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Abstract Parikh–Wilzcek’s recent work, which treats the Hawking radiation as semi-classical tunneling process
from the event horizon of static Schwarzshild and Reissner–Nordström black holes, indicates that the factually radiant
spectrum deviates from the precisely thermal spectrum after taking the self-gravitation interaction into account. In this
paper, we extend Parikh–Wilzcek’s work to research the Hawking radiation via tunneling from new form of rotating
Kerr–Newman solution and obtain a corrected radiant spectrum, which is related to the change of Bekenstein–Hawking
entropy, and is not pure thermal, but is consistent with the underlying unitary theory. Meanwhile, we point out that
the information conservation is only suitable for the reversible process and in highly unstable evaporating black hole
(irreversible process) the information loss is possible.
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In 1974, Hawking proved theoretically that the black
hole can radiate thermally, and the temperature of the
black hole is true.[1] With the emission of thermal radia-
tion, black holes could lose energy, shrink and eventually
evaporate away completely. Thus the paradox of the in-
formation loss is created, which means the pure quantum
state will be changed into the thermally mixture state and
then the underlying unitary theory in quantum mechanics
is not reliable. The created mechanism of the black hole’s
thermal radiation can be explained by either the tunnel-
ing effect in quantum mechanics or the vacuum fluctuation
in quantum field theory. Namely, a pair of particles cre-
ate just inside the horizon, the positive energy particle
is tunneled out and the negative particle is absorbed by
black hole. In other words, we can consider that the parti-
cles created just outside the horizon, the negative energy
particle is tunneled into the horizon because the negative
energy orbit only exists inside the horizon, thus the posi-
tive energy particle is left outside the horizon and moves
towards the infinite distance and form Hawking thermal
spectrum. Both the two narrative styles have a tunneling
process, so the tunneling barrier should be found to truly
describe the tunneling process and obtain the true radiate
spectrum. But till now, the causes of the tunneling barrier
are unclear for us. The related references do not use the
language of quantum tunneling method to discuss Hawk-
ing radiation, so strictly speaking, it is not the quantum
tunneling method. So, to derive the factually radial spec-
trum, the following two difficulties must be solved: Firstly,
the formed mechanism of the potential hill; Secondly, the
elimination of the coordinate singularity.

In fact, the background space-time is dynamical as
a result of the loss of energy. But some existing
methods, through which the Hawking radiation is de-
rived, are mostly based on the fixed background and
not taken the fluctuation of the space-time geometries
into consideration.[2−7] Recently, Parikh and Wilczek
have adopted the semi-classical tunneling picture to

study the Hawking radiation via tunneling from the
sphere-symmetrically static Schwarzchild and Reissner–
Nordström black holes.[8−10] Under the consideration of
the energy conservation and the unfixed background, the
tunneling rates are obtained and meanwhile give out a cor-
rection to Hawking radiant spectrum, and prove that the
factually radiant spectrum of black holes is not precisely
thermal. In this model, Painlevé coordinate transforma-
tion is introduced to eliminate the coordinate singularity.
After that, the semi-classical quantum tunneling method
is extended to all kinds of sphere-symmetric black holes,
and the results support the Parikh’s opinion.[11−13] But,
for axi-symmetric black holes, the research on the tunnel-
ing radiation is found to be fewness.[14−17]

Recently, Zhang investigated the Parikh–Wilzcek tun-
neling framework and argued that the Parikh–Wilzcek’s
work, the tunneling rate is consistent with an underlying
unitary and satisfies the first law of the black hole ther-
modynamics, is only suitable for a reversible process.[18]

The above mentioned is reversible process and the derived
result is considered to be a support to the information
conservation attributed ultimately to the underlying uni-
tary theory. But, in fact, the factual emission process,
because of an evaporating black hole highly unstable, is
irreversible, thus the unitary theory will not be satisfied
and the information loss is possible.

Being equipped with these insights, we are ready to in-
vestigate Hawking radiation via tunneling from new form
of rotating Kerr–Newman solution by taking into account
the energy conservation and the angular momentum con-
servation. The picture adopted in our discussion is as fol-
lows. A particle does tunnel out of a rotating black hole,
and the tunneling barrier is created by the self-gravitation
among the outgoing particle. If the total energy and total
angular momentum are conserved, the outgoing particle
must tunnel out a radial barrier to an observer resting
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in the dragging coordinate system. With the loss of en-
ergy and angular momentum, the black hole will shrink its
size, correspondingly its dragging velocity will change also.
That is to say, the geometry must be dynamic. Our results
show that when self-gravitation is considered, the tunnel-
ing probability is related to the change of Bekenstein–
Hawking entropy and the derived emission spectrum de-
viates from the pure thermal spectrum, but is consistent
with the underlying unitary theory, and meanwhile the

first law of the black hole thermodynamics for the re-
versible process is presented, and points out that the in-
formation conservation is only suitable to the reversible
process and in highly unstable evaporating black hole (ir-
reversible process) the information loss is possible.

In the case of a Schwarzschild black hole, it is con-
venient to recast the metric into the form of Painlevé–
Schwarzschild coordinates,[19]

ds2 = dt2 −
(

dr +
√

2M/rdt
)2

− r2
(
dθ2 + sin2 θdφ2

)
. (1)

Here, in order to extend Parikh–Wilzcek’s work to stationary axi-symmetric black holes, we must adopt the general
Painlevé coordinate transformation to eliminate the coordinate singularity. Recalling that the Kerr–Newman black
hole solution can be expressed in the Boyer–Lindquist coordinate system as

ds2 = d t̄ 2 − 2Mr −Q2

Σ
(
d t̄− a sin2 θdφ̄

)2 − Σ
∆

dr2 − Σdθ2 −
(
r2 + a2

)
sin2 θdφ̄2 , (2)

where Σ = r2+a2 cos2 θ and ∆ = r2+a2+Q2−2Mr. Carrying on a generalized Painlevé-type coordinate transformation,

d t̄ = dt−
√

(2Mr −Q2) (r2 + a2)dr

∆
, dφ̄ = dφ− a

∆

√
2Mr −Q2

r2 + a2
dr , (3)

to Eq. (2), we have

ds2 = dt2 − Σdθ2 −
[√2Mr −Q2

Σ
(
dt− a sin2 θdφ

)
+

√
Σ

r2 + a2
dr

]2

−
(
r2 + a2

)
sin2 θdφ2 , (4)

which is a new form of the Kerr–Newman solution and is the obedient extension of Painlevé–Schwarzschild line element
to the rotational case. Obviously, it also inherits a number of attractive features of the Painlevé–Schwarzschild line
element: (i) The metric is well behaved at the event horizon; (ii) There exist Killing vectors ∂t; (iii) The time coordinate
represents the local proper time for radially free-falling observers; (iv) The hyper-surfaces of constant time slices are
just flat Euclidean space in the oblate spheroidal coordinates; (v) it satisfies Landau’s condition of the coordinate clock
synchronization. These characters provide convenience for the research on the tunneling radiation of rotational black
holes.

But, as the existence of the rotation, the Painlevé–Kerr–Newman metric (4) still brings us inconvenience. These
reasons come from two aspects. On the one hand, the infinite red-shift surfaces rTLS

± = M ±
√

M2 − a2 cos2 θ −Q2

is not coincident with the horizons r± = M ±
√

M2 − a2 −Q2, so the geometrical optical limit is not reliable. On
the other hand, the existence of a dragging effect in the stationary rotating spacetime results in the matter field in
the ergosphere rotating spacetime near the horizon also dragged by the gravitational field. So, a rational and physical
picture should be depicted in the dragging coordinate system.

Carrying out a dragging coordinate transformation,

Ω =
dφ

dt
= − gtφ

gφφ
=

a
(
r2 + a2 −∆

)
(r2 + a2)2 −∆a2 sin2 θ

, (5)

to Eq. (4), we can derive the 3-dimensional dragged Painlevé–Kerr–Newman line element as

dŝ2 =
Σ∆

(r2 + a2)2 −∆a2 sin2 θ
dt2 − 2

Σ
√

(2Mr −Q2) (r2 + a2)

(r2 + a2)2 −∆a2 sin2 θ
dtdr − Σ

r2 + a2
dr2 − Σdθ2 . (6)

Now, we will investigate the tunneling behavior of massless particles across the horizon of the black hole. Since the
tunneling processes take place near the event horizon, we may consider a particle tunneling from the event horizon as
an ellipsoid shell and think that the particle should still be an ellipsoid shell during the tunneling process. Therefore,
under these assumptions (dŝ2 = 0 = dθ), the radial null geodesics followed by massless particle is

ṙ =
dr

dt
=

(
r2 + a2

)2

(r2 + a2)2 −∆a2 sin2 θ

[
−

√
1− ∆

r2 + a2
±

√
1− ∆2a2 sin2 θ

(r2 + a2)3
]
, (7)

where the +(−) sign can be identified with outgoing (ingoing) radial motion.
As the tunneling process takes place near the event horizon, the outgoing particle can be treated as an ellipsoid

shell. We adopt the picture of a pair of virtual particles spontaneously created just inside the event horizon. The
positive energy particle can tunnel out of the event horizon and materializes as a real particle, and the negative particle
is absorbed by the black hole, resulting in a decrease in the mass and angular momentum of the black hole and the
shrink of the horizon. rin and rout are the locations of the event horizon before and after the horizon shrinks, and
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regarded as the two turning points of the tunneling barrier, the distance between them is dependent on the energy and
angular momentum of the outgoing particle. Considering the self-gravitation among particles and under the condition
of the energy conservation and angular momentum conservation, we fix the total energy of the spacetime and allow
that of the black hole fluctuated. After the black hole radiates the particle of energy ω and angular momentum ωa, the
mass and angular momentum of the black hole will be reduced to M − ω and (M − ω) a respectively. Then we should
replace M with M − ω in Eqs. (5) ∼ (7) in order to describe the moving of the shell. For the moment, the radial null
geodesics of the massless particle across the event horizon is

ṙ =

(
r2 + a2

)2

(r2 + a2)2 − ∆̃a2 sin2 θ

[
−

√
1− ∆̃

r2 + a2
+

√
1− ∆̃2a2 sin2 θ

(r2 + a2)3
]
, (8)

where ∆̃ = r2 + a2 + Q2 − 2 (M − ω) r is the horizon equation after the emission of energy ω and angular momentum
ωa. In the dragging coordinate system, the coordinate φ does not appear in the line element (6). That is, φ is an
ignored coordinate in the Lagrangian function L. In order to eliminate the freedom completely, the imaginary part of
the action can be written as

ImS = Im
∫ tf

ti

(L− Pφφ̇)dt = Im
[∫ rout

rin

Pr dr −
∫ φout

φin

Pφdφ
]

= Im
[∫ rout

rin

∫ Pr

0

dP ′r dr −
∫ φout

φin

∫ Pφ

0

dP ′φdφ
]
, (9)

where rin and rout represent the locations of the event horizon before and after the particle of energy ω and angular
momentum ωa tunnels out, and (Pr, Pφ) are the canonical momentum conjugated to the coordinate (r, φ). Substituting
Hamilton’s canonical equation of motion,

ṙ =
dH

dPr

∣∣∣
(r;φ,Pφ)

, dH(r;φ,Pφ) = d (M − ω) , φ̇ =
dH

dPφ

∣∣∣
(φ;r,Pr)

, dH(φ;r,Pr) = ΩdJ , (10)

into Eq. (9), where H = M − ω and Pφ = J = (M − ω)a, and switching the order of integration yield the imaginary
part of the action

Im S = Im
∫ rout

rin

∫ M−ω

M

(dH ′ − Ω′dJ)
dr

ṙ
= Im

∫ rout

rin

∫ M−ω

M

(1− aΩ′)
dH ′

ṙ
dr

= Im
∫ M−ω

M

∫ rout

rin

√
(r2 + a2)4 −∆′(r2 + a2)3 +

√
(r2 + a2)4 −∆′2a2 sin2 θ(r2 + a2)

∆′(r2 + a2)

×
[
1−

a2
(
r2 + a2 −∆′)

(r2 + a2)2 −∆′a2 sin2 θ

]
drd (M − ω′) , (11)

where
∆′ = r2 + a2 + Q2 − 2 (M − ω′) r =

(
r − r′+

) (
r − r′−

)
,

r′+ = M − ω′ +
√

(M − ω′)2 − a2 −Q2, r′− = M − ω′ −
√

(M − ω′)2 − a2 −Q2 ,

rin = M +
√

M2 − a2 −Q2, rout = M − ω +
√

(M − ω)2 − a2 −Q2 .

The above integral can be evaluated by deforming the contour around the single pole r = r′+ at the event horizon.
Doing the r integral first, we find

Im S = −1
2

∫ M−ω

M

4π
[
(M − ω′)2 + (M − ω′)

√
(M − ω′)2 − a2 −Q2 − 1

2Q2
]√

(M − ω′)2 − a2 −Q2
d(M − ω′)

−
4π

[
(M − ω′)2 + (M − ω′)

√
(M − ω′)2 − a2 −Q2 − 1

2Q2
]√

(M − ω′)2 − a2 −Q2
Ω′+dJ ′

= −π

2
[
((M − ω) + (M − ω)

√
(M − ω)2 − a2 −Q2)2 − (M + M

√
M2 − a2 −Q2)2

]
= −1

2
(Sf − Si) , (12)

where
Si = 1

4A2
i = π(r2

in + a2) = π
[
(M + M

√
M2 − a2 −Q2)2 + a2

]
,

Sf = 1
4A2

f = π(r2
out + a2) = π

[
((M − ω) + (M − ω)

√
(M − ω)2 − a2 −Q2)2 + a2

]
,

are the Bekenstein–Hawking entropies before and after the particle emission respectively. So the tunneling rate is[20]

Γ ∼ e−2Im S =(Sf−Si)= e∆S . (13)
According to the definition of the surface gravity of the horizon, that is

κ′+ = −1
2

lim
r→r′

+

√
−g11

ĝ00

∂

∂r
ln

(
−ĝ00

)
=

r′+ − r′−
2

(
r′2+ + a2

)
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=

√
(M − ω′)2 − a2 −Q2

2[(M − ω′)2 + (M − ω′)
√

(M − ω′)2 − a2 −Q2 − 1
2Q2]

. (14)

So equation (12) can be rewritten as

Im S = −1
2

∫ M−ω

M

[
dM ′

T ′+
−

Ω′+dJ ′

T ′+

]
= −1

2

∫ Sf

Si

dS′ = −1
2

(Sf − Si) , (15)

where M ′ = M − ω′ and

T ′+ =
κ′+
2π

=

√
(M − ω′)2 − a2 −Q2

4π[(M − ω′)2 + (M − ω′)
√

(M − ω′)2 − a2 −Q2 − 1
2Q2]

, (16)

is the Hawking temperature of the event horizon after the particle emission. So from Eq. (15), we can easily find the
differential form of the first law of the black hole thermodynamics

dM ′

T ′+
−

Ω′+dJ ′

T ′+
= dS′ . (17)

Obviously, Parikh–Wilczek’s semi-classical tunneling formalism is so successfully that it satisfies the first law of the
black hole thermodynamics, and meanwhile proves that the factual spectrum is not precisely thermal and the tunneling
rate is related to Bekenstein–Hawking entropy, but is consistent with the underlying unitary theory.

Although Parikh and Wilczek treated Hawking radiation as a tunneling process and give a semi-classical but the first
explicit calculation about the information conservation, the framework, which satisfies the first law of the black hole
thermodynamics and consists with an underlying unitary theory, is only suitable for the reversible process and proves
the information conservation. Equation (17) is the differential form of the first law of the black hole thermodynamics,
which is combined with the energy conservation law dM − ΩdJ = dQh (where Qh is the heat quantity) and the
second law of the black hole thermodynamics dS = dQh/T (where S is the entropy of the black hole). The equation
of energy conservation is suitable for the reversible or the irreversible process, but the second law of the black hole
thermodynamics dS = dQh/T is only reliable for the reversible process. But in fact, the existence of the negative heat
capacity, an evaporating black hole is a highly unstable system, and the thermal equilibrium between the black hole
and the outside is unstable, there will be difference in temperature, so the process is irreversible, and for the moment
the second law of the black hole thermodynamics should be dS > dQh/T . Thus the underlying unitary theory is not
satisfied here, and therefore the information loss is possible during the evaporation, and the Parikh–Wilczek’s tunneling
framework cannot prove the information conservation.

For another, the preceding study is still a semi-classical analysis, which means that the radiation should be treated
as point particles. Such an approximation can only be valid in the low energy regime. If we are to properly address
the information loss problem, then a better understanding of physics at the Planck scale is a necessary prerequisite,
especially that of the last stages of Hawking evaporation.
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