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ABSTRACT

With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the
discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus
on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification
catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific
sources for further study and permitting rigorous treatment of classification purities and efficiencies for population
studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine
learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how
to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce
a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not
fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky
Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class
probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate
that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are
reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-
specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources
into one of 12 science classes.
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1. INTRODUCTION

Synoptic imaging surveys have begun to routinely collect
dozens to thousands of epochs of photometric data over wide
swaths of the sky. The manifest destiny for optical time-domain
studies is the Large Synoptic Survey Telescope (LSST; Tyson
2002), which will collect time histories for O(109) stars and
explosive transients. With data collected for so many sources, no
longer is it possible for experts to manually scrutinize significant
subsets of the data. In this era of wide-field time-domain
surveys, accurate multi-class source catalogs, which are created
automatically by machine-learning algorithms, can greatly help
maximize the scientific output from these projects (Eyer et al.
2008; Borne et al. 2009). Furthermore, with imperfect and
limited information on each source, variability and transient
catalogs must be probabilistic in nature, with well-calibrated
posterior class probabilities. This enables each scientist to use a
personalized threshold for selecting objects for follow-up, where
science class probabilities fit naturally within a framework for
optimizing the allocation of limited resources, and to select
objects for population studies, where a rigorous treatment
requires detailed understanding of the purity and efficiency of
the sample.4

4 Here we define the classification purity of a particular class as one minus
the ratio of the number of objects falsely classified as belonging to that class to
the total number of objects classified into the class (i.e., one minus false
positive rate). Likewise, the classification efficiency is the ratio of the number
of objects correctly classified into that class to the total number of objects in
the class (i.e., one minus the false negative rate).

Creating probabilistic multi-class catalogs for large-scale
time-domain photometric surveys is a difficult task. First and
foremost, a set of salient class-predictive features5 needs to
be estimated for each source. From unevenly sampled light
curves that contain seasonal gaps, varying levels of noise, and
occasional spurious flux measurements, estimating the periods
and amplitudes of oscillations for each source is not trivial.
Furthermore, devising light-curve features that can separate
specific subclasses of sources requires deep domain knowledge.
Next, classification models must be constructed to map the light-
curve feature vector for each source to a set of posterior class
probabilities. These classifiers need to be able to automatically
learn multiple class boundaries in high-dimensional feature
space from a set of training data with known classes and, for
each source, return a calibrated posterior class probability for
each science class. This endeavor is complicated by the fact
that the set of training data is typically not representative of the
objects in the survey, which can cause large sample-selection
biases (see Richards et al. 2012) in the posterior class probability
estimates. Additionally, the sources observed by the survey are
not guaranteed to fit neatly into any of the predefined classes,
necessitating anomaly detection to identify which sources are
likely to belong to an undefined science class.

Several aspects of the autonomous cataloging effort have
required focused research attention. In Richards et al. (2011),

5 We define a feature to be a deterministic real-numbered or categorical
metric based on the time-series input or spatial location of the source. See
Section 3.
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we introduced an end-to-end framework for machine-learned
classification of variable stars, with advancements in periodic
and non-periodic light-curve feature estimation as well as
probabilistic, non-parametric classification methodology. In
terms of classification error rate, our methods showed significant
improvement over the previous state of the art (Debosscher et al.
2007) on a well-studied data set. Indeed, other groups have
also converged onto a similar set of tools as the best current
light-curve classification methodology for variable stars (e.g.,
Debosscher et al. 2009; Dubath et al. 2011; Blomme et al. 2011;
Varón et al. 2011). In Richards et al. (2012), we introduced
a methodology to overcome the debilitating effects of non-
representative training sets on variable star classification, and
in Long et al. (2012) we devised methods to appropriately
use light-curve data from older surveys to classify periodic
variable stars in new surveys. With these advances, the accuracy
of variable star classification is improving demonstrably, with
cross-validated error rates approaching 15%–20% on multi-
class problems with different data sets (Dubath et al. 2011;
Richards et al. 2011).

In this paper, we build on these recent advancements in
the photometric classification of variability by focusing on
the problem of how to properly construct a variable star
classification catalog from a photometric survey. Accurate
classification of each source in the survey remains the primary
goal of this endeavor. However, there are several other issues
that arise when generating classification catalogs for use in
astrophysical studies. First, a classification catalog requires
good calibration for the posterior class probability estimates,
P(class|survey data). Good calibration means that of all the
objects for which we estimate a posterior class probability,
p, of belonging to a certain science class, p proportion of
them truly belong to that class. In this paper, we describe a
method for calibrating classifier probabilities and outline how
such information can and should be used when employing such a
probabilistic classification catalog for downstream astrophysical
inference.

Second, when constructing a classification catalog for a large
number of objects, anomalies will certainly be present. When
building a supervised classification model, these anomalies are
typically not accounted for, resulting in a classification schema
which attempts to artificially coerce each object into a predefined
classification taxonomy. In this paper, we describe the use of
a semi-supervised anomaly detection routine which allows a
determination of which sources do not resemble any of the
training data and likely belong to a variability class not populated
by the training set. We determine, for each source in the catalog,
a real-valued measure of the relative degree of deviance of that
source from the training data.

Third, in a photometric survey, each object may also have
cataloged information in other passbands. We detail, in this pa-
per, how to probabilistically associate sources with objects in
external catalogs based on positional information as well as pho-
tometric features. This allows us to obtain further classification
features (e.g., color) which are crucial for allowing accurate
classification statements. In addition, we use a non-parametric
method to impute the values of those attributes when no match
is detected, allowing us to use any classification method that
requires complete data.

Finally, we use this methodology to create a calibrated
probabilistic classification catalog for a set of 50,124 sources in
the All-Sky Automated Survey (ASAS; Pojmański 1997) based
on its publicly available ASAS V-band light curve and colors.

Our Machine-learned ASAS Classification Catalog (MACC,
publicly available online) contains, for each source, posterior
probabilities for 28 different science classes. This is a wealth
of new information compared to the existing ASAS Catalog
of Variable Stars (ACVS; Pojmański 2002), which classified a
subset of these sources into 12 science classes without supplying
any posterior class probabilities and giving the uninformative
class label “MISC” to a majority of objects. In addition to
probabilistic classifications, MACC gives an anomaly score for
each ASAS source, which describes its proximity to objects
in the training set. Furthermore, our catalog provides updated
periods, peak-to-peak amplitudes, and dozens of other estimated
features for each ASAS light curve. We ensure that all steps in
the MACC catalog creation are transparent and provide a public
interface to the catalog at www.bigmacc.info.

2. DATA

2.1. ASAS Data Collection

The All-Sky Automated Survey,6 is an ongoing, long-term
project dedicated to the detection and monitoring of the photo-
metric variability of bright stars (Pojmański 1997). Since 2000
August, ASAS has monitored bright stars (V < 14 mag) in the
entire available sky south of δ < +28◦ from Las Campanas Ob-
servatory. ASAS uses two small wide-field telescopes to monitor
the sky with V- and I-band filters. Each ASAS telescope takes
repeated 180 s exposures using a 2 K × 2 K CCD camera with
15 μm pixels, covering 8.5 × 8.5 deg2 of the sky (see Pojmański
1997 for further details).

To date, ASAS has taken more than 267,260 V-band frames,
imaging approximately 17 million stars of V-band magnitude
between 8 and 14. Of these 17 million objects, ASAS has
identified 50,124 variable stars and published the results in the
ACVS (Pojmański 2002, 2003; Pojmański & Maciejewski 2004,
2005; Pojmański et al. 2005). The catalog, which contains a
rough classification for each source, is made publicly available
through the ASAS Web site, along with V-band light curves
for 15 million ASAS sources. For the 50,124 variable stars,
ASAS has retrieved a median of 541 usable epochs of V-band
measurements. The ACVS light curves range in the number of
good detection epochs from 3 to 2232.

2.2. ASAS Photometric Light Curves

We retrieved the ASAS ACVS data set by first referenc-
ing the ACVS.1.1 catalog, which contains 50,124 variable
stars, and individually retrieving the data for each source from
the ACVS Web site.7 These sources were imported into our
DotAstro.org (http://dotastro.org) astronomical light-curve
warehouse for visualization and use with internal frameworks
(Brewer et al. 2009). Each ASAS source’s time-series data file
is partitioned by its observed field and includes information on
the quality of the aperture photometry for each epoch, as well
as magnitude measurements (and uncertainties) from up to five
different apertures. Prior to importing the data we chose a single
aperture for each epoch using the method detailed below and
excluded epochs with a quality GRADE=D or quality GRADE=C
when MAG=29.999, which, as detailed in the ASAS data files,
corresponds to a non-detection. Given to the undue influence of
extreme photometric outliers in light-curve feature estimation,
before the generation of time-series based features, we applied

6 http://www.astrouw.edu.pl/asas/
7 Available at http://www.astrouw.edu.pl/asas/?page=acvs.
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Figure 1. Aperture-wise histograms of the average magnitude of ASAS sources whose minimal magnitude dispersion was observed to be in the specified aperture.
As expected, brighter sources experience smaller dispersion when observed in wider apertures and fainter sources show smaller dispersion in narrower apertures.
Using these histograms, we construct a kernel density estimation classifier to determine the optimal aperture to use for each ASAS source as a function of its average
magnitude of brightness. The magnitude cuts from this procedure are overlaid in vertical lines and the total number of ASAS objects extracted with each aperture is
listed in the figure.

(A color version of this figure is available in the online journal.)

sigma clipping to each ASAS light curve, excluding observa-
tions that lie beyond four standard deviations from each source’s
mean magnitude.

ASAS provides five aperture measurements using annuli
ranging from 2 pixels (30′′) to 6 pixels (90′′). Although the ASAS
team outlined a basic algorithm for choosing which aperture to
use for each source given its average magnitude (Pojmański et al.
2005), we decided to use our own magnitude-dependent aperture
cuts. Our procedure is the following: we begin by determining
the aperture which has the minimum magnitude variance for a
source.8 The idea behind using minimum magnitude variance
is that apertures that are too small will not capture all of the
source’s flux, resulting in larger Poisson noise in the measured
brightness of the object, whereas apertures that are too large will
incur more background noise and noise due to contamination
from neighboring sources. For each aperture, we can visualize
the distribution of mean magnitudes for the sources whose
minimal magnitude dispersion occurred in that aperture (see
Figure 1). This information was subsequently employed to
construct a simple kernel density estimation (KDE) classifier
to determine the optimal aperture to use for each source, as
a function of its mean magnitude. Using this classifier we
determine the optimal aperture for each ASAS source, as a
function of its average magnitude (more precisely, the median
magnitude of its five aperture-wise average magnitudes), and
only import the light-curve measurements from that aperture.
The optimal magnitude cuts for each aperture are overplotted in
Figure 1.

We also assess the sensitivity of the features and clas-
sifications to the aperture size. Beginning with the optimal
KDE-selected aperture size for each source, we perturbed the
aperture size for all ASAS objects using (a) 1 pixel larger than
the optimal aperture size and (b) 1 pixel smaller than the opti-
mal. Objects whose optimal aperture size was initially the largest
(for a) or smallest (for b) were left unchanged. Taking the fea-

8 Within the field with the greatest number of observations for that source.

ture sets generated in (a) and (b), we regenerated the variable
star classification for 5000 arbitrary ASAS sources (10% of the
full catalog). We found that 71.7% and 73.9% of all sources
have the same classification as that of the optimal aperture, re-
spectively, for experiments (a) and (b). Most of the differences
occur for sources with low classification probabilities, as only
(a) 43.2% and (b) 43.2% of objects with classification probabil-
ity of less than 0.5 of belonging to the most likely class in the
optimal-aperture case retain the same classification; this prob-
ability jumps to (a) 82.7% and (b) 85.7% for classifications of
higher than 0.5 probability. This underscores the importance of
rigorously choosing the optimal aperture for each light curve,
as we have done with the KDE classifier, because faced with
such high sensitivity of the classifications to aperture size, it is
imperative that we classify the best light curve.

2.3. Obtaining Source Colors from a
Machine-learned Cross-match

In addition to information gleaned from single-band light
curves, color information is invaluable to classifying variable
stars. To generate color features, we use the Naval Observatory
Merged Astrometric Dataset (NOMAD; Zacharias et al. 2004) to
obtain single-epoch B-, V-, R-, J-, H-, and Ks-band photometry
for each ASAS object, which we use to compute five color
features (B − V, V − R,R − J, J − H,H − Ks) for each
source. Although the ASAS ACVS catalog provides cross-
correlated Two Micron All Sky Survey (2MASS) colors, the
additional optical filters provided by NOMAD supplies a richer
set of colors to aid the classifier. Due to the large ASAS
positional errors, we decided against using simple spatial cross-
correlation to match each ASAS source to the NOMAD catalog.
Instead, we train a machine-learned classifier which takes as
input seven positional and photometric features to determine
whether a NOMAD candidate is indeed a match to the ASAS
star. In addition to the separation distance between the ASAS
source and NOMAD candidate, we employ the NOMAD
nearest neighbor rank (ordered by distance from the ASAS
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source), magnitude differences in J, H, and Ks bands and J −Ks

color difference between ACVS and NOMAD, and the V-band
difference between the ASAS light-curve mean magnitude and
NOMAD to allow a richer view of each source which will
facilitate the ASAS–NOMAD matching procedure.

This ASAS–NOMAD association classifier was initially
trained using 48 ASAS sources of known class, sampled from
24 science classes, with 2 sources from each science class
taken from the literature. For each of these training objects, we
manually determined which source, from a NOMAD catalog
query around the position of the ASAS source, was truly
associated with that object. These sources were classified as
“match,” while all other sources returned by the NOMAD query
were classified “non-match.”

Using the seven positional and photometric features, we ini-
tially trained a random forest (RF; see Breiman 2001) classifier
on the 48-object training set and applied the classifier to pre-
dict match/non-match for a sample of 30,000 of the ∼500,000
NOMAD sources which are retrieved when the NOMAD cata-
log is queried around each of the 50,124 ASAS sources in our
data set. Using the active learning technique of Richards et al.
(2012), in each iteration of learning we selected 17 NOMAD
sources which would have high impact in improving the per-
formance of the classifier, and manually classified each as a
“match” or “non-match,” and subsequently added these objects
to the training set. This active learning process was performed
over 10 iterations, resulting in a robust classifier which can ac-
curately and automatically decide whether a NOMAD source
is associated with an ASAS source based on the positional and
photometric features.

Ultimately, the classification algorithm was applied to each
ASAS source to find the matching NOMAD entry, if any. For
each ASAS star, we find the NOMAD source with the highest
classifier probability of “match,” with a preference for spatially
closer matches when identical probabilities are returned for
multiple NOMAD sources. If, for an ASAS object, no NOMAD
source achieves “match” probability >50%, then we decide that
no NOMAD source exists for that object. When applied to all
50,124 ASAS sources, we find that 93.9% of these sources match
a NOMAD source. Perturbing the NOMAD positions within
their errors (which are provided by the catalog) and repeating
the match procedure shows that only 2 of 675 sources of known
association (match or non-match) are incorrectly classified by
our procedure, giving us confidence that our cross-matching
error rate is <1%.

For the 47,044 objects with a NOMAD match, we extract five
NOMAD color features for use in the variable star classifier.
For the remaining 3080 objects with no NOMAD match, we
impute their colors using the MissForest imputation routine of
Stekhoven & Bühlmann (2012). MissForest9 is an imputation
routine that uses a series of RFs to predict the value of each
missing feature based on the observed features for that source.
The MissForest algorithm builds an RF regression model (for
real-valued features) or classifier (for categorical features) to
predict the value of each feature from all of the other features.
Beginning from some initialization of the missing features, the
algorithm iterates until convergence is attained and outputs the
predicted value for each missing feature in the data matrix.
On multiple data sets, Stekhoven & Bühlmann (2012) show
that MissForest outperforms other common methods, such as

9 The R package missForest is freely available at
http://cran.r-project.org/web/packages/missForest.

Table 1
Color Imputation Median Absolute Errors using

the MissForest Imputation Method

Color σ

B − J 0.965
H − Ks 0.059
J − H 0.087
R − J 0.751
V − J 0.863

K-nearest neighbors and Lasso, in imputation accuracy. We
employ MissForest using 100 trees.

We test the accuracy of MissForest in imputing variable
star colors by the following experiment. Starting with the set of
47,044 objects with a satisfactory NOMAD match, we null out
the colors for a random 6.1% of the objects (the same fraction
of ASAS objects with no NOMAD match). Then, using the
leftover set of sources with known colors, we impute the nulled
out colors using MissForest. This allows us to compare the
true colors to the imputed colors for this subset of data, which
we do using median absolute error (MAE),

σ (xj,imp) = mediani |xij,true − xij,imp|, (1)

where xij,true and xij,imp denote the true and imputed values,
respectively, of color j for object i. MAEs, σ , for each of the
five colors in our data are reproduced in Table 1. While the
MAEs for each color, particularly the optical–NIR colors, are
larger than the typical uncertainty of the observed color for any
individual source, we note that a large scatter is to be expected
because we are imputing the observed color without reddening
corrections. Indeed, an examination of the observed color for
each class shows that the typical within-class scatter is �2 mag,
most likely owing to the various galactic latitudes at which
the ASAS sources are observed. The imputation procedure
confidently identifies stars as being either red or blue, and the
obtained accuracy of these imputations is similar to the typical
scatter in the observed colors, which gives us confidence that
the procedure is sufficient for classification purposes.

3. ASAS VARIABLE STAR CLASSIFIER

Probabilistic supervised light-curve classification has re-
cently received much attention in the literature. For example,
Debosscher et al. (2007), Dubath et al. (2011), and Richards
et al. (2011) have applied modern machine-learning methods to
∼25-class variable star problems, using photometric light-curve
data from the Hipparcos and OGLE surveys to classify sources
into a fine taxonomy of periodic variables (e.g., Cepheids, RR
Lyrae, and their subclasses, eclipsing binaries including de-
tached, semi-detached and contact systems) and non-periodic
variables (e.g., T Tauri and other young stellar objects, S Do-
radus hypergiants, and evolved stars such as Wolf-Rayet vari-
ables). This automated classification methodology consists of
the following two-step process.

1. From each light curve, a set of m features (e.g., period,
amplitude, etc.) is extracted. These features are constructed
to capture the class-predictive information encoded within
each light curve.

2. Using a training set of objects of known class, a classi-
fication model, which maps from m-dimensional feature
space to the set of classes, is fit. Methods such as neural
nets, decision trees, support vector machines, and RFs are
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classification models that have been used for light-curve
classification. The fitted classification model serves as a
class-prediction engine.

Once the classifier has been trained, it is trivial to predict the
class of each variable star, which entails first extracting the
feature vector of the object and subsequently inserting that
vector into the classifier to obtain a prediction. Many classifiers,
such as RF, produce a vector of posterior class probabilities for
each object.

To construct the ASAS variable star classification catalog,
we use a set of m = 72 features: 67 light-curve features and 5
colors (described in Section 2.3). See Section 3.1 below for a
description of the features used. We use an RF classifier, which
has been shown to attain high levels of accuracy in variable
star classification by Dubath et al. (2011) and Richards et al.
(2011). Richards et al. (2011) found that the RF classifier
attained the lowest error rates in classifying Hipparcos and
OGLE variable stars in a side-by-side comparison with a dozen
other classification models. In Section 3.2 we describe how to
attain a training set for ASAS in order to minimize classification
errors due to sample-selection bias (see Richards et al. 2012 for
a thorough discussion of sample-selection bias for light-curve
classification).

3.1. Light-curve Feature Extraction

Raw light-curve data consist of measurements of a source’s
brightness over unevenly sampled epochs. From these data, our
challenge is to estimate a set of features that are predictive of
each source’s class (e.g., it is well known that period, amplitude,
and color are all highly predictive of class for certain classes of
pulsating variable stars), while being agnostic to other latent
factors that are unrelated to (or at most, mildly correlated with)
an object’s science class. Examples of such latent factors are
that each ASAS light curve consists of a different number of
epochs (ranging from 3 to 2232 epochs with median of 541),
over a different time baseline, with distinct noise properties
and differing cadences. Furthermore, each ASAS source has
a unique mean brightness (from 4th to 15th magnitude in V),
resides in a unique position in the sky, and has its light affected
by more or less intervening dust.

We have constructed a set of 66 light-curve features meant
to capture the essence of photometric variability of the science
classes of interest, and have written algorithms that efficiently
compute these features from light-curve data, in an average of
4.5 s per ASAS light curve. In Richards et al. (2011), a set of
52 features was used to represent each variable star. Below, we
describe the additional features that have been used in this study,
and also outline some modifications to the algorithms used for
periodic modeling.

3.1.1. Computationally Efficient Regularized Fitting
of Periodic Signals of Arbitrary Shape

In this study, we employ a novel fitting routine which seeks to
simultaneously discover the true period of a source while also
modeling the light curve in detail.

We begin by applying our fast Lomb–Scargle algorithm (fit
of single sinusoid; Richards et al. 2011), which uses the method
of Zechmeister & Kürster (2009) to discover all marginally
significant periods for a given light curve on a broad frequency
test grid (νmin = 1/T , νmax = 10, δν = 0.1/T cycle/day, where
T is the data timespan). For test frequencies where the power
spectrum has a value > 6 (i.e., <1% of test points, corresponding

to roughly 3.5σ significance), we fit a multi-harmonic model,

mi = cti +
8∑

n=1

An sin(2πν0nti) + Bn cos(2πν0nti) + bn,o (2)

consisting of a sinusoid at the initial frequency, ν0, plus sinusoids
at each of the n = (2, . . . , 8) harmonics of that initial frequency
and a constant offset, bn,o, for each harmonic. We choose n = 8
to allow for sufficient model complexity to account for the light
curves under study. The fitting of model 2 is performed with a
regularization penalty to avoid overfitting, and the number of
effective model degrees of freedom is typically well below the
allowed value of 2 × 8 = 16.

In the fitting, we minimize

R =
N∑

i=1

(di − mi)2

σ 2
i

+ Nλ ×
8∑

n=1

n4
(
A2

n + B2
n

)
, (3)

with respect to the model parameters θ and the regularization
parameter λ. Here, the photometric data are di, the model
is mi, N is the number of data points, and

√
A2

n + B2
n is the

amplitude of the nth Fourier harmonic. The second term above
effectively penalizes the model in proportion to the magnitude
of its second derivative. Small values of λ result in models
with high-frequency structure, whereas large λ values yield
more smooth, slowly changing models. For fixed λ, the best-
fit parameters can be found by least-squares. We identify the
optimal value of λ for each light curve using generalized cross-
validation (Golub et al. 1979; Craven & Wahba 1979). This
allows the data for each light curve to drive the complexity of
the model while also constraining the model to not overfit the
data. Typical values of λ lie between 0.1 and 50 for our ACVS
light curves, with an average value of 5.

3.1.2. Novel Light-curve Features

In addition to the 32 periodic and 20 non-periodic fea-
tures used in Richards et al. (2011) to parameterize vari-
able stars, we add 16 new features based on our generalized
Lomb–Scargle periodogram, of which 10 were also used by
Long et al. (2012). These features are compiled in Table 2.
The first two features are freq_amplitude_ratio_21 and
freq_amplitude_ratio_31, which are ratios of the ampli-
tudes of the second to first and third to first frequencies, respec-
tively. The feature freq1_lambda is the optimized value of λ
in Equation (3) found by generalized cross-validation. We also
add three features aimed at detecting eclipsing sources from
the Lomb–Scargle model in Equation (2), phased on twice the
Lomb–Scargle period. We compute the phases and magnitudes
of the two distinct minima and two distinct maxima of the phased
light-curve model. The featurefreq_model_max_delta_mags
is the absolute value in the magnitude difference between the
two model light-curve magnitude maxima (i.e., eclipses), and
should be non-zero if the source is an eclipsing binary. Simi-
larly, the feature freq_model_min_delta_mags captures the
absolute value in the magnitude difference between the two
magnitude minima and the feature freq_model_phi1_phi2,
which is constructed to detect eccentric binary systems, is the
ratio of the phase difference between the first minimum and the
first maximum (i.e., primary eclipse) to the phase difference be-
tween the first minimum and second maximum (i.e., secondary
eclipse).
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Table 2
Light-curve Features Used in Addition to the Features of Richards et al. (2011)

Feature Description

freq_amplitude_ratio_21 Amplitude ratio of the second to first Fourier component in the Lomb–Scargle model
freq_amplitude_ratio_31 Amplitude ratio of the third to first Fourier component in the Lomb–Scargle model
freq_model_max_delta_mags Absolute value of mag difference between the two model light-curve maxima phased on 2Pa

freq_model_min_delta_mags Absolute value of mag difference between the two model light-curve minima phased on 2P
freq_model_phi1_phi2 Ratio of the phase difference between the first minimum and the first maximum to the phase

difference between the first minimum and second maximum
freq_n_alias Number of top period estimates that are consistent with a 1 day period
freq_rrd Boolean that is true only if freq_frequency_ratio_21 or freq_frequency_ratio_31

are consistent with 0.746
freq1_lambda Optimal value of λ from Equation (3) found by generalized cross-validation
gskew (med(m) − med(m[0 : p])) + (med(m) − med(m[p : 1])), where we choose p = 0.03
scatter_res_raw MAD of the Lomb–Scargle residuals divided by the MAD of the raw light-curve values
p2p_scatter_2praw Sum of squared mag differences between pairs of successive observations in the light curve

folded around 2P divided by that of the raw light curve
p2p_scatter_over_mad Median of the absolute differences between successive observations normalized by the MAD
p2p_scatter_pfold_over_mad Median of the absolute differences between successive mags in the folded light curve

normalized by the MAD of the raw light curve
medperc90_2p_p 90th percentile of the absolute residual values around the 2P model divided by the same

quantity for the residuals around the P model
fold2P_slope_10percentile 10th percentile of slopes between adjacent mags after the light curve is folded on 2P
fold2P_slope_90percentile 90th percentile of slopes between adjacent mags after the light curve is folded on 2P
p2p_ssqr_diff_over_var The sum of squared mag differences in successive measurements divided by the variance

Note. a We use P to denote the Lomb–Scargle estimated period, and 2P to be double that period.

Additionally, we introduce the feature freq_n_alias,
which counts the number of frequency estimates that are consis-
tent with the parasite frequency of 1 cycle per day.10 This fea-
ture supplements the freq_signif feature (computed using the
method of Zechmeister & Kürster 2009) to determine whether
a source is, in fact, periodic. We further add the class-specific
feature freq_rrd, which indicates whether the ratio of the first
to second frequency is consistent with 0.744, which is the fre-
quency ratio enjoyed by Double-Mode RR Lyrae variable stars
(Szczygieł & Fabrycky 2007).

Finally, we add the following five features which
are adopted from Dubath et al. (2011). The feature
scatter_res_raw computes the ratio of the median abso-
lute deviation (MAD) of the residuals of the Lomb–Scargle
model to the MAD of the raw light curve. The fea-
tures p2p_scatter_2praw,p2p_scatter_over_mad, and
p2p_scatter_pfold_over_mad are the sum of squared dif-
ferences of the scatter about the light curve phased on the
Lomb–Scargle period to that of either the phased or raw
light-curve data. Similarly, the feature medperc90_2p_p is
the 90th percentile of the absolute residual values around
the model phased on twice the Lomb–Scargle period divided
by the same quantity for the residuals around the model
phased on the Lomb–Scargle period. Furthermore, we de-
velop two new features, fold2P_slope_10percentile and
fold2P_slope_90percentile, which are the 10th and 90th
percentile slopes of the Lomb–Scargle model around twice the
period, intended to capture the steepness of the ingress and
egress of eclipse. We also add a new measure of skew, gskew,
which is a robust measure of skew designed to detect objects
which have abrupt decreases in brightness. Lastly, we add the

10 Originally, we experimented with modifying the frequency estimates for
objects whose principal frequency estimate was consistent with a parasite
frequency. However, we found that this procedure was slightly detrimental to
the classifier and that no significant artifacts occur due to the prevalence of
objects at f = 1, 2, 3, etc., cycles per day.

feature p2p_ssqr_diff_over_var from Kim et al. (2011),
which is the sum of squared magnitude differences in succes-
sive measurements divided by the variance.

3.1.3. Correcting Eclipsing Periods

Comparison of our estimated periods with those from the
ACVS catalog reveals that our period estimates are often exactly
half of the ACVS period for sources that are classified as
eclipsing binaries by ACVS. Of the 5913 objects that are
classified as eclipsing binaries in ACVS, our period estimate
matches the ACVS period for only 1353 sources (23%) and
was exactly one-half of the ACVS period for 4184 sources
(71%). After visual inspection of some of these light curves, we
find that for eclipsing binaries in which our periods differ, the
ACVS period is correct for most (but not all) of the objects.
Using a visually confirmed set of 150 eclipsing sources in
which our period is exactly one-half of the true period and 150
eclipsing binaries for which our period is correct, we construct
a supervised machine-learned RF classifier on all of the features
described in Section 3.1 to automatically discover, for each
eclipsing source in the data set, whether our estimated period is
correct or wrong by a factor of one-half.

In this classifier, the most important features (see
Section 3.1.4) in determining whether our period is cor-
rect are, unsurprisingly, the freq_model_max_delta_mags,
freq_model_min_delta_mags, and freq_model_phi1_
phi2 features, which capture differences between the primary
and secondary eclipses, andfreq1_harmonics_amplitude_1,
the amplitude of the first harmonic, which will be large for an
eclipsing binary containing two unequal eclipse depths that was
incorrectly identified as having period one-half of the true eclips-
ing period. We apply this classifier to all 11,138 sources in our
data set that were either classified by ACVS as an eclipsing
binary or whose most probable class from our variable star clas-
sifier was one of the eclipsing binary classes. Of those sources,
the classifier determined that our period was correct for 5456
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Figure 2. Period estimated by our period-finding algorithm vs. the period stated
in the ACVS catalog, for all 12,008 ASAS periodic sources in ACVS. The red
dashed line denotes perfect agreement; for a total of 9280 of the stars (76.6%)
we find periods that exactly match the ACVS period. For 93.0% of these sources,
our period estimate either matches the ACVS period exactly or is different by a
factor of two.

(A color version of this figure is available in the online journal.)

objects and that our period was wrong by a factor of 1/2 for
5753 sources. Doubling the period of those 5753 sources yielded
a significant boost in the period agreement rate with the ACVS
eclipsing binary stars, with 4146 of 5913 (70%) of those sources
resulting in a period match.

In Figure 2 we plot, for the 12,008 ASAS sources which the
ACVS confidently classified into a single periodic class (i.e.,
not classified as “MISC” and not listed in multiple classes), the
ACVS period versus our estimated period. Our agreement rate
with ACVS is 76.6% on these objects. Including matches to half
and twice the ACVS period yields an agreement rate of 93.0%.
To evaluate the overall accuracy of our period finder, we chose
a random 40 objects from the 7.0% of sources for which our
period estimate differs from that of ACVS. Of these 40 sources,
23 were cases in which our period was obviously correct while
only 3 were cases in which the ACVS period was obviously
correct. The other 14 objects were inconclusive due to too few
data or likely aperiodic or quasi-periodic variability (and should
not have been identified as periodic by ACVS). All three sources
for which our period is incorrect are detached eclipsing systems
with very sharp eclipses. Hence, we are confident in the accuracy
of our periods in all cases except detached eclipsing systems or
other variables with sharp periodic features.

3.1.4. Feature Importance

We plot the RF importance measure of the top 20 fea-
tures in the classification RF in Figure 3. The RF feature im-
portance measure describes the decrease in overall classifica-
tion accuracy that would result if the feature were replaced
by a random permutation of its values. See Breiman (2001)
for further details. In Figure 3 we find that the fundamen-
tal frequency of oscillation (i.e., period) of the light curve
is by far the most important feature in the classifier. Other

important features include estimates of the light-curve skew
(captured by both skew and gskew), the degree of periodic-
ity of the source (scatter_res_raw), the amplitude of the
fundamental frequency, measurements of amplitude/variability
(stetson_j,std,median_absolute_deviation), various
colors, and features extracted from the light curve folded on
twice the period. One caveat to the feature importance mea-
sure is that it does not account for correlations between fea-
tures. For instance, the standard deviation and MAD of the
light curve both provide measurements of the spread in the flux
measurements about the average value; thus, the conditional im-
portance of std given median_absolute_deviation is quite
low even though their individual importance measures are both
large. Dubath et al. (2011) account for this by iteratively remov-
ing features that are highly correlated with the most important
features.

To determine the optimal set of features to include in the RF
model, we run a pair of feature selection routines. First, starting
with an empty feature set, we iteratively add the feature with
the next-highest RF feature importance score. For each feature
set, we compute the fivefold cross-validation misclassification
rate over the 810 ASAS training objects (we use the combined
training set to train the RF, but evaluate performance only on the
ASAS sources). Results of this procedure are plotted in the left
panel of Figure 4. We find that performance improves during
the addition of the first ∼20 features and then levels off as the
subsequent (less important) features are added to the model.
Crucially, the performance never significantly deteriorates as
more features are added. Second, we use the feature-selection
routine of Dubath et al. (2011), where features are incrementally
added to the model via their RF importance score, but only if
they are not highly correlated (<0.8 Spearman correlation) with
any feature already in the set. Results of this experiment, in
the right-hand panel of Figure 4, are consistent with those of
the other procedure, with the performance of the all-features
model being consistent with the performance of the best overall
model. Since expected error rates never significantly increase
with additional features, we choose to use all 72 features in our
model. Though the extra features are not informative for error
rates, they may be useful for anomaly detection (Section 3.5)
or may have an effect when measured by other performance
metrics (e.g., area under the ROC curve).

3.2. Training the Classifier

Non-parametric supervised classification methods, such as
RF, require a training set of data with known class label to
learn the mapping from feature space to classes. Once this
model is learned, data from each ASAS source can be trivially
fed into the model to attain probabilistic classifications for
each object. However, much care must be taken to attain a
training set that is representative of the ASAS data. If significant
discrepancies exist between the distribution of training features
and the distribution of the features of the ASAS data, then, as
shown by Richards et al. (2012), significant biases can occur
in the ASAS classifications due to poor model selection and
catastrophic errors caused by sample-selection bias. In this
section, we detail the construction of our classification training
set and efforts to avoid sample-selection bias.

As the base training set for the ASAS classifier, we use the
training set of confirmed Hipparcos and OGLE sources used in
Richards et al. (2011) (which is based on, but slightly different
than, the training set used by Debosscher et al. 2007). This data
set consists of 1549 variable stars from 27 different science

7



The Astrophysical Journal Supplement Series, 203:32 (27pp), 2012 December Richards et al.

Mean Gini Decrease

0 50 100 150

freq1_harmonics_amplitude_1
flux_percentile_ratio_mid20

color_diff_vj
freq_rrd

color_diff_jh
qso_log_chi2nuNULL_chi2nu
p2p_scatter_pfold_over_mad

fold2P_slope_90percentile
percent_difference_flux_percentile

median_absolute_deviation
color_diff_bj

fold2P_slope_10percentile
p2p_scatter_2praw

std
stetson_j

freq1_harmonics_amplitude_0
scatter_res_raw

gskew
skew

freq1_harmonics_freq_0

Feature Importance

Figure 3. Random forest feature importance for the top 20 features, as estimated by calculating the mean feature importance over five random forest classifiers. As
expected, the fundamental frequency of oscillation is the most important feature in ASAS variable star classification. The next most important features include the
skew of the flux measurements, the ratio of the standard deviation of the scatter about the Fourier model to the raw observed scatter, the Fourier model amplitude of
the fundamental frequency, and the Stetson variability index J (Stetson 1996). Error bars denote the standard deviation in the feature importance over five random
forests (each initialized with a different random seed).

(A color version of this figure is available in the online journal.)

classes.11 Next, we cross-match the Hipparcos training set with
our ASAS sample, finding 266 matching sources. For these 266
training objects, we replace their Hipparcos light curves with
their ASAS light curves in the training set. At this stage of the
analysis, we also choose to exclude four variable star classes:
Lambda Böotis, Slowly Pulsating B, Gamma Doradus, and
Wolf-Rayet. Each of these classes of variable star is populated by
objects whose amplitude of variability is ΔV � 0.05 mag, which
is below the ACVS variability selection cut of 95th percentile in
the magnitude-dispersion diagram (Pojmański 2002). Indeed, of
the 113 variable stars in our Hipparcos training set that belong to
one of these four classes, not a single star passed the variability
cuts used to construct the ACVS catalog, even though 78 of the
113 stars were observed by ASAS. Because such prototypical
examples of each of the four small-amplitude classes did not
satisfy the cuts used to construct ACVS, we do not expect to
find any objects of these classes in the ACVS sample.

The feature distribution of this initial training set is substan-
tially different than the bulk distribution of ASAS features (see
Figure 1 of Richards et al. 2012). In Richards et al. (2012) it
was shown that this mismatch causes poor performance by su-
pervised machine-learned classification and demonstrated that
an active learning framework could be used to supplement the
training set in a statistically rigorous manner. Active learning
is a classification paradigm in which the supervised classifier is
able to query the human user for the classification labels of a
subset of sources with unknown class, whereby these objects are

11 Note that this training set is slightly different than that of Richards et al.
(2011) in that we further split the T Tauri class into Classical (nine stars) and
weak-line (two stars) subclasses and add the SX Phoenicis variable class.

manually labeled by the user and added to the training set. Us-
ing an RF classifier, the active learning query function S2 from
Equation (5) of Richards et al. (2012), and the crowd sourcing
methodology outlined in that work, we add 407 ASAS sources
to the training set.

In addition to the 407 active-learning training sources, we sup-
plemented the classification training set with matched sources
from the SIMBAD catalog (Wenger et al. 2000) using a com-
bination of algorithmic catalog matching, literature searching,
and human vetting. Starting with the list of NOMAD sources
associated with ASAS sources (see Section 2.3), our algorithm
looks for a SIMBAD source which is spatially close to the
NOMAD source, calling a match any SIMBAD source which
is within 0.′′5 of the NOMAD source. If no SIMBAD source
fits this constraint, then no association is made. Our primary
purpose for this exercise was to strengthen the training set
for underrepresented science classes. Thus, for any positive
SIMBAD association of class RV Tauri, Population II Cepheid,
Beta Cephei, Chemically Peculiar, T Tauri, or Herbig Ae/Be,
we performed a literature search on the object, only including
the source in the training set if it was definitely confirmed by
multiple sources. This procedure allowed us to add 68 sources to
the training set. At this point, we also added R Coronae Borealis
(RCB)—a class of hydrogen-deficient carbon-rich supergiants
that undergo episodes of extreme dimming (Clayton 1996)—to
the training set, populating the training sample with 17 RCB
stars found via the SIMBAD matching procedure.

In a preliminary edition of the classification catalog it was
noticed that an excessively large fraction of the ACVS variables,
�10%, were being classified as T Tauri stars (TTS). At the
time TTS only constituted ∼0.7% of the training set so the
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Figure 4. Result of feature selection experiments. Left: starting with an empty feature set, features are added in order of their random forest feature importance score.
As more features are added, the cross-validated error rate over ASAS training data decreases and eventually levels off. The vertical blue dashed line marks 1σ above
the lowest average cross-validated error rate of any single feature set. Right: in a similar experiment, features are again added in order of RF importance, but only if
they are not highly correlated with a feature already in the set of used attributes. Qualitatively, the results of the two experiments are similar, and give us confidence
that all features can be included in the model without overfitting.

(A color version of this figure is available in the online journal.)

large fraction of TTS classifications was not expected. Upon
further inspection we discovered that the inclusion of the
two subclasses of TTS, which exhibit significantly different
photometric behavior, into a single class led to their significant
overrepresentation in the final catalog. This occurred because
the single super-class of TTS was not tightly clustered in feature
space, with training examples ranging from high-amplitude
types with variability due to active accretion to quiescent
types exhibiting low-amplitude variability due to rotation of
spots. This heterogeneity effectively allowed the RF classifier
to allocate a large partition of feature space to the TTS class,
which resulted in high TTS probability being assigned to a large
number of stars.

Thus, we decided to split the TTS class into two classes:
weak-line T Tauri stars (WTTS) and classical T Tauri stars
(CTTS). This split is physically motivated as WTTS are older
young stellar objects whose photometric variability is periodic
and characterized by the rotational modulation of cool spots on
the stellar surface; CTTS, on the other hand, are younger stars
that are still actively accreting from a disk with a variability
signature that is typically more chaotic than WTTS (for a review
of TTS variability see Herbst et al. 1994 and references therein).
To populate these two new classes we divided all members of
the original TTS training set as well as new TTS identified via
our SIMBAD–ASAS matching query, which included SIMBAD

matches of type Y∗O, Or∗, pr∗, or TT∗.12 We split these sources
into the CTTS and WTTS classes using the classical diving line
between the two: for CTTS the equivalent width (EW) of Hα
emission is >10 Å, while for WTTS EWHα <10 Å (see, e.g.,
Walter 1986; Strom et al. 1989). Stars were only included in the
training set if we could find a published value of EWHα , which
typically came from the catalogs of Herbig & Bell (1988) or
Torres et al. (2006).

It was later noticed that several known members of the RS
Canum Venaticorum (RS CVn) class of binary stars were being
classified as WTTS, which prompted us to add RS CVn stars as
a new class in the training set. To populate the RS Canum
Venaticorum class in the training set we identified matches
between ACVS sources and the catalog of chromospherically
active binary stars (CABS; Strassmeier et al. 1988). The CABS
includes both RS CVn and BY Draconis (BY Dra) binaries, both
of which we include in the training set as the latter is the low
mass analog of the former. In practice RS CVn and BY Dra stars
exhibit the same photometric behavior, from a classification
standpoint they can only be separated spectroscopically which
is why we include them as a single class in the MACC. The
cross-match between the CABS and ACVS produces 16 RS

12 Y∗O: Young Stellar Object; Or∗: Variable Star of Orion Type; pr∗:
Pre-main sequence Star; TT∗: T Tau-type Star.
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Table 3
Class Distribution of Training Set Objects Used to Fit

the Probabilistic ASAS Classifier

Science Class NTrain Prior P(Class)

Mira 164 0.0852
Semireg PV 101 0.0525
SARG A 15 0.0078
SARG B 29 0.0151
LSP 54 0.0281
RV Tauri 25 0.013
Classical Cepheid 204 0.106
PopII Cepheid 27 0.014
Multi-Mode Cepheid 98 0.0509
RR Lyrae FM 148 0.0769
RR Lyrae FO 39 0.0203
RR Lyrae DM 59 0.0306
Delta Scuti 133 0.0691
SX Phe 6 0.0031
Beta Cephei 55 0.0286
Pulsating Be 49 0.0255
RSG 35 0.0182
ChemPeculiar 75 0.039
RCB 17 0.0088
ClassT Tauri 12 0.0062
Weak-line T Tauri 20 0.0104
RS CVn 17 0.0088
Herbig AEBE 22 0.0114
S Doradus 7 0.0036
Ellipsoidal 13 0.0068
Beta Persei 178 0.0925
Beta Lyrae 202 0.1049
W Ursae Maj 121 0.0629

Note. This class distribution defines the prior on class
probabilities used to compute posterior class probabilities
for each source.

CVn and 1 BY Dra, which we use to define the RS CVn
training set.

Finally, we choose to replace the Hipparcos class of period-
ically variable supergiants with the more well-defined class of
red super giants (RSG). RSGs in the Large and Small Magel-
lanic Clouds are bright enough to be detected by ASAS, and they
typically exhibit large amplitude (� few × 0.1 mag) variability
leading to their inclusion in the ACVS. The class was identified
as one with a substantial population during the search for new
R Coronae Borealis stars (see Miller et al. 2012). The training
set for the class consists of 35 stars which are spectroscopically
identified as low gravity and have either a K or M spectral type as
identified in Massey & Olsen (2003), Neugent et al. (2012), and
references therein. A few additional RSGs, which we require to
match the same spectroscopic criteria, were included following
their identification during the search presented in Miller et al.

Our final training set consists of 1925 sources in 28 science
classes. A total of 810 of these sources are observed by ASAS,
so we use their ASAS light curves to derive features that we will
use to train the classifier. For the other 1115 training objects, we
only have data in Hipparcos (591 stars) or OGLE (524 stars),
so we employ the light curves observed by those missions. A
tabulation of the entire training set, by class, is given in Table 3.
The implicit class prior in fitting an RF classifier is the empirical
vector of training-set class proportions, which is given in
Table 3.

Finally, we find the optimal RF model by minimizing the
tenfold cross-validation classification error rate over the ASAS

training set with respect to the number of RF trees, ntree, the
number of features considered on each splitting node, mtry,
and the minimum size of each terminal node, nodesize. Per-
forming a grid search over those three parameters, we find
that the optimal model is ntree = 10000, mtry = 23, and
nodesize = 5, attaining an average 10-fold cross-validation
error rate of 19.75% for the 810 ASAS training objects. The
cross-validated confusion matrix for only the 810 ASAS sources
is plotted in Figure 5. Here, we find at least 90% accuracy
for Mira, Classical Cepheid, RR Lyrae, FM, RR Lyrae, FO,
and Chem. Peculiar subclasses and at least 70% correspon-
dence for 14 of the 28 classes. The classes for which we find
less correspondence are those that have fewer than 10 ASAS
training sources or are easily confused with other classes (e.g.,
SARG A versus B). For the remainder of this paper, and to con-
struct the ASAS classification catalog, we use an RF trained
on all 1925 training set objects with the optimized tuning
parameters.

3.3. Calibrating Classifier Probabilities

Using the features described in Section 3.1 and the training
set outlined in Section 3.2, we fit an RF classifier with optimized
tuning parameters and use it to generate class predictions and
full 28-class probability vectors for all 50,124 ASAS objects. A
desirable property of probabilistic classifications is that they be
calibrated. That is to say, if we consider all sources whose class
probabilities for a particular class are 90%, then 90% of those
objects should truly be of that class. Calibration is attractive
because it allows us to treat the probabilistic classifier output as
if it were truly a set of posterior class probabilities, P(class | x).
Calibration also allows us to easily substitute different prior
class probabilities by multiplying the classification probabili-
ties by the appropriate vector of prior ratios and re-normalizing
the probability vectors (see Section 4.1 for a detailed
explanation).

However, the class probabilities estimated by the RF are
not necessarily calibrated. To check their calibration we per-
form the following experiment. Using only the subset of
ASAS training data (810 objects), we perform tenfold cross-
validation to estimate the RF classification probabilities for
each source.13 This provides a vector of 28 cross-validated class
probabilities for each object. Then, in each of eight disjoint
probability bins (chosen such that each bin contains at least
100 instances), we compute the proportion of the objects, ptrue,
that are truly of the specified class. If the probabilities were
calibrated, then the value of ptrue should match the mean RF
probability within each bin. In Figure 6 we see, by the solid
black line, that this certainly is not the case for our classifier.
Specifically, the RF classifier tends to be conservative in that it
systematically estimates a smaller probability than ptrue for the
RF probabilities greater than ∼0.3. For instance, in the RF prob-
ability bin centered around 0.5, around 70% of those objects are
truly of the specified class.

Two popular methods exist for calibrating classifier proba-
bilities using simple transformations. Platt Scaling (Platt 1999)
transforms the probabilities using a sigmoid function whose pa-
rameters are chosen via maximum likelihood over the training
set. Isotonic Regression (Robertson et al. 1988; Zadrozny &
Elkan 2001) is more flexible, replacing the sigmoid function

13 Cross-validation ensures that each object is held out of the training set when
fitting the classifier that is used to predict the class probabilities for that object.
In this sense, the cross-validated classification probabilities are representative
of the classifier probabilities for the unlabeled data.
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Figure 5. Cross-validated confusion matrix for all 810 ASAS training sources. Columns are normalized to sum to unity, with the total number of true objects of each
class listed along the bottom axis. The overall correspondence rate for these sources is 80.25%, with at least 70% correspondence for half of the classes. Classes with
low correspondence are those with fewer than 10 training sources or classes which are easily confused. Red giant classes tend to be confused with other red giant
classes and eclipsing classes with other eclipsing classes. There is substantial power in the top-right quadrant, where rotational and eruptive classes are misclassified
as red giants; these errors are likely due to small training set size for those classes and difficulty to classify those non-periodic sources.

(A color version of this figure is available in the online journal.)

with any monotonically increasing function (which is typically
restricted to a set of non-parametric isotonic functions, such as
step-wise constants). A drawback to both of these methods is
that they assume a two-class problem; a straightforward way
around this is to treat the multi-class problem as C one-versus-
all classification problems, where C is the number of classes.
However, we find that Platt Scaling is too restrictive of a trans-
formation to reasonably calibrate our data and determine that
we do not have enough training data in each class to use Isotonic
Regression with any degree of confidence.

Ultimately, we find that a calibration method similar to the
one introduced by Bostrom (2008) is the most effective for our
data. This method uses the probability transformation

p̂ij =
{
pij + r(1 − pij ) if pij = max{pi1, pi2, . . . , piC}
pij (1 − r) otherwise,

(4)
where {pi1, pi2, . . . , piC} is the vector of class probabilities
for object i and r ∈ [0, 1] is a scalar. Note that the adjusted

probabilities, {p̂i1, p̂i2, . . . , p̂iC}, are proper probabilities in that
they are each between 0 and 1 and sum to unity for each object.
The optimal value of r is found by minimizing the Brier score
(Brier 1950) between the calibrated (cross-validated) and true
probabilities.14 We find that using a fixed value for r is too
restrictive and, for objects with small maximal RF probability,
it enforces too wide of a margin between the first- and second-
largest probabilities. Instead, we implement a procedure similar
to that of Bostrom (2008) and parameterize r with a sigmoid
function based on the classifier margin, Δi = pi,max −pi,2nd, for
each source,

r(Δi) = 1

1 + eAΔi+B
− 1

1 + eB
, (5)

where the second term ensures that there is zero calibration per-
formed at Δi = 0. This parameterization allows the amount of

14 The Brier score is defined as B(p̂) = 1/N
∑N

i=1
∑C

j=1(I (yi = j ) − p̂ij )2,
where N is the total number of objects, C is the number of classes, and
I (yi = j ) is 1 if and only if the true class of the source i is j.
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Figure 6. Reliability diagram for ASAS training data. The closer the curve
follows the diagonal, the better calibrated the classifier probabilities. The
initial random forest probabilities (solid black line) are not well calibrated, as
the cross-validated ASAS RF probabilities tend to grossly underestimate the true
posterior probabilities for large estimated probabilities. Using the calibration
procedure of Bostrom (2008) results in well-calibrated adjusted probabilities
(dashed blue line), as they are consistent with the diagonal of the reliability
diagram. In the final MACC catalog, we use this calibration procedure to adjust
all of the posterior probability estimates.

(A color version of this figure is available in the online journal.)

calibration adjustment to differ between objects with confident
(high-margin) and ambiguous (low-margin) classifications. We
choose the optimal value for the parameters A and B by mini-
mizing the Brier score for the cross-validated classifications on
the 810 ASAS training set data. Indeed, as expected, we find that
the proper amount of adjustment is low for stars with small RF
margin (e.g., r(0.05) = 0.10) and higher for sources with large
RF probability margin (e.g., r(0.5) = 0.57). The parameters that
minimize the Brier score over the training set are A∗ = −8.30
and B∗ = 0.37.

With the Bostrom (2008) calibration procedure, we correct
the RF probability estimates for all ASAS sources. To test the
efficacy of our procedure, we plot, in the blue dashed line in
Figure 6, the adjusted (cross-validated) RF probabilities versus
true posterior probabilities for our set of 810 ASAS training
set objects. The calibration is now substantially improved over
the raw RF probabilities as the calibrated probabilities are
consistent with the true posterior class probabilities. Note that
the adjusted probabilities are still slightly conservative in that, on
average, the estimated probabilities are systematically smaller
than the true probabilities for estimated probabilities greater
than ∼0.1. In Figure 7, we plot these reliability diagrams for
each of four subclasses of variable stars. Within each of the four
subclasses, the calibration has improved, with marked decrease
in the Brier score for each subclass; large deviation in one of the
Eruptive + Rotational bins occurs due to low number statistics,
with only four objects falling in that particular bin.

3.4. Difficult Class Boundaries

There are certain classes of variability that are difficult to
separate based on photometric information alone. For instance,

W Ursae Majoris, Delta Scuti, and RR Lyrae, FO stars all show
variability on the same timescales with similar amplitudes.
Other classes such as weak-line T Tauri and RS CVn stars
exhibit variability from similar physical mechanisms (in this
case, rotation of chromospherically active stars), which may
result in ambiguous classification of sources of those classes
based on light-curve information alone. An advantage of using
machine-learned classification is that, given enough training
data, these methods can learn which light-curve features best
separate sources of similar class and can determine optimal
class boundaries. In Figure 8, we plot the most informative
features for separating notoriously difficult-to-separate classes
of variable star. Even with relatively few training instances, the
classifier effectively learns how to best distinguish, e.g., Delta
Scuti stars and Beta Cephei stars.

That said, there will always be borderline cases, for which,
given their light-curve and color data, it is impossible to
confidently place the objects into a class. This uncertainty is
reflected by low posterior class probabilities, typically �0.3,
assigned by the classifier across all classes. In Figure 9, we
plot the ASAS light curves for a few of the least confidently
classified (lowest maximal posterior probability) sources in
MACC. These sources typically have poor data quality and/or
fall in outlying regions of light-curve feature space, meaning that
there is not enough light-curve information from these objects
for the classifier to make a confident statement about their class.
For comparison, in Figure 10 we plot a few of the ASAS objects
whose light curves have a low anomaly score (see Section 3.5)
but whose highest posterior class probability is smaller than 0.5.
These light curves do not show atypical behavior, but tend to
reside on the boundary between classes. Most of these objects
reside on either the W UMa–Delta Scuti locus or between SARG
A and B subtypes, making them impossible to classify with
any degree of confidence. Likewise, ASAS 064635−1455.5
resides near the boundary between Delta Scuti and SX Phoenicis
variability, which is difficult to disambiguate without metallicity
measurements. Also, ASAS 210538+2005.0 is a Cepheid with
atypically high amplitude and short period that places them near
the dividing line between Classical and Population II Cepheid
stars.

3.5. Detecting Anomalous Objects

Our calibrated ASAS probabilistic classification catalog sup-
plies, for each object, its posterior probability of belonging to
each of 28 science classes given its observed ASAS light curve
and colors. These posterior class probabilities assume prior class
probabilities given by the distribution of object types in the train-
ing set (see Table 3). The posterior probabilities also assume that
the training set is fully representative of the set of ASAS data,
meaning that all classes present in the ASAS data are represented
in the training data and that the distribution of ASAS features is
the same as the training set feature distribution. However, there
is no guarantee that these conditions will be satisfied for each
ASAS object, even after performing several rounds of active
learning to reduce the discrepancies between the training and
ASAS data sets.

The challenge, then, is to identify ASAS objects that do not
resemble any of the training data. Classifier predictions for these
objects will be dubious due to the outlying nature of their feature
vectors compared to the training set feature distribution, either
due to their belonging to a class not included in the training
set or anomalous features brought about by noise or atypical
physical variability. To detect such anomalies, we compute,
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Figure 7. Reliability diagrams for each of the four subclasses in the ASAS training data. Within each subclass, the calibration procedure (dashed blue lines) produces
better calibration than the raw, uncalibrated random forest estimates (solid black lines) in terms of Brier score. Whereas the off-the-shelf random forest probabilities
are systematically too conservative for large estimated probabilities within each of the four subclasses, the adjusted probabilities are more consistent with the diagonal
for almost every probability bin.

(A color version of this figure is available in the online journal.)

for each ASAS object, a distance metric from that object’s
feature vector to each source in the training set. In contrast to
previous methods, which compute distances between phased
light curves for periodic variable stars to detect anomalies
(Protopapas et al. 2006; Rebbapragada et al. 2009), we compute
a distance measure between feature vectors.

Similar to Bhattacharyya et al. (2011), we use a semi-
supervised approach to compute the anomaly score for each
variable star. We begin by fitting an RF classifier to the training
set as in Section 3.2. The RF outputs a proximity measure ρij ,
between each pair of sources i and j, which gives the proportion

of trees in the RF for which the feature vectors xi and xj appear
in the same terminal node. If two sources have similar feature
vectors with respect to the topology of the RF, then the proximity
will be near 1, whereas if the feature vectors are dissimilar then
the proximity will be near 0. Using the proximity measure,
we define the discrepancy between the two feature vectors xi

and xj as

d(xi , xj ) = 1 − ρij

ρij

, (6)

which takes on non-negative real-valued numbers. This metric
is semi-supervised because it uses the labeled training set
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Figure 8. Random forest classifier automatically discovers class boundaries in the high-dimensional feature space. For certain easily confused classes, we plot
the projections, in two-dimensional feature spaces, of training objects (points with solid outline) and MACC-classified objects (small dots). Top left: in the skew
(first-harmonic-amplitude plane), W Ursae Majoris, RR Lyrae FO, and Delta Scuti stars are well separated, but Delta Scuti and Beta Cephei remain confused. Top
right: however, Delta Scuti and Beta Cephei are separated by their J − H color. Bottom left: SARG A and B subtypes split naturally in the period–amplitude plane.
Bottom left: Beta Persei and Beta Lyrae binaries are largely separable by two features, with a small amount of overlap.

(A color version of this figure is available in the online journal.)

to construct the optimal RF classifier, which is then used to
compute proximities (and discrepancies) between labeled and
unlabeled sources.

The novelty of the distance measure in Equation (6) is that it
automatically gives more weight to features that are important
in the classifier while ignoring useless features. For instance, if
a feature is important for classification, then the RF trees will
make many splits on that feature, thus dividing the coordinate
into many sub-regions. Hence, for a new source, the value of
that class-predictive feature will have a great deal of power in
determining which terminal node the source falls into for each
tree, and thus will be a strong determinant of its proximity
to other sources. Likewise, features that are unimportant for
classification will never be split on by any tree, and thus
proximities will be unaffected by their values. Unlike Euclidean
distance, the proximity-based distance measure adapts to the

geometry of the classification problem and can treat different
regions of feature space differently based on the class boundaries
and prevalence of training data in those regions.

Using the RF proximity measure, we construct an anomaly
score for each ASAS object. We first compute the distance,
using Equation (6), from the feature vector of each ASAS
source to the feature vector of every training source. We de-
fine the anomaly score for each ASAS object to be the distance
(Equation (6)) to the second nearest neighbor in the training
set. Objects with large anomaly scores should be considered
as outliers and their classifications should not be trusted be-
cause there is too much discrepancy between the features of
those sources and the training set of variable stars. Note the
subtle difference between the anomaly score and classification
probability: sources with small maximal class probability may
reside near training data but fall in regions of feature space
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Figure 9. ASAS light curves for the candidates with lowest classification probability across all 28 classes. Several of these light curves suffer from lack of data (b),
large temporal gaps (g), or large amounts of noise caused either by blending with nearby stars (a, c) or relative faintness (e). Others are outliers due to abnormal
period–amplitude combinations (d, f), or secular variability on several year timescales (h). These objects, and others that obtain low probabilities across all 28 science
classes, require further study to ascertain their true nature.

(A color version of this figure is available in the online journal.)

shared by several science classes. At the same time, sources
with a high anomaly score may have a large maximal class
probability due to their relatively close proximity to the training
objects of a certain class compared to the training objects of the
other classes.

The anomaly score provides a positive real-valued number
for each object. However, we may ultimately want to make a
decision, for each object, of whether or not that source is an
outlier, by thresholding on the anomaly score. To determine an
appropriate score threshold for anomaly detection, we employ
cross-validation on the training set. In each of K = 10 cross-
validation folds, we hold out a random subset of the ASAS
training data, fit the RF classifier on the remaining data, and
compute the anomaly score for each held-out object. Then, for
each anomaly score threshold, we record the cross-validated

classification error rate over the ASAS training data, counting
each object whose anomaly score surpasses the threshold as
an error. Results of this experiment are in Figure 11. As the
threshold decreases, we identify more objects as outliers, but
the classification error rate only becomes significantly affected
for thresholds smaller than 10.5. Following the 1σ rule of Hastie
et al. (2009) over 10 repetitions of the procedure, we find that the
optimal threshold level is t∗ = 10.5. Therefore, we recommend
that the 1271 ASAS objects with anomaly scores larger than
10.5 be treated as outliers.

In Figure 12 we plot the ASAS light curves of eight sources
that are amongst the highest outlier scores. These objects
include a light curve showing rare year-long periodicity with
small amplitude (ASAS103706−6528.3), a known pulsating Be
star showing a high level of activity (ASAS143429−6412.1),
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Figure 10. Light curves of ASAS objects whose anomaly scores are small even though their maximal classification probabilities are smaller than 0.5. These light
curves show behavior that is not inconsistent with a particular class of variability, but typically reside between classes. The objects in (a, b, c) reside on the border
between SARG A and B subtypes. The star in (d) has almost equal probability of being a Chemically Peculiar and W Ursae Majoris eclipsing variable. Likewise, the
stars in (e–f) could either be eclipsing variables or Delta Scuti pulsating stars. The object in (g) lies on the boundary between SX Phoenicis and Delta Scuti, while that
in (h) lies on the short-period end of the Cepheid locus, and is likely a Population II Cepheid.

(A color version of this figure is available in the online journal.)

another likely Be star showing semi-regular pulsations with
amplitude modulation (ASAS073246−1519.3), and a star with
very small amplitude 18.44 day periodicity (ASAS185203−
2937.7). The other outliers in Figure 12 all have aperiodic
variability with high-amplitude outbursts up to 1.5 mag in
amplitude. For each of these outliers, there are no training
instances that capture the observed variability in their ASAS
light curves.

4. THE CATALOG

Here we describe the contents of the publicly available
MACC. MACC is available for download at www.bigmacc.info
and is also available in the online version of this publication.
The first 30 rows of the classification catalog are reproduced
here in Table 4. The columns of the catalog are as follows:

1. ASAS_ID: ID from ACVS
2. dotAstro_ID: ID from the online database http://dotastro.

org/
3. RA,DEC: coordinates from ASAS15

4. Class: most probable class from the machine-learned
classifier

5. P_Class: posterior probability that the source is from that
class, given the ASAS light curve and colors

6. Anomaly: metric from Section 3.5; objects with a score
greater than 10.0 should be considered as outliers

7. ACVS_Class: classification from the ACVS (Pojmański
2002)

15 Coordinates from ASAS are sometimes wrong by several arcseconds due to
its ∼15 arcsec pixel size. This effect is worse in crowded fields.
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Table 4
The Machine-learned ASAS Classification Catalog

ASAS ID dotastroa R.A.b Decl.a Class P(Class) Anomaly ACVS Class Train Class P(Mira) . . . P P signifc N Vd ΔVe

000006+2553.2 215153 0.027375 25.886453 Mira 1 0.07 MIRA Mira 1 . . . 319.295 10.398 170 8.56 2.488
000007+1844.3 215154 0.030375 18.738077 Beta Persei 0.788 2.012 ESD/CW-FU/ACV/ED 0.001 . . . 2.589 10.795 304 10.85 0.41
000007+2014.3 215155 0.028755 20.237385 Semireg PV 0.951 1.475 MISC 0.005 . . . 213.732 9.064 233 9.07 0.558
000017+2636.4 215156 0.068685 26.608939 Semireg PV 0.418 6.092 MIRA 0.223 . . . 186.65 8.126 119 10.83 1.149
000018+0919.4 215157 0.075405 9.323315 RV Tauri 0.217 10.111 MISC 0.008 . . . 43.541 10.755 239 10.52 0.108
000030−3937.5 215158 0.129525 −39.630347 Beta Persei 0.657 3.202 ED 0.002 . . . 2.553 9.641 410 10.79 0.614
000036+2639.8 215159 0.14772 26.663685 RR Lyrae FM 0.948 0.647 RRAB 0 . . . 0.566 6.65 87 12.61 0.578
000053−1717.5 215160 0.220095 −17.291745 W Ursae Maj 0.893 1.392 ESD/EC 0 . . . 0.298 13.769 345 12.66 0.524
000058+0236.7 215161 0.23553 2.611892 W Ursae Maj 0.938 1.02 EC/DSCT/ESD 0 . . . 0.318 11.915 296 12.94 0.504
000058+1236.5 215162 0.242265 12.607833 Semireg PV 0.218 12.514 MISC 0.023 . . . 5.204 7.917 237 12.64 0.348
000108−3330.1 215163 0.28191 −33.500881 W Ursae Maj 0.959 0.616 EC 0 . . . 0.467 16.315 425 11.51 0.336
000112+0904.7 215164 0.297765 9.078171 Delta Scuti 0.595 2.584 ESD 0 . . . 0.241 11.002 240 10.28 0.08
000116−6037.0 215165 0.316515 −60.615788 Delta Scuti 0.861 2.704 DSCT 0 . . . 0.122 15.126 536 10.03 0.356
000118−3551.7 215166 0.32487 −35.860717 SARG A 0.634 2.205 MISC 0.001 . . . 25.488 8.803 451 9.84 0.254
000119−3505.9 215167 0.32922 −35.097789 SARG B 0.884 1.347 MISC 0 . . . 38.742 7.956 437 10.77 0.258
000120−5834.8 215168 0.334545 −58.580264 LSP 0.649 4.682 MISC 0.011 . . . 375.134 11.847 475 9.53 0.318
000139−0345.4 215169 0.418155 −3.756766 Semireg PV 0.883 2.135 MISC 0.01 . . . 162.98 11.858 344 12.82 0.898
000142−4229.3 215170 0.425685 −42.487419 Semireg PV 0.482 5.452 MISC 0.013 . . . 96.313 8.014 424 10.71 0.379
000147−5714.5 215171 0.44919 −57.242031 Delta Scuti 0.803 3.854 ESD/EC 0 . . . 0.235 17.212 475 11.03 0.15
000155−6707.7 215172 0.475245 −67.130487 RV Tauri 0.268 8.524 MISC 0.085 . . . 1.006 6.464 217 12.74 1.335
000157−5250.1 215173 0.48729 −52.835239 Semireg PV 0.362 4.319 MISC 0.027 . . . 2109.092 11.879 532 10.78 0.419
000158+1357.6 215174 0.49407 13.959879 SARG B 0.338 5.25 MISC 0.006 . . . 74.32 7.228 191 11.52 0.16
000202−6653.3 215175 0.498525 −66.882596 W Ursae Maj 0.976 0.786 EC 0 . . . 0.327 16.748 462 12.16 0.501
000208−1440.5 215176 0.532755 −14.674641 Mira 0.99 0.195 MIRA 0.99 . . . 351.44 15.273 358 8.35 3.534
000221−2929.6 215177 0.582285 −29.493562 W Ursae Maj 0.179 9 ESD/ED 0.005 . . . 3.143 13.906 448 12.32 0.462
000222+0429.6 215178 0.58593 4.494017 SARG A 0.207 6.812 MISC 0.001 . . . 1.002 7.689 302 9.79 0.134
000229−5653.9 215179 0.61572 −56.898676 Weak-line T Tauri 0.213 8.346 ESD/EC/ELL/SR 0.001 . . . 13.223 13.931 474 10.15 0.124
000239−1926.7 215180 0.668595 −19.442961 SARG B 0.411 3.587 MISC 0.007 . . . 453.892 7.716 442 9.69 0.346
000248−2456.7 215181 0.70044 −24.945325 RR Lyrae FM 0.995 0.16 RRAB RR Lyrae FM 0 . . . 0.493 16.031 387 9.9 0.704
000301−7041.5 215182 0.751575 −70.685852 RR Lyrae FM 0.983 0.314 RRAB 0 . . . 0.554 13.126 340 13.27 0.838

Notes.
a ID from the online database http://dotastro.org/.
bIn decimal degrees.
c Statistical significance of the period against a null hypothesis of white noise, in number of σ .
d Average V-band magnitude.
e Peak to peak amplitude (95th minus 5th quantile).

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
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Figure 11. Determination of the optimal anomaly score threshold via cross-validation. As the outlier threshold, t, is reduced, more objects are considered anomalies,
and the cross-validated error rate increases (outliers are, by construction, assigned no label, incurring a classification penalty of 1). Using the 1σ rule, which chooses
the smallest threshold for which the error rate is within one standard deviation of the default model with no thresholding, we find that the optimal threshold on the
anomaly score is t∗ = 10.5. Adopting this threshold for the ASAS data, we discover 1271 outliers.

(A color version of this figure is available in the online journal.)

8. Train_Class: if the ASAS object was in the training set,
its training class; otherwise blank

9. Mira,...,W_Ursae_Maj: posterior class probabilities for
all 28 science classes

10. P,P_signif: best-fit period (in days) and its statistical
significance (in number of σ )

11. N_epochs: number of epochs in the ASAS light curve used
to classify the object

12. V,deltaV: mean ASAS V-band magnitude and ASAS
V-band amplitude.

MACC has been constructed to allow for easy querying of
objects of a specified science class, simple searching for outliers,
and more advanced queries on several attributes. In supplying
the posterior class probabilities for each class, the catalog
allows each individual researcher to define their own probability
threshold when querying objects. For instance, imagine that
scientists A and B are both interested in finding Mira variables,
but scientist A requires a highly pure sample, while scientist B
simply wants the top 3000 Mira candidates, even if a substantial
number of these are non-Miras. Then, scientist A could use
a strict threshold, selecting all candidates with P(Mira) >0.9
(resulting in 2067 very likely Mira candidates), while scientist
B would simply grab the 3000 objects with largest P(Mira)
(which, in this case is equivalent to a Mira probability threshold
of 0.370).

4.1. Substituting Different Class Priors

All of the posterior class probabilities given in MACC assume
that the prior probability of observing an object of class cj
(before observing any data) is given by the proportion of training
set objects that are of class cj (provided in Table 3). By Bayes’
Rule, the posterior MACC class probability for class cj given
the features, xi , for object i, is

P(cj |xi) = P(xi |cj )Ptr(cj )∑28
k=1 P(xi |ck)Ptr(ck)

, (7)

where Ptr(cj ) is the prior class probability given by the pro-
portion of objects of class cj in the training set. To exchange a
different vector of prior class probabilities, one must multiply
each posterior probability from the catalog by the ratio of the
new prior to the training set prior and multiply by the corre-
sponding ratio of denominators from Equation (7). For a new
prior Pnew(cj ), the new posterior probabilities are given by

Pnew(cj |xi) = P(cj |xi)
Pnew(cj )

Ptr(cj )

∑28
k=1 P(xi |ck)Ptr(ck)∑28

k=1 P(xi |ck)Pnew(ck)
. (8)

For modified priors, Pnew, which are not too dissimilar from
Ptr, the last term in Equation (8) will typically be near unity,
and thus a reasonable approximation of the modified posterior
probabilities can be computed by multiplying the original
posteriors by the prior ratio and appropriately re-normalizing.
For very dissimilar priors, accurate estimates of all the class-
wise densities, P(xi |ck), would have to be computed and
stored on a fine grid of the 72 dimensional feature space,
which is both statistically and computationally infeasible.16 Our
recommendation is to only update the posteriors by assuming
that the last term in Equation (8) is unity in cases where the
prior and posterior class probabilities are all within �0.1;
otherwise the RF classifier should be re-trained with the new
prior weights.17

The construction in Equation (8) allows us to also condition
on additional information such as galactic coordinates (
, b),

16 Consider the most naive density estimate, a histogram. Constructing a
72-dimensional histogram for each class by binning each feature into 10 bins
requires 28 × 1072 values to be computed and stored. Statistically, such a
density estimate is unreliable, as the amount of training data is microscopic
compared to the vast feature space occupied by 72 dimensions, rendering any
simple density estimate useless.
17 Though there are modern manifold learning methods, which attempt to
estimate and exploit lower-dimensional, nonlinear structure in
high-dimensional feature spaces to make density estimation tractable, these
methods are out of the scope of this paper and likely will also suffer from a
lack of labeled data.
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Figure 12. Top outlier light curves as determined from the anomaly score. These light curves are the farthest from their second nearest neighbor in the training set
according to the anomaly metric in Equation (6). These sources are outliers because they either occupy an anomalous region of period–amplitude space (a,d), have
suppressed high-amplitude variability due to blending with nearby sources (b), show quasi-periodic behavior of irregular type (c,g,h), or have aperiodic variability
with >1 mag brightening episodes (e,f). For each of these sources, there are no training instances that capture the observed variability in their ASAS light curves.

(A color version of this figure is available in the online journal.)

median magnitude, and/or distance. For instance, if we have a
good theoretical understanding of the expected demographics
of variable stars as a function of position in the galaxy, we
can imbue that information into the prior probabilities. In other
words, before observing any data for a particular object, we can
modify its prior class probabilities solely based on its location
in the galaxy. This can be a very powerful tool, e.g., for finding
star-forming regions near the Galactic plane, where the relative
abundance of young stellar objects will be higher (and that
information can be inserted into the class prior).

5. COMPARISON TO LITERATURE

We conclude with a comparison of the MACC with a set
of papers that have performed classification for ASAS objects.
As a first-order validation of MACC classifications, we find

that objects with classifications into variable classes, which
one would expect to trace the Galactic plane, clearly do.
High-probability Classical Cepheids very closely follow the
plane, while the Red Giant classes (Mira, SRPV, SARG, RSG,
etc.), Chemically Peculiar, Beta Cepheid, and Pulsating Be
stars reasonably follow the Plane (sources predominantly have
b < 30◦). Since we do not use any galactic coordinate features
in the MACC classification, this serves as an external validation
of the quality of the classifier. Other sources that are expected
to lie predominately near the Galactic plane (RR Lyrae, WTTS,
etc.) are not detected to sufficient distance by ASAS to trace the
plane.

In what follows, we continue external verification of MACC
by analyzing the similarities and differences between MACC
and the popular ACVS catalog. Subsequently, we take a closer
look at a handful of papers that have attempted to find, in the
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ASAS data, objects of specific subclasses. Overall, we find a
high classification agreement rate between MACC and these
other works. For the few cases in which the MACC classification
disagrees with that of a class-specific paper, the differences
can be attributed to poor quality of the ASAS photometry and
extra information that was unavailable to our classifier, such as
proprietary follow-up data including spectra and high-quality
multi-band light curves.

5.1. ASAS Catalog of Variable Stars (ACVS)

As a part of the ACVS, predicted classes are provided for a
fraction of the stars. As described in Pojmański (2002), ACVS
obtains their classifications using a neural net type algorithm
trained on a set of visually labeled ASAS sources, confirmed
OGLE Cepheids (Udalski et al. 1999a, 1999b) and OGLE Bulge
variable stars (Wozniak et al. 2002). A filter is used to divide
strictly periodic from less regular periodic sources. A neural
net is trained on the period, amplitude, Fourier coefficients
(first four harmonics), J − H and H − Ks colors and IR fluxes
to predict the classes of the strictly periodic sources. Many
ACVS objects either have multiple labels or are annotated as
having low confidence classifications, but no posterior class
probabilities are given in the catalog. For less regular periodic
sources, location in the J − H versus H − Ks plane is tested;
if the object falls within an area of late-type irregular or semi-
regular stars, it is assigned the label MISC, else it is inspected by
eye. We find that 38,117 ACVS stars, representing 76% of the
catalog, are either labeled as MISC, assigned multiple labels,
or have low class confidence. The remaining 24% of stars have
confident ACVS labels, and provide a set of classifications to
compare against our catalog.

In the top panel of Figure 13 we plot the class-wise correspon-
dence between our classifications and the ACVS classes. Over-
all, there is a 79.7% correspondence between our catalog and
ACVS, for the 12,007 sources that are labeled confidently (and
not as MISC) in ACVS. For each of the ACVS subclasses, ex-
cept Population II Cepheid and Multi-Mode Cepheid, we agree
on at least 59% of objects. The large disagreement with the
Population II and Multi-Mode Cepheids is consistent with the re-
sults of Schmidt et al. (2009) who find extreme biases in Cepheid
classifications for ACVS. Of 282 stars labeled as Cepheid by
ACVS, only 14 were found by Schmidt et al. (2009) to be likely
Pop II Cepheids, while all but ∼60 suffered from uncertain pe-
riod estimates, and ∼50 were rejected as obvious non-Cepheids.
We also find that our classifications of First Overtone RR Lyrae,
Delta Scuti, and W Ursae Majoris show a significant amount
of discrepancy with those of ACVS. In particular, our classifier
finds that ∼22% of the stars that ACVS classifies as RRc or
Delta Scuti are truly WUMa eclipsing variables.

In the bottom panel of Figure 13, we plot the class-wise
correspondence for all 23,209 ASAS sources with MACC
outlier score smaller than 3.0. For these more confidently
classified objects, MACC has a closer correspondence with
ACVS (91.4% for the 8303 objects with confident ACVS class),
but still shows high level of disagreement for the non-Classical
Cepheids. Of these sources, we find a 98% agreement on Miras,
85% on Classical Cepheids, 99% on RR Lyrae, FM, perfect
agreement on 39 Chemically Peculiar stars, 97% on Beta Persei,
and 92% on W Uma Majoris sources.

5.1.1. Confident MACC Classifications Missed by ACVS

In addition to having >80% correspondence with ACVS for
objects which they confidently label, our MACC catalog identi-

fies many confidently classified sources—having posterior class
probability of at least 0.9 for a single class—whose ACVS
classification is either uncertain (denoted by a “:” in the cata-
log) or split between multiple classes. In all, MACC identifies
187 Mira, 22 Classical Cepheid, 122 Fundamental Mode RR
Lyrae, 11 First Overtone RR Lyrae, 14 Beta Cephei, 43 Chem-
ically Peculiar, 152 Beta Persei, 210 Beta Lyrae, and 1548 W
Uma Majoris candidates that were not found by ACVS. Lower-
ing the confidence threshold from 0.9 to 0.8 yields about 50%
more good candidates.

In Figures 14 and 15 we plot, for eight different science
classes, the ASAS light curves of selected MACC sources
with large class probabilities but whose ACVS classification
is different or unconfident. Within each of these classes, the
light curves appear as expected for each class of variability.
MACC is better able to discover the classes of objects near the
magnitude limit of ASAS and whose light curves are of lower
signal-to-noise ratio.

5.2. Classical Cepheids: Berdnikov et al. (2011)

Berdnikov et al. (2011) present multi-band light curves of 49
Classical Cepheid candidates from the ACVS catalog, with data
from the 76 cm telescope of the South African Astronomical
Observatory and the 40 cm telescope of the Cerro Armazones
Observatory of the Catholic University of the North, Chile.
From these observations, they are able to confirm that 48
are Classical Cepheids and one, ASAS 100914−5714.6, is a
Double-Mode Cepheid. Our classifier correctly identifies 46 of
these 48 Classical Cepheids. See Table 5 for a complete listing
of our catalog classification, posterior probability of Classical
Cepheid, ranking of Classical Cepheid probability out of all 50 K
ASAS sources, and anomaly score for all 49 objects observed by
Berdnikov et al. (2011). None of these objects is in our MACC
training set.

For two of these sources, ASAS 073453−2651.3 and ASAS
075750−2923.5, our catalog identifies the objects as non-
Classical Cepheids. For the former, the object has a very high
anomaly score of 15.13, meaning that its classification as WTTS
should not be trusted. This object has a median ASAS magnitude
around 14, which is near the ASAS detection limit, thus its light
curve is noisy and contains many non-detections when the object
is dimmer than median. The non-detections give the source
a depressed amplitude from what is expected for a Classical
Cepheid, and thus the source is flagged as anomalous. For the
latter, which has a period of 2.586 days, there is significant
scatter in the phased ASAS light curve and a relatively low
amplitude, making its ASAS light curve more consistent with
a Multi-Mode Cepheid. It is likely the presence of a bright
neighbor to ASAS 075750−2923.5 that causes this scatter and
depressed amplitude. However, the light curve of Berdnikov
et al. (2011), which only contains nine epochs of data, does not
completely rule out a Multi-Mode pulsator.

5.3. Beta Cephei: Pigulski (2005)

In the work of Pigulski (2005), 14 new Beta Cephei stars
appearing in ACVS were confirmed (in addition to 4 other
previously known Beta Cephei stars). Starting with all 37 stars
whose ACVS classification includes BCEP as a possible class,
the author makes selection cuts based on the ASAS periodogram
and any available multi-band photometry and/or spectral type,
finding 14 stars that the author deems as unambiguous. Then,
with a broader set of 1700 ASAS stars, Pigulski detects four
more bona fide candidates using the same selection criteria.
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Figure 13. Top: correspondence of the MACC to the ACVS classifications for all 50,124 sources. Rows are normalized to sum to 100%. Marginal counts are listed
to the right and bottom of the table. There is a 79.7% total correspondence between our classifications and the ACVS labels for the 12,007 objects whose ACVS
classification is a single confident class not equal to MISC. Bottom: same for the subset of 23,209 ASAS sources with outlier score smaller than 3. The agreement rate
between MACC and ACVS for the subset of these sources with confident ACVS class (8303 objects) is 91.4%.

(A color version of this figure is available in the online journal.)
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)d()c(

)b()a(

Figure 14. ASAS light curves for arbitrarily chosen candidates with a high probability of being (a) Mira, (b) Classical Cepheid, (c) Fundamental Mode RR Lyrae, and
(d) First Overtone RR Lyrae whose ACVS classification either includes multiple classes, is insecure or MISC, or otherwise differs from that of MACC.

(A color version of this figure is available in the online journal.)

In Table 6 we report our catalog’s classification for each of
the Pigulski (2005) Beta Cephei. Note that all but one of these
sources was included in the MACC training set. We misidentify
as a Delta Scuti star the one object (ASAS 161858−5103.5)
that was not included in the training set. This star is located
directly in the Galactic plane with a Galactic latitude of −0.◦536,
and suffers from heavy extinction. Thus its observed colors are
more typical of the comparatively redder class of Delta Scuti
stars than the bluer class of Beta Cephei. With a Beta Cephei

posterior class probability of 0.17, it ranks within the top 500
Beta Cephei candidates.

5.4. Double-Mode RR Lyrae: Szczygieł & Fabrycky (2007)

Szczygieł & Fabrycky (2007) perform a search for multiple-
pulsating RR Lyrae stars in ASAS. Starting with all objects with
an RR Lyrae classification in ACVS, this study first culled out
obvious non-RR Lyrae stars via visual inspection. They pre-
whiten each ASAS RR Lyrae light curve at the pulsation period
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Figure 15. Same as Figure 14 for: (e) Chemically Peculiar, (f) Beta Persei, (g) Beta Lyrae, and (h) W Uma Majoris.

(A color version of this figure is available in the online journal.)

and run the CLEAN algorithm to find any significant periodicity
in the residual light curves. From this analysis, they identify
of order 150 Blazhko affected RR Lyrae and 19 Double-Mode
RR Lyrae stars. The Double-Mode pulsators were identified by
making cuts on the pulsation period (P0) and the ratio of the
overtone to fundamental periods (0.735 � P1/P0 � 0.755) and
confirmed via visual inspection.

The MACC classification, posterior probability of Double-
Mode RR Lyrae, ranking of RRd amongst all ASAS sources,
and anomaly score for the 19 confirmed RRd from Szczygieł &
Fabrycky (2007) are in Table 7. MACC correctly classifies all
19 stars even though only two of them were in our training set.
Each of the stars has posterior probability of being a Double-

Mode RR Lyrae of >0.65 and each ranks within the top 29 RRd
candidates.

5.5. Orion Belt Objects: Caballero et al. (2010)

In a search for high-amplitude variable stars in the Orion
Belt, Caballero et al. (2010) identify 32 variable stars from
ASAS photometry, proper motions, and infrared photometry
(2MASS and the IRAS). They perform an extensive literature
search on these objects and visual analysis to determine a likely
classification for each. Of these 32 variable stars, 13 are in
our catalog, and their classifications are listed in Table 8. Our
classifications agree with those of Caballero et al. (2010) for 9
of the 13 objects.
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Table 5
Classification Catalog Results for Classical Cepheid Stars Confirmed by Berdnikov et al. (2011)

ASAS ID Predicted Class P(Classical Cepheid) Rank CCeph Anomaly Score In Training

052610+1151.3 Classical Cepheid 0.993 53 0.23 No
052706+1656.2 Classical Cepheid 0.893 178 1.17 No
062939−1840.5 Classical Cepheid 0.873 202 1.27 No
064037+1143.6 Classical Cepheid 0.923 140 0.87 No
064829−1014.2 Classical Cepheid 0.858 218 1.38 No
070355−1752.8 Classical Cepheid 0.937 125 0.63 No
071342−1737.2 Classical Cepheid 0.813 262 2.18 No
073113−2811.0 Classical Cepheid 0.9 170 1.76 No
073453−2651.3 Weak-line T Tauri 0.166 604 15.13 No
073502−3554.9 Classical Cepheid 0.843 242 1.65 No
074925−3814.4 Classical Cepheid 0.906 161 1.1 No
075345−3658.2 Classical Cepheid 0.995 45 0.2 No
075358−2822.1 Classical Cepheid 0.812 264 1.9 No
075750−2923.5 Multi-Mode Cepheid 0.125 683 4.03 No
075840−3330.2 Classical Cepheid 0.944 118 0.65 No
075912−2641.9 Classical Cepheid 0.703 320 4.81 No
080500−2851.8 Classical Cepheid 0.937 126 0.56 No
080511−3421.7 Classical Cepheid 0.921 142 0.9 No
080927−3315.7 Classical Cepheid 0.898 173 1.23 No
081025−3828.4 Classical Cepheid 0.872 205 1.53 No
081026−3231.3 Classical Cepheid 0.931 130 0.91 No
082117−3845.3 Classical Cepheid 0.817 259 1.42 No
082127−3825.3 Classical Cepheid 0.896 176 1.33 No
082859−3613.9 Classical Cepheid 0.968 86 0.42 No
083130−4429.3 Classical Cepheid 0.636 349 5.41 No
083426−3559.1 Classical Cepheid 0.948 115 0.59 No
083611−3903.7 Classical Cepheid 0.823 257 2.13 No
084127−4353.6 Classical Cepheid 0.832 249 2.46 No
090436−4633.2 Classical Cepheid 0.627 355 8.35 No
090932−5359.3 Classical Cepheid 0.909 158 1.16 No
092758−5218.9 Classical Cepheid 0.848 231 1.78 No
093005−5137.5 Classical Cepheid 0.871 207 1 No
094819−5748.6 Classical Cepheid 0.771 284 3.31 No
094827−5801.1 Classical Cepheid 0.957 105 0.48 No
100914−5714.6 Classical Cepheid 0.637 347 9.53 No
101037−5817.8 Classical Cepheid 0.779 281 2.91 No
101538−5933.1 Classical Cepheid 0.336 502 5.76 No
103627−6211.6 Classical Cepheid 0.814 261 1.75 No
112039−6149.9 Classical Cepheid 0.826 253 2.86 No
115701−6218.7 Classical Cepheid 0.284 534 8.26 No
122240−6209.5 Classical Cepheid 0.844 238 1.75 No
123804−3831.4 Classical Cepheid 0.902 166 1.1 No
140742−6315.4 Classical Cepheid 0.843 240 1.9 No
150547−5823.0 Classical Cepheid 0.883 194 1.23 No
152021−5807.3 Classical Cepheid 0.814 260 3.26 No
164120−4739.6 Classical Cepheid 0.328 505 4.21 No
173253−3554.7 Classical Cepheid 0.743 304 4.24 No
174134−4854.6 Classical Cepheid 0.609 366 4.81 No
181416−0920.4 Classical Cepheid 0.632 351 3.69 No

For four objects, we disagree with the classifications of
Caballero et al. (2010). The star ASAS 053621−0210.9 (PQ
Ori) was found by us to be a semi-detached (Beta Lyrae)
eclipsing system, while Caballero et al. (2010) note that although
it has been identified as a possible young stellar object in the
literature, its colors are too blue and it is more likely a field
star. The star ASAS 053946−0055.9 was identified by us as
either an LSP or RS CVn, consistent with the classification of
Schirmer et al. (2009), while Caballero et al. (2010) retain it as

an uncertain T Tauri candidate. The star ASAS 053543−0034.6
is claimed by Caballero et al. (2010) to have signs of youth;
however, we find significant periodicity on 86.61 day timescales,
which is consistent with the pulsations of an RV Tauri star.
Finally, ASAS 053642+0038.5 is identified by our catalog as a
likely W Ursae Majoris candidate due to its tell-tale eclipsing
structure on 1.06 day timescales; Caballero et al. (2010) claim
that it is a possible HAeBe star, though they note that it has
anomalous brightness.
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Table 6
Classification Catalog Results for Beta Cephei Stars in Pigulski (2005)

ASAS ID Predicted Class P(Beta Cephei) Rank BetCep Anomaly Score In Training

091731−5250.3 Beta Cephei 0.921 5 2.73 Yes
180233−4005.2 Beta Cephei 0.972 1 0.96 Yes
191715+0103.6 Beta Cephei 0.909 9 2.8 Yes
212329+0955.9 Beta Cephei 0.884 14 5.8 Yes
122213−6320.8 Beta Cephei 0.916 6 2.38 Yes
150955−6530.4 Beta Cephei 0.943 3 1.8 Yes
161858−5103.5 Delta Scuti 0.17 480 3.41 No
164409−4719.1 Beta Cephei 0.857 16 2.51 Yes
164630−4701.2 Beta Cephei 0.837 19 1.88 Yes
164939−4431.7 Beta Cephei 0.829 20 2.58 Yes
165314−4345.0 Beta Cephei 0.913 7 2.28 Yes
165554−4808.8 Beta Cephei 0.872 15 1.92 Yes
171218−3306.1 Beta Cephei 0.903 10 2.28 Yes
180808−3434.5 Beta Cephei 0.896 12 2.48 Yes
181716−1527.1 Beta Cephei 0.911 8 2.48 Yes
182610−1704.3 Beta Cephei 0.901 11 1.88 Yes
182617−1515.7 Beta Cephei 0.807 21 4.13 Yes
182726−1442.1 Beta Cephei 0.895 13 1.99 Yes

Table 7
Classification Catalog Results for Double-Mode RR Lyrae Stars in Szczygieł & Fabrycky (2007)

ASAS ID Predicted Class P(RRd) Rank RRd Anomaly Score In Training

032820−6458.7 RR Lyrae DM 0.834 11 2.03 No
040054−4923.8 RR Lyrae DM 0.886 4 1.64 No
081610−6644.8 RR Lyrae DM 0.778 20 2.85 No
084747−0339.1 RR Lyrae DM 0.759 21 4.41 No
122509−2139.9 RR Lyrae DM 0.658 28 3.83 No
133439+2416.6 RR Lyrae DM 0.825 12 2.18 No
141539+0010.1 RR Lyrae DM 0.707 26 3.65 No
151735−0105.3 RR Lyrae DM 0.723 22 3.42 No
173726+1122.4 RR Lyrae DM 0.85 9 2.18 No
183952−3200.9 RR Lyrae DM 0.653 29 5.54 Yes
184035−5350.7 RR Lyrae DM 0.933 1 0.9 No
193933−6528.9 RR Lyrae DM 0.863 6 2.32 No
195612−5043.7 RR Lyrae DM 0.925 2 1.06 Yes
210726+0110.3 RR Lyrae DM 0.835 10 2.36 No
211848−3430.4 RR Lyrae DM 0.79 18 3.39 No
212721−1908.0 RR Lyrae DM 0.859 7 1.79 No
213437−4907.5 RR Lyrae DM 0.783 19 3.12 No
230449−3345.3 RR Lyrae DM 0.814 14 2.91 No
235622−5329.4 RR Lyrae DM 0.824 13 2.36 No

Table 8
Classification Catalog Results for Orion Belt Variables in Caballero et al. (2010)

ASAS ID Predicted Class P(Class) Anomaly Score In Training Caballero Class

054354−0243.6 W Ursae Maj 0.998 0.3 No Contactbinary
053848−0227.2 Weak-line T Tauri 0.371 9 No TTauri
053621−0210.9 Beta Lyrae 0.849 3.24 No HAeBe
053739−0146.3 Mira 0.995 0.12 No Giant
053757−0140.8 Semireg PV 0.874 2.41 No Giant
053126−0058.6 W Ursae Maj 0.651 3.2 No Unknown
053946−0055.9 LSP 0.332 9.64 No TTauri?
052725−0035.2 SARG B 0.582 2.32 No Giant
053543−0034.6 RV Tauri 0.62 4.15 No TTauri
052634−0019.5 SARG B 0.856 2.85 No Giant
054612+0032.4 RV Tauri 0.301 5.67 No Unknown
053642+0038.5 W Ursae Maj 0.503 7.93 No HAeBe?
053348+0055.6 SARG B 0.403 3.57 No Giant
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6. CONCLUSIONS

We have presented an end to end methodology for creating
a probabilistic classification catalog for a time-domain survey
of variability. With growing data volumes and rates, these types
of automated classification catalogs become necessary for as-
tronomers to make sense of such a vast amount of data and to
optimize the allocation of limited follow-up resources. Though
the machine-learned construction of accurate classification cat-
alogs is certainly a difficult undertaking, we have shown that
sub-20% error rates are achievable even with as many as 28
classes and subclasses of stellar variability. Furthermore, we
have motivated the importance of disseminating probabilistic
classifications with full disclosure of class priors, allowing each
user freedom to trade class purity for efficiency and to use full
probability vectors in performing astrophysical inference (for a
recent use of probabilities for cosmological parameter estima-
tion, see Newling et al. 2012). Additionally, it is crucial that the
classification probabilities be calibrated so that the natural inter-
pretation of probability holds, allowing for faithful propagation
of that information to downstream analyses.

As a test case for the methodologies presented in this
paper, and those adopted from Richards et al. (2011, 2012),
we build and make publicly available a 28-class MACC of
50,124 sources that are included in the ACVS. We show that
accurate classifications are possible for such a complex, noisy,
and diverse data set of photometric light curves. Furthermore,
we demonstrate that calibrated probabilities are attainable using
straightforward methodology and that semi-supervised anomaly
detection can discover interesting objects that do not fit within a
predefined classification taxonomy. Comparisons of our MACC
with existing ASAS classifications, including those in ACVS,
are favorable and we eagerly await more intense scrutiny of the
publicly available MACC from the astronomical community.
Inevitably many of our top classifications will be proven
incorrect, but that is expected by the very nature of the product:
it is, instead, the testing of the aggregate accuracy of our
probabilistic classifications that are of most long-term interest.

Some degrees of the predicted accuracy and functionality
of the MACC catalog have already been demonstrated in the
concurrently submitted paper of Miller et al. (2012). In that
paper, MACC was used to search for previously unknown R
Coronae Borealis and DY Persei stars in ASAS. Their search
through the top MACC RCB candidates yielded 12 likely
RCB/DYPers stars, whereby they confirmed with new and
archival spectroscopic observations the discovery of four RCB
stars and four DYPers, increasing the number of known Galactic
DYPers from 2 to 6. Miller et al. (2012) demonstrate that the
MACC catalog recovers ASAS candidates that would have been
missed via the typical search method which uses hard cuts
on the amplitude and periodicity of the light curves, and that
a prohibitive number of objects would have to be manually
searched via those traditional methods to recover all of the newly
discovered objects. This is powerful validation that machine-
learned probabilistic classification can facilitate astronomical
discovery and enable scientific results.

Moving forward, there remain many pending tasks for our
machine-learned approach to classification catalogs. First, we
have not touched on the question of discovery of variability, only
on classification once variable objects have been identified. Re-
cently, Shin et al. (2009) have introduced a machine-learning
approach to variability selection which we will expand to de-
velop new procedures. Second, the size and scope of MACC,
at 50k variable stars at a brightness level reaching 14th magni-

tude, is rather small and limited. Tackling larger catalogs with
millions of sources will test the feasibility of our algorithms
and robustness of our statistical approaches. Third, the future
of time-domain surveys is multi-band light curves (e.g., DES,
LSST). Neglecting the full use and exploitation of multi-band
photometry would mean throwing away much useful informa-
tion. Last, a large component of the catalog-building techniques
that we have presented is the constant feedback from the auto-
mated classifier and the astronomical community. From com-
piling large and representative training sets to inventing new
features that probe different types of variability, constant injec-
tion of more information into the machine learner is essential
to optimize the accuracy, information gain, and ultimately the
scientific impact of the catalog.

The authors acknowledge the generous support of a CDI grant
(no. 0941742) from the National Science Foundation. This work
was performed in the CDI-sponsored Center for Time Domain
Informatics (http://cftd.info). We also thank IBM and CITRIS
for providing the 280 core cluster at Berkeley, which was used to
perform feature computations and classifier evaluations. We are
very grateful to G. Pojmański for building and publicly releasing
the ACVS.

APPENDIX

MODIFYING PARASITE FREQUENCIES

In a previous version of the manuscript and catalog, we em-
ployed a method to treat parasite frequencies. Parasite frequen-
cies are caused by genuine variability in photometry and are
not due to astrophysical phenomena. In ground-based observa-
tions these parasitic frequencies typically occur at 1, 2, 3, etc.,
cycles per day due to the rotational period of Earth and in-
adequate treatment of atmospheric extinction. Indeed, we see
prominent overdensities at each of these frequencies in the
ASAS data. Originally, we intended to correct the period es-
timates for those (many) sources whose first Lomb–Scargle
frequency occurs within ±0.05 cycles/day of a parasite fre-
quency. Our supposition was that the plethora of sources at
period of 1, 1/2, 1/3, · · · day would confuse the classifier, re-
sulting in worse performance and debilitating artifacts (such as
all sources with 1 day period being classified as arising from
the same variability class). To avoid this scenario, we used the
1/freq1_harmonics_freq_0–freq_signif plane to dis-
criminate likely cases of parasite frequencies from stars whose
period was attributed to true astrophysical variability. We
achieved this using an admittedly ad hoc iterative procedure
of fitting a separating curve in 1/freq1_harmonics_freq_0–
freq_signif space, manually inspecting ambiguous cases near
the border and refitting the separation boundary. For each star
which was deemed to have a parasite frequency, we threw away
that frequency estimate and instead used the next pre-whitened
(non-parasitic) Lomb–Scargle frequency estimate. However,
given the doubts of the referee as to the legitimacy of the pro-
cedure by which we modified the periods for these sources, we
decided to analyze the sensitivity of the classification results to
the parasitic frequencies. To do this, we ran a comparison of the
RF classifications using the following two feature sets: (1) the
original feature set (without modified Lomb–Scargle frequen-
cies) and (2) the feature set with modified Lomb–Scargle fre-
quencies via the prescription outlined above. The results showed
that the classifications on the set of 50,124 ACVS sources using
these two feature sets were very similar. The classifications from
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Table 9
Classification Breakdown of Objects with 1 day LS Periods

without and with Correction for Parasite Frequency

Class No Correction Parasite Correction Difference

Mira 45 50 +5
SRPV 2455 2019 −436
SARG A 520 546 +26
SARG B 1382 1756 +374
LSP 37 289 +252
RV Tauri 33 34 +1
Classical Cepheid 2 3 +1
Pop. I Cepheid 1 0 −1
Multi. Mode Cepheid 16 3 −13
RR Lyrae, FM 20 18 −2
Delta Scuti 0 22 +22
Pulsating Be 9 7 −2
Chem. Peculiar 18 17 −1
Class. T Tauri 4 6 +2
Weak-line T Tauri 619 404 −215
RS CVn 9 4 −5
Herbig Ae/Be 44 41 −3
Beta Persei 189 182 −7
Beta Lyrae 95 85 −10
W Ursae Maj. 34 22 −12

these two feature sets agreed for 88.0% of all sources, and for
99.2% of all sources (22,936 of 23,129 sources) whose top class
had probability over 0.5 with the original feature set. Moreover,
classifications actually got slightly better by not modifying the
periods of the parasitic sources: the cross-validation error rate
improved by ∼1% and agreement with ACVS increased by
0.7% by not modifying the parasite frequencies. Moreover, no
significant artifacts occurred due to the abundance of sources
with parasite frequencies. Of the 5725 sources consistent with
a parasite frequency of 1 cycle per day, the breakdown of
classes before and after alteration of the frequency is tabulated in
Table 9. It is clear that no single class dominates when no correc-
tion for parasite frequencies is performed. There are a few red
giant classes and WTTS that changed by more than 200 sources,
but all of these differences occurred for low probability (<0.5)
sources, and no single class gained undue influence. Thus, we
concluded that even if we did not alter the estimated frequen-
cies of parasite sources, the RF classifier was able to learn to
ignore these parasite frequencies and instead use other more
discriminating features to perform classification. Hence, in the
final version of the paper and MACC catalog, no modification
of the parasite frequencies was performed.
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