
European Journal of Physics
     

PAPER

Dynamical interactions between two uniformly magnetized spheres
To cite this article: Boyd F Edwards and John M Edwards 2017 Eur. J. Phys. 38 015205

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is© .

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for
reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 18.190.217.134 on 03/05/2024 at 23:43

https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/0143-0807/38/1/015205


Dynamical interactions between two uniformly magnetized spheres

Boyd F. Edwards
Department of Physics

Utah State University

Logan, UT 84322

John M. Edwards
Department of Informatics and Computer Science

Idaho State University

Pocatello, ID 83209

(Dated: September 5, 2016)

Studies of the two-dimensional motion of a magnet sphere in the presence of a second, fixed sphere
provide a convenient venue for exploring magnet-magnet interactions, inertia, friction, and rich
nonlinear dynamical behavior. These studies exploit the equivalence of these magnetic interactions
to the interactions between two equivalent point dipoles. We show that magnet-magnet friction plays
a role when magnet spheres are in contact, table friction plays a role at large sphere separations,
and eddy currents are always negligible. Web-based simulation and visualization software, called
MagPhyx, is provided for education, exploration, and discovery.

I. INTRODUCTION

Small neodymium magnet spheres are used both in and
out of the classroom to teach principles of mathemat-
ics, physics, chemistry, biology, and engineering [1, 2].
They offer engaging hands-on exposure to principles of
magnetism and are particularly useful in studying lattice
structures, where they offer greater versatility than stan-
dard ball-and-stick models because they can connect at a
continuous range of angles. They have spawned a learn-
ing community dedicated to sharing photos and tutori-
als of magnetic sculptures, some made from thousands
of magnets, including models of molecules, fractals, and
Platonic solids [3]. YouTube magnet sphere videos have
attracted over a hundred million views [4].

A recent paper presents simple pedagogical arguments
that confirm that the force between two uniformly mag-
netized spheres is identical to the force between two
equivalent point magnetic dipoles, and confirms the same
equivalence for the torque [5].

In this paper, we exploit this equivalence to investi-
gate the dynamical interactions between two uniformly
magnetized spheres, both with and without friction. We
present tools intended to help students develop a better
understanding of the forces and torques between mag-
nets, and of their intimate relationship with the energy
of interaction. These tools include instructive figures and
discussions, and a web-based simulation tool called Mag-

Phyx that enables students to animate the 2D motion of
a uniformly magnetized sphere in response to the forces
and torques produced by another sphere that is fixed in
space. Explicit visualization of the magnetic field, force,
torque, velocity, and angular velocity of the free sphere
enables students to deepen their understanding of the
role of inertia in magnet-magnet interactions. We have

fully validated this software to ensure that it matches the
dynamical equations of motion, and offer this simulation
freely to the physics community [6].

This software fills a need. Online forums discuss the
need for physically correct simulations of magnet-magnet
interactions and lament the lack of closed form solu-
tions for the forces between magnets [7–9]. The two-
sphere problem is a good place to start with such simula-
tions, thanks to the mathematical simplicity arising from
the point-sphere equivalence. Commercial magnetic field
mapping programs do not include simulations of magnet-
magnet interactions [10], nor does the PhET suite of in-
teractive physics simulation software [11]. As seen below,
MagPhyx is a valuable exploration tool as well, revealing
rich nonlinear behavior that will be the subject of future
investigations.

The study of the motion of charged particles in a mag-
netic field in introductory physics courses can leave stu-
dents with the false impression that magnetic fields do
no work. It is true that magnetic fields do no work on
charged particles. But magnetic fields do work on mag-
netic dipoles, translating and rotating them in fascinat-
ing ways, as discussed below.

One surprising property of small neodymium magnet
spheres is how they generally find a way to attract each
other. Placed in a repulsive configuration that might
seem to lead to separation of two or more magnets, the
magnets tend to twist and move until they attract and
are drawn together. In years of informal experience with
Zen Magnets (one brand of 5-mm diameter neodymium
magnet spheres [12, 13]), we do not recall observing an
initial configuration whose magnetic repulsion led even-
tually to separation of two or more magnets. We investi-
gate non-conservative forces as possible mechanisms for
this eventual attraction.
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FIG. 1. Diagram showing two uniformly magnetized spheres
with positions r1 and r2, radii a1 and a2, magnetizations M1

and M2, and paired non-central magnetic forces F12 and F21.
Shown also are an arbitrary position vector r and the relative
position vectors r − r1, r − r2, and r12 = r2 − r1. The same
diagram applies for the forces between two point dipoles if
spheres M1 and M2 are replaced by equivalent point dipoles
m1 and m2 at the same locations.

In the sections that follow, we review the magnetic
interactions between two uniformly magnetized spheres
(Sec. II), illustrate these interactions in a 2D geometry
with one sphere fixed at the origin and the other free
to move in a plane (Sec. III), consider non-conservative
forces (Sec. IV), write dimensionless variables to sim-
plify numerical implementation (Sec. V), consider spe-
cial cases to evaluate the role of non-conservative forces
(Sec. VI), introduce and validate MagPhyx software
by comparing its predictions for these special cases
(Sec. VII), and summarize (Sec. VIII).

II. MAGNETIC INTERACTIONS

We here review the magnetic interactions between two
uniformly magnetized spheres with arbitrary sizes, posi-
tions, magnetizations, and orientations [5]. Sphere i has
position vector ri, radius ai, magnetizationMi, and total
magnetic dipole moment

mi =
4

3
πa3iMi, (1)

where i = 1, 2 (Fig. 1).
Outside of sphere i (for |r−ri| > ai), its magnetic field

is given by [14, 15]

Bi(r) = B(mi; r− ri), (2)

where r− ri is the position vector relative to the sphere
center, and where

B(m; r) =
µ0

4π

(

3m · r
r5

r− m

r3

)

(3)

is the field of a dipole m located at the origin, in SI units
[16, 17].
The interaction energy between sphere 2 and the mag-

netic field produced by sphere 1 is given by

U12 = −m2 ·B1(r2) (4)

=
µ0

4π

[

m1 ·m2

r123
− 3

(m1 · r12)(m2 · r12)
r125

]

, (5)

where r12 = r2 − r1 is the vector from sphere 1 to sphere
2, and B1(r2) is the field produced by sphere 1 evaluated
at the center of sphere 2.
The force of sphere 1 on sphere 2 follows as

F12 =−∇2U12 (6)

=
3µ0

4πr125

[

(m1 · r12)m2 + (m2 · r12)m1

+(m1 ·m2) r12 − 5
(m1 · r12) (m2 · r12)

r122
r12

]

. (7)

Here, ∇2 is the gradient with respect to r2. F12 is conser-
vative but not central, namely, it is not generally parallel
to the vector r12 between the dipoles (Fig. 1).
The torque of sphere 1 on sphere 2 is given by

τ12 = m2 ×B1(r2) (8)

=
µ0

4π

(

3m1 · r12
r125

m2 × r12 +
m1 ×m2

r123

)

. (9)

Energy considerations assist in the understanding of
the forces and torques on uniformly magnetized spheres.
The force F12 = −∇2U12 acts in the direction of maxi-
mum decrease of the energy U12 = −m2 · B1(r2), that
is, F12 acts in the direction of maximum increase in
m2 · B1. In other words, F12 is in the direction of the
virtual displacement of m2 that gives the largest increase
in m2 · B1 = m2B1 cosβ, where β is the angle between
m2 and B1. Equations (5) and (7) enable us to write the
radial component of F12 in the simple form

F r
12 = r̂12 · F12 =

3U12

r12
, (10)

where r̂12 = r12/r12 is the unit vector in the direction
of r12. Because m2 and B1 are both non-negative mag-
nitudes, acute angles β < π/2 imply negative energies
U12 = −m2B1 cosβ and attractive forces (F r

12 < 0) that
increase m2 ·B1 > 0 by drawing m2 closer to m1 where
the fields are stronger. Obtuse angles β > π/2 imply
positive energies U12 = −m2B1 cosβ and repulsive forces
(F r

12 > 0) that increase m2 ·B1 < 0 by pushing m2 away
from m1 into regions with weaker fields.

III. 2D GEOMETRY

It is instructive to consider the interactions between
two identical magnet spheres whose positions and mag-
netic orientations are confined to the x-y plane. We con-
sider the forces and torques on a free sphere (sphere 2,
of radius a, mass m̃, and moment of inertia I = 2m̃a2/5
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FIG. 2. Polar coordinate system used for 2D investigations of
two spheres of the same radius. A sphere with magnetic mo-
ment m1 is held fixed at the origin with its magnetic moment
in the +x direction. A second sphere with magnetic moment
m2 oriented at angle φ is located at position r, with polar
coordinates (r, θ).

[18]) in the x-y plane arising from the fields produced
by a sphere (sphere 1, also of radius a) that is fixed at
the origin (r1 = 0), with fixed dipole moment m1 = mx̂.
We use polar coordinates (r, θ) to describe the position
r = r2 = r12 = r cos θ x̂+r sin θ ŷ of the center of the free
sphere, and angle φ to describe the angle of orientation
of its dipole moment, m2 = m cosφ x̂+m sinφ ŷ (Fig. 2).
The velocity and acceleration of the free sphere are given
by v = ṙ and a = v̇, while its angular velocity and angu-
lar acceleration are given by ω = φ̇ẑ and α = ω̇, where
the overdot denotes a time derivative.
The 2D dynamics of the free sphere is characterized

by the coordinates r, θ, and φ, and the corresponding
momenta

pr = m̃ṙ (11)

pθ = m̃r2θ̇ (12)

pφ = Iφ̇, (13)

which represent radial momentum, angular momentum,
and spin angular momentum, respectively. The kinetic
energy is

T =
m̃

2
ṙ2 +

m̃

2
r2θ̇2 +

I

2
φ̇2 (14)

=
p2r
2m̃

+
p2θ

2m̃r2
+

p2φ
2I

. (15)

Figure 3 illustrates the principles discussed in Sec. II.
It shows the dipole magnetic field B1 produced by
the fixed sphere together with the magnetic forces and
torques on the free sphere, for various positions and ori-
entations of this sphere [19]. The forces fall into five cat-
egories, which are characterized by the angle β between
m2 and B1.

1. Attractive, Central (β = 0): The force between two
spheres is attractive and central when m1 and m2

are parallel and collinear [Fig. 3(a) A, E], leading to
a stable equilibrium state with the north pole of one
magnet contacting the south pole of the other. The
force is also attractive and central whenm1 andm2

are antiparallel to each other and perpendicular to
the line through their centers [Fig. 3(e) C, G]. In
both cases, m2 is parallel to B1 (β = 0), giving
τ12 = 0 and m2 · B1 = mB1. To increase this
positive product, m1 attracts m2 into its vicinity,
where its field is stronger.

2. Attractive, Oblique (0 < β < π/2): For acute val-
ues of β, the force is attractive and non-central
[Fig. 3(a) B, D, F, and H; Fig. 3(b) A, B, E, and F;
Fig. 3(c) B, F; Fig. 3(d) B, C, F, and G]. The force
acts to increase m2 · B1 = mB1 cosβ by moving
m2 into regions where the field is stronger (larger
B1) and better aligned with m2 (smaller β, larger
cosβ). The torque also acts to increase m2 ·B1 by
rotating m2 into alignment with B1.

3. Perpendicular (β = π/2): When m2 is perpendic-
ular to B1, the force of m1 on m2 is perpendicular
to the line joining these spheres – it is neither at-
tractive nor repulsive [Fig. 3(c) A, C, E, and G].
This force acts to increase m2 · B1 by moving m2

toward a region where it is better aligned with the
field. The torque again acts to rotatem2 into align-
ment with B1.

4. Repulsive, Oblique (π/2 < β < π): For obtuse
values of β, the force is repulsive and non-central
[Fig. 3(b) C, D, G, and H; Fig. 3(c) D, H; Fig. 3(d)
A, D, E, and H; Fig. 3(e) B, D, F, and H]. The force
acts to increase the negative product m2 · B1 =
−mB1| cosβ| (that is, to bring it closer to zero) by
moving m2 into regions where the field is weaker
(smaller B1) and better aligned with m2 (β ap-
proaching π/2 from above, smaller | cosβ|). The
torque acts to increase m2 ·B1 by rotating m2 into
alignment with the local field.

5. Repulsive, Central (β = π): The force is repul-
sive and central when m1 and m2 are parallel to
each other and perpendicular to the line through
their centers [Fig. 3(a) C, G], and when m1 and
m2 are antiparallel and collinear [Fig. 3(e) A, E].
In both cases, m2 is antiparallel to B1 (β = π),
giving τ12 = 0 and m2 ·B1 = −mB1. To increase
this negative product, m1 repels m2 into regions
where the field is weaker.

These five categories are useful in characterizing the
magnetic interactions between spheres; we found our-
selves consulting Fig. 3 often as we explored these in-
teractions.
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FIG. 3. Magnetic field lines produced by a uniformly magnetized sphere of total magnetic moment m1 [Eq. (1)], at the center
of each panel, and the resulting magnetic forces and torques on a uniformly magnetized sphere of total magnetic moment m2,
at various positions and orientations, as given by Eqs. (3), (7), and (9). Shown are drawings for m2 and m1 differing by angles
0 (a), π/4 (b), π/2, (c) 3π/4 (d), and π (e). For each panel, there are eight positions of sphere 2, labeled A-H, spaced evenly
around a circle centered on sphere 1. Force vectors are shown with their lengths proportional to the force magnitude. Torques
are indicated by clockwise and counterclockwise circular arcs, with the arc length increasing with torque magnitude, and with
no arc if the torque is zero. The directions of the magnetic moments are indicated by bold arrows centered on the sphere
images.

Page 4 of 15AUTHOR SUBMITTED MANUSCRIPT - EJP-102040.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

IV. NONCONSERVATIVE FORCES

Magnets sliding across a table top or sliding against
each other experience kinetic friction forces, and elec-
trically conducting magnets moving through a magnetic
field experience eddy forces. Because these forces can
dissipate energy, they may help to explain why magnets
tend to attract rather than repel.

A. Kinetic Friction

Kinetic friction dissipates energy for objects that slide
along a surface such as a horizontal table top. The down-
ward gravitational force m̃g on a sliding magnet sphere
equals the upward normal force on it, and a table friction
force

ft = −µtm̃gv̂ (16)

on the sphere is directed opposite to its direction of mo-
tion v̂ = v/v along the table. Here, µt is the coefficient of
kinetic friction between a magnet and the table, g is the
local acceleration of gravity, and m̃ is the sphere mass.
Similarly, a table exerts a frictional torque

τt = −µ∗

t m̃gDω̂ (17)

on a magnet that is spinning on the table, where µ∗

t is
the associated coefficient of friction and D is the sphere
diameter. This torque is directed opposite to the direc-
tion ω̂ = ω/ω of the spin of the sphere, assumed to be
perpendicular to the table.
Kinetic friction can also occur between two magnet

spheres that are sliding against each other. If sphere 1 is
held fixed at the origin, such sliding can occur because
sphere 2 is rotating but not translating, because sphere 2
is translating along the surface of sphere 1 without rotat-
ing, or because sphere 2 is both translating and rotating.
The associated magnet-magnet friction force

fm = −µmFNv̂t (18)

of sphere 1 on sphere 2 is directed opposite to the tan-
gential velocity vector vt = v − aω × r̂ of sphere 2 at
its point of contact with sphere 1, where fm is applied.
Here, r̂ = r/r is a unit position vector, v̂t = vt/vt is a
unit tangential velocity vector, FN is the magnitude of
the normal force of sphere 1 on sphere 2, µm is the coeffi-
cient of kinetic friction between the two spheres, and −ar̂
is the location of the sphere-sphere contact point relative
to the center of sphere 2. Since fm is applied along the
tangent to the surface of sphere 2, it also exerts a torque

τm = −ar̂× fm (19)

on that sphere.
These kinetic friction forces are proportional to the ap-

plicable normal force, which is the force of gravity in the

case of table friction, and includes the radial component
of the magnetic force in the case of magnet-magnet fric-
tion. Given that magnetic forces between two magnets
that are in contact with each other typically exceed gravi-
tational forces on these magnets, magnet-magnet friction
dominates when magnets are in contact.

B. Eddy Currents

We also investigate eddy currents as a possible damp-
ing mechanism. An object with conductivity σ that
moves with velocity v through a static magnetic field
experiences eddy currents with current density J = σE,
where E = v×B is the motional electric field [20]. These
currents act to oppose the change in magnetic flux, and
produce an eddy force Feddy =

∫

J × B dV on the con-
ductor, where the integral is over the volume of the con-
ductor. Thus

Feddy =

∫

σ (v ×B)×B dV (20)

= −v

∫

σB2dV +

∫

σ (v ·B)B dV. (21)

The component of this force in the direction of the
velocity is given by

v̂ · Feddy = −v

∫

σB2dV + v

∫

σ (v̂ ·B)
2
dV, (22)

where v̂ = v/v is the unit vector in the direction of v.
Unless v is parallel to B or antiparallel to B throughout
the volume of the conductor, the first term dominates
and v̂ · Feddy < 0.
To make an order-of-magnitude assessment of the eddy

currents produced in sphere 2 as it moves through the
static field of sphere 1, held fixed, we ignore the second
term of Eq. (21) and replace B2 in the integrand of the
first term with its value B2

1(r) at the center of sphere 2,
yielding the simple, approximate result

Feddy = −4

3
πa3σ̄B2

1(r)v. (23)

In this approximation, the eddy force Feddy of sphere 1
on sphere 2 is antiparallel to the velocity v of sphere 2,
like the Stokes drag on a sphere moving slowly through
a viscous fluid [21], and is proportional to the square of
the local magnetic field.
Commercial neodymium magnets typically have spher-

ical nickel-copper coatings that have significantly higher
conductivities than their neodymium alloy interiors. To
account for these coatings on the eddy forces, we write
σ = σ(ρ), where ρ is the radial position from the sphere
center, and use the volume element dV = 4πρ2dρ to cal-
culate the average conductivity

σ̄ =

∫

σ(ρ)dV
∫

dV
=

3

a3

∫ a

0

σ(ρ)ρ2dρ, (24)
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which appears in Eq. (23).
Zen Magnets have neodymium-iron-boron alloy

(Nd2Fe14B) interiors of radius 2.450 mm and conductiv-
ity σa = 6.67 × 105 Ω−1 m−1 surrounded by a 0.015-
mm layer of nickel with conductivity σn = 1.43 ×
107 Ω−1 m−1, a 0.025-mm layer of copper with conduc-
tivity σc = 5.96 × 107 Ω−1 m−1, and a final 0.010-mm
layer of nickel, for a total radius of 2.500 mm [22–25].
Accordingly, Eq. (24) gives

σ̄ = 2.80× 106 Ω−1 m−1. (25)

Eddy currents also produce torques on spinning con-
ductors in the presence of a magnetic field [26–28]. A
conductor that rotates with angular velocity ω in a mag-
netic field generates eddy currents with current density
J = σE, where the motional electric field E = v×B relies
on the rotational velocity v = ω×ρ of a point in sphere 2,
located relative to the sphere center by the position vec-
tor ρ [29]. The force on a volume element is J × B dV ,
and the associated torque is dτ = ρ× (J×B) dV , so the
total torque on the sphere is

τ eddy =

∫

ρ× (J×B) dV. (26)

This can be rewritten as

τ eddy = −ω

∫

σB2ρ2 dV +

∫

σ
[

(ω × ρ) ·B
]

ρ×B dV.

(27)
The component of this torque in the direction of the an-
gular velocity is

ω̂ ·τ eddy = −ω

∫

σρ2B2dV +ω

∫

σ
[

(ω̂ × ρ) ·B
]2

dV, (28)

where ω̂ = ω/ω is the unit vector in the direction of ω.
As before, the first term dominates, we ignore the sec-

ond term of Eq. (27), and we replace B2 in the integrand
of the first term with its value B2

1(r) at the center of
sphere 2, giving the approximate result

τ eddy = −4

5
πa5σ∗B2

1(r)ω, (29)

where

σ∗ =

∫

σ(ρ)ρ2dV
∫

ρ2dV
=

5

a5

∫ a

0

σ(ρ)ρ4dr (30)

is the associated weighted average conductivity. In this
approximation, the eddy torque is antiparallel to the an-
gular velocity vector and is proportional to the square
of the local magnetic field. Using the Zen Magnets data
above, we obtain

σ∗ = 4.16× 106 Ω−1 m−1. (31)

In our simulations, we employ Eqs. (23) and (29) to de-
scribe the eddy force and torque on the free sphere, with
Eqs. (25) and (31) providing estimates of the associated
weighted conductivities.

C. Newtonian Formulation

To study the role of non-conservative forces on the 2D
dynamics of sphere 2, it is convenient to use Newtonian
dynamics. Applied to sphere 2 (with sphere 1 held fixed
at the origin), Newton’s second law states

F12 + ft + fm + Feddy + FN = m̃a, (32)

with terms on the left side given by Eqs. (7), (16), (18),
and (23) and a final term giving the normal force of the
fixed sphere on the free sphere. The forces fm and FN

apply only when the magnets are in contact. Newton’s
second law for rotations states

τ12 + τt + τm + τ eddy = Iα, (33)

with terms given by Eqs. (9), (17), (19), and (29).

V. DIMENSIONLESS VARIABLES

To simplify calculations, we scale length by the magnet
diameter D = 2a, force by F0 = 3µ0m

2/(2πD4), energy

and torque by F0D, time by T0 =
√

m̃D/F0, magnetic
field by F0D/m, magnetic moment by m, velocity by
D/T0, acceleration by D/T 2

0 , angular velocity by T−1
0 ,

angular acceleration by T−2
0 , radial (linear) momentum

by m̃D/T0, and orbital and spin angular momentum by
m̃D2/T0. Here, F0 is the force between two magnets
in the minimum-energy state with the north pole of one
touching the south pole of the other, and T0 is the time
scale for the magnetic force to bring two magnets to-
gether starting from rest at separations of the order of
2D. In dimensionless units, the magnet diameter and
the center-to-center distance between touching magnets
are both 1, and the magnetic moment vectors are unit
vectors.

In dimensionless variables in the 2D geometry de-
scribed in Sec. III, Eq. (3) has the dimensionless form

B1 =
1

12r3

[

(1 + 3 cos 2θ) x̂+ 3 sin 2θ ŷ
]

, (34)

which has magnitude

B1(r, θ) =
1

12r3
(10 + 6 cos 2θ)

1/2
(35)

and direction φm (measured counterclockwise from the
+x direction) given by

tanφm =
3 sin 2θ

1 + 3 cos 2θ
. (36)
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Equations (5), (15), (11)-(13), and (32) become

E = T + U (37)

U = − 1

12r3

[

cosφ+ 3 cos(φ− 2θ)
]

(38)

T =
p2r
2

+
p2θ
2r2

+ 5p2φ (39)

pr = ṙ (40)

pθ = r2θ̇ (41)

pφ = φ̇/10 (42)

dv

dt
= F12 + ft + fm + Feddy + FN, (43)

where E is the total energy, and where

F12 = − 1

4r4

[

cosφ+ 3 cos(φ− 2θ)
]

r̂+
1

2r4
sin(φ− 2θ) θ̂

(44)

ft = −γv̂ (45)

fm = −µmFNv̂t (46)

Feddy = −ηB2
1(r)v. (47)

Here, fm and FN apply only when sphere 2 is in contact
with sphere 1, that is, when r = 1, and v̂t = vt/vt follows
from the dimensionless tangential velocity vector,

vt = v − ω × r̂/2. (48)

The total energy E is conserved if the magnetic force
F12 = −∇2U12 only is included in Eq. (43); E is a de-
creasing function of time otherwise.
Equation (44) is resolved into components in the polar

directions

r̂ = cos θ x̂+ sin θ ŷ (49)

θ̂ = − sin θ x̂+ cos θ ŷ (50)

In polar coordinates,

v =
dr

dt
= ṙr̂+ rθ̇θ̂ (51)

and

a =
dv

dt
=

(

r̈ − rθ̇2
)

r̂+
1

r

d

dt

(

r2θ̇
)

θ̂ (52)

The dimensionless coefficients

γ =
2πµtm̃gD4

3µ0m2
(53)

η =
1

4
µ0σ̄m

√

3µ0

2πm̃D
(54)

respectively characterize the strength of table friction
and eddy forces. Zen Magnets near the earth’s surface
have D = 5 mm, m = 0.05 A·m2, m̃ = 0.5 g, g = 9.8
m/s2, µ0 = 4π×10−7 N/A2, and σ̄ = 2.80×106 Ω−1 m−1

[Eq. (25)] [2]. Kinetic friction coefficients generally lie be-
tween 0 and 1. In order to give a rough idea of the role
of table friction for a variety of table surfaces, we simply
take µt = 0.5. Inserting these values gives γ = 0.001 and
η = 0.02. For magnet-magnet friction, we take

µm = 0.53, (55)

pertinent to nickel on nickel [30].
Equation (33) has the dimensionless form

1

10

dω

dt
= τ12 + τt + τm + τ eddy, (56)

with

τ12 = − 1

12r3

[

sinφ+ 3 sin(φ− 2θ)
]

ẑ (57)

τt = −γ∗ω̂ (58)

τm = −r̂× fm/2 (59)

τ eddy = −η∗B2
1(r)ω, (60)

where τm applies only when sphere 2 is in contact with
sphere 1, that is, when r = 1.
The dimensionless coefficients

γ∗ =
2πµ∗

t m̃gD4

3µ0m2
(61)

η∗ =
3

80
µ0σ

∗m

√

3µ0

2πm̃D
(62)

respectively characterize the strength of table friction
and eddy torques. Inserting µ∗

t = 0.5 and σ∗ =
4.16× 106 Ω−1 m−1 from Eq. (31) gives γ∗ = 0.001 and
η∗ = 0.005.
We can now combine the considerations in this section

to cast Eqs. (43) and (56) as a system of first-order equa-
tions governing the dynamical variables r, θ, φ, pr, pθ,
and pφ,

ṙ = pr (63)

θ̇ =
pθ
r2

(64)

φ̇ = 10pφ (65)

ṗr =
p2θ
r3

+
3U

r
− f̃pr + FN (66)

ṗθ =
1

2r3
sin(φ− 2θ)− f̃pθ +

5µmFN

vt
rpφ (67)

ṗφ = − 1

12r3

[

sinφ+ 3 sin(φ− 2θ)
]

− τ̃ pφ +
µmFN

2vt
pθ

(68)

where

f̃ =
γ

v
+ ηB2

1 +
µmFN

vt
(69)

τ̃ =
γ∗

|pφ|
+ 10η∗B2

1 +
5µmFN

2vt
(70)
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are combined frictional forces and torques, and where

v =
(

p2r + p2θ/r
2
)1/2

(71)

vt =
[

p2r + (pθ − 5pφ)
2
]1/2

(72)

are the speed of sphere 2 and the tangential speed of
its point of contact with sphere 1, if applicable. The
terms involving FN are included only if the spheres are
in contact, for which r = 1, pr = 0, and

FN = −3U − p2θ (73)

is chosen to satisfy ṗr = 0 in Eq. (66). Consequently,
U < −p2θ/3 must hold lest FN < 0 and sphere 2 lose
contact with sphere 1. Equations (35) and (38) may be
used to evaluate B1 and U .
Dimensionless variables are used in all equations in

this and subsequent sections, and in all figures in the
manuscript except for Fig. 1.

VI. SPECIAL CASES

Studying pure translations and pure rotations illus-
trates simple elements of the dynamics and allows us to
investigate the role of frictional forces and torques.

A. Translation

We release sphere 2 from rest at (r, θ, φ) = (x0, 0, 0)
(Fig. 3a A) and determine the elapsed time and speed at
which it collides with sphere 1, which is held fixed at the
origin. In this case, sphere 2 experiences no torque and
moves in the −x direction with time-dependent position
x(t) and velocity vx = dx/dt < 0 obeying

dvx
dt

= − 1

x4
+ γ − η

9x6
vx, (74)

from Eq. (43). The terms on the right side give, from
left to right, the attractive magnetic force of sphere 1 on
sphere 2, the dissipative force of table friction, and the
dissipative force of eddy friction.
Equation (74) can be integrated analytically in the ab-

sence of eddy friction (η = 0). Writing

dvx
dt

=
dvx
dx

dx

dt
= vx

dvx
dx

(75)

enables us to cast Eq. (74) as

∫

vxdvx =

∫
(

γ − 1

x4

)

dx. (76)

Integrating and applying the initial conditions x(0) = x0

and vx(0) = 0 gives

vx(x) = −
[

2

3

(

1

x3
− 1

x3
0

)

+ 2γ (x− x0)

]1/2

, (77)
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1 2 3 4 5

 v

 t

  x 0

FIG. 4. Dimensionless collision speed v and elapsed time t
for a uniformly magnetized sphere that is released from rest
at initial position x0x̂, and is attracted by a second uniformly
magnetized sphere that is held fixed at the origin (Fig. 3a A).
Both spheres have the same dipole moment, each pointed in
the +x direction. For v, the solid trace and the open squares
are given respectively by Eq. (79) and MagPhyx software for
γ = 0 (no table friction), and the dashed trace and the plus
symbols are given by Eq. (79) and MagPhyx software for γ =
0.001 (table friction pertinent to Zen Magnets). For t, the
solid trace and open circles are given by Eq. (78) andMagPhyx

for γ = 0, and the dashed trace and the “×” symbols are given
by Eq. (78) and MagPhyx for γ = 0.001.

which depends on time through x = x(t). Inserting
vx = dx/dt and integrating allows us to find the time
at collision,

t = −
∫ x0

1

v−1
x (x)dx. (78)

The integral is from x = 1, where the collision occurs, to
x0 ≥ 1, the initial position of sphere 2. Equation (77)
yields the corresponding speed v = −vx at the time of
collision,

v =

[

2

3

(

1− 1

x3
0

)

+ 2γ (1− x0)

]1/2

. (79)

Figure 4 shows results for v and t as a function of x0, for
no table friction (γ = 0) and for table friction pertinent
to Zen Magnets (γ = 0.001, Sec. V). For x0 = 1, sphere
2 is initially in contact with sphere 1, and v = t = 0.
As x0 increases from 1, v increases rapidly at first and
slowly thereafter, reflecting the rapid decay of the 1/r4

magnetic force with increasing sphere separation. The
collision speed depends little on distance for large dis-
tances because the magnetic force is weak at large dis-
tances, and this force contributes little to final speed of
sphere 2. On the other hand, t increases rapidly with
increasing distance for large distances because sphere 2,
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0
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4

0

1

2

3

4

 ω

 t

φ
0

ππ/20 π/4 3π/4

FIG. 5. Dimensionless angular speed ω and elapsed time t
vs. initial angle φ0 for a uniformly magnetized sphere that
is allowed to spin freely without friction at a fixed location
x = 1 and y = 0 in response to the magnetic torque from a
second uniformly magnetized sphere that is held fixed at the
origin, with dipole moment in the +x direction. The spinning
sphere is released from rest with its dipole moment oriented at
an angle φ = φ0 with respect to the +x direction. The angular
speed ω and elapsed time t pertain to the first zero crossing of
φ. For ω, the solid trace and the squares are given respectively
by Eq. (85) and MagPhyx software. For t, the solid trace and
the circles are given by Eq. (84) and MagPhyx. The short-
dashed and chain-dashed lines give the small-amplitude limits
given by Eqs. (87) and (88), and the long-dashed line gives
the large-amplitude limit given by Eq. (89).

starting from rest, spends a lot of time traveling slowly
before reaching the regions near sphere 1 where the force
is strong. Values for t were obtained from Eq. (78) by
numerical integration with dx = 10−6.
Table friction is negligible for small x0 because there

the magnetic force overwhelms the table friction force.
The role of friction on v remains negligible for x0 ≈ 4
because at these distances, table friction simply serves
to oppose the magnetic force, which is already weak and
plays little role in the collision speed. Table friction does
play a role on the elapsed time for x0 ≈ 4, because it
reduces the already small speed of sphere 2 at these dis-
tances, where most of the time is spent.
To investigate the role of eddy friction, we use the for-

ward Euler method with dt = 0.0001 to integrate Eq. (74)
and vx = dx/dt for 1 ≤ x0 ≤ 5. For η = 0.02 pertinent
to Zen Magnets (Sec. V), eddy friction decreases v and
increases t by less than 0.1%.

B. Rotation

We now consider rotation without translation. We con-
fine sphere 2 to a fixed location on the +x axis and allow

0

0.4

0.8

1.2

1.2

1.3

1.4

1.5

1.6

0.42 0.44 0.46 0.48 0.5

 ω

 t

φ  / π
0

φ  /π
L

FIG. 6. Dimensionless angular speed ω and elapsed time t
vs. initial angle φ0 for a uniformly magnetized sphere that is
allowed to spin at a fixed location x = 1 and y = 0 in response
to the magnetic torque and the magnet-magnet friction torque
with µm = 0.53. For ω, the solid trace and the squares are
given respectively by Eq. (85) and MagPhyx. For t, the solid
trace and circles are given by Eq. (84) and MagPhyx. Also
shown is the lower limit φL given by Eq. (90).

it to spin freely about an axis through its center that
is parallel to the z axis, in response to magnetic and
frictional torques. We release it with zero initial angu-
lar velocity at an initial angle φ0 and calculate both the
time required for it to align itself with the magnetic field
(φ = 0) and its angular speed ω at that time. During
this time, ωz = dφ/dt < 0 and the sphere is subject to
the torques of Eq. (56),

1

10

dωz

dt
= − 1

3x3
sinφ+ γ∗ +

µm

2
cosφ− η∗

9x6
ωz. (80)

The terms on the right side respectively represent the
magnetic torque, the table friction torque, the magnet-
magnet friction torque (applicable only when sphere 2 is
in contact with sphere 1, and when the force between
them is attractive), and the eddy torque.

Equation (80) can be solved analytically in the absence
of the eddy torque (η∗ = 0). We insert

dωz

dt
=

dωz

dφ

dφ

dt
= ωz

dωz

dφ
(81)

into Eq. (80) and rewrite it to yield

∫

ωzdωz = 10

∫
(

− 1

3x3
sinφ+ γ∗ +

µm

2
cosφ

)

dφ.

(82)
Integrating and applying the initial conditions ωz(0) = 0
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and φ(0) = φ0 yields the angular velocity

ωz(φ) = −2
√
5

[

1

3x3
(cosφ− cosφ0) + γ∗ (φ− φ0)

+
µm

2
(sinφ− sinφ0)

]1/2

, (83)

which depends on time through φ = φ(t). Inserting ωz =
dφ/dt and integrating gives

∫

dt = −
∫ φ0

0

ω−1
z (φ)dφ. (84)

Equation (83) yields the corresponding speed ω = −ωz

at φ = 0,

ω = 2
√
5

[

1

3x3
(1− cosφ0)− γ∗φ0 −

µm

2
sinφ0

]1/2

.

(85)
For φ0 = π/2, Eq. (85) gives

ω = 2
√
5

(

1

3x3
− π

2
γ∗ − µm

2

)1/2

. (86)

We first consider the frictionless case with γ∗ = µm =
0, which oscillates indefinitely about φ = 0 with am-
plitude φ0. For x = 1, small-amplitude oscillations
(φ0 ≪ 1) yield

t =
π

2

√

3

10
(87)

and

ω =

√

10

3
φ0, (88)

while large-amplitude oscillations (φ0 → π) give t → ∞
and

ω = 2

√

10

3
. (89)

Figure 5 gives general results for x = 1 and 0 ≤ φ0 < π,
with values of t obtained from Eq. (84) by numerical
integration with dφ = 10−6.
We next consider the role of friction. For x = 1 and

values µm = 0.53, γ∗ = 0.001, and η∗ = 0.005 pertinent
to Zen Magnets (Sec. V), the magnitudes of terms in
Eqs. (80) and (86) indicate that table friction, character-
ized by γ∗, and eddy friction, characterized by η∗, alter
typical values of the force and the angular velocity by less
than 1% when sphere 2 is in contact with sphere 1. But
magnet-magnet friction, characterized by µm, is propor-
tional to the magnet force between sphere 1 and sphere 2,
and is non-negligible when these spheres are in contact.
When magnet-magnet friction is included, Eqs. (80) and
(85) are valid only for 0 ≤ φ0 ≤ π/2. For φ0 > π/2, the
radial component of the magnetic force F12 · r̂ = − cosφ

0

0.1
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0.3

0.4

0.5

0

10

20

30

ω

 t

φ
0

ππ/20 π/4 3π/4
φ
1

φ
2

FIG. 7. Dimensionless angular speed ω and elapsed time t
vs. initial angle φ0 for a uniformly magnetized sphere that
is allowed to spin at a fixed location x = 4 and y = 0 in
response to the magnetic torque and the table friction torque.
For ω, the solid trace and the squares are given respectively
by Eq. (85) and MagPhyx software for γ∗ = 0, and the dashed
trace and the diamonds are given by Eq. (85) and MagPhyx

software for γ∗ = 0.001. For t, the solid trace and the circles
are given by Eq. (84) andMagPhyx for γ∗ = 0, and the dashed
trace and the triangles are given by Eq. (84) and MagPhyx

for γ∗ = 0.001. Also shown are the limiting angles φ1 and φ2

given by Eqs. (91) and (92).

that provides the normal force for magnet-magnet kinetic
friction [Eqs. (46) and (59)] is repulsive, hence there is no
magnet-magnet friction force or torque at these angles.
Considering just magnet-magnet friction by setting

γ∗ = η∗ = 0 in Eq. (80) reveals that the magnitude
of the magnet-magnet friction torque exceeds the mag-
nitude of the magnetic torque for small angles φ <
tan−1(3µm/2) = 0.214π. For these angles, magnet-
magnet friction can stop the rotation, after which static
friction takes over and exactly balances the magnet
torque. Figure 6 shows values of ω and t for µm = 0.53
and φL < φ0 < π/2. The lower limit φL can be obtained
by setting ω = 0 and φ0 = φL in Eq. (85), giving

1− cosφL =
3µm

2
sinφL. (90)

Inserting µm = 0.53 and solving numerically gives φL =
0.428π, where ω = 0 and t has a large negative slope in
Fig. 6. For φ0 satisfying φL < φ0 < π/2, the sphere has
sufficient angular momentum to overcome small-angle
friction and reach the zero crossing at φ = 0. For
φ0 < φL, magnet-magnet friction stops the sphere be-
fore it reaches φ = 0.
We now investigate the role of friction at the larger sep-

aration x = 4, where the magnetic torque is much smaller
and magnet-magnet friction is irrelevant because the
spheres are not in contact. At this separation, Eqs. (86)
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and (80) imply that the table friction torque is of order
20% of the magnetic torque magnitude, while the eddy
torque is of relative order 7× 10−6.
Figure 7 shows the results for ω and t with and without

table friction, for µm = η∗ = 0 and x = 4. Without
table friction (γ∗ = 0), the results look similar to Fig. 5,
except that ω is smaller and t larger in Fig. 7 because
the magnetic torque is weaker.
With table friction (γ∗ = 0.001), φ0 is restricted to the

range φ1 < φ0 < φ2. The lower limit φ1 given by setting
φ0 = φ1 and ω = 0 in Eq. (85), giving

1− cosφ1 − 3x3γ∗φ1 = 0. (91)

Solving this equation numerically for x = 4 and γ∗ =
0.001 gives φ1 = 0.124π, where ω vanishes and t has a
large negative slope. For φ0 < φ1, table friction stops the
rotation before the zero crossing can be achieved.
The upper limit φ2 is given by setting φ = φ2 and

dωz/dt = 0 in Eq. (80), giving

− sinφ2 + 3x3γ∗ = 0. (92)

Solving this equation numerically for x = 4 and γ∗ =
0.001 gives φ′

2 = 0.061π and φ2 = 0.939π, supplemen-
tary angles at which the net torque is zero. Outside the
range φ′

2 < φ < φ2, the kinetic friction torque exceeds
the opposing magnetic torque on sphere 2, and static
friction succeeds in preventing any rotation of a sphere
released from rest. Here, we assume for simplicity that
the coefficient of static friction equals the coefficient of
kinetic friction. The upper value φ2 sets the upper limit
on φ0 because sphere 2, released from rest at φ0 > φ2,
is unable to overcome static friction and begin rotating.
The lower value φ′

2 does not serve as the lower limit on
φ0 because it is smaller and less restrictive than the ac-
tual lower limit, φ1. Released at an angle φ0 satisfying
φ1 < φ0 < φ2, sphere 2 has sufficient angular momentum
to carry it through the zero crossing, including through
the range 0 < φ < φ′

2 where the kinetic friction torque
exceeds the magnetic torque.
In summary, magnet-magnet friction plays a role when

the spheres are in contact, table friction plays a role at
large sphere separations, and eddy currents are always
negligible.

VII. MAGPHYX SOFTWARE

We have built magnet simulation and visualization
software for education, exploration, and discovery that
integrates Eqs. (63)-(68) using fourth-order Runge-Kutta
with fixed step size, for a free sphere (sphere 2) moving in
two dimensions in response to the fields of a fixed sphere
(sphere 1). Visualization of force, velocity, torque, angu-
lar velocity, magnetic moments, and magnetic fields aid
in the understanding of magnet interactions. We make
the software freely available as an interactive, animated
web page called MagPhyx, and invite students and edu-
cators to take advantage of this learning and exploration

(a)

(b)

(c)

(d)

FIG. 8. MagPhyx screenshots from demos 3, 5, 7, and 8
(Sec. VII D).

tool [6]. MagPhyx is written in WebGL and is fully vali-
dated; its results appear as data points in Figs. 4-7, which
agree with our independent calculations to within 0.1%.
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A. Visualization and Controls

Figure 8 shows four MagPhyx screenshots that illus-
trate its capabilities and its predictions. The fixed sphere
is shown as a shaded grey disk at the center of the main
window, with the direction of its magnetic moment de-
noted by a black arrow at the center of the disk, and its
magnetic fields denoted by directed grey traces emanat-
ing from and entering the disk.

If “show path” (lower right corner of screen) is not
checked, the free sphere is shown as a disk whose color
is determined by the dimensionless potential energy
U(r, θ, φ) of Eq. (38). Negative potential energies are
denoted by a blue disk, with lower values denoted by
deeper blue colors [Fig. 8(a)]. Positive potential energies
are denoted by a red disk, with higher values denoted by
deeper red colors. The direction of the magnetic moment
of the free sphere is denoted by a black arrow atop the
disk. Also atop the disk are shown a light grey arrow in-
dicating the direction of the magnetic field at the center
of the sphere, a green arrow representing velocity, and
a green arc representing angular velocity. Shown just
outside of the disk are a gold arrow representing force
and a gold arc representing torque. To enable visualiza-
tion over a wide range of these physical quantities, we
take the length of the force vector to be proportional to
the fourth root of the force magnitude, the length of the
torque arc to be proportional to the cubed root of the
torque magnitude, and the lengths of the velocity arrow
and the angular velocity arc to be proportional to the
square roots of the magnitudes of these quantities.

If “show path” is checked, the path of the center of
the free sphere is shown as a red trace, and only outlines
of the sphere and its magnetic moment vector are shown
[Fig. 8(b-d)]. The other arrows and arcs are not shown
in order to better see this path. The “show path” check-
box may be checked and unchecked during a simulation.
Paths are saved whether or not the box is checked, so
that when it is checked, all of the previous history of the
simulation is shown.

The five control buttons on the main window are used
to zoom in, zoom out, save, reset, and play/pause the
simulation. The “save” button saves a log file with infor-
mation about events (see below).

B. Input

Input parameters are shown at the lower right corner
of the screen:

The “demo” menu gives sets of input parameters to
demonstrate various physical principles discussed in this
paper, and may be used to begin exploring the physics
of magnet-magnet interactions. Selecting one of these
demonstrations sets all of the input parameters for that
demonstration. To run a demonstration, select it from
the demo menu and press the “play” button.

Three dimensionless coordinates and three dimension-
less momenta of the free sphere constitute the dynamical
variables of the problem. They are: its radial coordinate
r ≥ 1 measured in units of the sphere diameter, its az-
imuthal position θ measured in degrees counterclockwise
from the +x axis, the orientation φ of its magnetic mo-
ment measured in degrees counterclockwise from the +x
axis (Fig. 2), its radial momentum pr = ṙ, its orbital

angular momentum pθ = r2θ̇, and its spin angular mo-
mentum pφ = φ̇/10 [Eqs. (40)-(42)]. Values for the initial
coordinates and momenta may be entered in the boxes
on the lower right corner of the screen.

Alternatively, the initial position may be specified by
clicking the mouse at the desired location of the free
sphere, or by clicking and dragging the image of the
sphere to the desired location. The initial magnetic ori-
entation of this sphere may be specified by holding down
the shift key and dragging the mouse in a circular arc
until the desired orientation is achieved.

The dimensionless friction coefficients, together with
estimates of these coefficients for Zen Magnets, are: the
table friction coefficients γ = 0.001 and γ∗ = 0.001
given by Eqs. (53) and (61), the eddy friction coefficients
η = 0.02 and η∗ = 0.005 given by Eqs. (54) and (62),
and the magnet-magnet friction coefficient µm = 0.53
given by Eq. (55). These estimates await experimental
verification.

Governing the speed and accuracy of the simulations is
the dimensionless Runge-Kutta time-step dt. For simula-
tions used to validate the code in simple cases (Figs. 4-7),
we used dt = 1 × 10−4, which gives results that are ac-
curate to 0.1%. Smaller values of dt give more accurate
results, while larger values give faster simulations.

The “collisions” menu refers to collisions of the free
sphere with the fixed sphere, and enables either elastic or
inelastic collisions. The “elastic” option gives perfectly
elastic hard-sphere collisions for which the free sphere
bounces off of the fixed sphere with T , pθ, and pφ un-
changed, and with pr → −pr, that is, with the angle of
incidence equaling the angle of reflection. The inelastic
option gives perfectly inelastic collisions for which the
free sphere loses all of its radial momentum (pr = 0) and
some of its energy after the collision, with pθ and pφ un-
changed. MagPhyx uses a binary search procedure, and
time steps that are smaller than dt, to locate collisions
precisely: if a time step causes the free sphere to overlap
with the fixed sphere, shorter and shorter time steps are
used to zoom in on the collision until a specified accuracy
is reached.

The “translate” checkbox determines whether the free
sphere is permitted to translate in response to forces. If
unchecked, the sphere will remain in place. The “rotate”
checkbox determines whether the free sphere is permitted
to rotate in response to torques. If unchecked, the sphere
will not rotate. Normal operation is with “translate” and
“rotate” both checked. These checkboxes were used to
validate the code (Sec. VI).
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C. Output

To investigate nonlinear dynamical behavior and to en-
able convenient replication of behaviors discovered in the
middle of long simulations, MagPhyx logs the values of
dynamical variables at seven different event types, in-
cluding collisions (when r reaches the value r = 1 from
above), θ = 0 events, φ = 0 events, pr = 0 events (ex-
cluding collisions), pθ = 0 events, pφ = 0 events, and
β = 0 events. Here, β = φ − φm is the angle between
the magnetic moment of the free sphere and the local
magnetic field given by Eq. (36).
This log file has 12 columns: the event number n, the

event type, the time t of the event, and the corresponding
values of the dimensionless variables r, θ, φ, pr, pθ, pφ, β,
E, and ∆E, where E = T + U is the total dimensionless
energy given by Eq. (37) and, and ∆E = E − E0 is the
difference between the current energy and its initial value
E0. For long simulations without friction, small ∆E is
an indicator of numerical accuracy. For simulations with
friction, ∆E measures the extent of dissipation. Values
of these 12 quantities are also displayed in the lower left
corner of the screen.
Also shown on the upper right corner of the screen

is an event map of values of β vs. θ at collision events,
with each event represented by a small black dot on the
screen. Shown as light blue shaded regions in this event
map, and in the main window, are domain boundaries on
β and r [31].

D. Demonstrations

A sampling of dynamical behaviors and program fea-
tures may be selected from a pull-down menu in Mag-
Phyx. For each demo, the free sphere is released from
rest at a particular initial position and orientation, and
is allowed to move in response to the magnetic force and
torque of the fixed sphere. Hard-sphere elastic collisions
are used and friction is ignored except for Demo 6, which
includes perfectly inelastic collisions, table friction, and
magnet-magnet friction. The descriptions below are la-
beled (in italics) by the characteristics of the initial force
on the free sphere, according to the five force categories
discussed in Sec. III.

Demo 1: Attractive, central force with parallel collinear
moments. This initial condition gives a bound pe-
riodic orbit with the free sphere oscillating along
the x axis and colliding elastically once per period
with the fixed sphere, with the south pole of the
free sphere contacting the north pole of the fixed
sphere during each collision [Fig. 3(a) A].

Demo 2: Attractive, central force with antiparallel non-
collinear moments. This initial condition gives a
bound periodic orbit with the free sphere oscillating
along the y axis and colliding elastically once per

period with the fixed sphere. The spheres collide at
points on their magnetic equators, with the north
pole of the fixed sphere attracting the south pole
of the free sphere, and the south pole of the fixed
sphere attracting the north pole of the free sphere.
[Fig. 3(e) C].

Demo 3: Attractive, oblique force with a discontiguous

domain: “S” pattern. This initial condition gives a
bound, apparently nonperiodic orbit with the free
sphere confined to the right half plane. Although
the orbit does not appear to repeat itself over many
hundreds of collisions, the β vs. θ map shows in-
triguing “S”-shaped structure [Fig. 3(b) B].

Demo 4: Attractive, oblique force with a discontiguous

domain: zig-zag pattern. This high-speed simula-
tion shows the path of a bound, apparently non-
periodic orbit with the free sphere confined to the
right half plane. This orbit shows an intricate zig-
zag pattern in the β vs. θ map.

Demo 5: Attractive, oblique force with a contiguous do-
main. This high-speed simulation shows the path
of a bound, apparently nonperiodic orbit with the
free sphere confined to the right half plane for hun-
dreds of events, then moving to the left half plane.
This orbit fills in much of the domain in the β vs. θ
map.

Demo 6: Attractive, oblique force with friction and in-
elastic collisions. This simulation has a domain
that is contiguous initially and shrinks slowly as
energy dissipates through table friction. When
the free sphere collides inelastically with the fixed
sphere, the energy drops abruptly to a lower value
and the domain becomes discontiguous. There-
after, the domain shrinks slowly as energy dis-
sipates through magnet-magnet friction and ta-
ble friction until the free sphere settles near the
minimum-energy state, with the south pole of
the free sphere near the north pole of the fixed
sphere. Magnet-magnet friction prevents the free
sphere from actually reaching this state [Sec. VI B,
Fig. 3(a) B].

Demo 7: Perpendicular force at the infinite domain
threshold. This high-speed simulation shows the
path of a chaotic orbit with energy E = 0, the
threshold between bound and unbound orbits. The
free sphere takes long excursions from the fixed
sphere, but always returns because it lacks the en-
ergy to escape fully from the fixed sphere. To en-
able viewing of the free sphere during its long excur-
sions, the simulation is shown zoomed out [Fig. 3(c)
A].

Demo 8: Repulsive, oblique force. This initial condition
gives an unbounded orbit in which the free sphere
makes three collisions with the fixed sphere and
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then embarks on a long, linear journey to infinity,
never to return.

Demo 9: Repulsive, central force with antiparallel

collinear moments. In this simulation, the north
pole of the free sphere makes initial contact with
the north pole of the fixed sphere, which repels the
free sphere to infinity along the +x axis [Fig. 3(e)
A].

Demo 10: Repulsive, central force with parallel non-
collinear moments. In this simulation, a point on
the equator of the free sphere makes initial contact
with a point on the magnetic equator of the fixed
sphere. The north pole of the fixed sphere repels
the north pole of the free sphere, the south pole of
the fixed sphere repels the south pole of the free
sphere, and the free sphere travels to infinity along
the +y axis [Fig. 3(a) C].

E. Results

With its force, torque, velocity, and angular velocity
visualizations, MagPhyx is particularly well suited to il-
lustrate basic principles of inertia. A force in a particu-
lar direction does not mean that the free sphere moves
in that direction; it means that the change in its linear
momentum is in that direction [Fig. 8(a)]. Similarly, a
torque in a particular direction does not mean that the
sphere turns in that direction; it means that the change
in its angular momentum is in that direction. A torque
that acts to align m2 with B1 can eventually lead to an-
gular momentum that acts to align these vectors. But
the very angular momentum that carries m2 into align-
ment with B1 continues to rotate the sphere in the same
direction until m2 is out of alignment with B1 again,
when a torque in the opposite direction begins to slow
the rotation in an attempt to bring the sphere back into
alignment. In the absence of dissipation, such oscilla-
tions can continue indefinitely. These oscillations are an
integral part of demonstrations 4, 5, 7, and 8. (Selecting
a value of dt of about dt = 1× 10−4 is needed to observe
these oscillations in demonstrations 4, 5, and 7.) In a
similar way, forces that strive to bring the sphere into
regions where m2 is better aligned with B1 give it lin-
ear momentum that can carry the sphere beyond these
regions.

VIII. CONCLUSIONS

We exploit the equivalence of the force between point
dipoles to the force between spheres to investigate

the time-dependent interactions between two magnet
spheres, with one held fixed. We find both bound and un-
bound states, with the free sphere confined to one of two
discontiguous domains for bound states at low energies,
and with these domains merging for high-energy bound
states. We investigate three different mechanisms of en-
ergy dissipation through non-conservative forces, and de-
termine when they are relevant. We offer a magnet in-
teraction software tool called MagPhyx to the community
for use in teaching and exploration.

The 2D conservative problem has three coordinates
and three momenta: radial momentum, orbital angu-
lar momentum, and spin angular momentum. Because
none these momenta is conserved, energy may be ex-
changed between magnetic potential energy, translational
kinetic energy, and rotational kinetic energy. This ex-
change leads to rich nonlinear behavior, including both
periodic and non-periodic orbits shown in the demon-
strations above. We intend to investigate this behavior
further, by exploring the stability of fixed points and peri-
odic orbits, searching for non-trivial periodic orbits, and
characterizing bound chaotic orbits [31].

The tools presented in this paper may be used to in-
vestigate the stability of magnet configurations used in
building shapes using magnet spheres. These tools may
also be used in the classroom and teaching laboratory
to investigate the magnetic fields produced by chains of
magnets of different lengths, and the energies of symmet-
ric rings of magnets of different lengths. The point-sphere
equivalence may assist in research on arrays of nanopar-
ticles and permanent magnets, in dynamic simulations of
magnet sphere interactions, and in applications in science
education.

Experiments with real magnets could be used to refine
our friction-coefficient estimates and to test our predic-
tions of dynamical behavior. One approach is to take
high-speed videography of a magnet released from vari-
ous positions on a horizontal surface, with its poles la-
beled, in the presence of a second magnet that is held
fixed on the surface. Using magnets larger than 5 mm in
diameter might help to facilitate such measurements.
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