3

0 = 2AC+B2. The first condition implies that forx0 < 0,C 6= 0 all the geodesics
are timelike(ε = −1) and forx0 > 0, C 6= 0 spacelike(ε = +1). ForC = 0 the geodesics
are null(ε = 0) and they have a simple formv = Ax2

0τ + v0, x = x0, y = y0, u = u0 since
the second condition givesB = 0 in this case.

Case 2.If ẋ 6= 0 then the last equation in (35) can simply be omitted (since the first equation
is its integral). The four remaining equations give

τ − τ0 =
∫ (

1/x
√
C2x5− (2AC + B2)x2+ ε/β2

)
dx,

v(τ ) = A
∫
x2(τ ) dτ − C

∫
x5(τ ) dτ + v0,

y(τ ) = B
∫
x2(τ ) dτ + y0, u(τ ) = C

∫
x2(τ ) dτ + u0,

(37)

whereτ0, v0, y0, u0, A, B,C are arbitrary constants. For special values of the parameters
the integrations can be performed analytically.

(i) If C = 0 then the geodesics must be spacelike. Their form is given either by

v(τ) = Aβ
2

exp [2(τ − τ0)/β] + v0,

x(τ ) = ±exp [(τ − τ0)/β],

y(τ ) = y0, u(τ ) = u0,

(38)
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(for B = 0), or by

v(τ) = A

βB2
tanh [(τ − τ0)/β] + v0,

x(τ ) = ±(β|B| cosh [(τ − τ0)/β])−1,

y(τ ) = 1

βB
tanh [(τ − τ0)/β] + y0, u(τ ) = u0,

(39)

(for B 6= 0).
(ii) If C 6= 0 it is convenient to further simplify (37) by using the symmetries of the

solution. For a Killing vectorξµ, the expressionuµξµ is the constant of motion for any
geodesic observer having the 4-velocityuµ. The Killing vectorsξµ(1), ξ

µ

(2) andξµ(3) (see (34))
give relations embodied already in (35), the vectorsξ

µ

(4) andξµ(5) imply Bu−Cy = constant

and ẋ/x + 5
2Cv + By − 1

2Au = constant, respectively. These two relations simplify (37)
into

τ − τ0 =
∫ (

1/x
√
C2x5− (2AC + B2)x2+ ε/β2

)
dx,

u(τ) = C
∫
x2(τ ) dτ + u0, y(τ ) = B

C
u(τ)+ y0,

v(τ ) = 2

5C

[(
A

2
− B

2

C

)
u(τ)− ẋ(τ )

x(τ )

]
+ v0

(40)

(we have reparametrized the constantsy0 and v0). In the case when 2AC + B2 = 0, the
remaining two integrations can be performed explicitly:null geodesics are

v(τ) = 4

25C
(τ − τ0)

−1+ B2

C|C|
[
−5

2
|C|(τ − τ0)

]1/5

− B2

2C2
u0+ v0,

x(τ ) = [− 5
2|C|(τ − τ0)]

−2/5
,

y(τ ) = −2B

|C|
[
−5

2
|C|(τ − τ0)

]1/5

+ B
C
u0+ y0,

u(τ ) = −2C

|C|
[
−5

2
|C|(τ − τ0)

]1/5

+ u0.

(41)

Timelikegeodesics are

v(τ) = − 2

5βC
tant − B2

2C2
u(τ)+ v0,

x(τ ) = (βC cost)−2/5, y(τ ) = B

C
u(τ)+ y0,

u(τ ) = −2(βC cost)1/5C(3/5)−1 (sint)+ u0,

(42)

where t = 5τ/2β + τ0 and the symbolC(b)n (z) denotes the Gegenbauer polynomial
(generalized for negative values ofn) which is a particular case of the hypergeometric
function, C(b)n (z) ≡ N(b)

n F (−n, n + 2b; b + 1
2; (1 − z)/2). (For n > 0 the standard

normalization coefficient isN(b)
n = 0(n + 2b)/(n!0(2b)); in order to avoid singularities

we defineN(b)
n = 1 for n < 0. It can be shown that fornon-integera,∫ t

0
cosa t dt = 1

1+ a (C
(1+a/2)
−1 (0)− cos1+a tC(1+a/2)−1 (sint)), (43)
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which we have used in (42) fora = − 4
5.) Note that forA = 0= B, the geodesics (42) are

highly privileged since they are perpendicular(uµξµ = 0) to the Killing vectorsξ(2), ξ(3).
Moreover, fory0 = 0= v0 they are perpendicular toξ(4), ξ(5), too.

Finally, spacelikegeodesics (40) for 2AC + B2 = 0 take the form

v(τ) = 2

5βC
cotht − B2

2C2
u(τ)+ v0,

x(τ ) = (βC sinht)−2/5, y(τ ) = B

C
u(τ)+ y0,

u(τ ) = 2
5(βC)

1/5
∫

sinh−4/5 t dt + u0.

(44)

All the geodesics (41), (42) and (44) are in the regionx > 0. There are no null and timelike
geodesics of the form (40) with 2AC+B2 = 0 in the regionx < 0; there are only spacelike
geodesics

v(τ) = 2

5βC
tanht − B2

2C2
u(τ)+ v0,

x(τ ) = −(−βC cosht)−2/5, y(τ ) = B

C
u(τ)+ y0,

u(τ ) = − 2
5(−βC)1/5

∫
cosh−4/5 t dt + u0.

(45)

We close this section by investigating therelative motion of particles in the Kaigorodov
spacetime. The amplitudes (18) areA+ = − 3

2C
2x5, A× = 0 wherex ≡ x(τ) depends on

the timelike geodesic, i.e. it is given by (36), (40), or (42) in particular. The frame is now
privileged since the wave looks purely ‘+’ polarized. Therefore, (24) decouples into the
‘Schrödinger-type’ equations,A+ being a ‘potential’, and explicit solutions can be found.

Case 1.If ẋ = 0 then the geodesics are given by (36) withε = −1 implying A+ =
− 3

2C
2x5

0 = 1/β2. In this case the general solution of (24) is

Z(1
′) = D cos

(√
5

β
τ + τ0

)
− 2

5
βC1,

Z(2) = E1τ + E2,

Z(3
′) = 2√

5
D sin

(√
5

β
τ + τ0

)
+ 1

5
C1τ + C2,

(46)

C1, C2,D,E1, E2 being real constants. The test particles move with a constant velocity
E1 in the direction ofe(2) whereas in the(e(1′), e(3′)) plane the particles move inellipses.
In particular, forC1 = D = E1 = E2 = 0 we get the solution (25) describing uniform
rotations.

Case 2.If ẋ 6= 0 then the timelike geodesics are given by (40) withε = −1. Using (35)
one can verify that the solution of (24) is

Z(1
′) = ẋ

x3

(
D1+

∫
x4

ẋ2

(
D2x

2+ C1

β

)
dτ

)
,

Z(2) = 1

x

(
E1+ E2

∫
x2 dτ

)
,

Z(3
′) = 2

β

∫
Z(1

′) dτ + C1τ + C2,

(47)
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wherex ≡ x(τ) follows from (40) and is unique for any geodesic. Since (47) contains
six independent constants of integration it is ageneral solutionof the equation of geodesic
deviation. As in the previous case, forC1 = D1 = D2 = E1 = E2 = 0 we get the solution
(25). In particular, for the geodesics (42) withA = 0 = B we havex(τ) = (βC cost)−2/5

for which (47) can be integrated into

Z(1
′) = D1 sint cos−1/5 t +D2 cos6/5 tC(6/5)−2 (sint)− 2

11βC1 cos2 tC(8/5)−2 (sint),

Z(2) = E1 cos2/5 t + E2 cos3/5 tC(3/5)−1 (sint),

Z(3
′) = 4

5

∫
Z(1

′) dt + C1τ + C2

(48)

(we have used (43), the identityC(b)−2(z) ≡ (2b − 1) − (2b − 2)zC(b)−1(z), and we have
redefined the constants of integration). ForC1 = D2 = E2 = 0 andD1 = E1 the motions
are shown in figure 1. Note that forA = 0 = B the amplitudeA+ = (3/2) cos−2 t is
independent of the geodesic (given by some value ofC) and thatA+ → 0 as3 → 0.
In such a limit equations (24) reduce to d2Z(i)/dτ 2 = 0, i = 1′, 2, 3′. Considering also
(e(1′), e(3′))→ (e(1), e(3)) as3→ 0, cf (16), we conclude that test particles move uniformly
as in flat Minkowski space.

Figure 1. The trajectories of test particles with respect to the origin where the reference particle
is located. HereC1 = D2 = E2 = 0 andD1 = E1 = −1,−0.9, . . . ,1.
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7. On the global structure of the Kaigorodov spacetime

In this section we briefly touch upon some global properties of the Kaigorodov spacetime.
The metric (26) indicates that the spacetime is regular everywhere except atx = 0
and x = ∞. All components of the curvature tensor for the Kaigorodov solution in
the orthonormal frame parallelly propagated along timelike geodesics are given by (13)
with A+ = M = − 3

2C
2x5, A× = 0. Therefore,x = 0 represents only a coordinate

singularity. However, there is acurvature singularity atx = ∞; according to [37],
or the classification scheme introduced in [36], it is a ‘p.p. curvature singularity’, or a
‘C0 curvature singularity’, respectively. Geodesic observers moving along the timelike
geodesics (40), (42) inevitably reach the singularityx = +∞ in a finite proper time
(1τ ∼ ∫∞

x0
x−7/2 dx ∼ [x−5/2]∞x0

= constant< ∞), whereas observersx = x0 < 0 moving
along (36) escape (there are no timelike observersx = x0 > 0).

On the other hand, the regionx = 0 can not be reached by any timelike observer (cf
(35) whereẋ2 ∼ −x2/β2 asx → 0 would be a contradiction). This indicates thatx = 0
represents the null and/or spacelike infinity. Indeed, the transformation

η = β cos(T /β)/D, x = β cosχ/D,
y = β sinχ cosϑ/D, z = β sinχ sinϑ cosϕ/D,

(49)

whereη = (u− v)/√2, z = (u+ v)/√2 andD = sin(T /β)+ sinχ sinϑ sinϕ, brings the
metric (26) into the form

ds2 = β2

cos2 χ

{
−dT 2

β2
+ dχ2+ sin2 χ(dϑ2+ sin2 ϑ dϕ2)

}
+β

5

2

cosχ

D5

{
− [1+ cos(T /β − ϕ) sinχ sinϑ ]

dT

β

+ sin(T /β − ϕ) cosχ sinϑ dχ + sin(T /β − ϕ) sinχ cosϑ dϑ

− sinχ sinϑ [cos(T /β − ϕ)+ sinχ sinϑ ] dϕ

}2

. (50)

This form of the Kaigorodov spacetime shows explicitly that the metric approaches
asymptotically the anti-de Sitter metric in standard global coordinates asx → 0, i.e.
χ → ±π/2 (cf section 5.2 in [37] where coshr = 1/ cosχ ). In the literature, these
coordinates are used for the construction of the Penrose diagram of the anti-de Sitter
spacetime—choosing a conformal factor� = 1

β
cosχ , the boundary of the anti-de Sitter

manifold given by� = 0 (χ = ±π/2) represents null and spacelike infinity which can be
thought of as atimelikesurface since�,α�,α > 0 at� = 0. Using the same conformal factor
for the Kaigorodov spacetime (50) we conclude that the boundary� = 0 corresponding
to x = 0 represents an ‘anti-de Sitter-like’ scri having the topologyR × S2. Therefore,
the Kaigorodov spacetime isweakly asymptotically anti-de Sitteraccording to the definition
given in [41]. This is not true, of course, in regions whereD = 0 representing singularities
x = ±∞.

The fact thatx = 0 is an infinity for null and spacelike observers is supported by the
asymptotic behaviour of the geodesics described by equation (37). For spacelike geodesics
(ε = +1) we get |x| ∼ exp(1τ/β) as x → 0. Similarly, null geodesics (ε = 0) are
asymptoticallyx ∼ (1τ)−2/5 (cf (41)), or |x| ∼ (1τ)−1 (for 2AC + B2 < 0). Therefore,
the boundary� = 0 is reached only at infinite value of the affine parameterτ of null and
spacelike geodesics.
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An important consequence of this is that the Kaigorodov spacetime (26) splits, in
fact, into two disjointed regionsx > 0 and x < 0 (corresponding to different signs in
(27)) which cannot mutually communicate. These two regions are quite different. For
example, the singularityx = +∞ is reached by most of the timelike, null, and spacelike
geodesics inx > 0, the singularityx = −∞ is reached byonly one(spacelike) geodesic
x(τ) = − exp [(τ − τ0)/β] (cf (38)) asτ →∞. Also, the geodesics (36) given byx = x0

are spacelike or null inx > 0 whereas they are timelike and null inx < 0. Moreover,
gµνξ

µ

(3)ξ
ν
(3) = β2x so that the Killing vectorξ(3) = ∂u (see (34)) is spacelike forx > 0 but

timelike for x < 0. This implies that the Kaigorodov spacetime isstationary in x < 0 with
u being a time coordinate.

Note that, surprisingly, the stationarity does not exclude the presence of gravitational
radiation. For example, standard ‘homogeneous’ (or ‘plane’) pp-waves [2, 7]—a ‘textbook
model’ of exact gravitational waves—are given by the metric ds2 = 2dξ dξ̄ −2du dv− (g+
ḡ) du2, whereg = A(u)ξ2. Considering the simplest case,A = 1, and introducing real
spacelike coordinatesx andy by

√
2ξ = x + iy, we obtain ds2 = dx2 + dy2 − 2du dv −

(x2 − y2) du2. This spacetime is also stationary in the regions where|x| > |y| since the
Killing vector ξ = ∂u is timelike: it represents a radiation with a constant amplitude rather
than a periodic-like gravitational wave.

8. Concluding remarks

Our study of the Siklos class of exact solutions indicates that a reasonable physical
interpretation of these spacetimes can be given if one investigates the equation of geodesic
deviation in the suitable frame. As in the linearized theory, exact waves of the Siklos
type manifest themselves by typical effects on particle motions (transversality and specific
polarization properties). The spacetimes describe exact gravitational waves propagating in
the anti-de Sitter universe. Somewhat surprising is that, due to the presence of a negative
cosmological constant, the direction of propagation of the waves rotates.

The analysis provided independent arguments for the interpretation suggested by Siklos
[30] of the spacetimes (1) as ‘Lobatchevski pp-waves’ (Siklos proved that they admit
a foliation of totally geodesic two-dimensional spacelike surfaces of constant negative
curvature which are the wave surfaces of gravitational waves) and also for Ivor Robinson’s
suggestion [40] that the Kaigorodov solution may be interpreted as a ‘plane-fronted
gravitational wave against the anti-de Sitter background’ (since the group of isometries
is five parametric). Therefore, the Siklos spacetimes—and the Kaigorodov solution in
particular—can be understood as natural cosmological (3 < 0) analogues of the pp-waves
in the flat universe.

We hope that the studied spacetimes can be used in numerical relativity as the test beds
for numerical codes aimed at understanding realistic situations in more general cosmological
contexts.
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