
European Journal of Physics
     

Interaction of a moving magnetic dipole with a
static electric field
To cite this article: S M Al-Jaber et al 1991 Eur. J. Phys. 12 268

 

View the article online for updates and enhancements.

You may also like
A unified approach to Aharonov-Bohm,
Aharonov-Casher and which-path
experiments
A Vourdas

-

Demystifying the nonlocality problem in
Aharonov–Bohm effect
Kolahal Bhattacharya

-

Abelian geometric phase for a Dirac
neutral particle in a Lorentz symmetry
violation environment
K Bakke and H Belich

-

This content was downloaded from IP address 18.118.12.222 on 23/04/2024 at 15:10

https://doi.org/10.1088/0143-0807/12/6/004
https://iopscience.iop.org/article/10.1088/0305-4470/32/29/312
https://iopscience.iop.org/article/10.1088/0305-4470/32/29/312
https://iopscience.iop.org/article/10.1088/0305-4470/32/29/312
https://iopscience.iop.org/article/10.1088/1402-4896/ac0189
https://iopscience.iop.org/article/10.1088/1402-4896/ac0189
https://iopscience.iop.org/article/10.1088/0954-3899/39/8/085001
https://iopscience.iop.org/article/10.1088/0954-3899/39/8/085001
https://iopscience.iop.org/article/10.1088/0954-3899/39/8/085001


I Interaction of a moving magnetic 

1 dipole with a static electric field 

Sami M AI-Jaber, Xingshu Zhu and Walter C Henneberger 
Department of Physics and SIU Molecular Science Program, Southern Illinois University, Carbondale, 
IL 62901-4401, USA 

Received I March 1991, in final form 20 May 1991 

Abstract. We examine the dynamics of a magnetic dipole 
in a Static electric field. Applications of interest are the 
Aharonov-Casher eff'ect and spin-orbit coupling. The 
ideal Aharonov-Casher effect i s  shown to involve a 
correlation between the moving particle and the internal 
coordinates of a voltage sourcc. A similar relation has 
been demonstrated in the Aharonov-Bohm experiment. 
We also give a simple derivation of spin-orbit coupling 
based purely on non-relativistic physics. 

1. Introduction 

Recent interest in the Aharonov-Casher effect [l] is 
the stimulus for a fresh look at the general problem of 
moving magnetic moments in static electric fields. We 
restrict our attention to two specific examples: ( I )  the 
Aharonov-Casher effect, and (2) spin-orbit coupling. 

We will show that both problems can be treated in 
a direct way, strictly within the framework of non- 
relativistic theory and without reference to hidden 
momenta. 

2. The Aharonov-Casher effect 

A few years ago, Aharonov and Casher [ I ]  showed 
that a magnetic dipole (a neutron) aligned parallel to 
a static line charge (a charged wire) will experience no 
force, hut paths in the plane perpendicular to the line 
charge passing it on opposite sides lead to a relative 
quantum phase shift. This effect has been verified 
experimentally [2,3]. The derivation has not been 
straightforward [4-61. 

The Aharonov-Casher ( A C ~  effect can be obtained 

Zusammenfssrung. Wir untersuchen die Dynamik eines 
magnetischen Dipols in einem statischen elektrischen Feld. 
Anwendungen von Interesse sind das Aharonov-Casher 
Effekt und die Spin-Bahn Kopplung. Beim idealen 
Aharonov-Casher Effekt, handelt es sich um eine 
Korrelation zwischen dem bewegenden Teilchen und den 
inneren Koordinaten einer Spannugsquelle. Eine Phnliche 
Beziehung ist bereits im Falle des Aharonav-Bohm 
ERekts nachgewiesen worden. Eine einfache Herleitung 
der Spin-Bahn Kopplung die ausschliesslich auf 
nichtrelativistische Phynik beruht wird angegeben. 

action energy is then given by 

(2) 

The force law is obtained from this velocity-dependent 
potential from the relation 

I 
U = - P .  E = - W .  E x p. 

C 

(3) 
d 
dt 

F = - ( V w U ) - V U  

where 

. a  . a  a 
av, av, av: v. = I -  fJ- i k -  

It is not difficult to  show that the momentum of the 
electromagnetic field in the rest frame of the wire is [SI 

(4) 
I 

Crld(r) = - E  x P C 

so that, in terms of P,,,, the interaction becomes 

U = U . PE&+ ( 5 )  

just as in the Aharonov-Bohm effect 191. Straight- 
forward computation then leads to  the force 

~ I ~~~ 

most directly by observing that the moving magnetic 
moment gives rise to an  electric dipole moment F =  -p.V(:u x E ) + I E  c x *  at (6) 

( I )  

in the rest system of the line charge [7]. The inter- 

O I I U X Y ~ ~ ~ I ~ ~  + 03 1o3.n 0 1 ~ 8 1  IOP ~ ~ m h i ~ ~  LM & 

in the rest frame.of the line charge. The force of 
equation (6) is that found by AC [ I ]  and by Goldhaber 
1x1. 

E~~~~~ PIIW.I sost.v 

1 p = - v x p  
C 
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The point we wish to make here is that the inter- 
action of equation (2) also may be written as 

where Q(z) is the electrostatic potential due to the 
dipole P a t  points along the z axis. If the line charge 
A is not to be redistributed along the conducting wire 
(the theory assumes that i remains constant!), the 
power source (or better, sources distributed along the 
wire) must supply an additional electric field that 
cancels the z component of the electric field of the 
neutron. The sources must therefore provide an 
energy given by the negative of equation (7). 

In quantum theory, this is a troublesome situation. 
Equation (2) shows that U has a different sign on 
different sides of the wire. This indicates a correlation 
between the position of the neutron and the state 
(higher or lower voltage output) of the power supply. 
Quantum theory dictates that the neutron may not be 
treated as an isolated particle, since it is correlated 
with the state or conditio11 of its surroundings. A 
similar situation arises in the Aharonov-Bohm effect 
[9]. The correlation between the particle's path and 
state of the voltage (in AC) or current (in AB) source 
provides physical insight into the discrepancy between 
results of AB scattering calculations [IO] and the 
recently reported results of Shapiro and Henneberger 
[ I  I ]  based on Feynman path integrals. The path inte- 
gral method is based upon the Lagrangian of the 
particle. The method is applicable to the AC and AB 

problems, while the scattering computation is not, for 
the reason given above. 

In the AC case, the Lagrangian is given by 

L =  T- U=+mv'  - -U .  E x  p. (0 1 
C 

The canonical momenta are 

(9) 
a I 

Jvk C 
Ph =- L = mv, - - ( E x  P ) ~ .  

In analogy with the AB case, one can now simply write 
down the topological phase factor (which appears in 
path integral calculations) for the AC case: 

exp(&$p x E.dr )  

This is the AC result. 

3. Spln-orbit coupllng as a non-relativistic 
effect 

The interaction energy of equation (2) has a long 
history in physics. It can be applied to the problem of 
spin-orbit coupling, if p is the electron magnetic 
moment. The interaction is the same in the rest frame 
of the moving electron as it is in the rest frame of the 
nucleus. It was used by Frenkel [I21 in 1926 in a 

derivation of Thomas precession [13]. (This is the 
precession of the electron spin in the instantaneous 
rest system of the centre of mass of the moving 
electron). Our purpose here is to demonstrate that 
spin-orbit coupling can be derived entirely in the 
framework of non-relativistic theory. One need not 
make use of either the Dirac equation or of Lorentz 
transformations. 

To first order in wlc, we may treat U as being time 
independent. The magnetic moment p is not a fixed 
vector, but dpldr depends again upon the interaction 
U and hence corrections to U due to the motion of p 
are of order vz/cz. This makes possible a comparison 
of equation (2) with the electromagnetic interaction of 
a charged particle, 

(10) 
e 
C 

U = - -U. A@). 

Comparison indicates that we may formally con- 
sider the problem as an electromagnetic one in which 
there is an effective vector potential 

which gives an effective magnetic field 
1 I 

BCs = V X AIR = - -V x ( E  x p)  = - - ( p  . V)E e e 

(W 
In  the last step of equation (12), we have omitted a 
term B:R = ( p / e ) ( V .  E ) .  I n  the absence of screening, 
such a term can affect only S states, and hence is of no 
interest for spin-orbit coupling. It is intriguing to note 
thatwriting -p'B&givesthe Danvinterm[14]npto 
a factor of the order of unity. We leave it lo the reader 
to investigate whether this is more than a mere 
coincidence. 

In the screened Coulomb case, let E(r) = r f ( r ) .  
Then 

If there is no screening, thenf(r) = q / r l ,  and 

The last expression is just q multiplied by the magnetic 
field at the origin due to a magnetic moment p at the 
point r .  

The average value of B,, experienced by the 
electron in its orbit is thus 

since a term proportional to Pcannot contribute to the 
precession (see equation (17)). 

We may now simply adopt the theory of Larmor 
precession [IS] and observe that the orbit will precess 
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with the angular frequency The Thomas precession is given by [I61 
e 1 

WL = - -Se, 2mc = -fif(r) 2mc 

The kinetic energy in the rest frame of the nucleus 
(laboratory inertial frame) is 

tmw' = fm(v' + oL x r)' z tmw" +mu' . (q x r) 

(17) 
to first order in wL. In the above, v' is the velocity of 
the electron in the rotating (and thus non-inertial) 
frame. 

The spin-orbit coupling now emerges a s  a correc- 
tion to the kinetic energy due to the Larmor pre- 
cession of the electron orbit. The essential point here 
is that the kinetic energy that is relevant to the internal 
dynamics of the atom is the kinetic energy in the 
rotating system. In the rotating frame, 
T = +mvz - mu'. (oL x r )  

z t m v 2  - m u .  (oL x r ) .  (18) 
Equation (16) then yields 

v 
T = + m w 2 - - - . @ x ( E ) .  

2c 

The effect of the Larmor precession is t o  eliminate 
the effect of the interaction t o  lowest order in mL in the 
rotating frame. In  the inertial frame it gives rise to a 
kinetic energy correction 

- 2c (20) 
v U - - - ( ( E x p ) .  

With E(r) = -PdV/dr, this can be written 

U - - - - ( ( E x ~ ) = - - ' - ( P x u )  P P d V  
2c 2c dr rn - 

04. L). I d V  
2mrc dr 

- 

This is the result obtained from the Dirac equation 

It is interesting to compare the Larmor frequency 
with the frequency of Thomas precession. The relation 
p = (e/mc)S together with equation (16) yields 

~ 4 1 .  

e I d V  
loL= -- S - -  2m2c2 r dr  

e I d V  
q=- L-- 

r d r  

so that oL and y are obtained from each other by the 
interchange LIS. The preceding treatment shows 
that spin-orhit coupling may be visualized a s  a normal 
Zeeman effect on  the electron's orbital motion due to  
the average magnetic field produced by its magnetic 
moment. 
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