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Abstract. We consider vee-order graviton scattering amplihldes on a (3 + 1)dimensional 
de Sitter background in c o n f o d y  Bat coordinates. Infra-red divergences which cannot be 
absorbed using conventional techniques are shown to arise because conformal factors from the 
vertices are not compensated either by propagators or by external wavefonctions. The physical 
problem at b e  order is therefwe late interacrion times rather than small spatial coordinate 
momenta, despite a mathematical problem at small momenta in the naive mode expansion of 
the propagator. Even in loops, concern oyer small spatial momenta is physically irrelevant 
because the chaotic conditions Wrely to prevail afm the Big Bang could not have resulted in the 
simultaneous onset of inflation over a patch extending much beyond the Hubble mndius. This 
motivates ow proposal for a propagator which can be used to compute expeetation values well 
inside the de Sitter patch of a plausible initial state. 

PACS numbers: 0460.9880C 

1. Introduction 

By 'quantum cosmological graviiy'--or QCG for short-we mean the theory of quantum 
gravity with a non-zero cosmological constant. QCG is of enormous interest to inflationary 
cosmology because infra-red processes in this theory tend, over time, to screen the 
exponential expansion induced by a positive cosmological constant 11.21. As long as the 
effect remains small it can be followed reliably using perturbation theory [2]. Should it 
persist beyond the breakdown of perturbation theory QCG would provide a mechanism which 
naturally extinguishes inflation slowly enough to solve the smoothness problem 121. 

To study how QCG affects the expansion of spacetime one should really follow the 
causal time evolution of the expectation value of the metric in the presence of a plausible 
initial state. We have done this, and explicit calculations at two loops show that screening 
does occur in perturbation theory [2]. However, we emphasize that there is still significant 
information to be gleaned from 'in'-'out' matrix elements and scattering amplitudes which 
are computed under the incorrect assumption that the geometry of the far future is locally de 
Sitter. In particular, the fact that causal time evolution does not show infra-red divergences, 
whereas %'-'out' matrix elements and scattering amplitudes don means that the true 

8 E-mail address: "is@talos.cc.uch.gr 
11 E-mail address: woodard@phys,ufl.edu 
7 It is worth noting that the 'in'-'out' mhix elements of Qco are even infra-red divergent off-shell, and that the 
inh-red divergences of QCG seaming amplitudes cannot be avoided by the traditional device of summing over 
degenerate ensembles of states. 
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background must suffer non-pemrbatively large corrections at late times. For if the ‘out’ 
vacuum was the same as the ‘in’ vacuum, then there would be no difference between 
‘in’-’out’ matrix elements and expectation values-and if the ‘out’ vacuum suffered only 
perturbatively small corrections then the difference would have to be perturbatively small. 
The fact that infra-red divergences in interacting QU; break time translation invariance is 
what protects the relaxation effect against being absorbed into an allowed counterterm. The 
fact that they originate from interactions at late times is what provides the crucial lag that 
permits a long period of inflation. And the fact that they become arbitrarily strong in the 
absence of relaxation is what ensures that the process can never cease. 

In this paper we wish to establish the reality of infra-red divergences in interacting 
QcG-given the unrealistic assumption that the background remains locally de Sitter-and 
to elucidate the physical basis of the effect. We shall also see that neither the behaviour of 
the propagator nor problems with its definition explain why there are tree-order infra-red 
divergences in the non-resonant scattering amplitudes of gravitons with non-zero momenta. 
And although this is not a paper about the non-existence of a causal, de Sitter invariant 
propagator for free QCG on the full de Sitter manifold, we should like to emphasize that 
such a propagator is inconsistent with the causal structure of de Sitter space and the nature 
of the constraint equations of QCG [3]. However, this issue has no relevance for the physics 
of a realistic inflating universe and, in any case, we are not concerned with it here. 

After a notational and historical review in section 2 we explain the mathematical problem 
with the graviton propagator in section 3. Section 4 demonstrates the physical problem with 
QCC scattering amplitudes. We show in section 5 that this problem cannot be avoided using 
conventional techniques, and that the propagator has nothing to do with it. The real culprit 
is the intense inflationary red-shift of the graviton’s physical energy and momenta. At late 
times all gravitons tend towards having the same (zero) physical energy and momentum, 
which makes the interaction overlap grow without bound. This turns out to imply the 
background’s decay [2], but the mathematical problem with the propagator might still 
obscure the study of this decay at the loop level. In section 6 we argue that this problem 
does not occur when a de Sitter phase is reached by causal evolution from the chaotic 
conditions likely to prevail after the Big Bang. We also propose a propagator which can be 
used to study relaxation in this situation. A brief summary of our conclusions comprises 
section 7. 

N C Tsamik and R P Woodard 

2. Free QCG in conformally Rat coordinates 

It was recognized early on that the physical mode solutions of free QCC on a de Sitter 
background are two transverse, traceless and purely spatial polarizations, each of which 
obeys the equation of motion for a massless, minimally coupled scalar [4]. Although 
general scalar mode solutions have been known since the sixties [5] the problem of finding 
an acceptable vacuum long delayed the construction of a graviton propagator, and hence 
the development of QCG. The resolution lay in resisting the natural tendency to assume 
that the background’s maximal symmetry implies the existence of de Sitter invariant states. 
Early researchers were attracted to de Sitter space in the expectation that its isometnes 
could be exploited to organize and simplify perhubative quantum field theory in the same 
way that Poincar6 invariance serves in flat space. However, it turns out that there are no 
normalizable, de Sitter invariant states for the massless, minimally coupled scalar [6], and 
the same thing has recently been proven for free Qffi [71. 

The situation for QCG was further complicated by the fact that in certain completely 
valid gauges there is a de Sitter invariant vacuum [8,9]. In this case the problem is that 
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the gauge-fixed field equations fail to agree with the invariant ones, even for conserved 
sources [91. In fact, no causal propagator can reproduce the invariant field equations on 
the full manifold owing to a subtle conspiracy between the causal structure of de Sitter 
space and its linearization instability 131. (This problem does not arise for the massless, 
minimally coupled scalar because it lacks the non-dynamical constraint equations of QCG.) 
For a closely related reason there is an open submanifold on which one can reconcile the 
invariant field equations with manifest causality. Although this patch covers only half of 
the full de Sitter manifold it has the two crucial properties that causal, forward-directed time 
evolution never carries one off the submanifold and that information from outside can only 
enter via the past where it can be subsumed into initial value data. This open submanifold 
is therefore an acceptable arena on which to study QCG. In describing the conjectured de 
Sitter phase of inflationary cosmology we shall presently come to understand that, far from 
being too small, the open submanifold is actually implausibly too large. 

Although the maximal symmetry of de Sitter space only served to confuse the 
development of QCG, the background’s conformal flatness does provide a powerful 
organizing principle. To take maximum advantage of this we shall employ a coordinate 
system for which the invariant line element is 

ds2 = S2’(-dU2 + do . d r )  . (2.1) 

Here S2 = (l /Hu) is the conformal factor and H is the Hubble constant. We shall refer 
to the surface at U = +CO as the ‘infinite past’, even though this is not Z- on the full de 
Sitter manifold. The conformal time U runs from the infinite past at U = +w to the infinite 
future are U = 0; its relation to the time of co-moving coordinates is, exp(Ht) = ( 1 j H u ) .  
The flat space limit is obtained by setting U = (1/H) - y o  and then taking H to zero. 

It is simplest to formulate perturbative QCG in terms of fluctuations of the conformally 
rescaled metric, 

g p v  n Z g p v  fi2(rlpv K Q p v ) .  (2.2) 

Here K~ = 16zG is the usual loop counting parameter of quantum gravity and we call $pv 
the ‘pseudo-graviton’ field. The full inverse of zpV is denoted by ?@”-i.e. g p v 2 P  = 6;- 
while its determinant by F, Pseudo-graviton indices are raised and lowered with the Lorentz 
metric. 

After some judicious partial integrations the invariant Lagrangian of QCG can be cast in 
a form not too different from that of H = 0 quantum gravity [3]: 

- 

(Commas denote ordinary differentiation in this and all subsequent formulae.) Except for 
the first term, and the factor of 52’ on the second, this form for the Lagrangian is the same as 
that for perturbation theory around flat space in H = 0 quantum gravity! The surface term 
S”,, can be found in [3]. Although S’’, was neglected in the interest of obtaining a more 
tractable formalism we should reassure those who feel nervous about this that it improves 
whatever chance QCG has of avoiding problems at U = 0. The invariant Lagrangian is far 
worse behaved; it includes terms that go like l/u4. 

The simplest gauge fixing term is - ; F p F v ~ p ” ,  where 

4 = fi(!bup.” - ;*,fl+ 2$> a,” a-’). (2.4) 
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Adding this term to the invariant action and dropping some surface terms permits us to 
write the gauge-fixed, quadratic Lagrangian as, C& = $#""Dpyp"~F, where the pseudo- 
graviton kinetic operator is [3] 

N C Tsamis and R P Woodard 

D,,y"" = [iz,, (P- 6 ,  U) - z ~ , , ~ t i  1 
pu 08 0s P6 ] DA + 8@ 0- 6,) ( P  6, 0 )  DB + 6 i 6 ~ 6 ~ 8 , " D c 1  

(2.5) 

(Parenthesized indices are symmetrized.) The symbol DA Q(a2 + 2/uZ)s2 is the kinetic 
operator for a massless, minimally coupled scalar; DB = Dc = S22azs2 is the kinetic operator 
for a conformally coupled scalar. A bar over a standard tensor such as the Kronecker delta 
means to suppress all zero components, for example: 

(2.6) 

Two important simplifications of this gauge are that it makes the kinetic operator invariant 
under spatial translations and rotations, and that all tensors in the kinetic operator are 
spacetime constants. Note, however, that OUT gauge is not de Sitter invariant. Since physical 
de Sitter invariance is necessarily broken in free QCG there is no point in burdening the 
propagator with the non-constant tensor factors that would be needed in a de Sitter invariant 
gauge. 

It is perhaps worthwhile to point out here that the choice of gauge is incapable of 
physically breaking a true global symmetry. For example, axial gauge does not break 
the Lorentz invariance of QED, it merely causes the m e  Lorentz generators to contain 
a compensating gauge transformation. Similarly, the use of only a portion of what a 
mathematician might consider 'the full manifold', cannot affect local physics. For example, 
no experiment whose spatial extent and temporal duration are sufficiently limited can detect 
the difference between flat R3 x R and Rat T 3  x R. In fact, our current universe may well 
possess the latter topology rather than the former. Earthbound experiments performed over 
human lifetimes still show the full Lorentz group, despite the mathematician's insistence 
that topological obstructions prevent its realization on T 3  x R. 

Manifest spatial translation invariance allows us to write the general linearized solution 
as a superposition of plane waves [lo] 

- v  6, = 6; - 8,08,". 

The polarization index A belongs to sets 'A', 'B' or 'C' depending upon which part of the 
kinetic operator fails to annihilate the associated tensor structure. The six A modes have 
purely spatial polarizations and the following functional dependence: 

Y(u, X; k ,  .I) = - + i k . x ]  V A E A .  (2.8) 

Canonical quantization of La, reveals the polarization sum for the A modes to be 
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We shall denote the tensor factor to the right of the delta function as, [, .T~].  The three B 
modes have polarization tensors with one time and one space index; the associated spacetime 
dependence is 

W(u,x;k,h)=-exp Hu [ (  ik U-- A) i i k - x  ] V A ‘ A B .  (2.10) a 
Canonical quantization reveals that these modes have negative norm and that they give the 
following polarization sum: 

We denote the tensor factor to the right as [pvTL] .  The single C mode is proportional to 
the Euclidean metric and has the same functional dependence as the B modes. Canonical 
quantization determines its polarization sum to be 

[a,&, C), aAc(k’, C)] = ( 2 ~ ) ~  6% - k‘)(6:8: + ?j,v)(S+,’%~ + Vpe)  (2.12) 

and we denote the tensor factor as 
The two physical polarizations are transverse-traceless A modes. They form a closed 

set under transformations of the de Sitter group [71, in spite of the fact that our gauge is 
not de Sitter invariant. (The situation here is not qualitatively different from that of QED 
in lightcone gauge where one of the Lorentz generators requires the addition of a field 
dependent gauge transformation to restore the gauge condition.) The three (positive norm) 
longitudinal A modes and the single (positive norm) C mode pair with the three (negative 
norm) B modes and the (negative norm) trace A mode to decouple from the theory [lo]. 

3. The spurious infra-red problem at zero spatial momentum 

If we recall that the conformal time U is inverted with respect to physical time we see 
from the mode functions that, at least in what we are calling the ‘asymptotic past’, the a,,s 
should behave like annihilation operators and the a$ like creation operators. It is therefore 
almost irresistible to suppose the existence of a free vacuum which obeys 

a,,@, A)lO) = 0 .  (3.1) 

Because de Sitter transformations cany a,+ onto apVs for the physical polarizations [7], 
this condition defines a de Sitter invariant wavefunctional up to the gauge structure. For 
this wavefunctional to represent a valid quantum state it must be normalizable. Of course, 
in the way Fock space is usually treated one would simply define (010) E 1 and then use 
the commutation relations to compute all other norms. But since this could be done for any 
wavefunctional, and since not all wavefunctionals are normalizable, it has to be expected 
that any problems would merely appear somewhere else. In fact, they show up in the second 
moment, better known as the propagator. 

In view of the temporal inversion the propagator should be the expectation value in the 
presence of 10) of the anti-time-ordered product of two free fields. From the polarization 



iAa(x;x') = J - (g3 e-"{0(u' - u ) q ( u ,  2; I C ,  A)\ir*(u', 2'; IC, A )  

+ 0 ( ~  - u')"*(u, X; k, A)"(u', z'; k, A ) }  ( 3 . 2 ~ )  
d3k 

iAB(x; x')  me-"{&/ - u)W(u, 2; k, B)W*(u', x'; k, E )  

+ 0 ( ~  - u')"*(u, X; k, E)W(u',  I'; IC, E ) )  . (3.26) 

Note that in ( 3 . 2 ~ )  and (3.26) we have included the ultraviolet convergence factors 
traditionally used to promote mode sums from distributions into well defined functions, 

Of course iAB(x; x')  is conformal to the propagator of a massless scalar in flat space: 

d3k H'uu' 
iAB(x';x') = -- exP[-*lAul+ i k .  (d -I) - ck] ( 3 . 3 4  J ( 2 ~ ) 3  E 

] (3.3b) 1 
Ax - IAul+ ic + Ax + ]Aut- i6 

1 H2uu' - -- 
4x2 (x - x')2 + ic (3 .34  

where Ax U ' - U  and (x-x')' = Ax2-A~' .  This propagator also turns 
out to be a de Sitter invariant. ?he problem comes from the massless, minimally coupled 
scalar 

I~d-zlI, Au 

d3k H2uu' 
iAA(X; X ' )  = -- [ 1 + + * l A u ' ]  exp[-iklAul+ ik . (x' - 5)  - ck] 

( 2 ~ ) ~  2k k2uu' 
(3.4a) 

+ "-la& exp[-iklAul - ck] 
1 H'uu' -- - 

4n2 (x - x ' ) ~  + ic 4n2Ax  
(3.46) . .  

HZuu' H Z  H 2  m d k  
4 a 2  ( ~ - x ' ) ~ + i c  4n2  4 x 2 1  k + - + - - cos(kAx) exp[-iklAul - ekj.  

1 -- - 

(3.4c) 

The final integral contains a logarithmic divergence at k = 0 which it is useful to regulate 
with a cut-off 

H Z  m d k  
gL k 

-cos(kAx) expI-iklAul - ck] 

HZ - _  - 8nZ [ - In [ki(Ax2 - Au2 + 'E)] - 2 y  + O(ko)}, (3.5b) 

Here Ei(x) is the exponential integral function and y stands for Euler's constant 11 11. 
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This infra-red divergence was first noticed in the context of the massless, minimally 
coupled scalar by Ford and Parker [121. Both the infra-red divergence and the apparent 
logarithmic growth outside the lightcone have inspired pronouncements concerning the 
instability of de Sitter space as a background for QCC [13,14]. In fact, de Sitter space 
is unstable, but hot because of any problem with defining the graviton propagator or with 
its behaviour once a suitable definition is given. Allen and Folacci showed that the infra- 
red divergence derives from the invalid assumption of de Sitter invariance [6 ] ,  which was 
implicitly made in our definition (3.1) of the vacuum. We shall have more to say about 
this after making two points about the behaviour of the propagator. First, one can see from 
expressions ( 3 . 3 ~ )  and ( 3 . 4 ~ )  that its spatial Fourier transform is well behaved for any non- 
zem spatial momentum. T h i s  suffices for non-resonant tree-order scattering amplitudes. 
Second, if it was somehow correct to retain a non-zero cut-off ko-as we shall argue it 
is-then the integral (3.5) would fall ofloutside the lightcone, rather than growing. 

The infra-red divergence in iAA is what comes of having incorrectly quantized the zero 
mode as a harmonic oscillator when it should be a free particle. This error was forced by 
the assumption of de Sitter invariance and correcting it necessarily entails the breaking of de 
Sitter invariance. Because a further complication results from the contiiuum normalization 
of the plane wave modes of our conformal coordinate system, Allen and Folacci [6] worked 
in a closed coordinate system for which the modes are discrete. We can understand their 
result by taking the zero frequency limit of a onedimensional harmonic oscillator of mass 
m and frequency w, in which limit it might be thought that the ground state should be time 
translation invariant. 

The Hamiltonian is 

which implies the following time development: 

q(t) = qocos(wt) + - sin(ot) . PO . 
m u  

The ground-state wavefunction is just 

from which we derive the following propagator: 

(3.6) 

(3.7) 

(3.9) 

Now consider the limit w 4 0. Even though the norm of IC) is formally unity in this limit, 
we see from (3.8) that this is achieved in an illegitimate fashion by making the wavefunction 
tend towards the constant zero. Had we simply defined (GIG) 1 and computed other 
noms from the raising and lowering operators we would be made aware of the problem 
by the divergence in the real part of the propagator. Note that IC) is the ket of lowest 
energy-zero-and highest symmetry-time translation invariancebut it is unsuitable as 
a state on account of its non-normalizability. 

What we should really do in this situation is to use a normalizable state, a typical 
example of which would be 

(3.10) 
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where T is a constant with the dimensions of time. The resulting propagator 

N C Tsamis and R P Woociard 

(3.11) 

has the same imaginary part as (3.9)-for w = @-but possesses a finite real part as well. 
Note that the imposition of normalizabilify has cost us time translation invariance and the 
uniqueness of the ground state. There is no normalizable state of minimum energy, in fact, 
there are no normalizable energy eigenstates at all. 

Each mode of the quantum field theory consists of such a harmonic oscillator with 
the role of the frequency being played by w = Ilkll. Whether or not the divergence at 
k = 0 has significance depends upon the weight carried by the zero mode and, in the 
continuum normalization, by its nearby neighbours, which are infinitesimally close to being 
free particles. For flat space in more than two dimensions the volume of phase space cancels 
the divergence. In two-dimensional flat space there is no such cancellation and the resulting 
infra-red divergence is the basis of Coleman’s famous proof concerning the impossibility of 
spontaneous symmetry breaking in two dimensions [151. In the spirit of our current work 
it would be fairer to say that any two-dimensional symmetry breaking must entail the loss 
of Poincard invariance. (Note that one can isolate Coleman’s zero mode by formulating the 
theory on S x R. This manifold admits the Lorentz metric and, for sufficiently large radius, 
it should not be locally distinguishable from R2.)  

In de Sitter space the effect occurs for any dimension. Although their argument was 
different, this is what Allen and Folacci [6] proved for the massless, minimally coupled 
scalar. The same result has recently been obtained for QCG by Kleppe [7]. Our comments 
serve merely to resolve the apparent paradox implied by these proofs that neither theory 
possesses normalizable, de Sitter invariant states in spite of the fact that both have de Sitter 
invariant sets of mode solutions. 

4. The physical infra-red problem at late times 

Having understood that peculiarities of the graviton propagator are not responsible for any 
breakdown of the de Sitter background in QCG let us see what is. Note first that the 
de Sitter non-invariance of QCG states says nothing about the stability of de Sitter space 
as a background for QCG. To pursue the previous quantum mechanical analogy, there are 
no normalizable, time translation invariant stam for the free particle, but the fact that 
( N l q ( t ) l N )  = 0 for all f implies that F =  0 is a stable background. 

We can postpone, for the moment, the issue of what propagator to use if we note that 
the problem with the naive choice (3.2) only occurs for the modes near IC = 0. It seems 
reasonable to conclude that only they require revision, in which case we can probe tree-order 
scattering amplitudes with the spatial Fourier transform of i[pvApm] if we simply arrange 
that no intermediate momentum becomes small. Combining ( 3 . 3 ~ )  and (3.40) gives the 
following very simple expression for this propagator: 

H’uu’ 
d3x exp(ik. ~ ) i [ ~ ~ A ~ ~ ] ( u ,  2; U‘, 0) = - exp[-iklAul - W[7- ~ ~ ( ~ r l . , ) ”  - 7pur17pvl s 2k 
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The final tensor factor is, of course, the initial one is the sum of T A ,  T B  and T c .  
Except for the initial factor of H’uu‘, the first term in this propagator is precisely the same 
as that of the full de Donder gauge propagator of H = 0 quantum gravity! 

The physical graviton degrees of freedom consist of the two A modes which have 
transversetraceless polarizations. We can extract them from the free-field expansion using 
an external wavefunction of the following form: 

W P ” ( U ,  2; k, h) = - Hu (1 + L) exp[ik(u - A) + ik x] crv(k.  A) 
ku 

where the polarization tensor obeys the conditions 

(4.3a) 
(4.36) 
(4.3c) 

Because k is the Fourier conjugate to the coordinate x it represents the coordinae 
momentum. Consideration of the invariant interval (2.1) suggests that the physical 
momentum is W ’ k .  The red-shift as U approaches zero turns out to have profound 
consequences. 

Examination of the kinetic operator (2.5) reveals the Wronskian to be 

Since the kinetic operator is of the Stiirm-Liouville-type we can use the Wronskian to form 
a conserved inner product 

We can therefore use W;p to extract the annihilation operator for a physical graviton from 
the free-field expansion 

(4.6) 

The creation operators follow from Hermitian conjugation. If we assume the usual 
asymptotic conditions in what we are calling the ‘far past’ (i.e. at U = +CO) and in 
the far future (i.e. at U = 0) then the standard reduction formalism relates amplitudes 
to the spacetime integrals of amputated Green functions against external wavefunctions. In 
particular, integrating against (and contracting into) We&, x; k, h) inserts an ‘in’ graviton 
of momentum k and polarization h through the field at (U, 2); the conjugate wavefunction 
would remove an ‘out’ graviton. 

One obtains the 3-graviton scattering amplitude by expanding (2.3) to cubic order in 
the pseudo-graviton field, replacing the three ps of each interaction term with external 
wavefunctions and then permuting. Sixteen distinct cubic interaction terms emerge from 
the expansion, of which only four make non-zero contributions to 3-graviton scattering at 
tree order. The others give zero owing to one or more of the identities (4.3) obeyed by the 
polarization tensors. In particular, none of the three ‘new’ interactions from the first term 
of (2.3) survive because the polarization tensors are purely spatial. 
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Each non-zero contribution has the general form 

x i m d u  exp[i(kl + kz -I- k3) U - - Z(u,  k , ,  kz,  k3) ( 91 (4.7) 

where the Cs are contractions of the polarization tensors and possibly also momenta, and the 
I s  are functions of the conformal time U and the norms of the momenta. To economize on 
space and to facilitate comparison with standard results we shall adopt the notation of Sannan 
1161 whereby polarization tensors and momenta enclosed in parentheses are contracted into 
one another in the order they appear. The following examples should clarify the notation: 

(4.8~) 
(4.8b) 

Only three distinct contributions emerge. The one from 4. +pu * p p . y  $IT,p+ Q2 is 
characterized by 

The contribution from $K * P o  * ( lpy,p $F0 Q2 is characterized by 

The contributions from -K $rp” *pJ’,v 3.,,., d and from -4. *Pa *pp.” $rcv,p Q2 together 
give 

I = -(l+ $) (1 + $)(l+ &) . 
(4.1 l a )  

(4.11b) 

Note that there can be no cancellation between the three contributions because their C 
factors differ. Substitution into (4.7) and summation of the three contributions gives the 
amplitude for three ‘in’ gravitons to go into the ‘out’ vacuum. Any of the particles can be 
changed from an ‘in’ graviton to an ‘out’ one by the replacements: k H - k ,  k w -k and 
Eij(k,  U w $ ( I C ,  1). 
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5. What it all means 

There are three troublesome points about the amplitude we have just derived. 
(i) It is not zero. The fact that a single graviton can decay into a pair of gravitons 

implies that the one graviton state is not stable. Worse still, the fact that the vacuum can 
decay into three gravitons implies it is not stable either. In flat space both of these processes 
would be forbidden by the energy-conserving delta function which is absent here. 

(ii) It is not purely imaginary. This implies a iree-order breakdown of unitarity. 
(iii) It is not finite. We shall argue that this implies an instability in the background. 

Also note that an infra-red divergence in the lowest possible order of perturbation theory 
can not be avoided by the Lee-Nauenberg 1171 procedure of considering only transition 
amplitudes between ensembles of degenerate states. This method can only work when the 
first infra-red divergence in a given process is not also the lowest-order contribution. Then 
the cross term, in the square of the amplitude, between the finite lowest contribution and 
the infra-red divergent one can sometimes be cancelled by the square of the lowest-order 
contribution 6om a nearly degenerate process containing an extra soft quantum. 

The first two problems could be resolved acceptably in the context of asymptotic 
quantum field theory were it not for the thii. It is instructive to sketch how this resolution 
goes for a conformally invariant theory such as QCD, the Lagrangian for which is 

cQcD=-a F~~~F~~. ,P~TFz .  (5.1) 

Here rpv stands for the de Sitter metric, the field strength tensor is 

Fop ,  2 A w p  - Asp," - gfabe A b p  A m  (5.2) 

where fobc stands for the smcture constants, and g is the coupling constant. Because the de 
Sitter geomew is conformally flat the position space integrands for QCD on this background 
are identical to those of flat space. This is obvious from expressing the Lagrangian in 
conformal coordinates, 

= -4 Fa,, Fop$ [;t-' f p  a-' il'" a4. (5.3) 

(In conformally invariant theories for which the dynamical fields have a non-hivial weight 
the Lagrangian depends upon a, however, all factors of [;t cancel out in the position space 
integrands of amplitudes.) We insert an 'in' gluon with the following external wavefunction: 

(Sa) 
(5.5b) 
(5.54 
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then we obtain the following result for 3-gluon scattering: 

(5.74 

(5.7b) 

Although the position space integrand is the same as for flat space, the QCD amplitude 
possesses properties (i) and (ii) because the conformal time U is only integrated from 0 to 
CO. To promote the distributional integral into a well defined function we should include 
the standard convergence factor at U = CO. This gives the following result: 

~ ~ ~ ~ t ~ z ~ 3 ~ i l + ~ ~ i ~ 3 ~ z ~ 1 l + ~ ~ z ~ 3 ~ i k ~ 1 + ~ ~ z ~ 1 ~ 3 ~ i 1 + ~ ~ 3 ~ t ~ z k ~ 1 + ~ ~ 3 ~ ~ ~ i k ~ 1 .  

(5.8b) 

where ‘P’ denotes the principal value. Of course the energy-conserving delta function 
contributes nothing to the amplitude because it cannot be satisfied for non-zero momenta. 
If we conjugate one of the ‘in’ gluons into an ‘out’ gluon the energy-conserving delta 
forces the three 4-momenta to be collinear, in which case there is always a polarization 
tensor contracted into its own momentum, and we still get zero by (5.5~). The entire 
contribution comes therefore from the principal value term. 

The origin of the non-zero QCD result is the failure of the asymptotic ‘out’ condition 
at U = 0. This was already obvious from (5.4) in the wavefunction’s lack of oscillatory 
behaviour as one approaches the infinite future. The reason asymptotic quantum field theory 
is so useful is that we can extract the m e  vacuum and the m e  single particle state from the 
free ones merely by infinite time evolution. The procedure works because the free states 
have a non-zero overlap with the full ones, and we can tune the oscillatory factors they 
c q  so that, against normalizable state-s and in the weak sense, only this overlap survives 
in the limit that xo goes to infinity. But without oscillations the limit accomplishes nothing. 
It is as if we were to turn the interaction of flat space field theory off at x o  = 0, in which 
case we would also encounter properties (i) and (ii). 

The preceding discussion suggests a simple resolution: merely extend the range of 
integration for U to cover the full real axis. This may seem gratuitous but it is, in fact, the 
standard procedure [18]. There is also an excellent geometrical justification for it  in that 
negative values of U correspond to those portions of the full de Sitter manifold which are not 
covered by conformal coordinates. The only strange feature about the extended manifold is 
that the connection comes on our original submanifold not through what we are calling the 
‘infinite past’ but rather through the infinite future as U passes from Ot to 0-. (It is worth 
commenting that the peculiar connection circumvents the argument [3] that precludes the 
use of a causal propagator on the conventionally connected, full manifold.) A mathematical 
purist would object that neither the ‘in’ region nor the new ‘out’ region really corresponds to 
the asymptotic past or future of a geodesically complete manifold. However, the extension 
works because the relevant point for getting free states to interpolate interacting ones is 
not what the ‘asymptotic’ coordinate regions mean geometrically but rather how the fields 
behave in them. Thcnew ‘out’ region is at U = -CO, where the wavefunctions show fine 
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oscillatory behaviour. It should be clear from (5.3) that scattering on the extended de Sitter 
manifold is identical, for tree-order QCD, to that on flat space. 

Now consider the situation in WG. Since positive powers of U can always be removed 
as derivatives with respect to k, we see from (4.2) that the wavefunctions of QCG show fine 
oscillatory behaviour as U approaches -W. However, extending the manifold does not result 
in an acceptable asymptotic field theory because of the infra-red divergence at U = 0. The 
mathematical origin of the instabilities (in the graviton and in the vacuum) is the breakdown 
of energy conservation. It cannot be repaired by extending the manifold because there are 
inverse powers of U. This is also why there are infra-red divergences. The physical origin 
of the instabilities seems to be that the time-dependent background is serving as a source 
of radiation. The infra-red problem seems to originate in the terrific red-shift QCG gravitons 
experience owing to their masslessness and their lack of conformal invariance. This red- 
shift tends to drive all coordinate momenta down to physical momentum zero, making the 
overlap between plane waves infinitely strong at U = 0. Though we eventually reach a 
‘quiet’ regime at U = -a, the asymptotic ‘in’ and ‘out’ vacua are infinitely different. The 
reason we encounter the infra-red divergence is that we have tried to ignore this. 

The preceding discussion establishes the instability of the QCG vacuum, and of the 
single graviton state, but it does not quite show that the background changes. To see this 
it suffices to consider what the aforementioned instabilities mean to the stress tensor which 
is the source of the background metric. Though the details require a finite-time formalism 
we have presented elsewhere [Z], two things should be obvious on physical grounds. First, 
the universe is being filled at late times with a sea of soft gravitons. Since the graviton is 
unstable-and most strongly so for the softest gravitons-this sea carries negative energy. 
Second, the instabiIity of the vacuum means that the vacuum energy must also be negative. 
The first effect occurs at one loop while the second starts at two loops, and both begin 
affecting the background at order K ~ H ~ .  Together the two effects act as a break on the 
expansion of spacetime and cause the effective cosmological constant to relax [1,2]. 

There are four tasks yet to accomplish. The first is debunking the argument that infra- 
red divergences can be avoided by using different wavefunctions. It is certainly true that the 
average of qWV and its conjugate is much better behaved than either one as U approaches 
zero. In fact, it is easy to check that this average vanishes as u3: 

i Y p u ( ~ ,  e; 12, %) + ~ * L ” ( U ,  e; - I C ,  A) 

exp[ik * r] E&C, A) 1 - - E [cos(ku) - - sin(ku) 
.Jzi; ku 

HkZu3 
--f -- exp[ik. el cpY(k, A) . 
”-0 3m 

(5.9a) 

(5.96) 

The inclusion of even one such wavefunction on a vertex would be enough to cancel the 
factor of !2* which is the origin of the infra-red problem. The difficulty is that the average 
spans only half the space of the mode functions. The orthogonal complement is spanned 
by wavefunctions of the form 

- 5 ~ Y p , ( u .  I .  e; k.  A) + iiY;”(u, e; -k, A)  

(5.10~) 

(5.1 Ob) 
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1 

Flgum 1. Unambiguously infra-red divergent convibution to the 
tree order &graviton sanering amplitude 3 

The 3-particle amplitude formed with three of these wavefunctions diverges as badly as 
ever. 

The possibility of simply excluding the bad wavefunctions was studied in the context of 
light scalars by Borner and Diirr 151 who concluded that it was incompatible with causality. 
The reason is fairly obvious: purging some subset of the modes can be thought of as 
imposing a non-local constraint upon the field which disrupts microcausality. No doubt 
there would also be a problem with unitarity since there is no unexploited gauge symmetry 
which can drive decoupling. A M e r  problem is that all the modes must be present in the 
flat space limit and it is difficult to accept that making a continuous change in one of the 
parameters of QCC can effect a discontinuous change in the space of states. 

It is worth pointing out as well that, even if it was allowed, truncating the space of 
states could only solve the problem on vertices which possess an extemal leg. There would 
still be divergences from purely intemal vertices such as that of the 6-graviton tree depicted 
in figure 1. It might be objected that this conclusion ignores the role of the propagators but 
a little thought reveals that no acceptable choice can rescue an intemal vertex. Whatever 
we do to the space of states had better not change the propagator’s imaginary part because 
this gives the classical retarded Green function. That the imaginary pact of (4.1) is correct 
as it is can be seen directly from the linearized field equations [3]. (A particularly nice 
demonstration of this is that the linearized response to a point mass agrees with the well 
known de Sitter-Schwarzchild solution 131.) But the imaginary part of (4.1) fails to vanish 
at U = 0 so the infra-red divergence still occurs and is independent of the choice of vacuum. 

A related idea is that the problem might have to do with using plane waves.. It is 
certainly true that the causal structure of de Sitter space differs radically from that of flat 
space. One of the chief differences is that spacetime expands so rapidly as to preclude any 
overlap between the future light cones of events whose invariant length separation is more 
than about a Hubble radius. It follows that global constructs such as plane waves cannot 
really be observed, even if an infinite amount of time is allowed. Might we not avoid the 
infra-red problem by averaging over the unobservable portions of the asymptotic wavefront? 

We can average over momenta to simulate the necessarily finite resolution in bandwidth, 
but examination of the amplitude reveals that this will not do any good unless the averaging 
functions also contain a very strong time dependence. The physics is fairly transparent: 
because the breakneck expansion red-shifts any finite physical momentum down to zero the 
wavefunctions must prevent observation of coordinate momenta below an ever increasing 
limit. The problem is that plane waves in the free theory really do evolve onto plane 
waves, and also in the full theory by virtue of its spatial translation invariance. This means 
that we must use constant wavepackets as in flat space. Failing to do so amounts to the 
introduction of a new interaction term into the QCC Lagrangian. One can get any answer 
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this way but it is not Qcc. If we are prepared to perpemte such a mutilation it would be 
simpler and no less erroneous to drop the interaction Lagrangian altogether. Note as well 
that hedependent momentum screening is not necessary to make sense of de Sitter QCD; 
in fact it would produce incorrect results. 

Our second task is to debunk the notion that the infra-red divergence we have exhibited 
is merely some sort of compensation for the missing energy-conserving delta function of flat 
space. We have already explained that this is not so; in a conformally invariant theory this 
delta function is already (half) present, and the extra terms disappear when the range of U is 
extended to the entire real axis. Then too, there is only one energy conservini delta function 
in flat space, no matter how many particles are scattered. In contrast, the tree amplitudes 
of QCG show increasing problems as more particles are scattered. To illustrate this, and 
to give a concrete example of the total irrelevance of the propagator's bad behaviour at 
k = 0, we have computed the s-channel amplitude for 4-graviton scattering at tree order. 
The evidence of infra-red divergences on the pole terms of this suffices to make the point 
because neither the other channels nor the contribution from the &point vertex can cancel 
them. 

1 4 

U' 

Figum 2. schannel contribution lo the tree order 4-graviton 
3 scattering amplitude. 

The relevant diagram is shown in figure 2. We performed the calculation by first 
contracting two external wavefunctions onto the 3-point vertex and then sequentially 
contracting the resulting 25 distinct terms into one another through an exchange propagator 
(4.1). The tensor algebra was carried out by computer using Mertig's program, FeynCalc 
[19], and the result was checked against that of Sannan [16] by taking the flat space limit. 
Each distinct contribution has the form 

x I ( u ,  U', ki, kz, k3, k4) (5.11) 

where the Cs are contractions of the polarization tensors and also possibly momenta, and 
the I s  are functions of the two conformal interaction times and the norms of the momenta. 

There are many, many terms. It suffices for the point we wish to make to consider the 
contraction, C = (€1 €2) (€3 €4). and the coefficient of Ilk1 + k ~ ~ ~ - ~ u - ~ u ' - ~ :  

I = ($ [k i  . k3 ki . k4 + k2.  k3 k2.  k4 f ki . k3 k2 . kskl . k4 k2 . k41 

+ $ (k: + k,Z)(k,Z + k,") + i(k1 * k3k2 * k4 + kl . k4k2. k3)) 
I 

X + (lower poles). 
Ilk1 + Ic2113u2u'~ 

(5.12) 

This term is distinguished by its pole structure and its contraction of polarizations, hence 
the order of divergence increases as more particles are scattered, as was claimed. Note as 



2984 

well that there is no problem with the propagator for k, + kz # 0. As before, the problem 
is the factors of carried by each vertex and the fact that they are not compensated by 
either the external wavefunctions or the propagator. 

So much for the second task; the third is to explain what the problems we have 
discovered in tree-order QCC scattering mean to the classical theory. The answer is, ‘not 
much’. Although tree-order phenomena are completely determined by the classical action, 
they are not classical. To give one example, the quantization of allowed energies in any 
non-zero mode is surely a quantum effect, and this occurs in the free theory, before even 
tree-order interactions have been included. Quantization results because we impose the 
requirement that only normalizable energy eigenvectors correspond to states-othenvise 
one can solve the equation H IV) = E I V )  for any real number E .  Another inherently 
quantum concept is the notion of transition probabilities. 

Any disease of the classical theory should manifest itself in the solutions. The most 
direct connection between tree-order scattering amplitudes and classical solutions has been 
described by DeWitt [ZO]. (See section 4 of [211 for a detailed review of this formalism.) 
One starts with a general linearized solution, like our expansion (2.7) but with the creation 
and annihilation operators considered as arbitrary C-number fields. The classical field 
equations are then solved perturbatively, subject to Feynman boundary conditions, to 
produce what DeWitt calls the general ‘scattering solution’. One obtains a generating 
functional for the connected, tree-order S-matrix by evaluating the classical action at this 
solution, adding an asymptotic surface term, and taking the exponential of i times the whole 
thing. S-matrix elements can be found by differentiating this generating functional with 
respect to the fields a,&, h) and ai,(k, A), and then setting a,,, =a?, = 0. 

The problem with QCC tree amplitudes implies similar infra-red divergences in DeWitt’s 
scattering solutions. However, this is not a breakdown of the classical theory so much as 
it is a failure of Feynman boundary conditions. (As with the tree amplitudes, DeWitt’s 
scattering solutions show infra-red divergences whether the ‘asymptotic future’ is defined 
as U = 0 on the original manifold or as U = -m on the extended manifold.) One encounters 
no infra-red divergences in causal evolution over a finite period using retarded boundary 
conditions. A de Sitter energy functional can be defined on the open submanifold [22] which 
shows stability against perturbations whose wavelength is within the de Sitter horizon, and 
independent, semiclassical stability tests confirm this result [23]. We know less about the 
non-perturbative regime but it is worth noting that there are de Sitter generalizations to the 
black hole solutions of H = 0 gravity. So if there is a problem with the stability of the 
classical theory it seems very well disguised. 

Our fourth task is to comment on previous work. Similar divergences were noted long 
ago by Tagirov [24] in the context of light, minimally coupled scalars. The analogous 
problem with tree-order Green functions has recently been studied by Sasaki et al [Z]. 
W e  this work is very suggestive of a problem with the classical backgrounds of QCG- 
which all show exponential expansion locally, and which all tend to de Sitter over finite 
invariant distances-it might be dismissed instead as ruling out scalars which are either 
too light or not conformally coupled. (Indeed, this was precisely the conclusion reached by 
Tagirov.) Such a view is arguable because we lack direct evidence for nny light, fundamental 
scalars, and because we have no reason to suppose that the various conjectured light scalars 
are not confonnally coupled. No one can level this criticism on the infra-red divergences 
we have exposed in graviron scattering amplitudes. Acceptance of the de Sitter geometry 
as a background implies acceptance of the QcG Lagrangian from whence it came. The 
appearance of infra-red divergences in tree-order scattering amplitudes is an unavoidable 
consequence. 

N C Tsamis and R P Woodard 
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There has also been work in QCG by Floratos et al [I41 who argued for an infra-red 
divergence in the graviton exchange contribution to two-body scattering for a conformally 
coupled scalar. This result is based upon an early form for the graviton propagator which 
was in use before the previously discussed problem was either recognized [9]  or understood 
[3]. This propagator contains a term which shows logarithmic growth for increasing space- 
like separation, and the problem it gives in the aforementioned amplitude is that the spatial 
integral fails to converge. In fact we have seen that the naive mode sum for the true graviton 
propagator is well defined in momentum space; it is the position space expression which 
fails to converge. One might wonder about the conformal time integrations-which was 
not the problem discussed in [14]-but they are also finite for this amplitude. This is as 
it should be because it is only through the pseudo-graviton propagator that this process 
can differ from the finite result of flat space. Since the pseudo-graviton propagator is free 
of problems at U = 0, and since the positive powers of U it contains can be extracted as 
derivatives, there is no problem. 

6. Free QCG on T3 x R 

It remains to describe our proposal for a graviton propagator which can be used to any order 
in perturbation theory. Owing to the previously described infra-red problem the appropriate 
formalism is no longer 'in'-'out' matrix elements of asymptotic scattering theory but rather 
expectation values in the presence of a prepared initial state. A formalism for computing 
'in'-'in' expectation values was worked out long ago by Schwinger [26], and has been 
studied more recently by Jordan [27]. In [2]  we describe how it can be modified to give 
expectation values in the presence of a prepared state of free vacuum at H u  = 1 by 
merely dropping all interactions which occur for U > ( l / H ) .  One important properly of the 
formalism is its causality: no interactions from outside the past lightcone can influence an 
observation. It is immediately obvious that the region of conformal coordinate space over 
which we require the propagator is very small. 

Now consider the means by which a de Sitter phase can arise in the early universe. 
We suppose, as in [I], that the cosmological constant is positive and not unreasonably 
small. However, this cosmological constant is little in evidence at first because the initial 
temperatures are so much greater than ( H / K ) ' / ~ .  There is no inflation since the thermal 
stress-energy far exceeds the cosmological contribution. Except for inhomogeneities, the 
scale factor expands in the characteristic fashion of a radiation dominated universe, as the 
square root of the co-moving time. There are no strong infra-red effects since thermal 
fluctuations disrupt the long-range correlations necessary to support them. For example, the 
wavefronts of graviton modes are rapidly broken up by scattering off of thermal fluctuations, 
so they cannot remain in phase long enough to experience an enhanced interaction overlap 
due to the red-shift. 

The temperature of this early universe falls as it expands, however, the cooling cannot be 
uniform. Because of thermal fluctuations and initial inhomogeneities some regions will be 
cooler 'than others. It is unreasonable to expect uniformity over distances much larger than 
the inverse effective Hubble constant. (By He&) we mean the logarithmic time derivative 
of the co-moving scale factor, which would greatly exceed the constant H right after the 
big bang.) Eventually the temperature in a patch of space will fall below (H/K) ' / '  and the 
cosmological constant begins to dominate the stress tensor. This sets off inflation. 

The resulting red-shift very quickly makes the temperature so small that physics in 
the inflating patch becomes indistinguishable from that of zero-temperature quantum field 
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theory starting from a prepared state. For simplicity we have taken this state to be ‘free 
de Sitter vacuum’ [2]-by which we mean minimum uncertainty wavefunctions for the 
zero modes and condition (13) for the non-zero modes-but different choices might be 
considered. The key point is that the patch has finite &e; in fact its radius should be on 
the order of 1 / H .  Of course the rest of the universe is not far behind in cooling and then 
inflating, but its quantum fluctuations are not correlated with those of the patch, and after 
even a little inflation they fall out of causal contact, We might equally well focus on a 
patch which is not the first to begin inflation; the point about finite size is equally valid. It  
follows that we can ignore problems associated with arbitrarily long coordinate wavelengths 
because the inj7ating patch contains no such wavelengths. 

Formulating QCG on a patch is not difficult since the theory is still diagonal in Fourier 
space. The biggest change is that the modes become discrete. The issue of boundary 
conditions arises but only in a formal way because points in the interior very rapidly lose 
causal contact with the boundary. For simplicity we shall use periodic boundary conditions. 
Each component of the spatial coordinate vector runs over the range 
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1 
C X . < -  

2H “ 2 H  
1 -- 

with identification betweenxi = - (1 /2H)  andxi = +(1 /2H) .  This amounts to formulating 
QCC on the manifold T 3  x R, which does admit the de Sitter background. 

The allowed spatial momenta on the patch are 

k = k H n  (6.2) 

where n is any triplet of integers. The mode functions are unchanged from (2.8) and (2.10) 
for k # 0. The free-field expansion (2.7) changes only to the extent that the integral is 
replaced by a sum, and the zero modes require special treatment as free particles: 

The zero-mode coordinates and momenta are defined at ug = ( I / H ) ,  which we take to the 
onset of inflation. The zero-mode variables commute as their symbols indicate 

(6.4a) 

(6.4b) 

[qpv(c). pp0(c)I = iL&]. ( 6 . 4 ~ )  

The A, B and C polarization sums are changed from (2.9). (2.11) and (2.12) only by the 
replacement 

( 2 ~ ) ’  6 3 ( k  - k‘)  H K 3  6k.k‘ .  (6.5) 
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Our 'vacuum'-which is really just the initial state at the onset of inflation-is defined by 
the conditions 

a,,(k. A)  IO) = 0 V k  # 0 (6.6a) 

(6.6b) 

' where the spreads-A@ = (H/& for the A modes and A@ = (H/f i )  for the B- 
C modes-were chosen to minimize the dispersion in the infinite future. It is now 
straightforward to obtain the following result for the propagator: 

i [ i dpml (x ;  x ' )  = (OI~(+,dx) +po(x' )}  IO) (6.7a) 
= X') + i&(x, X ' )  {[q7$] + (6.7b) 

+ i H 2  [ Z  - H3u3 - H3d3 + H6u3uf3] + $iH2 IH3uf3 - H 3 u 3 [  (6 .7~)  
H'uu' - exp[-iklAul+ik.(E'-z)-Ekl 2k 

iAB(x; x ' )  E H3 
k#o 

f ~H4~Z~'2[8-6H~-6Hu'+5H2uu']+~iH4~2~'2]H~'- H u l .  

(6.74 

For Hu, Hu' and HAx all much less than unity the integral approximation to the sum 
ought to be excellent. For iAB we can extend the integration over the zero mode and the 
result is just ( 3 . 3 ~ ) .  For iAA we must cut the integral off at ko - H and the result is 

H'uu' exp(iHAx) exp(-i H Ax) 
8n2Ax I Ax - [Aul+ i6 + Ax + IAul - ic 

exp[-iH(lAul - i6)l iAA(x; x' )  -+ - 
H 2  sin(HAx) 

4 6  HAx 
+- exp[-iH(/Au( - k)] 

-- HZ (Ei[iH(Ax - IAul+ is)] +Ei[-iH(Ax + IAul - i6)l) 
81rZ 

+ $ H2 [2 - H3u3 - H 3 d 3  + H 6 u 3 ~ ' 3 ]  + i iH2 IH3ur3 - H3u31 (6.8a) 

_ -  HZ In[HZ(Ax2 - Au2 + ic)] 1 H2uu' =- 
4112 A X ~  - A U ~  + ic 8 ~ 2  

(This technique of representing the sum of all higher modes as an integral ought to be 
familiar from the approximations traditionally made to infer the statistical mechanics of a 
free Bose particle below the condensation temperature.) It is important to recognize. that 
expression (6.8b) is only valid for small separations, which implies at most small extensions 
beyond the lightcone, that the apparent logarithmic growth outside the lightcone is a fiction 
can be seen from (6.8a); for large spacelike separations iAA falls off as I / ( A X ) ~  plus the 
zero-mode contribution. 



2988 N C Tsamis and R P Woodard 

Combining (6.7) and (6.8) gives the following approximate form for the pseudo-graviton 
propagator: 

We stress the familiarity and simplicity of this result. Except for the factor of H*uu'. the 
first term is just the f i t  space graviton propagator in the De Donder gauge. Further, the 
decoupling between tensor indices and functions of spacetime means that the tedious tensor 
algebra of loop diagrams can be isolated from the integrations. This was crucial in the 
two-loop computation we recently performed to establish that relaxation occurs in causal 
time evolution [Z]. 

7. Conclusions 

We have shown that the asymptotic scattering theory of QCC on a de Sitter background 
is very sick. Problems appear even in the lowest-order amplitudes, 3-graviton trees. The 
decay of a single graviton into two means that the one graviton state is not stable; the decay 
of the vacuum into three gravitons means that it  is not stable either. These instabilites arise 
because energy is not conserved in the time-dependent background. The instabilites become 
arbitrarily large due to the presence of infra-red divergences. Since these divergences afflict 
even the lowest-order scattering amplitudes they cannot be avoided by the Lee-Nauenberg 
technique of restricting to transition probabilities between degenerate ensembles of states. 
The physical origin of the infra-red problem seem to be that inflation red-shifts the physical 
momenta of all gravitons to the same value-zero-thereby making the interaction overlap 
diverge. The problem has nothing to do with either the behaviour of the graviton propagator 
or mathematical problems with its definition, as witness the fact that the 3-point tree contains 
no propagators. 

Our analysis proves that neither the vacuum nor the single graviton state are stable 
in QCO. Consideration of what this means for the stress tensor strongly suggests that 
one consequence is to slow the expansion of spacetime, thereby reducing the effective 
cosmological constant. We have elsewhere made the detailed case for this relaxation scenario 
[ 1,2]. Although we did not need a definite form here for the graviton propagator our study 
of relaxation does of course require one. Our proposal (6.9) was motivated by consideration 
of the manner in which a de Sitter phase would arise in the early universe. In particular, it 
is very unlikely that an initial, correlated patch of de Sitter background could extend much 
beyond the Hubble radius of 1 / H .  On such a finite patch the spatial momenta are discrete 
and the zero mode can be isolated for proper treatment as a free particle. The result is a 
well defined propagator which shows no growth outside the lightcone and which is almost 
as simple as the De Donder gauge propagator of flat space. This simplicity, coupled with 
OUT analogously simple expression (2.3) for the interaction Lagrangian, is what has made it 
possible to analyse high-order processes in QCC [Z]. 
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