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ABSTRACT

A new scheme for incorporating radiative cooling in hydrodynamical codes is presented, centered around exact
integration of the governing semidiscrete cooling equation. Using benchmark calculations based on the cooling
downstream of a radiative shock, I demonstrate that the new scheme outperforms traditional explicit and implicit
approaches in terms of accuracy, while remaining competitive in terms of execution speed.
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1. INTRODUCTION

Cooling by optically thin radiative emission plays an impor-
tant role in many different types of astrophysical flows. This is
especially true of radiative shocks, which arise in a wide variety
of contexts (e.g., Strickland & Blondin 1995; Mignone 2005,
and references therein). In this paper, I present a new scheme
for incorporating radiative cooling in hydrodynamical codes,
centered around exact integration (EI) of the governing cooling
equation.

To lay the necessary groundwork for the subsequent discus-
sion, Section 2 presents a derivation of the semi- and fully dis-
crete forms for the cooling equation. Section 3 then reviews var-
ious schemes used to solve this equation, culminating with the
introduction of the new EI scheme. These schemes are bench-
marked in Section 4 to explore the relative trade-offs between
accuracy and execution speed, and I conclude with brief remarks
in Section 5.

2. THE COOLING EQUATION

The hydrodynamical equation of energy conservation for an
ideal gas can be written as

dP

dt
− γP

ρ

dρ

dt
= −(γ − 1)nenHΛ(T ). (1)

Here, P is the pressure, ρ is the density, T is the temperature,
γ is the ratio of specific heats, ne and nH are the electron and
hydrogen number densities, respectively, and d/dt denotes the
Lagrangian (total) time derivative. The function Λ(T ) repre-
sents the electron cooling efficiency, and is typically obtained
in tabular form from detailed modeling (see, e.g., Raymond et
al. 1976; Sutherland & Dopita 1993; Gnat & Sternberg 2007).
The dependence of Λ on temperature alone is ultimately what
makes the EI scheme possible, but is also somewhat of an ide-
alization of the underlying physics. More sophisticated treat-
ments incorporate additional explicit dependences on ioniza-
tion balance, by tracking a time-varying network of ionic abun-
dances (see, e.g., Raga et al. 2000; Mignone et al. 2007). It is
not yet clear how the EI scheme might be extended to these
treatments.

In Eulerian-based, finite-difference hydrodynamic codes, it is
common to implement energy conservation (1) using an opera-
tor splitting approach. The rate of pressure change is divided into

a component associated with adiabatic expansion/contraction

dP

dt

∣∣∣∣
ad

= γP

ρ

dρ

dt
, (2)

and a component associated with radiative cooling,

dP

dt

∣∣∣∣
cool

= −(γ − 1)nenHΛ(T ). (3)

The pressure change due to the adiabatic component (2) is
typically applied in the advection stage of the code, during which
the density and velocity are also updated in accordance with
the mass and momentum conservation equations.1 The pressure
change due to the cooling component (3) is then applied in a
subsequent stage, during which the density is held constant (e.g.,
Mignone 2005). The isochoric nature of this latter stage does not
preclude simulations of isobaric systems such as cooling flows
(e.g., Peterson & Fabian 2006); in these cases, the components
(2) and (3) are equal and opposite, resulting in no net pressure
variations.

The ideal gas law

P = nkT (4)

is used to recast the cooling equation (3) in terms of temperature;
here, n is the total number density of particles, and k is
Boltzmann’s constant. The mean molecular weight μ ≡ ρ/n is
assumed to remain constant; as Gnat & Sternberg (2007) argue,
this is a reasonable approximation for temperatures �104 K
(although it can break down in circumstances where departures
from ionization equilibrium are significant; see Teşileanu et al.
2008). The cooling equation then becomes

dT

dt
= − (γ − 1)ρμ

kμeμH
Λ(T ), (5)

where μe ≡ ρ/ne and μH ≡ ρ/nH are the effective molecular
weights per electron and per hydrogen atom/ion. In the regime
of full ionization, the molecular weights appearing in this
expression are given by

μ = u

2X + 3(1 − X − Z)/4 + Z/2
, (6)

1 By maintaining an adiabatic advection stage, it remains possible to use
numerical schemes derived from Godunov’s (1959) characteristic-based
approach, such as the popular Piecewise Parabolic Method (PPM) of Colella &
Woodward (1984).
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μe = 2u

1 + X
, (7)

μH = u

X
; (8)

here, X and Z are the usual hydrogen and metal mass fractions,
and u is the atomic mass unit.

Implementing Equation (5) in a hydrodynamical code re-
quires discretization in space and perhaps also time. For sim-
plicity, I focus here on a zeroth-order finite-volume spatial dis-
cretization,2 which leads to the semidiscrete cooling equation

dT̄i

dt
= − (γ − 1)ρ̄iμ

kμeμH
Λ(T̄i). (9)

Here, ρ̄i is the volume-averaged density in the numerical zone
with integer index i, while T̄i is the corresponding zone temper-
ature, calculated from ρ̄i and the volume-averaged pressure P̄i

using the ideal-gas law (4).
The following sections discuss various approaches to solving

this equation across a discrete time step Δt . The explicit (Section
3.1) and implicit (Section 3.2) schemes are all based on a fully
discrete cooling equation, derived from the semidiscrete form
(9) by replacing the temperature rate-of-change with a finite
difference:

T̄ n+1
i − T̄ n

i

Δt
= − (γ − 1)ρ̄iμ

kμeμH
Λ(T̄i). (10)

The superscripts n and n + 1 indicate values at consecutive
times tn and tn+1 ≡ tn + Δt . Because the finite difference is
centered, this equation is second-order accurate in time. To
evaluate the cooling efficiency Λ(T̄i) on the right-hand side,
either the initial or the updated temperature may be used; the
choice differentiates explicit schemes from implicit schemes.

3. SOLVING THE COOLING EQUATION

3.1. Explicit Schemes

In an explicit scheme, the cooling efficiency in Equation (10)
is evaluated using the initial temperature T̄ n

i :

T̄ n+1
i − T̄ n

i

Δt
= − (γ − 1)ρ̄iμ

kμeμH
Λ

(
T̄ n

i

)
. (11)

This is now first-order accurate in time, because the right-hand
side is not centered in the interval (tn, tn+1). Solving for the
updated temperature,

T̄ n+1
i = T̄ n

i

[
1 − Δt

tcool

]
, (12)

where

tcool ≡ kμeμHT̄ n
i

(γ − 1)ρ̄iμΛ
(
T̄ n

i

) (13)

is the single-point cooling time. This solution, together with the
ideal-gas law (4), allows the pressure in each zone to be updated
across the time step Δt .

The behavior of the explicit scheme (12) is investigated
by calculating the updated temperature T̄ n+1

i as a function of

2 See Strickland & Blondin (1995) for a demonstration of how a higher-order
discretization might be constructed.

time step, for three different choices of the initial temperature,
T̄ n

i = (106 K, 107 K, 108 K). The cooling efficiency is obtained
from a piecewise power-law fit to the collisional ionization
equilibrium (CIE) values tabulated by Gnat & Sternberg (2007).
Because the tabulation is truncated at 104 K, this temperature is
imposed as floor on T̄ n+1

i (in an actual simulation, this floor
temperature might correspond to the reheating effects of a
nearby star). A monatomic gas (γ = 5/3) and solar abundances
(X = 0.7, Z = 0.02) are assumed here and throughout. The
upper panels of Figure 1 plot the results from these calculations.
By way of comparison, the panels also show the exact solutions
to the semidiscrete cooling equation (9); Section 3.3 discusses
how these solutions are obtained.

For Δt approaching tcool, the explicit scheme leads to updated
temperatures that depart quite significantly from the exact
values. Put simply, this is because the cooling efficiency is fixed
at its initial value Λ(T̄ n

i ), rather than being allowed to evolve in
response to the cooling process. This difficulty can be avoided by
dividing the time step Δt (typically set during the advection stage
by the Courant–Friedrichs–Lewy (CFL) criterion; see Section 4)
into a sequence of smaller substeps (see, e.g., Plewa & Rozyczka
1992), and applying Equation (12) multiple times. Alternatively,
a higher-order temporal discretization of the cooling equation is
possible; for instance, a second-order Runge–Kutta method has

T̄
n+1/2
i = T̄ n

i

[
1 − 1

2

Δt

tcool

]
, (14)

T̄ n+1
i = T̄ n

i

[
1 − Λ

(
T̄

n+1/2
i

)
Λ

(
T̄ n

i

) Δt

tcool

]
. (15)

The lower panels of Figure 1 plot the updated temperatures
calculated using this second-order scheme. There is a clear im-
provement over the first-order approach, and further improve-
ments can be gained by moving to even higher orders (e.g.,
Sutherland et al. 2003). However, with each order added an ad-
ditional evaluation of the cooling efficiency is required; hence,
the computational costs necessarily escalate.

3.2. Implicit Schemes

To overcome the drawbacks of explicit schemes when Δt �
tcool, a number of authors (e.g., Strickland & Blondin 1995;
Stone et al. 1997; Pittard et al. 2004) instead opt for an
implicit scheme. The cooling efficiency in Equation (10) is then
evaluated using the updated temperature T̄ n+1

i :

T̄ n+1
i − T̄ n

i

Δt
= − (γ − 1)ρ̄iμ

kμeμH
Λ

(
T̄ n+1

i

)
. (16)

The solution can be written in a standard form similar to the
explicit case (see Equation (12)),

T̄ n+1
i = T̄ n

i

[
1 − Λ

(
T̄ n+1

i

)
Λ

(
T̄ n

i

) Δt

tcool

]
, (17)

but the appearance of T̄ n+1
i on the right-hand side means that

this equation must now be solved numerically, typically using a
root-finding algorithm.

Figure 2 investigates the behavior of this implicit scheme,
plotting T̄ n+1

i as a function of Δt for the same parameters as
in Figure 1. The upper panels use a secant algorithm to solve
Equation (17), with a fallback to bisection when the most recent
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Figure 1. Updated temperature T̄ n+1
i plotted as a function of time step Δt (in units of the cooling time tcool), for three differing choices (left to right) of initial temperature

T̄ n
i . The circles in the top (bottom) panels indicate values calculated using the first-order (second-order) explicit scheme. The solid lines show the corresponding exact

solutions.

Figure 2. As in Figure 1, except that the circles in the top (bottom) panels now indicate values calculated using the secant (Brent) first-order implicit scheme.

Figure 3. Discriminants Da (thick) and Db (thin) plotted as a function of updated temperature T̄ n+1
i , for three differing choices (left to right) of the time step Δt .

Intersections between the two curves are highlighted by circles.
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Figure 4. As in Figure 1, except that the circles in the top (bottom) panels now indicate values calculated using the secant (Brent) second-order implicit scheme.

iterate for T̄ n+1
i falls outside the bounds of the Λ(T ) tabulation.

Conversely, the lower panels use Brent’s algorithm (Press et al.
1992). In both cases, solutions are iterated until the fractional
change in T̄ n+1

i drops below 10−4.
The figure reveals problems with the implicit schemes.

For instance, in the T̄ n
i = 106 K case, T̄ n+1

i is significantly
underestimated for 0.3 tcool � Δt � 0.7 tcool, and overestimated
for Δt � 0.7 tcool. Moreover, rather than varying smoothly as
Δt is increased (as one might hope for a stable scheme), T̄ n+1

i

exhibits abrupt jumps.
To explore the origin of these jumps, I introduce the twin

discriminants
Da = T̄ n

i − T̄ n+1
i (18)

and

Db = T̄ n
i

Λ
(
T̄ n+1

i

)
Λ

(
T̄ n

i

) Δt

tcool
, (19)

such that the implicit equation (17) corresponds to the condition
Da = Db. Figure 3 plots the discriminants together as a function
of T̄ n+1

i , for T̄ n
i = 106 K and three choices of time step. The

middle, Δt = 0.3 tcool panel shows that the curves intersect
multiple times, corresponding to multiple, distinct solutions
(in this case, five) to the implicit equation. Abrupt switching
between these solutions, due both to the convergence behavior
of the particular root-finding algorithm, and to the appearance
or disappearance of solutions as Δt is varied, is responsible for
the jumps seen in Figure 2.

To underscore further that solution jumping is an intrinsic
property of implicit schemes, Figure 4 illustrates solutions of
the cooling equation using the Crank–Nicholson method,

T̄ n+1
i − T̄ n

i

Δt
= − (γ − 1)ρ̄iμ

kμeμH

Λ
(
T̄ n+1

i

)
+ Λ

(
T̄ n

i

)
2

, (20)

which is now second-order implicit. In the standard form, this
becomes

T̄ n+1
i = T̄ n

i

[
1 − Λ

(
T̄ n+1

i

)
+ Λ

(
T̄ n

i

)
2Λ

(
T̄ n

i

) Δt

tcool

]
. (21)

While the data plotted in the figure differ from the first-order
cases shown in Figure 2, they still exhibit abrupt jumps arising
from the existence of multiple solutions—although the range of
Δt values over which jumping occurs is somewhat reduced.

In spite of these various issues, implicit schemes have proven
popular in the literature. This stems in part from their reputation
for stability; for instance, Strickland & Blondin (1995) remark
that their implicit cooling scheme “is unconditionally stable”
(words subsequently echoed by Pittard et al. 2004); likewise,
Stone et al. (1997) state that their scheme “is stable even
when the cooling time is much less than the dynamical time.”
However, this confidence appears misplaced. While implicit
schemes are stable when used to solve linear equations (as can
be demonstrated through a von Neumann stability analysis; see,
e.g., Press et al. 1992), this property does not necessarily extend
to nonlinear systems such as the semidiscrete cooling equation
(9). Moreover, even if stability can be established for a given
scheme, there are no corresponding guarantees of accuracy
or convergence—and it is in these latter capacities that the
implicit schemes reviewed here fall short. The jumping between
solutions is particularly problematic, because it can cause two
neighboring zones with very similar initial states to cool to
quite different temperatures. This will establish a strong pressure
differential between the zones, in turn generating spurious fluid
flows and/or waves.

3.3. The Exact Integration Scheme

The new cooling scheme introduced here avoids the various
difficulties outlined above, by going back to the semidiscrete
cooling equation (9) and solving it exactly. The equation is first
rearranged as

dT̄i

Λ(T̄i)
= − (γ − 1)ρ̄iμ

kμeμH
dt, (22)

and then integrated across a time step,∫ T̄ n+1
i

T̄ n
i

dT̄i

Λ(T̄i)
= − (γ − 1)ρ̄iμ

kμeμH
Δt. (23)
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The dimensionless “temporal evolution function” (TEF) is then
introduced as

Y (T ) = Λ(Tref)

Tref

∫ Tref

T

dT ′

Λ(T ′)
, (24)

where Tref is an arbitrary reference temperature; the TEF
represents a normalized measure of the total time taken to
cool from Tref to T. With this definition, the integrated cooling
equation (23) becomes

Tref

T̄ n
i

Λ
(
T̄ n

i

)
Λ

(
Tref

)[
Y

(
T̄ n

i

) − Y
(
T̄ n+1

i

)] = − Δt

tcool
, (25)

where tcool has the same definition as before, and the consequent
solution is

T̄ n+1
i = Y−1

[
Y

(
T̄ n

i

)
+

T̄ n
i

Tref

Λ
(
Tref

)
Λ

(
T̄ n

i

) Δt

tcool

]
. (26)

This result is exact, but requires construction of the TEF and its
inverse from Λ(T ). The Appendix presents analytic expressions
for Y (T ) and its inverse in the common cases where the cooling
efficiency is represented by a power law (Section A.1) and a
piecewise power law (Section A.2). The cooling efficiencies
used in Figures 1 and 2 fall into the latter category, and the
exact solutions plotted in these figures are calculated using
the EI scheme described here. Likewise, the cooling efficiency
assumed by Mignone (2005) falls into the former category, and
in fact his analytic cooling scheme (which foreshadows the
present paper) can be derived from this EI formalism.

4. BENCHMARKS

The preceding sections (and in particular, Figures 1 and 2)
demonstrate that both explicit and implicit schemes for solving
the cooling equation can become inaccurate as the time step
approaches the cooling time tcool; in contrast, the EI scheme
gives the exact solution for any value of Δt . However, an
important caveat here is that the time step is itself constrained
by numerical considerations in the advection stage. Efficiency
dictates that Δt be chosen as large as possible (subject to
accuracy requirements), but for stability reasons it cannot exceed
the limit established by the CFL criterion (see, e.g., Laney 1998).

To explore how the different cooling schemes perform with
a CFL-based time step, I consider the problem of a steady,3

one-dimensional radiative shock characterized by an upstream
density ρin, Mach number Min, and temperature Tin. For various
combinations of these parameters (to be discussed below), each
scheme is benchmarked by repeating the following steps.

1. The run of density and pressure throughout the postshock
cooling region are calculated using the approach described
by Strickland & Blondin (1995, their Section 4.1). This
region is bounded on the upstream side by the shock itself,
and on the downstream side by the condition T = Tin (i.e.,
the gas has cooled back down to its initial temperature).

2. The cooling region is discretized into N equal-sized zones;
for each zone, the volume-averaged density ρ̄i and pressure
P̄i are evaluated, and the corresponding temperature T̄i is
calculated using the ideal-gas law (4).

3 In reality, radiative shocks are often time variable due to the cooling
instability discovered by Langer et al. (1981); however, this variability is
ignored here since the principal criterion is a well-defined test system, even if it
is somewhat idealized.

Table 1
Benchmark Results

N = 1 N = 10 N = 100
Cooling Scheme ε (%) τ (ns) ε (%) τ (ns) ε (%) τ (ns)

Min = 3
First-order explicit 4.0 95 14.1 111 0.2 100
Second-order explicit 4.0 213 5.9 201 0.0 181
First-order implicit (secant) 26.1 844 4.2 484 0.2 362
First-order implicit (Brent) 26.1 903 4.2 787 0.2 562
Second-order implicit (secant) 22.0 931 2.4 837 0.0 612
Second-order implicit (Brent) 22.0 927 2.4 837 0.0 613
Exact 0.0 213 0.0 192 0.0 173

Min = 10
First-order explicit 30.8 94 7.6 112 0.3 101
Second-order explicit 3.0 215 0.4 204 0.0 183
First-order implicit (secant) 24.0 906 6.5 548 0.2 383
First-order implicit (Brent) 24.0 972 6.5 778 0.2 572
Second-order implicit (secant) 12.2 1230 1.3 875 0.0 640
Second-order implicit (Brent) 12.2 1248 1.3 874 0.0 639
Exact 0.0 215 0.0 197 0.0 173

Min = 100
First-order explicit 38.0 92 1.8 107 0.1 98
Second-order explicit 12.1 207 0.1 204 0.0 181
First-order implicit (secant) 99.9 266 1.2 523 0.1 387
First-order implicit (Brent) 99.9 258 1.2 725 0.1 544
Second-order implicit (secant) 99.9 315 0.3 796 0.0 598
Second-order implicit (Brent) 99.9 317 0.3 799 0.0 600
Exact 0.0 214 0.0 195 0.0 169

3. The CFL time step is calculated as Δt = Δx/cmax, where Δx

is the spatial extent of the zones, and cmax ≡ max(
√

γ P̄i/ρ̄i)
is the maximum value of the adiabatic sound speed over all
zones composing the cooling region.

4. For each zone, the updated temperature T̄ n+1
i is evaluated

using one of the cooling schemes discussed in the preceding
sections. This step is repeated five times, and the average
CPU execution time τ (per zone, per repeat) is recorded.

5. The updated temperatures are compared with the exact
values T̄ n+1

i,EI that result from using the EI scheme; the
maximum relative error

ε = max
(∣∣T̄ n+1

i − T̄ n+1
i,EI

∣∣/T̄ n+1
i,EI

)
(27)

is recorded.

To cover a representative region of parameter space, I consider
three values Min = 3, 10, and 100 of the Mach number
(corresponding to mild, moderate, and strong shocks), and three
values N = 1, 10, and 100 of the zone count (corresponding
to poor, moderate, and good resolution of the shocks). An
upstream density ρin = 10−15 g cm−3 is assumed throughout,
but results do not depend at all on this value. With these choices
of parameters, and for each of the cooling schemes considered
previously, Table 1 shows the error ε and execution time τ
obtained by following the steps above. All calculations were
undertaken on a single core of an Intel E5345 quad-core CPU
running at 2.33 GHz.

The table reveals a general trend that the error decreases as
the zone count increases. When the shock is resolved by only
a single zone, the error tends to be large (with the obvious
exception of the EI scheme, for which ε = 0 always). For
N = 10, ε is below 10% in all but one case; and by N = 100,
it is below 1% in all cases. To explain this trend, the definition
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of the CFL time step is used to write

Δt

tcool
= Δx

cmaxtcool
. (28)

Because the flow downstream of the radiative shock is subsonic,
it follows that

Δt

tcool
� Δx

vtcool
, (29)

where v � cmax is the typical flow velocity in the cooling region.
Recognizing that vtcool approximates the spatial extent of this
region, the corollary is that

Δt

tcool
� 1

N
. (30)

Thus, the limit N � 1 implies that Δt � tcool, which favors
accurate cooling irrespective of the choice of scheme. Turning
this statement around, all of the cooling schemes apart from
the EI scheme tend to be inaccurate when the cooling region
is poorly resolved. Of course, this applies only when Δt is
tied solely to the CFL time step. It is often desirable to place
further constraints on Δt , over and beyond that given by the CFL
criterion. For instance, to improve the coupling between thermal
and hydrodynamical evolution, Δt can be limited so that the
anticipated temperature/pressure change during cooling does
not for any zone exceed a specified fraction of its initial value.
The price paid in this approach is the greater number of steps
that must be taken to cross a given time interval.

Looking now at the relative performance of the different
schemes, the τ data in Table 1 reveal that the first-order explicit
scheme is the fastest, with an average execution time of ∼100 ns
per zone. The second-order explicit scheme and the EI scheme
are both only about a factor of 2 slower than this, with the latter
slightly beating the former in all but two tests. The implicit
schemes are in every case the slowest, ranging from around 2.5
up to 12 times slower than the first-order explicit scheme.

5. CONCLUDING REMARKS

A criticism that might be leveled at the EI scheme is that
it requires the reciprocal of the cooling efficiency, 1/Λ(T ), be
analytically integrable. In practice, this is rarely an issue; the
most common representations of Λ(T ) are piecewise power-
law or piecewise polynomial fits to detailed models, both of
which meet this restriction. In any case, it is always possible
to re-fit arbitrary cooling efficiency data with a conforming
representation.

The principal strengths of the EI scheme are twofold. On the
one hand, it produces exact solutions to the semidiscrete cooling
equation (9), irrespective of whether the time step is small or
large compared to the cooling time tcool. On the other, it remains
very competitive in terms of execution speed, being only two
times slower than the (fastest, yet often inaccurate) first-order
explicit scheme. While more sophisticated cooling treatments
that track ionic abundances (e.g., Mignone et al. 2007) will
remain the state-of-the-art in terms of physical fidelity, the
strengths of the EI scheme naturally recommend it as the cooling
scheme of choice in any hydrodynamical code where a simple,
fast, and robust treatment of optically thin radiative losses is
desired.

My thanks go to Stan Owocki, for many useful discussions
that led to the genesis of the paper, and to the anonymous

referees for their very helpful remarks. I moreover acknowledge
support from NASA Long Term Space Astrophysics grant
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Note Added in Proof. Thomas, Fabian, & Nulsen (1987,
MNRAS, 228, 973) incorporate radiative losses in their steady-
state models for cooling flows using an integration scheme
similar to the EI scheme presented here. I am grateful to these
authors for bringing the similarity to my attention.

APPENDIX A

TEMPORAL EVOLUTION FUNCTIONS

A.1. Power Law

I first consider the simple case of a power-law cooling
function,

Λ(T ) = Λref

(
T

Tref

)α

, (A1)

where Tref is the reference temperature introduced in Section
3.3, and Λref and α are constant coefficients. Substituting this
into Equation (24) leads to a TEF

Y (T ) =
⎧⎨
⎩

1

1 − α

[
1 −

(
Tref

T

)α−1 ]
α �= 1,

ln
(

Tref
T

)
α = 1.

(A2)

The corresponding inverse TEF is given by

Y−1(Y ) =
{
Tref [1 − (1 − α)Y ]1/(1−α) α �= 1,
Tref exp(−Y ) α = 1.

(A3)

A.2. Piecewise Power Law

More physically realistic cooling functions are often repre-
sented by piecewise power-law fits to detailed models (e.g.,
Walder & Folini 1996; Kimoto & Chernoff 1997; Caunt & Ko-
rpi 2001; Townsend et al. 2007). I assume a fit parameterization
of the form

Λ(T ) = Λk

(
T

Tk

)αk

Tk � T � Tk+1, (A4)

for a set of N − 1 temperature intervals (Tk, Tk+1) (k =
1, 2, . . . , N − 1) and coefficient pairs {Λk, αk}. Substituting
this into Equation (24), with a reference temperature chosen
as Tref = TN , leads to the piecewise TEF

Y (T ) =

Yk +

⎧⎨
⎩

1

1−αk

ΛN

Λk

Tk

TN

[
1 −

(
Tk

T

)αk−1 ]
αk �= 1

ΛN

Λk

Tk

TN
ln

(
Tk

T

)
αk = 1

Tk �T �Tk+1,

(A5)

where ΛN ≡ ΛN−1(TN/TN−1)αN−1 . The coefficients Yk = Y (Tk)
are constants of integration; the requirement that Y (T ) be
continuous dictates that

Yk = Yk+1 −
⎧⎨
⎩

1

1 − αk

ΛN

Λk

Tk

TN

[
1 − ( Tk

Tk+1

)αk−1]
αk �= 1,

ΛN

Λk

Tk

TN
ln

(
Tk

Tk+1

)
αk = 1.

(A6)
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This recurrence can be started by noting that YN = Y (Tref) =
0 (see Equation (24)). The inverse TEF is given in each (Yk, Yk+1)
interval by

Y−1(Y ) =⎧⎨
⎩Tk

[
1−(1−αk)

Λk

ΛN

TN

Tk

(Y −Yk)
]1/(1−αk )

αk �= 1

Tk exp
[− Λk

ΛN

TN

Tk
(Y − Yk)

]
αk = 1

Yk �Y �Yk+1.

(A7)
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