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ABSTRACT

Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically
solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid
transport-diffusion method we refer to as IMC–DDMC. We explore a multigroup IMC–DDMC scheme that in
DDMC, combines frequency groups with sufficient optical thickness. We term this procedure “opacity regrouping.”
Opacity regrouping has previously been applied to IMC–DDMC calculations for problems in which the dependence
of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and
implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic
opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC–DDMC
radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC
groups and summarize the derivation of the Gentile–Fleck factor for modified IMC–DDMC. We test SuperNu
using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and
the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC–DDMC
implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare
the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the
W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their
evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of
the light curve calculated using SuperNu is ∼10% less than that calculated using PHOENIX.
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1. INTRODUCTION

Type Ia supernovae (SNe Ia) are the explosions of
carbon–oxygen (C–O) white dwarf stars. In the most widely
studied model of SNe Ia, a C–O white dwarf approaching the
Chandrasekhar mass releases energy from nuclear fusion that
exceeds the gravitational binding energy of the star, causing
the star to explode (Branch & Khokhlov 1995). The resulting
high-velocity outflow becomes ballistic in a matter of minutes,
and thereafter expands homologously. During this expansion,
gamma rays from the radioactive decay of 56Ni heat the outflow,
causing it to radiate, with a peak luminosity that can exceed the
host galaxy of the supernova.

The majority of observed SNe Ia have similar peak lumi-
nosities and spectra (Hillebrandt & Niemeyer 2000). The light
curves of most SNe Ia obey a peak luminosity-width relationship
(Phillips 1993). As a result, the light curve data for SNe Ia may
be fit to a template, enabling its peak luminosity, and therefore
its relative distance, to be determined. Consequently, SNe Ia are
important “standard candles” for measuring cosmic distances
and the expansion rate of the universe, and their use for these
purposes led to the discovery of dark energy (see, e.g., Riess
et al. 1998; Perlmutter et al. 1999).

Given the significance of SNe Ia in galaxy formation and evo-
lution (Scannapieco et al. 2008) and in nucleosynthesis, as well
as in cosmology, much research has been done to understand
how model parameters affect the observable properties of these
events; for example, the connection between explosion asymme-
try and anomalies in luminosity (Calder et al. 2004; Kromer &

Sim 2009). Other research efforts have focused on generating
methods, algorithms, and codes that can adequately treat the
physics of SNe Ia, along with other hydrodynamic and radia-
tive events in astrophysics. Mihalas & Mihalas (1984) derived
the equations of relativistic fluid flow. Castor (2004) describes
standard Lagrangian and Eulerian methods to solving hydrody-
namic problems. The FLASH code (Fryxell et al. 2000; Calder
et al. 2002) provides a means of solving the Euler equations for
compressive, reactive hydrodynamics with nuclear reactions.

Radiation transport in Type Ia SNe is a complex problem both
theoretically and practically. From the theoretical perspective,
photons may interact with millions of spectral lines in a hetero-
geneous material that has multiple ionization states (see, e.g.,
van Rossum 2012). A photon may see an optically thin environ-
ment in one location of the outflow and subsequently redshift
into resonance with a line opacity elsewhere. Such situations
provide a challenge to local thermodynamic equilibrium (LTE)
calculations and, especially, nonlocal thermodynamic equilib-
rium calculations. There is also the question of the leading-order
behavior of the radiation at different timescales in the presence
of material fluid. Lowrie et al. (2001) make the distinction be-
tween the radiation timescale and the fluid timescale as a means
of preserving correct relativistic principles in first-order comov-
ing transport.

From the practical perspective, high-fidelity Type Ia SNe
simulations are generally seen to be demanding in memory
and algorithm efficiency (Baron & Hauschildt 2007). For
an end-to-end simulation, one needs to couple a progenitor
explosion-phase hydrodynamic simulation to the beginning of
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the homologous-expansion phase, and then appropriately treat
radiation transport in the latter (Seitenzahl et al. 2013; Long
et al. 2013). Numerical simulations of the full evolution of
the supernova, regardless of the particular explosion model,
involve a large range of densities, temperatures, length scales,
timescales, and physical phenomena.

Codes can apply transport theory to the homologous-
expansion phase of Type Ia supernovae to synthesize light curves
and spectra. Broadly speaking, transport calculations may be
performed deterministically with some subset of matrix-solution
techniques or stochastically with random-number sampling. The
stochastic approach gives terms in the transport equation a prob-
abilistic interpretation; this gives rise to “particles” with sam-
pled properties that can be manipulated and tallied to solve the
transport equation. Common methods of computational trans-
port described by Lewis & Miller (1993) include: discrete ordi-
nates (Lewis & Miller 1993), integral transport (Lewis & Miller
1993), multigroup (Lewis & Miller 1993), and finite elements
(Adams 2001). The listed methods may be implemented in or in
conjunction with Monte Carlo (MC) or deterministic schemes
(Urbatsch et al. 1999); the resulting scheme might be deemed a
composite method.

Several radiation transport codes have been developed and
applied to the W7 model of Nomoto et al. (1984) and to SN Ia
models generally. Deterministic codes include PHOENIX, a code
based on the iterative, short characteristic method (Hauschildt
& Baron 1999; Baron & Hauschildt 2007; Olson & Kunasz
1987). Recently, van Rossum (2012) extended PHOENIX to be
able to calculate self-consistently the temporal evolution of
the SN Ia outflow. Hauschildt & Wehrse (1991) investigate a
discrete ordinates method that incorporates relativistic effects
to be able to treat explosive outflow. The MC codes SEDONA of
Kasen et al. (2006), the code of Lucy (2005), and the ARTIS
code of Kromer & Sim (2009) solve multi-dimensional, time-
dependent radiation transport in homologous outflow. Kasen
et al. (2006) and Kromer & Sim (2009) solve multifrequency
transport by applying the Solobev approximation (Castor 2004)
to line transport.

MC in the context of a velocity field has the favorable property
that particles (which are also referred to as packets) may be
tracked in one inertial (lab) frame and interact with the fluid
in the comoving frame. A particle may have its properties
converted to the comoving frame, updated according to the
interaction, and converted back to the lab frame if the particle
history is not discontinued. Kasen et al. (2006) applies MC
iteratively within a time step to obtain converged electron
temperatures while Kromer & Sim (2009) find the contribution
of MC iteration to be insignificant if small time steps are chosen.

Instead of treating the temperature structure iteratively or
explicitly, there exist transport methods that are made fully im-
plicit (N’Kaoua 1991; Brooks 1989) or semi-implicit (Fleck &
Cummings 1971; Carter & Forest 1973) through time discretiza-
tion of the material equation(s) and adjustment of MC interpre-
tations (Densmore & Larsen 2004). To our knowledge, these
methods have not been extensively examined for application in
the SN Ia problem.

Implicit Monte Carlo (IMC) is a stochastic method that
may be applied to solve the time-dependent, nonlinear radia-
tion transport equations (Fleck & Cummings 1971; Fleck &
Canfield 1984). Of the implicit methods referenced toward the
end of the preceding paragraph, IMC is quite possibly the sim-
plest to implement. The IMC method is made semi-implicit
through a non-dimensional quantity, referred to as the Fleck

factor, that converts a portion of absorption and reemission to
instantaneous “effective scattering.” 3 By introducing effective
scattering, the Fleck factor stabilizes large-time step4 radia-
tion transport calculations that might otherwise suffer signifi-
cant non-physical temperature fluctuations (Fleck & Cummings
1971). However, Larsen & Mercier (1987) demonstrate that
IMC may still be prone to spurious temperature fluctuation for
large time steps and derive a sufficient but not necessary con-
straint on time step size to prevent non-physical behavior, which
they call the “Maximum Principle” (MP). Recent extensions
have been made to IMC that mitigate the pathologies associated
with the MP (see, e.g., McClarren & Urbatsch 2009; Gentile
2011; McClarren & Urbatsch 2012).

IMC may suffer in performance when effective scattering
dominates over other particle processes. Performance may be
improved for calculations having significant physical or effec-
tive scattering by combining IMC with either a deterministic or
stochastic diffusion method. Stochastic methods include Ran-
dom Walk (RW; Fleck & Canfield 1984), Implicit Monte Carlo
Diffusion (IMD; Gentile 2001; Cleveland et al. 2010), and Dis-
crete Diffusion Monte Carlo (DDMC; see, e.g., Densmore et al.
2007, 2008, 2012). The methods listed have been hybridized
with IMC and applied to both gray and multifrequency or multi-
group problems. Additionally, each method may benefit IMC by
replacing small mean free path particle processes with large dif-
fusion processes. The larger diffusion steps of the RW method
developed by Fleck & Canfield (1984) place a diffusive particle
isotropically on the surface of a sphere of several mean free
paths in radius centered at the particle’s initial position. This
sphere must be bounded by the spatial grid that stores the ma-
terial properties (Fleck & Canfield 1984). Hence, histories in
diffusive domains near cell boundaries will not have sufficiently
large displacement spheres; this is found to limit the increase in
IMC efficiency (Densmore et al. 2008).

DDMC and IMD differ from RW by discretizing the diffusion
equation in space; after some algebra, the resulting terms are
given an MC interpretation (Densmore et al. 2007; Gentile
2001). The discretization implies that a DDMC particle position
within a spatial cell is ambiguous (Wollaeger et al. 2013). IMD
discretizes the diffusion equation in time while DDMC keeps
particle time continuous. Continuous particle time precludes
causal ambiguity for each particle (Densmore et al. 2007).

The hybridization of IMC and DDMC, referred to as
IMC–DDMC, has been investigated in multigroup problems
(Densmore et al. 2012; Abdikamalov et al. 2012; Wollaeger
et al. 2013). In each of the IMC–DDMC implementations, there
is a mean free path threshold that dictates whether or not a cell
and group of the spatial and wavelength grids is amenable to
diffusion theory. Densmore et al. (2012) investigate a hybrid for
monotonic opacity dependence on frequency that applies gray
DDMC in a “large” lower group below a frequency threshold and
multifrequency or multigroup IMC above the frequency thresh-
old. Abdikamalov et al. (2012) describe a general multigroup
IMC–DDMC scheme for application to neutrino transport in the
presence of a fluid; this makes the method velocity dependent.
Wollaeger et al. (2013) delineate a velocity-dependent method

3 Note that the Fleck factor is not a directly tunable parameter but follows
naturally from linearizing the thermal transport equations within each
time step.
4 Roughly speaking, time steps that result in the deposition of a radiation
energy density that is greater than or of the order of the material energy density
may cause an IMC simulation to become unstable; hence, the pathology
depends on the evolution of the radiation field (Gentile 2011).
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for photons that reconciles IMC–DDMC to high-velocity, ho-
mologous Lagrangian grids.

Here, we present some extensions to the particular
IMC–DDMC method described by Wollaeger et al. (2013). The
extensions are opacity regrouping (Densmore et al. 2012; Cleve-
land & Gentile 2014) and the Gentile–Fleck factor (Gentile
2011). We implement these features in the IMC–DDMC radia-
tion transport code, SuperNu (Wollaeger et al. 2013). We first
briefly discuss the thermal radiation transport equations. Then
we apply an asymptotic analysis to the continuous, comoving
transport equation on an interior of a frequency domain and in
a boundary layer of a frequency domain; this clarifies where the
DDMC redshift scheme is generally applicable. We summarize
standard IMC, the Gentile–Fleck factor modified IMC scheme
(Gentile 2011), and the hybrid IMC–DDMC equations. Next,
we discuss IMC–DDMC processes and a scheme for combining
groups that have DDMC into larger groups to increase computa-
tional efficiency. The groups belong to the same spatial cell and
must all have opacities that make the cell sufficiently optically
thick; this is an optimization since effective scattering for parti-
cles in either of the original groups is reduced (Densmore et al.
2012). We term this optimization “opacity regrouping.” Opacity
regrouping was first implied by Densmore et al. (2012) with a
low-frequency DDMC group adaptively adding or subtracting
adjacent IMC groups based on the mean free path threshold.
Moreover, the extension of the optimization to strongly non-
monotonic opacity was anticipated by Densmore et al. (2012).
Recently, an opacity regrouping procedure for non-contiguous
groups was implemented by Cleveland & Gentile (2014) for
Hybrid Implicit Monte Carlo Diffusion (HIMCD); in addition
to improving code performance, their approach addresses the
effects of teleportation error (Fleck & Canfield 1984) with new
method coupling criteria. In addition to the IMC–DDMC mean
free path threshold, τD , we introduce an additional mean free
path threshold, τL, that determines regroupable DDMC groups.
We investigate the effect of changing regrouping parameters on a
simple 10 group problem and the one-dimensional W7 problem
presented by Nomoto et al. (1984). Additionally, we explore the
effect of a modified Fleck factor, presented by Gentile (2011),
on mitigating erroneous fluctuations in the temperature profile
in the W7 test problem.

This article is organized as follows. In Section 2, we dis-
cuss the approximations to the radiation transport and fluid
equations assumed in our code. In Section 3, we perform an
asymptotic analysis which indicates a potential source of dis-
crepancy between full multigroup IMC with a discretized
Doppler shift correction and continuous-frequency IMC in
a multigroup material setting. In Section 4, we describe
the Gentile–Fleck factor used in some numerical results and
we summarize the IMC–DDMC equations. Additionally, we
write the equations for opacity regrouping. In Section 5, we write
the formulae used to regroup subsets of groups. In Section 6,
we describe IMC–DDMC particle processes including the opac-
ity regrouping and DDMC redshift schemes. In Section 7, we
present some calculations that highlight the advantages of the
Gentile–Fleck factor and opacity regrouping and demonstrate
the application of SuperNu to SNe Ia. In Section 7.1, combining
the techniques of Oberkampf & Roy (2010) and Gentile (2011),
we use a simple quasi-manufactured transport solution for high-
velocity outflow to verify the Gentile–Fleck factor’s ability to
mitigate spurious overheating. In Section 7.2, we demonstrate
the improved performance that using DDMC opacity regroup-
ing produces for the multigroup outflow problems presented by
Wollaeger et al. (2013). Finally, in Section 7.3, we explore the

application of IMC–DDMC with opacity regrouping and the
Gentile–Fleck factor to the W7 problem. We also investigate
the effects of group opacities that are a composite of Rosseland-
like and Planck-like opacities.

2. RADIATION AND FLUID EQUATIONS

We review the underlying theory of the IMC–DDMC scheme
tested. Following Pomraning (1973) and Castor (2004), terms
in the comoving fluid frame are subscripted with 0. The thermal
equation of radiation transport in the lab frame is (Szőke &
Brooks 2005; Abdikamalov et al. 2012)

1

c

∂Iν

∂t
+ Ω̂ · ∇Iν + σν,aIν = σν,aBν − σν,sIν

+
∫

4π

∫ ∞

0

ν

ν ′ σs(r, ν ′ → ν, Ω̂′ → Ω̂)Iν ′(r, Ω̂′, t)dν ′dΩ′,

(1)

where c is the speed of light, t is time, r is the spatial coordinate,
Ω̂ is unit direction, ν is frequency, σa,ν is absorption opacity,
σs,ν is scattering opacity, σs(r, ν ′ → ν, Ω̂′ → Ω̂) is differential
scattering opacity, Iν is the radiation intensity, and Bν is the
thermal emission source. The first-order comoving form of
Equation (1) is (Castor 2004)(

1 + Ω̂0 · U
c

)
1

c

DI0,ν0

Dt
+ Ω̂0 · ∇I0,ν0 − ν0

c
Ω̂0 · ∇U · ∇

ν0Ω̂0
I0,ν0

+
3

c
Ω̂0 · ∇U · Ω̂0I0,ν0 = σ0,ν0,a(B0,ν0 − I0,ν0 ) − σ0,ν0,sI0,ν0

+
∫

4π

∫ ∞

0

ν0

ν ′
0

σ0,s(r, ν ′
0 → ν0, Ω̂′

0 · Ω̂0)I0,ν ′
0
dν ′

0dΩ′
0, (2)

where r is an Eulerian spatial coordinate, U is the velocity
field, and we have used Castor’s notation to denote the photon
comoving momentum derivative with ∇

ν0Ω̂0
. The homologous

flow equation is (Kasen et al. 2006)

r = U t. (3)

Equation (3) allows for some simplification to material-radiation
coupling. The Lagrangian momentum and energy equations,
respectively, are

ρ
DU
Dt

+ ∇P = −g, (4)

and

Cv

DT

Dt
+ P∇ · U = −g(0), (5)

where ρ is density, P is fluid pressure, T is fluid temperature,
Cv is heat capacity per unit volume, and (g(0), g) is a radiation
energy-momentum coupling four-vector. Following the justifi-
cation provided by Kasen et al. (2006) and van Rossum (2012),
we neglect P. For the timescales and physical specifications of
interest, much more energy is in the radiation field than the ma-
terial. Incorporating Equation (3) and P = 0 into Equations (4)
and (5) yields

Cv

DT

Dt
=

∫
4π

∫ ∞

0
σ0,ν0,a(I0,ν0 − B0,ν0 )dν0dΩ0

+
∫

4π

∫ ∞

0
σ0,ν0,sI0,ν0dν0dΩ0 −

∫
4π

∫ ∞

0

∫
4π

∫ ∞

0
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× ν0

ν ′
0

σ0,s(r, ν ′
0 → ν0, Ω̂′

0 · Ω̂0)I0,ν ′
0
dν ′

0dΩ′
0dν0dΩ0

= − g
(0)
0,a − g

(0)
0,s , (6)

where g
(0)
0,a and g

(0)
0,s are absorption and scattering contribu-

tions to the comoving radiation-material coupling, respectively.
Equation (6) is similar in form to the material equation presented
by Szőke & Brooks (2005) but with a Lagrangian temporal
derivative.

3. DOPPLER SHIFT GROUP EDGE ANALYSIS

MC particles may be tracked by either discrete groups or con-
tinuous values in frequency space. In the context of relativistic
velocity, Doppler shift has an important effect on the radiation
intensity’s interaction with a group structure. When considering
how to track particles through phase space, it is informative to
consider approaches to sustaining consistency between multi-
group transport and multigroup diffusion. Specifically, IMC may
have particle frequency tracked and updated continuously in a
multigroup setting through explicit changes in reference frame.
In contrast, a DDMC particle wavelength is essentially unknown
within a group since a DDMC particle step in theory replaces
multiple corresponding IMC collision steps. Hence, each time a
continuous frequency value is needed from a DDMC particle, it
must be sampled from a subgroup distribution (Densmore et al.
2012). DDMC particles may be tracked with continuous fre-
quencies or wavelengths but the values then merely serve as a
label for the surrounding group. Consequently, multigroup IMC
may simulate the frequency derivative in Equation (2) exactly
while the DDMC scheme described by Wollaeger et al. (2013)
can not exactly simulate the frequency derivative. We perform an
asymptotic analysis for frequency-dependent, semi-relativistic,
comoving transport with the simplification of homologous out-
flow before considering a group grid that is constant in the
comoving frame along with the upwind redshift approximation
(Mihalas & Mihalas 1984). A group edge of an optically thick
region of frequency is treated in a manner analogous to spa-
tial boundary layers (Habetler & Matkowsky 1975; Malvagi &
Pomraning 1991). Incorporating Equation (3) into Equation (2),

1

c

∂I0,ν0

∂t
+ Ω̂0 · ∇I0,ν0 + σ0,ν0I0,ν0

− ν0

ct

∂I0,ν0

∂ν0
+

r
ct

· ∇I0,ν0 +
3

ct
I0,ν0 = j0,ν0 , (7)

where σ0,ν0 = σ0,ν0,a + σ0,ν0,s is isotropic, j0,ν0 is the total
source due to scattering and external sources, and the Ω̂0 · U/c
term multiplying the Lagrangian derivative has been neglected.
Following prior authors (Habetler & Matkowsky 1975; Malvagi
& Pomraning 1991), we introduce a parameter, ε � 1, and
make the following scalings: c → c/ε, σ0,ν0 → σ0,ν0/ε,
σ0,ν0,a → εσ0,ν0,a , ω = (ν − νb)/εm, q → εq, where νb is
a frequency at boundary b in frequency space and q is the
external or thermal source in j0,ν0 . The value m is a number
introduced to control the amount of variation in intensity with
respect to frequency. If ∂I0,ν0/∂ω is O(1), then ∂I0,ν0/∂ν is
O(1/εm). Incorporating the scalings into Equation (7),

ε2

c

∂I0,ν0

∂t
+ εΩ̂0 · ∇I0,ν0 + σ0,ν0I0,ν0 − ε2−m

ct
ν0

∂I0,ν0

∂ω

+
ε2

ct
r · ∇I0,ν0 +

3ε2

ct
I0,ν0 = εj0,ν0 , (8)

and assuming isotropic elastic scattering,

εj0,ν0 = ε2 q

4π
+ (σ0,ν0 − ε2σ0,ν0,a)

1

4π

∫
4π

I0,ν0dΩ′
0. (9)

For our purposes, we need only consider m ∈ {0, 1} for an
interior group solution (m = 0) and a frequency boundary
layer solution (m = 1). The intensity may then be decomposed
as I0,ν0 = Ii + Ib (Malvagi & Pomraning 1991) where Ii is
the interior frequency solution and Ib is the boundary layer
frequency solution. Moreover, all solutions may be expanded
as a power series in ε, I(i,b) = ∑∞

k=0 I
(k)
(i,b)ε

k . Additionally,
we constrain limω→∞ Ib = 0; this constraint is analogous to
the spatial boundary layer constraint of Malvagi & Pomraning
(1991) where the value ω would instead correspond to distance
away from a surface along a normal vector.

To ensure validity of the stated scalings, we demonstrate
the resulting interior solution is the diffusion approximation
to the semi-relativistic moment equations presented by Castor
(2004). The interior intensity is subsequently used along with
the boundary layer to obtain the desired result. Setting m = 0
and incorporating the power series in ε, Equation (8) may be
separated into O(ε0), O(ε1), and O(ε2) equations:

I
(0)
i = φ

(0)
i

4π
(10)

for O(ε0),

I
(1)
i = φ

(1)
i

4π
− 1

4π

Ω̂0

σ0,ν0

· ∇φ
(0)
i (11)

for O(ε1), and

I
(2)
i = 1

4π

[
q

σ0,ν0

+ φ
(2)
i − σ0,ν0,a

σ0,ν0

φ
(0)
i

+
ν0

ctσ0,ν0

∂φ
(0)
i

∂ν0
− r

ctσ0,ν0

· ∇φ
(0)
i − 3

ctσ0,ν0

φ
(0)
i

− 1

cσ0,ν0

∂φ
(0)
i

∂t
− Ω̂0

σ0,ν0

· ∇
(

φ
(1)
i − Ω̂0

σ0,ν0

· ∇φ
(0)
i

)]

(12)

for O(ε2), where Equation (10) has been used in Equation (11)
and Equations (10) and (11) have been used in Equation (12).
The values φ

(k)
i = ∫

4π
I

(m)
i dΩ0 are the ε power series coeffi-

cients for scalar intensity. Integrating Equation (12) over the
comoving solid angle,

1

c

∂φ
(0)
i

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ
(0)
i

)
+ σ0,ν0,aφ

(0)
i

− ν0

ct

∂φ
(0)
i

∂ν0
+

r
ct

· ∇φ
(0)
i +

3

ct
φ

(0)
i = q. (13)

With some manipulation (by reverting r/t to U and 3/t to ∇·U),
Equation (13) can be seen to be the diffusion approximation
to the zeroth-moment, frequency-dependent transport equation
presented by Castor (2004) under the assumptions of isotropic,
elastic scattering in the comoving frame and homologous flow.

Next, we set m = 1 and asymptotically analyze the frequency
boundary. In the domain examined, the optically thick region
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will be at higher frequency, or ω > 0. Applying the ε power
series again, the O(ε0), O(ε1), and O(ε2) equations for Ib are

I
(0)
b = φ

(0)
b

4π
(14)

for O(ε0),

I
(1)
b = 1

4π

(
φ

(1)
b − Ω̂0

σ0,ν0

· ∇φ
(0)
b +

νb

ctσ0,ν0

∂φ
(0)
b

∂ω

)
(15)

for O(ε1), and

I
(2)
b = 1

4π

[
φ

(2)
b − σ0,ν0,a

σ0,ν0

φ
(0)
b

+
νb

ctσ0,ν0

∂φ
(1)
b

∂ω
− r

ctσ0,ν0

· ∇φ
(0)
b − 3

ctσ0,ν0

φ
(0)
b

− 1

cσ0,ν0

∂φ
(0)
b

∂t
− Ω̂0

σ0,ν0

· ∇
(

φ
(1)
b − Ω̂0

σ0,ν0

· ∇φ
(0)
b

) ]

(16)

for O(ε2), where φ
(k)
b = ∫

4π
I

(m)
b dΩ0. The term ∂φ

(0)
b /∂ω = 0

from integration of Equation (16); this is an important result
for the remainder of the derivation and has been used in
Equations (15) and (16). If Equation (16) is integrated, closure
for φ

(0)
b is not obtained. In particular, ∂φ

(1)
b /∂ω persists. The

O(ε3) solution in terms of I
(1,2,3)
b is

1

c

∂I
(1)
b

∂t
+ Ω̂0 · ∇I

(2)
b + σ0,ν0I

(3)
b − νb

ct

∂I
(2)
b

∂ω

+
r
ct

· ∇I
(1)
b +

3

ct
I

(1)
b = σ0,ν0

4π
φ

(3)
b − σ0,ν0,a

4π
φ

(1)
b . (17)

To obtain an equation for φ
(1)
b , Equation (16) may be incorpo-

rated into the second and fourth terms on the left-hand side of
Equation (17) and the overall result may be integrated in Ω0.
Upon integration of Ω̂0 · ∇I

(2)
b , values in Equation (16) that

are even in Ω̂0 vanish. Upon integration of ∂I
(2)
b /∂ω, values in

Equation (16) that are odd in Ω̂0 vanish. Fortunately, any terms
with ∂φ

(0)
b /∂ω vanish as well. The result is

1

c

∂φ
(1)
b

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ
(1)
b

)
+ σ0,ν0,aφ

(1)
b

− νb

ct

∂

∂ω

(
νb

ctσ0,ν0

∂φ
(1)
b

∂ω

)
+

3

ct
φ

(1)
b

− νb

ct

∂φ
(2)
b

∂ω
+

r
ct

· ∇φ
(1)
b = 0. (18)

The first and fourth terms in Equation (18) together resemble a
diffusion equation in frequency space. The system of equations
is still not closed, but Equation (17) along with Equation (18)
imply

∂

∂ω

(
νb

ctσ0,ν0

∂φ
(1)
b

∂ω

)
= 0. (19)

Taking σ0,ν0 = σ0,νb
, Equation (19) solves to

φ
(1)
b = ctσ0,ν0

νb

A1ω + A2, (20)

where A1 and A2 are constant in ω. However, limω→∞ φ
(1)
b = 0,

so φ
(1)
b = A1 = A2 = 0. With ∂φ

(1)
b /∂ω = 0, integration of

Equation (16) yields

1

c

∂φ
(0)
b

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ
(0)
b

)
+ σ0,ν0,aφ

(0)
b

+
r
ct

· ∇φ
(0)
b +

3

ct
φ

(0)
b = 0. (21)

Equation (21) indicates the leading-order boundary layer solu-
tion has no Doppler correction term when ∂Ib/∂ν varies strongly
(or m = 1). Summing Equations (13) and (21),

1

c

∂φ
(0)
0,ν0

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ
(0)
0,ν0

)
+ σ0,ν0,aφ

(0)
0,ν0

− ν0

ct

∂φ
(0)
i

∂ν0
+

r
ct

· ∇φ
(0)
0,ν0

+
3

ct
φ

(0)
0,ν0

= q, (22)

where φ0,ν0 = φ
(0)
i + φ

(0)
b is the uniformly valid leading-order

solution. If the interior solution of the upper frequency range is
constant in frequency, then

1

c

∂φ
(0)
0,ν0

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ
(0)
0,ν0

)
+ σ0,ν0,aφ

(0)
0,ν0

(23)

+
r
ct

· ∇φ
(0)
0,ν0

+
3

ct
φ

(0)
0,ν0

= q. (23)

The Doppler correction is removed from the leading-order scalar
intensity equation in the range of frequencies ν0 > νb when
the leading-order interior solution is constant in frequency.
In a piecewise-constant multigroup setting with high-contrast
opacities, the intensity can vary significantly between groups
and might be treated as constant within groups. Integration of
Equation (23) over a group interval does not produce coupling
between groups.

We now extend the analysis to problems with an inelastic
scattering component. The extension is a model that serves
to provide theoretical evidence that group discretization may
have a nontrivial effect on problems with real or effective in-
elastic scattering (such as those solved with IMC). Densmore
(2011) asymptotically analyzes the effect of treating some ab-
sorption and re-emission as instantaneous effective scattering
while treating the remainder explicitly with a linear spatial sam-
pling distribution. We draw an analogy here between elastic
scattering, which preserves ν0, and IMC effective scattering,
which preserves r . To complete the analogy, inelastic scatter-
ing redistributes ν0 while IMC effective absorption/emission
redistributes r . We now generalize Equation (7) to include a
pedagogical model of inelastic scattering in the diffusive upper
frequency range. This inelastic scattering component is meant
to emulate effective scattering in IMC within one group. We
rewrite Equation (7) as

1

c

∂I0,ν0

∂t
+ Ω̂0 · ∇I0,ν0 + σ0,ν0I0,ν0

− ν0

ct

∂I0,ν0

∂ν0
+

r
ct

· ∇I0,ν0 +
3

ct
I0,ν0 = q

4π

+
1

4π
(1 − χ )σsφ0,ν0 +

1

4π
χσsps(ν0)φ0,g, (24)

where χ ∈ [0, 1] is an elastic/inelastic splitting parameter,
ps(ν0) is a probability density function, σs is a frequency inde-
pendent scattering opacity coefficient, and φ0,g = ∫ νt

νb
φ0,ν0dν0.
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The value νt is the upper bound of the diffusive region. Con-
straining

∫ νt

νb
ps(ν0)dν0 = 1, the integral of the total scattering

source term over frequency is σsφ0,g . Considering Equation (24)
implies∫

4π

∫ νt

νb

ν0

ν ′
0

σ0,s(r, ν ′
0 → ν0, Ω̂′

0 · Ω̂0)I0,ν ′
0
dν ′

0dΩ′
0 = 1

4π

× (1 − χ )σsφ0,ν0 +
1

4π
χσsps(ν0)φ0,g, (25)

a consistent differential scattering opacity is

σ0,s(r, ν ′
0 → ν0, Ω̂′

0 · Ω̂0) = σs

4π

×
[

(1 − χ )δ(ν0 − ν ′
0) + χ

ν ′
0

ν0
ps(ν0)

]
, (26)

where δ(ν0 − ν ′
0) is the Dirac distribution. Thus the total

scattering opacity is

σ0,ν0,s = σs

[
(1 − χ ) + χν0

∫ νt

νb

ps(ν ′
0)

ν ′
0

dν ′
0

]
. (27)

Furthermore, we define a secondary distribution,

p̃s(ν0) =
(∫ νt

νb

ps(ν ′
0)

ν ′
0

dν ′
0

)−1
ps(ν0)

ν0
, (28)

which is shown below to be the O(ε0) and O(ε1) frequency
dependence of scalar intensity. We define φi,g and φb,g as
the interior and boundary scalar intensity group integrated
contributions to the diffusive range. Applying the scalings
with m = 0, considering the interior solution, and setting
φ0,g = ∑∞

k=0 φ
(k)
0,gε

k = ∑∞
k=0(φ(k)

i,g + φ
(k)
b,g)εk , the O(ε0), O(ε1),

and O(ε2) equations for intensity are

I
(0)
i = 1

4π
p̃s(ν0)φ(0)

i,g , (29)

I
(1)
i = 1

4π
p̃s(ν0)

(
φ

(1)
i,g − Ω̂0

σ0,ν0,s

· ∇φ
(0)
i,g

)
, (30)

and

I
(2)
i = 1

4π

[
q

σ0,ν0,s

+
σs

σ0,ν0,s

[
(1 − χ )φ(2)

i + χps(ν0)φ(2)
i,g

]

− σ0,ν0,a

σ0,ν0,s

p̃s(ν0)φ(0)
i,g +

ν0φ
(0)
i,g

ctσ0,ν0,s

∂p̃s

∂ν0
− p̃s(ν0)

ctσ0,ν0,s

r · ∇φ
(0)
i,g

− 3p̃s(ν0)

ctσ0,ν0,s

φ
(0)
i,g − 1

cσ0,ν0,s

∂
(
p̃s(ν0)φ(0)

i,g

)
∂t

− p̃s(ν0)

σ0,ν0,s

Ω̂0 · ∇
(

φ
(1)
i,g − Ω̂0

σ0,ν0,s

· ∇φ
(0)
i,g

) ]
, (31)

respectively. Integration of Equation (31) gives a correct form
of the comoving diffusion equation. Additionally, Equation (31)
indicates the Doppler coupling in the diffusion region is depen-
dent on the inelastic scattering profile. The scattering profile
determines the leading interior solution. For m = 1, the O(ε0)
and O(ε1) equations are

I
(0)
b = 1

4π
p̃s(νb)φ(0)

b,g, (32)

I
(1)
b = 1

4π

(
σs

σ0,ν0,s

[
(1 − χ )φ(1)

b + χps(νb)φ(1)
b,g

]

− Ω̂0

σ0,ν0,s

· ∇φ
(0)
b +

νb

ctσ0,ν0,s

∂φ
(0)
b

∂ω

)
, (33)

respectively, where it is assumed the inelastic probability density
does not vary strongly in the boundary layer. This assumption
may be more clearly expressed as an Taylor expansion of
ps(ν) around νb at a point in the boundary layer: ps(ν) =
ps(νb)+εω∂ps(νb)/∂ν. Equation (32) is frequency independent;
so ∂φ

(0)
b /∂ω = 0. Integration of Equation (33) over the solid

angle yields
φ

(1)
b = p̃s(νb)φ(1)

b,g. (34)

Equation (34) implies ∂φ
(1)
b /∂ω = 0. Invocation of ∂φ

(2)
b /∂ω

equation was not needed to obtain Equation (34). The O(ε2)
boundary layer equation is

I
(2)
b = 1

4π

[
σs

σ0,ν0,s

(
(1 − χ )φ(2)

b + χps(νb)φ(2)
b,g

) − σ0,ν0,a

σ0,ν0,s

φ
(0)
b

− r
ctσ0,ν0,s

· ∇φ
(0)
b − 3

ctσ0,ν0,s

φ
(0)
b − 1

cσ0,ν0,s

∂φ
(0)
b

∂t

− Ω̂0

σ0,ν0,s

· ∇
(

φ
(1)
b − Ω̂0

σ0,ν0,s

· ∇φ
(0)
b

) ]
. (35)

Equation (35) gives a diffusion equation,

1

c

∂φ
(0)
b

∂t
− ∇ ·

(
1

3σ0,ν0,s

∇φ
(0)
b

)
+ σ0,ν0,aφ

(0)
b +

r
ct

· ∇φ
(0)
b

+
3

ct
φ

(0)
b = χσs

(
ps(νb)φ(2)

b,g − ps(νb)

p̃s(νb)
φ

(2)
b

)
, (36)

which has an inelastic scattering source from the O(ε2) scalar
flux. Finally, integrating Equation (35) over Ω0, differentiating
the result with respect to ω, and using ∂φ

(0)
b /∂ω = ∂φ

(1)
b /∂ω = 0

yields

∂φ
(2)
b

∂ω
= (1 − χ )

(1 − χ ) + χνb

∫ νt

νb

ps (ν ′
0)

ν ′
0

dν ′
0

∂φ
(2)
b

∂ω
. (37)

If χ = 0, scattering is entirely elastic and Equation (37) is self-
consistent. Otherwise, Equation (37) is solved with ∂φ

(2)
b /∂ω =

0 (this may be seen from differentiation of Equation (36) with
respect to ω as well). The uniformly valid diffusion equation is

1

c

∂φ
(0)
0,ν0

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ
(0)
0,ν0

)
+ σ0,ν0,aφ

(0)
0,ν0

− ν0φ
(0)
i,g

ct

∂p̃s

∂ν0
+

r
ct

· ∇φ
(0)
0,ν0

+
3

ct
φ

(0)
0,ν0

= q

+ χσs

(
ps(ν0)φ(2)

0,g − ps(ν0)

p̃s(ν0)
φ

(2)
0,ν0

)
, (38)

where we have made use of σ0,ν0 = σ0,ν0,s+ O(ε2). Photon
number density is proportional to φ0,ν0/ν0. Setting φ̃ = φ

(0)
0,ν0

/ν0
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gives an equation for number density in the comoving frame:

1

c

∂φ̃

∂t
− ∇ ·

(
1

3σ0,ν0

∇φ̃

)
+ σ0,ν0,aφ̃

− φ
(0)
i,g

ct

∂p̃s

∂ν0
+

r
ct

· ∇φ̃ +
3

ct
φ̃ = q

ν0

+ χσs

(
ps(ν0)

ν0
φ

(2)
0,g −

∫ νt

νb

ps(ν ′
0)

ν ′
0

dν ′
0φ

(2)
0,ν0

)
. (39)

Integration of Equation (39) causes the inelastic scattering term
on the right-hand side to vanish. Consequently, the Doppler
correction is again dependent on the interior solution but now
also on the scattering distribution, p̃s . If p̃s = 1/(νt − νb), then
the comoving photon number density diffusion equation has no
Doppler correction term.

The boundary layer solutions do not provide Doppler correc-
tions in the sense described by Castor (2004). We thus focus
on the Doppler correction that the interior solution provides
at the group boundary. Additionally, sufficient inelasticity in
collisions, or χ ∼ O(1) in Equation (24), makes the Doppler
correction dependent on the redistribution profile.

To obtain the upwind approximation for Doppler shift in all
groups, the transport equation may first be group integrated. We
define a frequency grid in the comoving frame with G groups:
νG+1/2 < . . . < ν1/2. Integrating Equation (7) over a comoving
group, g, yields

1

c

∂I0,g

∂t
+ Ω̂0 · ∇I0,g + σ0,gI0,g +

4

ct
I0,g

− 1

ct
(νg−1/2I0,νg−1/2 − νg+1/2I0,νg+1/2 )

+
r
ct

· ∇I0,g = j0,g, (40)

where I0,g = ∫ νg−1/2

νg+1/2
I0,ν0dν0, σ0,g = ∫ νg−1/2

νg+1/2
σ0,ν0I0,ν0dν0/

∫ νg−1/2

νg+1/2

I0,ν0dν0, and j0,g = ∫ νg−1/2

νg+1/2
j0,ν0dν0. In practice, σ0,g , might

be computed with an approximation since the exact value is
dependent on the solution. Alternatively, one could define the
opacity as piecewise constant in frequency. Applying the upwind
approximation to the edge frequency-dependent intensity terms
yields (Mihalas & Mihalas 1984)

1

c

∂I0,g

∂t
+ Ω̂0 · ∇I0,g + σ0,gI0,g +

4

ct
I0,g

+
νg+1/2

ctΔνg

I0,g +
r
ct

· ∇I0,g = j0,g +
νg−1/2

ct

I0,g−1

Δνg−1
, (41)

where Δνg = νg−1/2 − νg+1/2. The upwind approximation may
be extended trivially to find the multigroup form of Equation (2).
The fifth term on the left-hand side and the second term on the
right-hand side of Equation (41) are responsible for coupling
groups through Doppler shifting. If the group coupling terms
in Equation (41) are removed, then the result describes gray
multigroup transport in the context of homologous outflow. If
Equation (41) is solved with a gray MC transport scheme that
includes expansion effects (through frame transformations and
spatial grid expansion), then a stochastic interpretation must be
given to the Doppler shift group coupling terms. The diffusion
equation corresponding to Equation (41) may be found by
integrating Equation (41) over comoving angle and applying

Fick’s Law,

1

c

∂φ0,g

∂t
− ∇ ·

(
1

3σ0,g

∇φ0,g

)
+ σ0,gφ0,g

+
4

ct
φ0,g +

νg+1/2

ctΔνg

φ0,g +
r
ct

· ∇φ0,g = 4πj0,g

+
νg−1/2

ctΔνg−1
φ0,g−1, (42)

where opacities have been assumed piecewise constant in
frequency. The Doppler correction terms in Equations (41)
and (42) can be interpreted as “Doppler shift opacities,” where
sampling the value νg+1/2/ctΔνg would induce a particle to
transition from group g to group g + 1. If an IMC particle
samples a Doppler shift event, the particle’s frequency will be
updated to an adjacent group.

Instead of assuming a fully grouped approach, we implement
a Doppler shift scheme in IMC–DDMC that more closely
emulates continuous frequency transport in the presence of
piecewise constant opacities. We make the constraint in our code
that inelastic redistribution at the subgroup level is uniform, or

ps(ν0) = 1

Δνg

. (43)

Considering Equations (28), and (29): p̃s ∼ 1/ν ∼ φ
(0)
i , and the

Doppler correction in Equation (38) and (39) satisfies

− ν0φ
(0)
i,g

ct

∂p̃s

∂ν0
= 1

ct
φ

(0)
i . (44)

Since the equations for scalar flux in the frequency boundary
layer have no Doppler correction, we assume Ib = 0; the in-
terior radiation field thus account for all radiation in the dif-
fusive frequency region. Then the entire radiation field has the
Doppler correction. Consequently, incorporating Equation (44)
into Equation (38), neglecting higher order scattering terms, as-
suming piecewise constant opacities and integrating over the
group range yields

1

c

∂φ
(0)
0,g

∂t
− ∇ ·

(
1

3σ0,g

∇φ
(0)
0,g

)
+ σa,gφ

(0)
0,g

+
r
ct

· ∇φ
(0)
0,g +

4

ct
φ

(0)
0,g = qg. (45)

Equation (45) is Equation (42) without upwind Doppler shift
terms. We infer that the degree of elasticity (in our model χ )
is important to how DDMC groups redshift to other groups,
particularly when DDMC emulates continuous frequency trans-
port. In order to have Equation (45) represent gray diffusion for
the case of one group, we limit Doppler shift of particles to ad-
jacent groups for problems with inelastic-dominant collisions,
or χ ∼ O(1). Such a constraint should emulate IMC for prob-
lems with inelastic-dominant collisions. Assuming a non-zero
velocity field exists and inelastic opacity is large with respect
to νg+1/2/ctΔνg , IMC particles would have their frequencies re-
distributed many times before streaming to the edge of a group;
this may greatly reduce the occurrence of Doppler shift between
groups in IMC. In Section 6, we describe a DDMC Doppler
shift scheme that takes into account the degree of inelasticity in
collisions.

7
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4. MULTIGROUP IMC–DDMC EQUATIONS

Equation (6) is amenable to the semi-implicit time dif-
ference described by Fleck & Cummings (1971). Moreover,
the semi-implicit discretization procedure may be applied on
Equations (2) and (6) to obtain IMC equations for the comoving
frame. The multigroup form of Equation (6) is

Cv

DT

Dt
=

G∑
g=1

∫
4π

σa,gI0,gdΩ0 − cσP aT 4 − g
(0)
0,s , (46)

where σa,g is comoving grouped absorption opacity, σP is
comoving Planck opacity, and we have compressed the notation
of the inelastic scattering contribution since it is a material
source with a treatment described by Fleck & Cummings
(1971). Introducing a parameter β = 4aT 3/Cv and integrating
Equation (46) over a time step gives

(aT 4)n+1 − (aT 4)n =
∫ tn+1

tn

β

(
G∑

g=1

∫
4π

σa,gI0,gdΩ0

− cσP aT 4 − g
(0)
0,s

)
dt, (47)

where a value subscripted with n implies evaluation at the
beginning of a time step indexed by n. IMC is made semi-
implicit and linear within a time step by setting β = βn,
σa,g = σa,g,n, and σP = σP,n (Fleck & Cummings 1971; Fleck
& Canfield 1984). Additionally, setting ΔtnĪ0,g = ∫ tn+1

tn
I0,gdt ,

Δtn[αT 4
n+1 + (1 − α)T 4

n ] = ∫ tn+1

tn
T 4, and Δtnḡ

(0)
0,s = ∫ tn+1

tn
g

(0)
0,sdt

gives

aT 4
n+1 − aT 4

n = βnΔtn

G∑
g=1

∫
4π

σa,g,nĪ0,gdΩ0

− cΔtnβnσP,n

[
αaT 4

n+1 + (1 − α)aT 4
n

] − Δtnβnḡ
(0)
0,s , (48)

where Δtn = tn+1 − tn and α ∈ [0, 1] is the standard IMC time
centering parameter. With Equation (48), an expression may be
found for αaT 4

n+1 + (1 − α)aT 4
n that excludes Tn+1. Introducing

the Fleck factor,

fn = 1

1 + αβncΔtnσP,n

, (49)

the time centered aT 4 is (Abdikamalov et al. 2012)

αaT 4
n+1 + (1 − α)aT 4

n = 1

cσP,n

(1 − fn)

×
G∑

g=1

∫
4π

σa,g,nĪ0,gdΩ0 + fnaT 4
n − 1

cσP,n

(1 − fn)ḡ(0)
0,s .

(50)

By replacing Ī0,g with I0,g , the thermal emission source term
for a group g in the comoving transport equation may be
approximated as

σa,g,nB0,g = 1

4π
caT 4σa,g,nbg,n = (1 − fn)

σa,g,nbg

4πσP

×
G∑

g′=1

∫
4π

σa,g′,nĪ0,g′dΩ0 +
σa,g,nbg,n

4πσP,n

fnacT 4
n

− (1 − fn)
σa,g,nbg,n

4πσP,n

ḡ
(0)
0,s . (51)

Equations (47)–(51) are not the only way to semi-implicitly dis-
cretize the temperature equation in time. Moreover, in certain
circumstances it may be appropriate to apply different approxi-
mations in order to avoid problematic IMC errors. In particular,
Larsen & Mercier (1987) derive a “MP” for IMC that supplies
a sufficient but not necessary upper bound on time step sizes.
It follows from their analysis that IMC is not guaranteed to
give a physical result for any possible numerical setup. If IMC
numerical parameters are ill-conditioned, spurious temperature
oscillations and overheating may occur (McClarren & Urbatsch
2012). Gentile (2011) performs a similar discretization but lin-
early expands opacity and aT 4 from their values at n to values
at n + 1. Despite severe approximations (Gentile 2011), the re-
sult is a modified Fleck factor that adapts to the state of the
radiation field. Instead of expanding material quantities in T, an
alternative approach to obtaining the result of Gentile (2011) is
to make a change of variables in the time derivative similar to
that of Fleck & Cummings (1971). Defining

E∗ = 1

cΔtnσ̄P

∫ tn+1

tn

G∑
g=1

∫
4π

σa,gI0,gdΩ0dt, (52)

where σ̄P is time centered, Equation (46) may be stated as

1

σP β̃

D

Dt
[σP (aT 4 − E∗)] =

G∑
g=1

∫
4π

σa,gI0,gdΩ0

− cσP aT 4 − g
(0)
0,s , (53)

where

β̃ = 1

Cv

[
4aT 3 + (aT 4 − E∗)

1

σP

∂σP

∂T

]
. (54)

Evaluating σP β̃ on the left-hand side of Equation (53) at
the beginning of a time step, integrating Equation (53) with
respect to time, setting

∫ tn+1

tn
σP aT 4 = Δtn[ασP,n+1aT 4

n+1 + (1 −
α)σP,naT 4

n ], setting σ̄P = ασP,n+1 + (1 − α)σP,n, and setting
Λa,n = σP,n(aT 4

n − E∗) give

Λa,n+1 − Λa,n = cΔtnσP,nβ̃n

× ( − αΛa,n+1 − (1 − α)Λa,n − ḡ
(0)
0,s

)
. (55)

Defining the Gentile–Fleck factor as

f̃n = 1

1 + αβ̃ncΔt σP,n

, (56)

The time centered emission term is found to be

ασP,n+1aT 4
n+1 + (1 − α)σP,naT 4

n = f̃nσP,naT 4
n

− (1 − f̃n)ḡ(0)
0,s + σ̄P

(
1 − σP,n

σ̄P

f̃n

)
E∗. (57)

The next simplification is σP,n/σ̄P in the last term on the right-
hand side of Equation (57). By incorporating Equation (52) for
E∗, Equation (52) may be a substitute for the emission term
in the comoving thermal transport equation. The value f̃n may
be interpreted in the same manner as fn to control the amount
of effective scattering and absorption in IMC. Unfortunately,
the form of β̃n allows f̃n to be negative. Gentile (2011) constrains

8
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f̃n ∈ [0, 1] by setting

β̃n = 1

Cv

[
4aT 3

n + max

(
(aT 4

n − E∗)
1

σP,n

∂σP

∂T

∣∣∣∣
Tn

, 0

)]
.

(58)

Additionally, E∗ is estimated with the tallied radiation energy
density from time step n − 1. Equations (56) and (58) are the
exact same equations for the modified Fleck factor derived by
Gentile (2011). If the Planck opacity decreases with tempera-
ture and the radiation temperature is higher than the material
temperature, then β̃n > βn and f̃n < fn. From Equation (58),
it is evident that f̃n � fn and the Gentile–Fleck factor al-
ways increases effective scattering over the standard Fleck factor
(Gentile 2011). Unfortunately, the cost of more stability in IMC
temperature update is a decrease in IMC efficiency. However,
hybridizing IMC with a diffusion scheme mitigates the added
cost (Gentile 2011).

It remains to assess whether or not such a modification to
IMC is needed for problems like the W7 SN Ia described by
Nomoto et al. (1984). The gray form of the MP of Larsen &
Mercier (1987) is

Δtn

[
ac sup

TL<T <TU

{
σP

Cv

(
T 4

U − T 4

TU − T
− 4αT 3

)}]
� 1, (59)

where TL and TU are physical lower and upper bounds on
temperature. Reiterating the gray MP, Equation (59), provides a
sufficient time step limit but is not necessary (Larsen & Mercier
1987). Larsen & Mercier (1987) prove the general form of
the IMC MP by induction over the grid of time steps n. If
TL � Tn � TU and B0,ν0 (TL) � I0,ν0,n � B0,ν0 (TU ), then
TL � Tn+1 � TU and B0,ν0 (TL) � I0,ν0,n+1 � B0,ν0 (TU ) if
there is no external source of radiation or material energy. For
σP /ρ = 0.13 cm2 g−1, Cv/ρ = 2.0 × 107, TU = 100,000 K,
and TL = 10,000 K, the gray MP gives Δtn � 0.6 mas. The
nominal opacity and heat capacity are from the analytic SN Ia
analysis performed by Pinto & Eastman (2000). W7 results in
Section 7 indicate the modified Fleck factor derived by Gentile
(2011) mitigates temperature instabilities in outer spatial cells
at late time in the SN evolution.

For the remainder of this section (Section 4), we will write
down the IMC–DDMC equations with fn but note that modified
IMC–DDMC merely replaces fn with f̃n. The multigroup, semi-
relativistic IMC equations in differential form are

Cv

DT

Dt
= fn

G∑
g=1

∫
4π

σa,gI0,gdΩ0 − fnσP caT 4 − g
(0)
0,s , (60)

and (Castor 2004)(
1 + Ω̂0 · U

c

)
1

c

DI0,g

Dt
+ Ω̂0 · ∇I0,g +

4

c
Ω̂0 · ∇U · Ω̂0I0,g

− 1

c
Ω̂0 · ∇U · (I − Ω̂0Ω̂0) · ∇Ω̂0

I0,g

− 1

c
Ω̂0 · ∇U · Ω̂0(νg−1/2I0,νg−1/2 − νg+1/2I0,νg+1/2 )

+ (σs,g,n + σa,g,n)I0,g = fn

4π
σa,g,nb0,g,nacT 4

n

+
b0,g,nσa,g,n

4πσP,n

(1 − fn)
G∑

g′=1

∫
4π

σa,g′,nI0,g′dΩ′
0

+
∫ νg−1/2

νg+1/2

∫
4π

∫ ∞

0

ν0

ν ′
0

σs,n(r, ν ′
0 → ν0, Ω̂′

0 · Ω̂0)

× I0,ν ′
0
dν ′

0dΩ′
0dν0, (61)

where g
(0)
0,s has been grouped back into the material equation,

Equation (61). Following Abdikamalov et al. (2012),
Equation (61) may be integrated in Ω0 and operator split
into a transport component, a Doppler shift component,
and an advection-expansion component. Fick’s Law may be
applied to the transport component to obtain a diffusion
equation. To obtain a DDMC equation, the diffusion component
is discretized in space to obtain “leakage opacities” (Densmore
et al. 2007) which determine the likelihood of a DDMC particle
moving to an adjacent cell. The DDMC equation is hybridized
with solutions to the IMC equation in space and frequency
through an asymptotic diffusion limit boundary condition and
effective scattering, respectively (Densmore et al. 2007, 2012;
Abdikamalov et al. 2012; Wollaeger et al. 2013). The operator-
split Doppler shift and advection-expansion equations are(

∂φ0,g

∂t

)
Doppler

+
∇ · U

3
φ0,g = ∇ · U

3

× (νg−1/2φ0,νg−1/2 − νg+1/2φ0,νg+1/2 ), (62)

and (
∂φ0,g

∂t

)
Adv/Exp

+ ∇ · (Uφ0,g) = 0, (63)

respectively, where φ0,g = ∫
4π

I0,gdΩ0. Neglecting physical
inelastic scattering, on a spatial domain indexed by j ∈
{1 . . . J }, the hybrid DDMC component of the operator split
is (Densmore et al. 2012; Wollaeger et al. 2013)

1

c

∂φ0,j,g

∂t
+

( ∑
j ′

σ̃j→j ′,g + (1 − γj,g,n)(1 − fj,n)σa,j,g,n

+ fj,nσa,j,g,n

)
φ0,j,g = fj,nγj,g,nσP,j,nacT 4

j,n

+
1

Vj

∑
j ′

Vj ′
∑
g′

D

bj ′,g↔g′
D,n

bj ′,g,n

σj ′→j,g′
D
φ0,j ′,g′

D

+
1

Vj

∑
j ′

∑
g′

T

∫
Ab(j,j ′ )

∫
Ω̂0·n<0

∫
g↔g′

T

GU,b(j,j ′)(|Ω̂0 · n|)

× Pb(j,j ′)(|Ω̂0 · n|)|Ω̂0 · n|I0,ν0dν0dΩ0d
2r

+
γj,g,n(1 − fj,n)

Vj

×
∑
gT

∫
Vj

∫
4π

∫ νgT −1/2

νgT +1/2

σ0,ν0,a,j,nI0,ν0dν0dΩ0d
3r

+ γj,g,n(1 − fj,n)
∑
gD

σa,j,gD,nφ0,j,gD
, (64)

where the subscript j indicates a finite volume or spatially
piecewise-constant evaluation, σ̃j→j ′,g is the leakage opacity for
particle transition from cell j to j ′, γj,g,n = bj,g,nσa,j,g,n/σP,j,n,
(1 − γj,g,n)(1 − fj,n)σa,j,g,n is the effective scattering opacity

9
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for scattering out of group g, Vj is the volume of cell j, gD (gT )
are group indexes in cell j that are DDMC (IMC), bj ′,g↔g′

D,n is
the integral of the normalized Planck function evaluated at Tj ′

and integrated over the intersection in frequency of the current
group, g, and a diffusion group in cell j ′, g′

D . Furthermore,
Ab(j,j ′) indicates the area of spatial interface between an IMC
cell j ′ and the current cell j, n is a unit vector normal to surface
Ab(j,j ′) pointing from the interior of cell j, GU,b(j,j ′)(μ) ≈
1 + (2/c)n · U(rb, t)(0.55/μ − 1.25μ) is a particle weight
modification factor for semi-relativistic boundaries (Wollaeger
et al. 2013), and Pb(j,j ′) is the probability of IMC to DDMC
particle transition corresponding to the asymptotic diffusion
limit boundary condition (Densmore et al. 2008; Malvagi &
Pomraning 1991). The ∼ notation over the leakage opacity
indicates it may be a composite of leakage opacities for DDMC
to IMC transitions and DDMC to DDMC transitions. The form
of the leakage opacity is (Densmore et al. 2012)

σ̃j→j ′,g =
(∑

g′
D

bj,g↔g′
D,n

bj,g,n

)
σj→j ′,g

+

(∑
g′

T
bj,g↔g′

T ,n

bj,g,n

)
σb(j,j ′),g, (65)

where σj→j ′,g is the leakage opacity to DDMC groups and
σb(j,j ′),g is the leakage opacity to IMC groups in cell j ′. The
pure leakage opacities may themselves be weighted averages
of leakage opacities corresponding to (j, g) → (j ′, g′

D) and
(j, g) → (j ′, g′

T ) transitions. A resolved form of Equation (65)
is

σ̃j→j ′,g =
(∑

g′
D

bj,g↔g′
D,nσj→j ′,g→g′

D

bj,g,n

)

+

(∑
g′

T
bj,g↔g′

T ,nσb(j,j ′),g→g′
T

bj,g,n

)
, (66)

where the form of σj→j ′,g and σb(j,j ′),g may be solved for in
Equation (66) from Equation (65).

5. OPACITY REGROUPING

Opacity regrouping is an optimization of DDMC that may
be incorporated into Equation (64) without having to modify
the form of the equation. The process involves combining
DDMC frequency intervals and properties corresponding to
DDMC frequency intervals to make larger groups. This scheme
was devised by Densmore et al. (2012) as an approximation
of an adaptive threshold frequency between gray DDMC and
multigroup IMC. Since the set of groups is divided into a DDMC
set and an IMC set, the DDMC groups corresponding to a set
of frequency intervals do not have to match the set of IMC
groups corresponding to the same set of frequency intervals.
Equation (64) accommodates adaptive grouping, unaligned
groups at spatial boundaries, and opacity regrouping.

To illustrate the opacity regrouping process, we consider a
subset with subindex l ∈ {1 . . . L} of a resolved group structure.
Groups that satisfy given regrouping criteria belong to the subset
and form a group denoted ∪L

l=1gl . The union ∪L
l=1 implies a

union of the frequency intervals for each group index gl. The
regrouped absorption opacity is set to

σa,j,∪lgl ,n =
∑L

l=1 bj,gl ,nσa,j,gl ,n∑L
l=1 bj,gl ,n

. (67)

Similarly, the regrouped leakage opacity is

σ̃j→j ′,∪lgl
=

∑L
l=1 bj,gl ,nσ̃j→j ′,gl∑L

l=1 bj,gl ,n

. (68)

Incorporating Equation (66) into Equation (68) yields

σ̃j→j ′,∪lgl
=

(
L∑

l=1

bj,gl ,n

)−1

×
L∑

l=1

[ ∑
g′

D

bj,gl↔g′
D
σj→j ′,gl→g′

D

+
∑
g′

T

bj,gl↔g′
T ,nσb(j,j ′),gl→g′

T

]
. (69)

If a leakage event from ∪L
l=1gl is sampled, the probability of

leaking to an interfacing group g′
D is (σ̃j→j ′,∪lgl

∑L
l=1 bj,gl ,n)−1∑L

l=1 bj,gl↔g′
D
σj→j ′,gl→g′

D
. The regrouped term responsible for

the increase in efficiency over DDMC without regrouping is

γj,∪lgl ,n =
L∑

l=1

γj,gl ,n, (70)

which reduces overall effective scattering since a DDMC
particle in gl may no longer scatter to gl′ if these groups are
in ∪L

l=1gl . Equations (67)–(70) may be used in place of the
non-opacity-regrouped (non-OR) counterparts in Equation (64)
to solve Equation (64) for a regrouped intensity, φ0,j,∪l gl

. The
values indexed by gD in the last term on the right-hand side of
Equation (64) correspond to DDMC groups not used to construct
∪L

l=1gl .
The cost of regrouping opacities is a loss in accuracy of the

distribution of the radiation field over the groups. However, the
use of the Planck function in weighting the group quantities for
regrouping may suffice when effective scattering is a dominant
interaction.

6. IMC AND DDMC PROCESSES

We now summarize the MC implementation of the equations
from Section 4 for a homologous outflow. Following Lucy
(2005) and Abdikamalov et al. (2012), IMC particles are
streamed in a lab frame and converted to the fluid frame when
a collision is sampled. To first order in U/c, IMC particle lab
frame frequency and direction may be expressed in terms of
their comoving counterparts as Castor (2004)

ν = ν0

(
1 +

Ω̂0 · U
c

)
, (71)

and

Ω̂ = Ω̂0 + U/c

1 + Ω̂0 · U/c
. (72)

Equations (71) and (72) account for Doppler shift and aberra-
tion, respectively (Lucy 2005). An opacity σ0 transforms to a lab
frame value, σ , with σ = ν0σ0/ν (Castor 2004). Equation (71)
may be used to express opacity in terms of direction.

Despite occurring in a moving spatial grid, MC processes
may be tracked over an unchanging “velocity grid” (Kasen et al.
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2006; Wollaeger et al. 2013). The collision and census IMC
velocity distances computed tracking a particle, labeled p, with
coordinate (tp, Up) in cell j, in time step n, and group g are
(Wollaeger et al. 2013)

ucol = − ln(ξ )

tn(1 − Ω̂p · U/c)((1 − fn)σa,j,g,n + σs,j,g,n)
, (73)

ucen = c
1

tn
(tn + Δtn − tp), (74)

respectively, where ξ ∈ (0, 1] is a uniformly sampled random
variable. Equation (73) assumes effective absorption is treated
exactly during streaming. The velocity distance to the boundary
of cell j is geometry dependent. For one-dimensional spherical
geometry the velocity distance to a boundary is

ub =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|(U 2
j−1/2 − (1 − μ2

p)U 2
p )1/2 + μpUp|

ifμp < −√
1 − (Uj−1/2/Up)2

(U 2
j+1/2 − (1 − μ2

p)U 2
p )1/2 − μpUp

otherwise,

(75)

where μp = Ω̂p · Up/|Up|. A distance required for an IMC
particle to stream into another group through Doppler shift may
be incorporated. In spherical coordinates, the distance to redshift
between groups is (Wollaeger et al. 2013)

uDop = c

(
1 − νg+1/2

νp

)
− Up · Ω̂p (76)

for continuous frequency transport. Converting νp from the
lab frame to the fluid frame, ν0,p, in Equation (76) yields
uDop = c(1 − νg+1/2/ν0,p)(1 − Up · Ω̂p/c). Since ν0,p � νg+1/2

and Up · Ω̂p/c < 1, uDop � 0.
Each IMC particle has its spatial coordinate stored after

transport. Thus, the velocity coordinate of each IMC particle
must be updated before or after a transport step (Wollaeger et al.
2013). If a DDMC region advects into an IMC particle, the IMC
particle is placed on the cell surface so that the IMC–DDMC
interface condition may be applied in the subsequent transport
phase.

In DDMC, Equations (62)–(64) determine appropriate mod-
ifications to DDMC particle properties. Equation (64) has no
velocity terms and may be solved with static material DDMC
(Abdikamalov et al. 2012). Equation (62) determines the
Doppler correction to a particle energy weight and frequency.
Our Doppler shift group coupling scheme is the following.

1. For each particle, solve Equation (62) to modify particle
energy weight. For a homologous expansion, the energy
weight is multiplied by e−Δtn/tn .

2. For the particle’s current cell and group, (j, g), determine
the inelastic opacity. If only absorption, then σa,j,g,n is the
inelastic opacity.

3. Make a uniformly random sample, ξ ∈ [0, 1].
4. If ξ � (νg+1/2/ctΔνg)/((νg+1/2/ctΔνg) + σa,j,g,n), sample

comoving frequency in the group then multiply comoving
frequency by e−Δtn/tn . Otherwise, do not sample or redshift
comoving frequency.

In the above list, the first step ensures gray outflow radiation
diffusion problems are solved correctly (Mihalas & Mihalas
1984). If (j, g) only has elastic scattering, then ν0,p is updated

in the same manner as particle energy weight in IMC and
DDMC. We constrain source particle frequency to be uniform
at the subgroup level; for pure elastic scattering problems,
the fourth step above (with uniformly sampled frequency)
then emulates the cumulative progression of redshift from
elastic scattering in IMC. In the last portion of Section 3, it
is found that uniform redistribution in frequency furnishes a
grouped transport equation that can be solved without coupling
groups with Doppler corrections (see Equations (44) and (45)).
The fourth step heuristically mitigates frequency shift when
redistribution is a strong effect. In terms of Section 3, the
condition in the fourth step is similar to ξ � ε, where ε is
the asymptotic parameter that makes scattering large.

Keeping all terms associated with Doppler shift operator
split from the MC solution of Equation (64) makes opacity
regrouping simpler. Moreover, Doppler shifting for non-OR
groups in the operator split fashion described is permissible
despite use of regrouped groups in Equation (64). We ensure
DDMC particles have a definite non-OR group before and
after the MC solution of Equation (64); this is accomplished
by resampling a non-OR group after a leakage or effective
scattering event. Equation (63) is solved by advecting DDMC
particles with their velocity cells; cell expansion naturally
dilutes radiation energy density.

Following Densmore et al. (2012) and Abdikamalov et al.
(2012), DDMC is determined to be applicable to a cell-group
by a mean free path threshold, τD . Specifically, if the number
of mean free paths in a cell-group is greater than τD , then
the cell-group may apply DDMC. Typical values of τD are
around 3–6 mean free paths per some characteristic cell length
(e.g., the minimum length of a rectangular cell). For spherical
spatial grids we use the radial length, Δr = tnΔU . For a three-
dimensional Cartesian spatial grid, a conservative value might
be the minimum of three orthogonal cell lengths. In addition to
τD , we introduce a mean free path threshold, τL, for regrouping
groups. This parameter is primarily used for testing solution
quality versus degree of opacity regrouping in DDMC. Elastic
scattering is not included in computing the mean free paths to
check against τL since it does not couple DDMC groups. For
a DDMC particle, the opacity regrouping algorithm may be
delineated as the following.

1. For each particle: find current cell and group, (j, g),
and measure the inelastic collision mean free paths. For
absorption, tnΔUjσa,j,g,n is a measure of effective scattering
and effective absorption mean free paths.

2. If tnΔUjσa,j,g,n > τL, then search about g for neighboring
groups gl in cell j satisfying tnΔUjσa,j,gl ,n > τL.

3. For the set of frequencies corresponding to ∪lgl where
g ∈ ∪lgl , apply Equations (67), (69), and (70).

4. Perform a DDMC step for each particle to leak into adjacent
cell, effectively scatter out of group ∪lgl , get absorbed,
reach census.

5. If not censured, return to first step.

The material temperature field may be updated upon comple-
tion of all particle processes. The temperature is updated with
Equation (60) where fn

∑G
g=1

∫
4π

σa,gI0,g is estimated with the
tallied particle energy deposition.

We obtain luminosity and spectra in the lab frame directly
from tallying particles (Lucy 2005). To do so, either a lab frame
wavelength grid can be introduced or the comoving wavelength
grid can be repurposed as an observational grid in the lab frame.
In our scheme, particles are tracked with a lab frame wavelength
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in IMC; thus, determining the group of the IMC particle with a
comoving group structure requires a frame transformation. For
IMC, a lab frame spectral tally is unambiguous since particle
direction, Ω̂, is known. For escaping DDMC particles, we
sample direction isotropically at the surface and use the sampled
direction to determine the lab frame group of the particle.

7. NUMERICAL RESULTS

In the following calculations, we consider one-dimensional
spherical problems that test the Gentile–Fleck factor and
opacity regrouping in high-velocity outflow. Additionally,
Section 7.3 explores mixed weighting in computing group opac-
ities. In the plot legends, “HMC” denotes hybrid MC with
opacity regrouping (opacity-regrouped IMC–DDMC); “Non-
OR HMC” denotes hybrid MC without opacity regrouping (non-
OR IMC–DDMC). The labels “Standard IMC” and “Standard
DDMC” indicate IMC and DDMC solutions that do not apply
the modified Fleck factor. For all results shown, source par-
ticles and particles undergoing effective scattering have their
frequencies uniformly sampled at the subgroup level.

7.1. Quasi-manufactured Verification

Our first problem is a test of the Gentile–Fleck factor using a
quasi-manufactured solution (Oberkampf & Roy 2010) for gray
transport in a high-velocity outflow. Here, a quasi-manufactured
radiation transport solution has an assumed, or manufactured,
radiation energy density profile and, in contrast, a material tem-
perature that is solved for using the manufactured radiation
energy density and the material equation. The manufactured
source term is incorporated into the radiation transport equation
to counter redshift and preserve the constancy of the manufac-
tured radiation energy density. For the numerical regime con-
sidered, we obtain a positive definite source that is simple to
implement. The quasi-manufactured solution provides a bench-
mark demonstrating that the Gentile–Fleck factor (or modified
Fleck factor) provides better accuracy relative to the standard
Fleck factor. Specifically, the Gentile–Fleck factor decreases ef-
fective absorption, which mitigates potential violations of the
IMC MP (Larsen & Mercier 1987).

Equation (57) is implemented approximately (Gentile 2011)
in an optimized form since computing the derivative of opacity
with respect to temperature may be computationally expensive.
We use ∂σP,j,n/∂T ≈ (σP,j,n − (ρj,n/ρj,n−1)σP,j,n−1)/(Tj,n −
Tj,n−1) for n � 2, and ∂σP,j,1/∂T ≈ (σP,j ((1 + ε)Tj,1) −
σP,j,1)/(εTj,1), where ε is a user defined parameter. The source
term from the manufacturing is positive-definite and yields
a solution with non-trivial time dependence. Gentile (2001)
provides an analytic solution to a spatially independent problem
that is used as a benchmark for modified IMC in static material.
The opacity is proportional to T −5, implying that increasing
temperature reduces emission. The manufacturing and outflow
are an extension of the solution, but we find our analytic
result somewhat simpler in form. Assuming pure absorption,
integrating the comoving transport equation (Equation (2)) over
frequency, and assuming no spatial dependence yields

∂E

∂t
+

4

t
E = cσ (T )(aT 4 − E) + Sm, (77)

and

Cv

∂T

∂t
= cσ (T )(E − aT 4), (78)

where E is radiation energy density and Sm is the manufactured
source. The heat capacity Cv = ρcv and the opacity is

σ (T ) = κρ

T 5
, (79)

where cv and κ are constants. We manufacture the radiation field
as constant and solve Equation (78) to obtain a transcendental
expression for temperature and time. The manufactured source
may then be found from

Sm = 4

t
E + Cv

∂T

∂t
(80)

by adding Equations (77) and (78). It is clear from Equation (80)
that a monotonically increasing temperature over all time
ensures a positive definite source. This should be the case when
T is initialized lower than (E/a)1/4. Fortunately, a low initial
temperature and high initial radiation field is the setup that
induces the overheating pathology in standard IMC. Following
the approach of Gentile (2011), Equation (78) may be re-
expressed as (

(E/a)T

E/a − T 4
− T

)
∂T

∂t
= acκ

cv

, (81)

where, conveniently, ρ cancels through division of σ (T ) by Cv .
Equation (81) yields

1

4

√
E

a
ln

(
[
√

E/a + T 2][
√

E/a − T 2
1 ]

[
√

E/a − T 2][
√

E/a + T 2
1 ]

)

− 1

2
(T 2 − T 2

1 ) = acκ

cv

(t − t1), (82)

where t1 and T1 are the initial time and material tempera-
ture, respectively. For material and radiation properties of in-
terest, Equation (82), indicates long equilibration time between
the fields. Specifically, for an initial radiation temperature of
1.70×107 K, an initial material temperature of 1.16 × 105 K,
a specific heat capacity of 9.3 × 1017 erg K−1 g−1, and
κ = 1.42 × 1035 cm2 K5 g−1, the characteristic equilibrium time
is on the order of 1091 s. These numbers are borrowed or adapted
from Gentile (2011). If the scope of simulation time is much
smaller, it may safely be assumed that T 2, T 2

1 � (E/a)1/2 = T 2
r

for the numbers given. When the material temperature and ini-
tial temperature are much smaller than the radiation temperature,
Equation (82) may be approximated by

T t = Tr

[
6

acκ

cvT 2
r

(t − t1) +

(
T1

Tr

)6
]1/6

. (83)

From Equation (80), the time integrated manufactured radiation
source is approximately

ΔtnSm,n = 4

tn
EΔtn + Cv,n(Tn+1 − Tn), (84)

for small time steps. Equation (84) is positive definite when
Equation (83) is used (T (tn) = Tn).

We construct a problem that induces a “temperature flip”
pathology in standard IMC or DDMC. In the first time step,
standard IMC–DDMC causes over deposition; this results in the
radiation energy density and material temperature, respectively,
dropping and increasing abruptly despite the more gradual na-
ture of the actual solution. Given the strong inverse dependence
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of opacity on temperature, emission abruptly becomes low, caus-
ing the material temperature to remain too high for time spans
of interest. Gentile (2011) demonstrates this IMC pathology in
the context of static material. Our problem consists of a homol-
ogous outflow over 10 spatial cells with a maximum speed of
109 cm s−1. The material temperature is uniformly initialized
to 1.16 × 105 K and the radiation temperature is initialized
to the manufactured value of 1.70 × 107 K. Starting from an
expansion time of 2 days, we compute the MC results over
a 10th of a millisecond, or t ∈ [2, 2 + 1.1574 × 10−9] days.
We test both 100 and 1000 time steps in the time span given.
The source, Equation (84), is applied uniformly across the 10
spatial cells. The density is uniform over the spatial domain
with a total constant mass of M = 1 × 1033 g. Additionally,
κ = 1.42 × 1035 cm2 K5 g−1, cv = 9.3 × 1017 erg K−1 g−1.

Similar to findings of Gentile (2011), for this test problem
it is found that modified pure IMC is very inefficient; the
Gentile–Fleck factor increases effective scattering in IMC to
a large extent relative to the standard Fleck factor in IMC. Since
grzy DDMC does not model effective scattering explicitly, we
test the Gentile–Fleck factor in DDMC; this approach is sim-
ilar to the use of RW by Gentile (2011) to accelerate a test
calculation. In Figure 1, analytic material temperature is cal-
culated with Equation (83). The MC temperatures are obtained
by implementing the manufactured source, Equation (84), with
Equation (83) used to evaluate Tn and Tn+1. For the MC results,
the average of the temperature profiles are taken over the 10 spa-
tial cells (temperature change from cell to cell is insignificant,
however). Figure 1(a) has material and radiation temperature re-
sults of IMC and DDMC with the standard Fleck factor, and the
quasi-manufactured solution versus time. In Figure 1(a), both
the IMC and DDMC solutions suffer the “temperature flip”
error, in which material temperature becomes non-physically
higher than radiation temperature in the first time step.

Figure 1(a) has material and radiation temperature results
for DDMC with the modified Fleck factor using 100 (denoted
“Large Δt”) and 1000 time steps. Results demonstrate the
“temperature flip” error is avoided for DDMC modified with
the Gentile–Fleck factor. Increasing the number of time steps
from 100 to 1000 further improves agreement toward the
quasi-manufactured solution. We conclude that the overheating
pathology in IMC and DDMC can occur in high-velocity flows
and that the Gentile–Fleck factor mitigates the overheating
error in high-velocity outflow. However, the ability of the
Gentile–Fleck factor to correct the error is apparently limited,
since in the early time steps the material temperature becomes
too high while the radiation temperature drops too low relative
to the analytic solutions.

7.2. Ten Group Outflow Test

With 10 group, spherical Heaviside source, outflow problems
described by Wollaeger et al. (2013), we test the effect of opacity
regrouping in IMC–DDMC for simple yet highly structured
opacities. Specifically, we demonstrate the utility of regrouping
non-contiguous groups for radiation transport in a high-velocity
fluid with astrophysical properties. The approach is described
in Section 5 for LTE transport. The form of the opacities is
meant to only allow for significant code speed-up when opacities
for non-adjacent frequency intervals can be regrouped. With
opacity regrouping allowed for non-contiguous group intervals,
a DDMC particle has a probability of being in any group that
satisfies the regrouping criteria; this generalization improves
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Figure 1. For the quasi-manufactured problem described in Section 7.1, we
compare standard IMC, standard DDMC, and DDMC with the modified Fleck
factor against analytic solutions. Figure 1(a): analytic (solid), standard IMC
(dashed), and standard DDMC (dash dotted) material (T) and radiation (Tr )
temperatures for the 1000 time step case. The IMC and DDMC results agree
very closely but are both wrong. The IMC (dashed light blue) and DDMC
(dash dotted yellow) radiation temperatures are closer to the analytic material
temperature (solid blue) than the analytic radiation temperature (solid green).
Inversely, the IMC (dashed red) and DDMC (dash dotted purple) material
temperatures are closer to the analytic radiation temperature than the analytic
material temperature. This pathology indicates the standard Fleck factor is
insufficient for the time step sizes used. Figure 1(b): material (T) and radiation
(Tr ) temperatures from the analytic solution (solid), DDMC with the modified
Fleck factor and 100 time steps (dashed, “Large Δt”), and DDMC with the
modified Fleck factor and 1000 time steps (dash-dotted). The modified Fleck
factor prevents the radiation and material temperatures from “flipping” (see
Figure 1(a)). Moreover, a decrease in time step size causes further correction of
the MC solutions toward the analytic solution.

(A color version of this figure is available in the online journal.)

speed without significant detriment to accuracy relative to the
non-OR results for the numerical specifications considered.

The problems consist of a homologous outflow with a
maximum outer speed of Umax = 109 cm s−1. The time domain
of the problem is t ∈ [2, 5] days. The temperature of the
domain is uniformly initialized to 1.16 × 107 K. There is a
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uniform radiation source density of 4 × 1024/t3
n erg cm−3 s−1

for |U | ∈ [0, 0.8Umax]. The source is uniform in frequency as
well. The total mass is set to 1 × 1033 g equally divided among
spatial cells. The heat capacity is Cv = 2 × 107ρ erg cm−3 K−1.
The groups are spaced logarithmically from 1.2398 × 10−9 cm
to 1.2398×10−3 cm in wavelength with g = 1 being the lowest
wavelength group. The opacity in cm−1 (with ρ in g cm−3) is

σa,g =
{

0.13ρ, g = 2k − 1
0.13 × 10−mρ, g = 2k,

(85)

where k ∈ {1 . . . 5} and m is set to 4 or 7 (Wollaeger et al.
2013). For both values of m, we use 50 uniform spatial cells,
128 uniform time steps, 0 initial particles, and 100,000 source
particles per time step. For all the IMC–DDMC calculations
presented, τL = τD = 3 mean free paths.

Considering the m = 4 disparity, Figure 2 has radiation
energy densities and material temperatures for IMC, non-OR
IMC–DDMC, and opacity-regrouped IMC–DDMC; opacity
regrouping is not apparently a significant detriment to these
solutions. In Figure 3, the L1 error for the spectra (in erg s−1)
of non-OR and opacity-regrouped IMC–DDMC relative to IMC
increase while DDMC is dominant and subsequently decrease
as outer cells transition to IMC. The DDMC approximation
for the lab frame spectral tally becomes steadily less accurate
relative to the IMC tally as the cells become optically thin. The
influence of opacity regrouping in the m = 7 case is similar to
that of the m = 4 case. In other words, the conclusions from
Figures 2 and 3 hold for the m = 7 case.

We also incorporate a regrouping cutoff index, gc, as an exper-
imental parameter. For a group g that meets the regrouping cri-
teria, only groups in the neighborhood g ± gc with a number of
mean free paths for inelastic collisions greater than τL may have
their properties used to accelerate the diffusion of particles in g.
For t ∈ [2, 3.5], we test solution speed versus the cutoff group
displacement for different regrouping cutoffs, gc ∈ {0 . . . 10}.
Table 1 has times of IMC–DDMC for each gc value along with
the time for IMC. All times presented are for simulation on
one core. From Table 1, it is evident that regrouping only ad-
jacent groups provides no significant speed up in computation
due to the highly non-monotonic structuring of opacity ver-
sus group. However, when the regrouping cutoff parameter, gc,
is set to two, there is a significant reduction in computational
cost.

For the problems considered in this section, opacity regroup-
ing in IMC–DDMC is seen to be a large computational ad-
vantage without large cost of accuracy to important quantities
(spectra and temperatures). For different problems, the control
parameters for opacity regrouping may need to be adjusted to
maintain good agreement with IMC. To balance efficiency with
solution accuracy, adaptive regrouping parameters might be con-
sidered. However, for the calculations in the following section,
opacity regrouping is constrained to τD = τL = 3 with gc set to
the number of groups.

7.3. W7 Tests

We now turn to the W7 problem described by Nomoto et al.
(1984) and solved by several authors (see, e.g., Kasen et al. 2006;
Kromer & Sim 2009; van Rossum 2012). The W7 problem con-
sists of simulating radiative transfer in a one-dimensional model
of Type Ia supernovae. The W7 specifications include density
and mass fractions for elements up to Ni on a velocity grid. The
radial outflow speed at the outer boundary is ∼7% of the speed
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Figure 2. Radiation energy density, material temperature, and grouped spectra of
IMC (solid), non-opacity-regrouped (non-OR) IMC–DDMC (dashed, gc = 0),
and opacity-regrouped IMC–DDMC (dot-solid, gc = 10) at 3.5 and 5 days
for the 10 group, outflow problem with a spherical Heaviside source described
in Section 7.2. Radiation energy density and material temperature are plotted
vs. fluid velocity and spectra are plotted at group wavelength centers. The
opacity is described by Equation (85) with m = 4. Figures 2(a), (b), and (c),
show radiation energy density, material temperature, group spectra, respectively.
For this problem, the IMC–DDMC results with opacity regrouping show good
agreement with the non-OR results.

(A color version of this figure is available in the online journal.)
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Figure 3. Non-opacity-regrouped (non-OR) IMC–DDMC (solid), and opacity
regrouped IMC–DDMC (dashed) L1 error vs. time step of group spectra
relative to pure IMC for radiation escaping the outermost cell of the 10 group,
Heaviside source problem described in Section 7.2. The opacity is described
by Equation (85) with m = 4. The spectral error for both non-OR and opacity-
regrouped IMC–DDMC progressively increases relative to IMC until pure IMC
is applied in the outer cells. Error from opacity regrouping appears insignificant
relative to error from DDMC.

(A color version of this figure is available in the online journal.)

of light. In the free-expansion phase of the supernova, radioac-
tive decay of 56Ni heats the fluid and causes it to radiate in the
UV, visible, and infrared ranges of the spectrum. For this prob-
lem, we apply the modified Fleck factor, tested in Section 7.1,
and opacity regrouping, tested in Section 7.2. Additionally, we
test different calculations of the grouped opacity by introduc-
ing uniform subgroups for each group. Despite the physical and
algorithmic complexities of the opacity, IMC–DDMC yields
light curves and spectra that are in good agreement with those
of PHOENIX for the numerical specifications considered. More-
over, the total computation times are on the order of hours (see
Table 2).

For IMC–DDMC, a method that in our formulation requires
a group structure, the W7 problem has the difficulty of requir-
ing many groups for accurate spectra. Specifically, we find that
the number of groups required to achieve a resolved light curve
is on the order of thousands. While IMC–DDMC is easily ex-
tensible to two and three spatial dimensions in theory, storing
∼10,000 groups per spatial cell is expensive in memory. Apart
from memory overhead, there is the difficult question of spec-
tral accuracy. In particular, it may be advantageous to implement
adaptive group bounds so that important portions of the spec-
trum are properly resolved; no part of the theory presented pre-
cludes adaptive wavelength bounds or even non-uniform group
number per cell. In this section, we focus mainly on the per-
formance of IMC–DDMC with opacity regrouping. We test the
effect of mixing reciprocal (Rosseland) and arithmetic (Planck)
computations of the opacity on light curves and spectra. Addi-
tionally, we show that spikes in the temperature profile at late
time are mitigated with the Gentile–Fleck factor. However, the
application of the Gentile–Fleck factor reveals uncertainty in
the spectra around day 6 post-explosion for the numerical set-
up presented. For the following simulations, the code SuperNu
is run on 192 cores on the Cray XE6 supercomputer Beagle at
the Computation Institute of the University of Chicago.

In each time step, the opacity per group is computed us-
ing a subgroup structure to allow for non-trivial opacity pro-

Table 1
Run Times for First 64 Time Steps of Heaviside Problem

with gc ∈ {0 . . . 10} with 1 Core (minutes)

Method gc m = 4 m = 7

IMC · · · 202.23 505.71

HMC 0 23.11 45.09

HMC 1 19.60 37.62

HMC 2 5.80 6.74

HMC 3 5.74 6.71

HMC 4 5.72 6.31

HMC 5 5.79 6.44

HMC 6 5.80 6.41

HMC 7 5.79 6.47

HMC 8 5.83 6.42

HMC 9 5.76 6.54

HMC 10 5.81 6.64

Table 2
Total Run Times for Opacity-regrouped HMC W7 with 24 Cores (hr)

G \ ασ 0.0 0.3 0.5 0.8 1.0

225 0.92 0.92 0.91 0.89 0.83

400 1.33 1.32 1.32 1.28 1.21

625 1.92 1.88 1.91 1.87 1.89

1024 2.73 2.71 2.70 2.70 3.32

file weighting. Opacity contributions to each group include
bound–bound (bb), bound-free (bf), and free–free (ff) transi-
tions. Unless otherwise specified, groups are spaced logarithmi-
cally while subgroups are treated uniformly. Additionally, there
is a gray scattering opacity that is isotropic in the comoving
frame calculated as (Castor 2004)

σs = 8π

3
ne−

(
e−

me−c2

)2

, (86)

where e− is electron charge, ne− is electron number density, and
me− is electron mass in cgs units. With mass fractions known
a priori and given the assumption of LTE, the Saha–Boltzmann
equations are used to obtain the excitation densities for each
atom in the W7 model (Mihalas & Mihalas 1984). To calculate
opacity, we introduce a subgrid for each group g with index
gg ∈ {1 . . . Gg}. Values for bb opacities are calculated from
oscillator strength data for each atomic species (Kurucz 1994).
Furthermore, it is assumed that a line is entirely included in the
subgroup its line center is located. So (Mihalas & Mihalas 1984),

σa,gg,bb = 1

Δλgg

∑
s

∑
i

∑
i ′>i

(
π (e−)2

me−c

)
fi,i ′,s

λ2
i,i ′,s

c

× [Θ(λi,i ′,s − λgg−1/2) − Θ(λi,i ′,s − λgg+1/2)]

× ni,s(1 − e
hc

kT λ
i,i′ ,s ), (87)

where σa,gg,bb is the bb contribution to subgroup gg, fi,i ′,s is the
non-dimensional oscillator strength from state i to i ′ of species
s, λi,i ′,s is the wavelength center of the line corresponding to the
i → i ′ transition, ni,s is the total density of species s occupying
state i, and the Θ are Heaviside step functions constraining
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Figure 4. Opacity-regrouped IMC–DDMC W7 bolometric light curves for opacity mixing ασ ∈ {0.0, 0.5, 1.0} (solid) and ασ ∈ {0.3, 0.8} (dashed; so solid and
dashed curves alternate vs. ασ ) and a fixed number of subgroups, Gg = 20. Equation (89) has been applied for opacity mixing. Light curves are calculated by tallying
particles that have escaped the spatial (velocity) domain per time step and applying Equation (90). In Figures 4(a), (b), (c), and (d) group resolutions are G = 225,
G = 400, G = 625, and G = 1024, respectively. As expected, peak luminosity is earlier and brighter for opacity mixing that favors reciprocal averaging since smaller
subgroup opacity values are favored. Values of ασ close to one are not realistic as opacities of strong absorption lines are more and more neglected. The opacity mixing
parameter can be used to calibrate simulations with modest group resolution to emulate the diffusion characteristics of equivalent high-resolution simulations.

(A color version of this figure is available in the online journal.)

the sum to opacity profiles centered in the subgroup. The
bound-free opacities are tabulated according to the analytic
fit prescription of Verner et al. (1996). We approximate the
bf opacity, σa,gg,bf , of the subgroup as the value of the fit
at the center wavelength in the subgroup. The ff opacities,
σa,gg,ff , are computed with tabulated Gaunt factors based on
the work of Sutherland (1998) and are similarly evaluated in
the subgroup. The total absorption opacity for subgroup gg is
σa,gg

= σa,gg,bb + σa,gg,bf + σa,gg,ff (Mihalas & Mihalas 1984).
The total group opacity may then be averaged in some manner
over the sub group contributions. We introduce an opacity
mixing control parameter ασ ∈ [0, 1] to linearly combine
reciprocal (“Rosseland type”) and direct averages of opacity.
Averages of reciprocal opacity may preferentially weight lower
opacity. For instance, Rosseland opacity is lower than Planck
opacity. For some weight function, w(λ), the group absorption

opacity is calculated as

σa,g = (1 − ασ )
1

wg

Gg∑
gg

σa,gg

∫ λg+1/2

λg−1/2

w(λ)dλ

+
ασwg∑Gg

gg
σ−1

a,gg

∫ λg+1/2

λg−1/2
w(λ)dλ

, (88)

where wg = ∫ λg+1/2

λg−1/2
w(λ)dλ. For a uniform weight function,

Equation (88) simplifies to

σa,g = (1 − ασ )
1

Gg

Gg∑
gg

σa,gg
+

ασGg∑Gg

gg
1/σa,gg

. (89)
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Figure 5. Opacity-regrouped IMC–DDMC W7 spectra for opacity mixing ασ = 0.0, 0.3, 0.5 (dotted, dashed, and solid, respectively) and a fixed number of subgroups,
Gg = 20. Equation (89) has been applied for opacity mixing. Spectra are calculated by tallying escaping particles energies per group per time and dividing by group
wavelength range. Data are plotted at group centers. In Figures 5(a), (b), (c), and (d) group resolutions are G = 225, G = 400, G = 625, and G = 1024, respectively.
Locations of peaks and troughs amongst the different opacity mixings presented appear consistent. For λ ∈ [2000, 4000], radiation transmission is larger for larger
values of ασ .

(A color version of this figure is available in the online journal.)

If LTE is considered, the weight function might be set to the
normalized Planck function; in this case, Equation (88) is a mix
of grouped Planck and Rosseland opacities.

For the W7 tests discussed, gamma-ray energy deposition
profiles and the initial material and radiation temperatures are
borrowed from the PHOENIX code (Hauschildt 1992; Hauschildt
& Baron 1999; Hauschildt & Baron 2004; van Rossum 2012).
We estimate and apply a nominal value of heat capacity of
Cv = 2.0 × 107ρ erg/K/cm3 from Pinto & Eastman (2000) to
compute the Fleck factor and update the material temperature.
It has been found that changing Cv by a factor of three does
not change temperatures and spectra; the insignificance of Cv

is attributable to the disparity of energy storage between the
radiation and material fields. In the W7 problem, the Fleck
factor is found to be very small in IMC and IMC–DDMC.
Consequently, even a modest group resolution in IMC causes
effective scattering to dominate particle processes. For the W7

tests attempted, it is apparently unfeasible to use pure IMC,
non-OR IMC–DDMC, or even IMC–DDMC where opacity
regrouping is limited to adjacent groups. For a 100 group
W7 simulation with groups logarithmically spaced from 1 ×
10−6 cm to 3.2 × 10−4 cm, 64 velocity cells spaced uniformly
from 0 cm s−1 to 2.2027 × 109 cm s−1, a time domain of
t ∈ [40, 64] days post explosion with 0.25 day time steps,
250,000 initial particles, and 250,000 source particles per time
step, neither IMC nor non-OR IMC–DDMC completed the
simulation with 192 cores and a wall time of 40 hr each.
In contrast, fully opacity-regrouped IMC–DDMC (gc = 100)
completed the same problem with 24 cores in 1018.9 s. For the
scope of this paper, we focus our attention to opacity-regrouped
IMC–DDMC simulations.

Our first W7 test problems explore the effect of different
group opacity averaging and group resolution. Specifically,
Equation (89) is implemented. The problems considered have
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Figure 6. IMC–DDMC (solid) and Gentile–Fleck factor modified IMC–DDMC (dashed) material temperatures (left) and spectra (right) at days 6 and 32 post-explosion
for the W7 problem described in Section 7.3 with G = 225 and ασ = 0.5. At early time (t � 10 days), the Gentile–Fleck factor slightly modifies the spectrum which
is sensitive to its effect on the fluctuations in the outer regions of the ejecta. At late times in the W7 expansion (t � 25 days), the Gentile–Fleck factor consistently
mitigates temperature fluctuations in the outer cells. Despite the continued temperature fluctuations in the outer cells for standard IMC–DDMC at later times, the
difference in spectra at late times is no longer significant.

(A color version of this figure is available in the online journal.)

225, 400, 625, and 1024 groups, 20 subgroups per group,
and an opacity mixing parameter ασ ∈ {0.0, 0.3, 0.5, 0.8, 1.0}.
Each calculation has 64 velocity cells uniformly spaced from
0 cm s−1 to 2.2027 × 109 cm s−1, 248 uniform time steps for
t ∈ [2, 64] days, 250,000 initial radiation particles, 250,000
source particles generated per time step, τD = τL = 3 mean
free paths, and the opacity-regrouped neighborhoods span the
entire set of groups (gc = G). Absolute bolometric magnitudes
are calculated with

Mbol = 4.74 − 2.5 log10

(
L

3.84 × 1033

)
, (90)

where L is luminosity in erg s−1. The luminosities are com-
puted by tallying lab frame particle energies escaping the do-
main and dividing by time step size. Figures 4(a), (b), (c),
and (d) have light curves calculated with Equation (90) for

G = 225, G = 400, G = 625, and G = 1024, respec-
tively, and a fixed number of subgroups, Gg = 20. Simi-
larly Figures 5(a), (b), (c), and (d) have spectra at 20 days
post explosion calculated with Equation (90) for G = 225,
G = 400, G = 625, and G = 1024, respectively, and Gg = 20.
For the group resolutions presented, the ασ = 1.0 case does
not appear to converge at the same rate as the other results.
In other words, the ασ = 1.0 case for Equation (89) pro-
duces more sensitivity in brightness and spectrum versus course
group resolutions. As the mixing parameter is increased to-
ward one, the opacity calculation applies more reciprocal av-
eraging. Since reciprocal averaging favors smaller subgroup
opacity values, it is expected that larger ασ yield earlier and
brighter light curves. Despite producing unrealistic light curves
for ασ ≈ 1, ασ may be calibrated between 0 and ∼0.3 to make
simulations with low or modest group numbers emulate high-
resolution simulations.
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(a) (b)

Figure 7. SuperNu (blue) with multigroup PHOENIX (green) and standard PHOENIX (red) light curves. SuperNu and multigroup PHOENIX apply 500 groups and
directly averaged group opacity, or an ασ = 0 mix. PHOENIX is run in LTE for consistency with SuperNu. There exists a systematic difference of ∼10%–15% in
luminosity for much of the W7 evolution between the multigroup results. Differences in transport, EOS, or opacity routines along with spatial grid resolution may
account for some of the discrepancy. In Figure 7(b), it is notable that the multigroup results give very similar early rising light curves, meaning that the different
diffusion treatments in the two codes are in good agreement. The standard PHOENIX light curve rises earlier than multigroup PHOENIX. This is due to the high resolution
that enables windows of lower opacity through which diffusion is enhanced. Diffusion at low group resolutions can be simulated and calibrated using the opacity
mixing parameter ασ (see Figure 4).

(A color version of this figure is available in the online journal.)

Table 2 has computation times for each curve. Timing results
for the problem described are for 24 cores. With source particle
numbers kept constant, simulation timescales sub-linearly with
increasing group number.

We now examine the effect of the Gentile–Fleck factor, or
Equations (54) and (58) along with the optimization described in
the last paragraph of Section 7.1, on W7 temperatures. Figure 6
has spectra and material temperature profiles shown at day 3 and
32 post-explosion for the W7 problem described with ασ = 0.5
and G = 225. At early times (t � 10 days), both IMC–DDMC
and modified IMC–DDMC yield outer-cell temperature fluctu-
ations for the numerical specifications considered. The fluctu-
ations are different between the standard and modified meth-
ods. Consequently, the application of the Gentile–Fleck fac-
tor in IMC–DDMC uncovers some uncertainty in early spec-
tra. At later times (t � 25 days), the Gentile–Fleck fac-
tor yields consistently smoother material temperature profiles
than the standard Fleck factor. However, the spectra at later
times are not significantly affected by the fluctuations in the
outer-cell temperatures because that region is optically thin at
that point.

Finally, we compare the results of SuperNu and PHOENIX for
the W7 problem in LTE. We find that the light curve generated by
SuperNu is systematically ∼10% dimmer at peak than the light
curve generated by PHOENIX for various time step and group
resolutions. For controlled testing, grouped opacities have been
introduced into PHOENIX. The multigroup computations have
no opacity mixing, or ασ = 0. Figure 7 has 500 group light
curve results from PHOENIX and SuperNu along with a stan-
dard, high-resolution (30,000 wavelength points) PHOENIX light
curve. From inspection of Figure 7(b), it is worth noting that the
luminosities of multigroup PHOENIX and SuperNu have similar
early rising light curves. This means that the different diffusion
treatments in the two codes are in good agreement. The standard
PHOENIX light curve rises earlier than the multigroup PHOENIX

light curve, as expected. This effect can be emulated in low group
resolution simulations using the opacity mixing parameter (see
Figure 4). Increasing ασ from 0 to ∼0.3 has a similar effect
on the light curve shape as increasing the resolution to conver-
gence. Figure 8 has spectra at 10, 20, and 40 days post-explosion
for the 500 group SuperNu and high-resolution PHOENIX sim-
ulations. Despite differences in magnitudes, the time evolution
of the light curves and the shapes of the spectra are in good
agreement. The codes use the same atomic data but the equa-
tion of state (EOS) and opacity routines are different; these
factors may account for some differences in the luminosities
and spectra.

Resolving the sources of the 10%–15% discrepancy will re-
quire more in-depth code-to-code comparisons which is work
in progress but beyond the scope of this paper. Having per-
formed time step and group resolution tests, we also plan to per-
form resolution tests on the spatial grid. It is possible the codes
have different convergence properties with grid resolution. In
particular, the standard leakage opacity at IMC–DDMC spatial
method interfaces may underpredict particle transmission across
cell surfaces when DDMC interface cells are optically thick
(Densmore et al. 2007). Densmore et al. (2006) performs
an emissivity based derivation to generalize the standard
IMC–DDMC boundary condition and improve the emission
from DDMC to IMC at spatial interfaces. If increased grid res-
olution in SuperNu increases the luminosity, then the alternate
boundary condition presented by Densmore et al. (2006) may
increase the absolute bolometric magnitude of the light curve at
the current 64 cell resolution. We have performed preliminary
tests with an emissivity based boundary condition and find a
∼2% increase in the absolute bolometric magnitude at peak;
despite this modest change, exploring the effects of increasing
the spatial resolution may be revealing. Apart from grid resolu-
tion, EOS, opacities, and transport methods, there may be other
important reasons for the observed differences.
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(a) (b)

(c) (d)

Figure 8. SuperNu (blue) with 500 groups and standard PHOENIX (green) spectra for the W7 problem at 10, 20, 30, and 40 days post-explosion. In Figure 8(a), the
difference in flux is partly attributable to the earlier rise of the PHOENIX high-resolution luminosity (see Figure 7). In Figure 8(b), the W7 supernova is near peak
luminosity; resolving the discrepancy in flux requires further code-to-code comparison. In Figure 8(d), the flux of PHOENIX is not systematically larger than SuperNu.
Around day 40, the high-resolution PHOENIX light curve is at a lower luminosity than the 500 group SuperNu light curve. Given the considerable differences in
computational methods between the codes, the temporal behavior and shape of the spectra are in good agreement.

(A color version of this figure is available in the online journal.)

8. CONCLUSIONS AND FUTURE WORK

We have incorporated techniques to mitigate overheating
errors and combine DDMC groups with high opacity in the
IMC–DDMC code, SuperNu. In Section 6, we described an
approach to Doppler shift DDMC particles. The Doppler shift
scheme accounts for the effect of inelastic collisions with
uniform subgroup redistribution. Following Abdikamalov et al.
(2012), the Doppler shift scheme is operator split from the
diffusion scheme; it does not conflict with the opacity regrouping
process.

We found that opacity regrouping is needed in IMC–DDMC
to make the W7 problem feasible; the optimization mitigates
computational cost in performing the multi-dimensional calcu-
lation. Additionally, we have described and tested an approach
to treating the opacity that involves refining the wavelength grid
to subgroups.

In Section 7.1, we used the Gentile–Fleck factor to mitigate an
overheating pathology in the presence of strong outflow. The MC
results are benchmarked against a quasi-manufactured solution.

In Section 7.2, we treated structured multigroup problems
with IMC–DDMC to test the effect of non-contiguous opacity
regrouping. For the problem presented, opacity regrouping
significantly improves efficiency without a significant cost of
accuracy in the temperatures and spectra. In Section 7.3, we
tested IMC–DDMC with opacity regrouping and subgrouping
on the W7 problem. We also compared light curves and spectra
for the W7 test problem calculated using SuperNu and PHOENIX
for a similar set-up. We modified PHOENIX to be able to use
multigroup opacities, which enabled us to do more controlled
code-to-code comparisons. The light curve rise times given by
multigroup PHOENIX and SuperNu are in good agreement for
the same group resolution. We find satisfactory agreement in
the shape of the spectra. However, there exists a ∼10–15%
discrepancy between SuperNu and PHOENIX in the luminosity
of the light curve around and after peak that is currently
not fully understood. Time step resolution tests indicate the
light curves compared between codes are converged in time.
For certain spatial grid resolutions, DDMC may underpredict
spatial leakage of diffusion particles to IMC (Densmore et al.
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2006, 2007). Consequently, spatial grid resolution tests of
SuperNu may be informative.

We plan to extend our code to multiple dimensions. The
IMC–DDMC method is simple to extend to two and three di-
mensions for simple grid geometries. The challenges in per-
forming multi-dimensional simulations of SN Ia light curves
and spectra with IMC–DDMC lies in optimization and memory
requirements. In addition to spatial geometry, we plan to in-
vestigate methods and algorithms that further mitigate spurious
temperature spikes due to the MP or MC noise.
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