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Abstract The nuclear structure of 16O is studied in the framework of the particle–hole random phase approximation
(ph RPA). The Hamiltonian is diagonalized within a model space with particle orbits {1d5/2,1d3/2, and 2s1/2} and the
hole orbits {1p3/2 and 1p1/2} using Warburton and Brown interaction WBP. The ph RPA calculations are tested, by
comparing the electron scattering form factors with the available experimental data. The results of electron scattering
form factors and reduced transition strength for the states: 1−, T = 0 (7.116 MeV); 2−, T = 1 (12.968 MeV); 2−, T = 1
(20.412 MeV); and 3−, T = 0 (6.129 MeV) are interpreted in terms of the harmonic-oscillator (HO) wave functions of
size parameter b. The occupation probabilities of the single particle and hole orbits are calculated. The spurious states
are removed by adding the center of mass (CM) correction to the nuclear Hamiltonian. A comparison with the available
experiments data is presented.

PACS numbers: 21.60.Jz, 21.60.Ev, 13.40.Gp
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1 Introduction
Major challenge in theoretical nuclear physics is the

development of a universal approach able to describe the
excited states of all nuclear systems with the same ac-
curacy. The problem of a nuclear structure is a many-
body problem, as it arises in many branches of physics. In
the many-body problem, the dimension of Hilbert space
rapidly grows as the particle number increases and the
dimension of such space is too large in many cases, pre-
venting us from performing the full calculations. There-
fore, the calculations are possible for a truncated model
space and various approximate approaches exist to deal
with such systems.[1]

The simple shell-model (SM) which is partly analo-
gous to the atomic SM was developed at the beginning of
the fifties of the previous century at the time when the
nucleon-nucleon potential was not yet well known. It is
based on the independent particle approximation, which
ignores all correlation effects. It can be used in its simplest
single-particle form to provide a qualitative understand-
ing, but it can also be used as a basis for more complex
and complete calculations. This model predicts or ex-
plains with some success properties of nuclei, in particular
spin and parity of nuclei ground states, and to some extent
their excited states as well. In nuclear physics, the SM po-
tential is based on empirical facts rather than calculated
ones.[2]

Shell-model is based on the mean-field potential also
based on the independent particle approximation. The

fundamental mean-field theory in the quantum many-
body problem is Hartree–Fock (HF) theory which has
proved to be a successful method of linking the ground-
state properties of nuclei to the nucleon-nucleon interac-
tion. The main idea of mean-field theory (MFT) also
known as self-consistent mean-field theory, is approxima-
tion for reducing problems of many strongly interacting
nucleons to one of non-interacting particles in an average
nuclear field.[3]

In the case of closed shell nuclei, the simplest corre-
lation beyond the Hartree–Fock (HF) can only be taken
into account by breaking the HF core and raising a nu-
cleon from below to above the Fermi level; then the re-
sulting states must have a particle-hole pair. The excited
collective oscillation can be described as a linear combi-
nation of particle-hole states. Such an approximation is
called the particle-hole Tamm–Dancoff approximation (ph
TDA).[4−6] A system of states more general than that con-
sidered in the ph TDA appears when treating the ground
states and the excited states more symmetrically. In that
case, one allows both to have particle-hole pairs. Such
an approximation is referred as the particle-hole Random
Phase Approximation (ph RPA).[7−10]

Self-consistent HF theory can also be made time-
dependent (TDHF) to describe giant resonances and low-
lying excited states. TDHF in the limit of linear-response
is equivalent to the collective motion model RPA of many-
body perturbation theory. Most RPA calculations have
been achieved in the matrix diagonalization scheme. Since
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the calculation of residual interaction is rather tedious
for realistic interaction, it has been common to ignore
some terms in practice and to sacrifice the full self-
consistency.[11] Recently several groups have reported fully
self-consistent RPA and the quasiparticle RPA (QRPA)
calculations with Skyrme-type interactions,[12−13] with a
modified realistic potential[14] with Gogny force,[15−16]

and from solving relativistic mean field equations.[17−18]

A more detailed surveys and exhaustive list of references
can be found in [19].

Elastic and inelastic electron scattering from atomic
nuclei is a successful and powerful tool in investigating
the theoretical nuclear models. The interaction between
electron and nucleus is an electromagnetic interaction, the
theory of which is well established and settled. Thus, in
electron scattering experiments one can obtain directly
information about the structure of the nucleus. The com-
parison between the calculated and measured electron
scattering form factors has long been used as a successful
test of nuclear models.[20−23]

In this work, the structure of 16O is to be studied in
the framework of the ph RPA. The calculation within a
model space with particle orbits {1d5/2, 1d3/2, and 2s1/2}
and the hole orbits {1p3/2 and 1p1/2} using Warburton
and Brown interaction WBP[24] is performed. The 1s, 1p,

2s1d, 2p1f – shells (WBP) interaction is determined by
least square fitting with experimental single particle ener-
gies SPE and two-body matrix element TBME. The spu-
rious states are removed by adding the center of mass cor-

rection (CMC) to the interaction. The results of electron
scattering form factors and reduced transition strength
for the states: 1−, T = 0 (7.116 MeV); 2−, T = 1
(12.968 MeV); 2−, T = 1 (20.412 MeV); and 3−, T = 0
(6.129 MeV) are interpreted in terms of the harmonic-
oscillator wave functions of size parameter b and effective
charges. The occupation probabilities of the single parti-
cle and hole orbits are calculated.

2 Theory

2.1 ph RPA

If we think of a ground state containing 2p-2h cor-
relations, the collective excited states of closed shell and
sub-shell systems of multipolarity J and isospin T can not
only create a ph pair but also destroy one. The quasiboson
operator reads[4]

Q†ω,JT =
∑

mi

[XJT
mi a†mai − Y JT

mi a†iam] , (1)

where the label m represents particle states and i is for
hole states, the minus sign has been chosen for conve-
nience. The ph RPA ground state is defined via the con-
dition

Qω,JT |RPA〉 = 0 and Q†ω,JT |RPA〉 = |ω〉 . (2)

In ph RPA, we have two kinds of variations δQω|0〉,
namely a†mai|0〉 and a†iam|0〉, they are both-like gives two
set of the equation of motion[4−5]

〈RPA|[a†iam, [H, Q†
ω]]|RPA〉 = ~Ωω〈RPA|[a†iam, Q†

ω]|RPA〉 ,
〈RPA|[a†mai, [H, Q†

ω]]|RPA〉 = ~Ωω〈RPA|[a†mai, Q
†
ω]|RPA〉 , (3)

where ~Ωω is the excitation energy. If we assume that the correlated ground state does not differ very much from HF
ground state, all expectation values in the HF approximation can be calculated, for example,[4−6]

〈RPA|[a†iam, a†naj ]|RPA〉 = δijδmn − δmn〈RPA|aja
†
i |RPA〉 − δij〈RPA|a†nam|RPA〉

∼= 〈HF|[a†iam, a†naj ]|HF〉 = δijδmn . (4)

The probability of finding the particle-hole states a†mai|0〉 and a†iam|0〉 in the excited state |ω〉 gives the amplitudes
Xmi and Yim

〈0|a†iam|ω〉 ∼= 〈HF|[a†iam, Q†
ω]|HF〉 = Xmi, 〈0|a†mai|ω〉 ∼= 〈HF|[a†mai, Q

†
ω]|HF 〉 = Ymi . (5)

Equation (3) can be written in a compact matrix form,[4]
(

A B

B∗ A∗

)(
X

Y

)
= ~Ωω

(
1 0
0 −1

)(
X

Y

)
, (6)

with

AJT
minj = 〈HF|[a†iam, [H, a†naj ]]|HF〉 = (εm − εi)δmnδij + V JT

mjin ,

BJT
minj = −〈HF|[a†iam, [H, a†jan]]|HF〉 = V JT

mnij , (7)

εm is the single particle energy. In the JT couples scheme calculations, all the two-particle interaction matrices should
be in particle-hole channel,[6]

V JT
mjin = −

∑

J′ T ′
(2J ′ + 1)(2T ′ + 1)

{
jm jn J ′

ji jj J

}{
1/2 1/2 T ′

1/2 1/2 T

}
V J′ T ′

mnij . (8)
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The non-symmetric matrix (6) can be reduced to the diag-
onalization of a real symmetric matrix of half the dimen-
sion. Then, the matrices (A±B) are real and symmetric.
Let us assume that (A − B) is positive-definite. Then it
can be factorized as

(A−B) = LLT, (9)

where L a lower-triangular real matrix and LT its trans-
pose. This is the square-root or Cholesky decomposition
of the matrix.[25] Then the ph RPA matrix is left to real
symmetric eigenvalue problem.[4]

L(A + B)LTR = ~2Ω2
ωR . (10)

Its solution gives the eigenvalues ~2Ω2
ω and the normalized

eigenvectors (amplitudes) R. Finally, the vectors X and
Y can be recovered.(

X

Y

)
=

1
2
[(~Ωω)−1/2LT ± (~Ωω)1/2L−1]R . (11)

The RPA particle and hole occupation numbers can
be calculated by using, for example, the number operator
method[26−27] and one gets

np =
∑

hw

Y ω∗
ph Y ω

ph −
1
2

∑

hp′h′

∑

ww′
Y ω∗

ph Xω∗
p′h′ X

ω′
p′h′ Y

ω′
ph ,

nh = 1−
∑
pν

Y ω∗
ph Y ω

ph

− 1
2

∑

ph′p′

∑

ww′
Y ω∗

ph Xω∗
p′h′ X

ω′
p′h′ Y

ω′
ph . (12)

2.2 Electron Scattering

Electron scattering form factor involving the angular
momentum J and the momentum transfer q, between the
initial and final nuclear shell model states of spin Ji,f and
isospin Ti,f are[28]

|F η
J (q)|2 =

4π

Z2(2Ji + 1)

∣∣∣
1∑

T=0

(
Tf T Ti

−Tz 0 Tz

)

× 〈JfTf |‖Ôη
JT (q)‖|JiTi〉Fcm(q)Ffs(q)

∣∣∣
2

, (13)

with η selecting the longitudinal (L), Coulomb (C), trans-
verse electric (El) and transverse magnetic (Ma) form fac-

tors, respectively. TZ = (Z − N)/2 is the projection of
the total isospin. The nucleon finite size (fs) form factor
is Ffs(q) = exp(−0.43q2/4) and Fcm(q) = exp(q2b2/4A)
is the correction for the lack of translational invariance
in the shell model (center of mass correction), where A

is the mass number and b is the harmonic oscillator size
parameter.

The reduced matrix element of a one-particle operator
between multi-particle states can be expressed as a sum
of the product of the elements of multi-particle transition
amplitudes times the single-particle matrix elements,

〈JfTf |‖Ôη
JT (q)‖|JiTi〉 =

∑

ph

RJT
ph 〈p|‖Ôη

JT (q)‖|h〉 . (14)

The reduced single particle matrix elements is[10]

〈p|‖Ôη
JT (q)‖|h〉 =

√
2T + 1

2

∑
tz

IT (tz)

× 〈p‖Ôη
Jtz

(q)‖h〉 , (15)

with

IT (tz) =

{
1, for T = 0 ,

(−1)1/2−tz , for T = 1 ,

and tz = 1/2(−1/2) a proton (a neutron).
The total longitudinal (L) and transverse (T ) form fac-

tors are given by

|FL(q)|2 =
∑

J≥0

|FC
J (q)|2, (16)

|FT (q)|2 =
∑

J=0

{|FEl
J (q)|2 + |FMa

J (q)|2} . (17)

The total form factor is the sum of the longitudinal and
transverse terms:

|F (q)|2 = |FL(q)|2 + [1/2 + tan2(θ/2)]|FT (q)|2, (18)

where θ is the electron scattering angle and the parity of
transition determined as,

∆πEl = (−1)J , ∆πMa = (−1)J+1 . (19)

The multipole operators in terms of single nucleon
Pauli-isospin tz are[29−30]

ÔC
JMtz

(q) =
∫
MJM (~r, q) · ρ(~r, tz)d~r , (20)

ÔMa
JMtz

(q) =
∫
{ ~MJJM (~r, q) · ~Jc(~r, tz) + [~∇× ~MJJM (~r, q)] · ~µ(~r, tz)}d~r , (21)

ÔEl
JMtz

(q) =
1
q

∫
{[~∇× ~MJJM (~r, q)] · ~Jc(~r, tz) + q2 ~MJJM (~r, q) · ~µ(~r, tz)}d~r , (22)

where ρ is the charge density, ~Jc is the convection current
coming from the intrinsic magnetic moments of target nu-
cleus, and ~µ(~r) is the magnetization density operator ob-
tained from magnetic current ~Jm = ~∇× ~µ.

Scalar function MJM (~r, q) is expressed in terms of

the spherical Bessel function jJ(qr) and the spherical har-

monic YJM (Ωr),

MJM (~r, q) = jJ(qr)YJM (Ωr) , (23)
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and vector function ~MJ′JM (~r, q) is expressed as,

~MJ′JM (~r, q) = jJ′(qr)~YJ′JM (Ωr) , (24)

the vector spherical harmonic ~Y
M

J′J(Ωr), defined as,

~YJ′JM (Ωr) =
∑

M ′,q

〈J ′M ′lq|J M〉YJ′M ′(θ, ϕ)êq , (25)

where
ê±1 = ∓ 1√

2
(x̂± iŷ) ,

ê0 = ẑ .

}
(26)

The matrix elements for the required electron scattering
operators used in this work are those of Brown et al.[31]

In terms of these matrix elements, the reduced transition

strength is given by[23]

B(ηJ, i → f) =
Z2

4π

[ (2J + 1)!!
kJ

]2

|F η
J (k)|2, (27)

where k = Ex/~c.

3 Results and Calculations
The nuclear structure of 16O nucleus is studied in the

framework of ph RPA. The Hamiltonian is diagonalized
in the model space 1p3/2, 1p1/2, 1d5/2, 1d3/2, and 2s1/2 in
the presence of the WBP interaction.[24] Spurious center-
of-mass- motion is removed by the usual method[32] of
adding a center-of-mass Hamiltoian HCM to the interac-
tion.

Fig. 1 The energy levels spectrum of 16O for the ph RPA calculations compared to experiment.

Figure 1 gives the energy levels scheme for 16O, gener-
ally it shows the computed states with the ph RPA have
a good agreement with the experimental data. For ex-
ample, the 1st isoscalar (T = 0) 3−, 1−, 2−, 0− excited
states occurs experimentally at 6.129, 7.116, 8.871, and
10.957 MeV respectively, with the ph RPA these states are
found at 6.58, 7.37, 9.35, and 10.56 MeV. The four low-
est isovector (T = 1) 2− states occurs at 12.968, 17.877,
19.001, and 20.412 MeV in very good agreement with the

calculated values: 13.09, 17.26, 19.16, and 20.94 MeV.
The occupation probabilities calculated in ph RPA for

the single particle and hole orbits are represented in terms
of bars in Fig. 2. The deviation from HF values (np = 0
and nh = 1) means that the ground of 16O is correlated.

The results of electron scattering form factors for the
states: 1−, T = 0 (7.116 MeV); 2−, T = 1 (12.968 MeV);
2−, T = 1 (20.412 MeV); and 3−, T = 0 (6.129 MeV) are
interpreted in terms of effective charges and the harmonic-
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oscillator (HO) wave functions of size parameter b which
is set to the value brms that reproduces the experimental
root-mean square (rms) charge radius of 16O.[33] Compar-
isons with the available experimental data are presented.

Fig. 2 Occupation probability of 16O obtained by ph
RPA calculations.

Fig. 3 The total form factor for the lowest energy level
1−, T = 0 (7.116 MeV) of 16O without center of mass
correction (CMC) displayed as a dashed line and with
CMC displayed as solid line in comparison with the ex-
perimental data of Ref. [33].

The selection rules conclude both electric E1 and
Coulomb C1 dipole transitions contribute to the scatter-
ing of the lowest experimental 1−, T = 0 (7.116 MeV)
state. The total form factor calculated with both the ph
RPA without CM correction (CMC) and the ph RPA with
CMC are displayed in Fig. 3 in comparison with the exper-
imental data.[33] Effective charges ep = 1.35e for proton
and en = 0.25e for neutron are used. The radial wave
functions for the single-particle matrix elements are cal-
culated with the HO-potential with the size parameter

b = 1.83 fm.

Fig. 4 The longitudinal form factor for the lowest en-
ergy level 1−, T = 0 (7.116 MeV) of 16O without center
of mass correction (CMC) displayed as a dashed line and
with CMC appears as solid line in comparison with the
experimental data of Ref. [33].

Fig. 5 The transverse form factor for the lowest energy
level 1−, T = 0 (7.116 MeV) of 16O without center of
mass correction (CMC) displayed as a dashed line with
CMC appears as solid line in comparison with the exper-
imental data of Ref. [33].

The calculated longitudinal form factors of ph RPA
without CMC (dashed curve) and with CMC (solid curve)
are shown in Fig. 4. The calculated ph RPA without CMC
curve is far from experimental curve.[33] The calculated ph
RPA with CMC curve seems as a close one to experimen-
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tal data, especially around the peak of the form factor
projected at q ∼= 1.3 fm−1.

The transverse form factors for this state are shown in
Fig. 5. The ph RPA without CMC curve has a deformed
shape (dashed line) and it is far from the experimental
data,[33] which probably contain spurious states. The ex-
perimental data are very well explained with the ph RPA
with CMC as shown by the solid line.

Fig. 6 The transverse M2 form factor for the lowest en-
ergy level 2−, T = 1 (12.968 MeV) of 16O in comparison
with the experimental data of Ref. [34].

The second experimental excited state of 2−, T = 1
was found at 20.412 MeV. Our ph RPA calculation pre-
dicts the value 20.94 MeV. The selection rules conclude
only magnetic quadrupole M2 contributes to the scatter-
ing. The total form factor is shown in Fig. 7 as solid
curve; it is somewhat over estimate with the available
experimental.[35]

The selection rules conclude both Coulomb C3 and
electric E3 transitions contribute to the scattering to 3−,
T = 0 (6.129 MeV) state. The longitudinal form factor
calculated with ph RPA, displayed in Fig. 8 in comparison
with the experimental data. Effective charges ep = 1.35e

for proton and en = 0.25e for neutron are used. The ra-
dial wave functions for the single-particle matrix elements
are calculated with the HO-potential with the size param-
eter b = 1.83 fm. The calculations are very close to the
experimental data.[33]

The magnetic quadrupole M2 transition according to
selection rules contributes to the scattering to the lowest
2−, T = 1 (12.968 MeV) state. The transverse form fac-
tor is calculated and displayed as solid curve in Fig. 6
in comparison with the experimental data.[34] The ra-
dial wave functions for the single-particle matrix elements

are calculated with the HO-potential with size parameter
b = 1.83 fm. The transverse form factor calculation is
somewhat under estimate with the available experimental
data.

Fig. 7 The total form factor for the level 2−, T = 1
(20.412 MeV) MeV of 16O in comparison with the exper-
imental data of Refs. [35].

Fig. 8 The longitudinal form factor for the lowest en-
ergy level 3−, T = 0 (6.129 MeV) of 16O in comparison
with the experimental data of Ref. [33].

Table 1 shows the comparison between the calcu-
lated and experimental values of the reduced transition
strengths. The electromagnetic transitions within ph RPA
framework to ground state expressed in Weisskopf units
(W.u.). Our calculated results of B(M2),

2−(12.968) → 0+(0.0)
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and giant octupole resonance B(E3),

3−(6.129) → 0+(0.0)

are in the same order as the experimental values. The
giant dipole resonance B(E1),

1−(7.116) → 0+(0.0)

is overestimate by a factor of about 100 compared with
experimental value.

The discrepancy between the calculated and experi-
mental B(E1) arises from kinematic sources. The har-
monic oscillator single-particle wave functions are not de-

fined relative to the center of mass of the nucleus, as they
should be, but rather from the origin of a fixed external
coordinate system. This gives rise to unphysical, or spu-
rious, center-of-mass contributions to computed nuclear
observables. The consequences are particularly serious for
the electric dipole operator.[4−5,36] The simplest recipe
to remove the spurious center-of-mass contributions, on
the average, is to adopt the effective charges ep = 0.5e

and en = −0.5e, or introducing isospin mixing within ph
RPA Matrix using the proton and neutron single-particle
energies.[36]

Table 1 Reduced transition strengths of 16O.

Transition Calculated (W.u.) Experiment (W.u.)

B(E1), 1−(7.116) → 0+(0.0) 1.40× 10−2 3.5× 10−4

B(M2), 2−(12.968) → 0+(0.0) 5.68 1.0

B(E3), 3−(6.129) → 0+(0.0) 10.96 1.35

4 Conclusions
The structure of closed-shell nucleus 16O was studied

in the framework of the ph RPA using Warburton and
Brown interaction WBP, spurious center-of-mass-motion
is removed by adding a center-of-mass Hamiltoian HCM

to the interaction. According to the results, a number
of conclusions can be extracted; the spurious state of 1−

excitation is removed by adding a center-of-mass Hamil-
toian HCM to the interaction. Core polarization effects
were also included through the effective charge, the calcu-
lated total, longitudinal and magnetic form factors with
CMC for the lowest experimental 1−, T = 0 (7.116 MeV)
state agree well with the available experimental data. The
harmonic oscillator single-particle wave functions are not
defined relative to the center of mass of the nucleus there-

fore, B(E1) is overestimate by a factor of about 100 com-
pared with experimental value.

The transverse M2 form factor for 1st 2−, T = 1
(12.968 MeV) state calculation is somewhat under esti-
mate agree with the available experimental data. The
total form factor for the 4th 2−, T = 1 (20.412 MeV)
state is somewhat over estimate with the available exper-
imental data. The longitudinal form factor for 3−, T = 0
(6.129 MeV) state is very close to the data. The occupa-
tion probabilities for the single orbits are represented in
terms of bars in Fig. 2. The deviation of the occupation
probabilities of the single occupied and unoccupied states
means that the ground of 16O is correlated. Our calcu-
lated results of B(M2) and B(E3) are in the same order
as the experimental values.
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