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Abstract

The paper discusses some of the relevant computational advances which permit the
simulation of large-scale problems involving nonlinear solids within realistic time frames
and computational resources. The need for rigorous consideration of both theoretical and
algorithmic issues is emphasized, particularly in relation to the computational treatment
of finite-strain elasto-plastic (viscoplastic) deformation, the modelling of frictional contact
conditions and element technology capable of dealing with material incompressibility.
Practically important aspects such as adaptive mesh refinement procedures are discussed
and attention is given to choice of appropriate error estimators for elasto-plastic materials
and the transfer of solution parameters between successive meshes. The role of explicit
solution techniques in the simulation of large-scale nonlinear problems is also discussed.
The concept of discrete elements is briefly described and their applications to a wide range
of solid mechanics problems illustrated. Some advances in the field of iterative equation
solution methods are reviewed and their potential advantages in the simulation of large-scale
nonlinear solid mechanics problems are demonstrated.

0034-4885/98/111495+80$59.50c© 1998 IOP Publishing Ltd 1495
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1. Introduction

Computational procedures based on the finite-element method (FEM) are now well
established in many branches of engineering and science, for linear and nonlinear
applications. The increasing acceptance of such approaches within both research
and industrial environments is due to improved awareness, enhanced maturity of
computational models and associated algorithms and, more importantly, dramatic increases
in computational power/cost ratios.

Although the roots of the finite-element process can be traced back to the early 1940s
and beyond (Courant 1943, Argyris 1954, 1955), the first publication that closely resembles
its present form appeared in 1956 (Turneret al 1956) and the word‘finite element’was
coined in 1960 (Clough 1960). Early research was exclusively related to structural problems,
with application to other fields, for example heat and fluid flow, only emerging in the late
1960s and 70s. Procedures for the treatment of a wide range of problems are now well
established and can be found in standard texts such as Bathe (1996), Crisfield (1991, 1997),
Hughes (1987), Oden (1972) and Zienkiewicz and Taylor (1989, 1991).

In contrast to the more traditional discretization methods, such as the finite-difference
method (FDM), which are based on a ‘strong’ formulation whereby direct approximation
of the governing differential equations is performed, the FEM is based on a weak, or
variational (integral), formulation of the boundary or initial value problem. Consequently,
the solution may be obtained by summing up the integral contributions over parts of the
domain (finite elements) with much weaker conditions required in terms of the regularity of
the prescribed data and solution than would be required in the FDM. The solution domain
can be decomposed into a sum of contributions coming from an arbitrary number of finite
elements with, significantly, the basic variables of the problem described in terms of simple
polynomial approximations over a local finite-element subdomain that may have arbitrary
geometry.

The principal advantages of the FEM, that have made it the most popular method for
computer simulation of solid mechanics problems, may be summarized as follows: (i)
arbitrary geometries may be easily accommodated within general unstructured meshes, (ii)
the FEM is amenable to efficient computer implementations since individual contributions
may be evaluated at the element level and summed up on an element-by-element basis,
(iii) conservation properties of the governing physical laws (such as momentum balance
and energy balance) are intrinsically built into the finite-element formulation, (iv) a solid
mathematical foundation, although requiring complex functional analysis formalism and still
under development (particularly for nonlinear problems), provides estimates in terms of the
solution error and contributes significantly to the robustness and reliability of the FEM.

Over the last decade, there has been considerable advancement in several areas of
finite-element research, including the treatment of incompressible and high-speed fluid
flows, the modelling of granular and progressively fracturing solids by discrete-element
methods and the behaviour of solids undergoing large-strain elasto-plastic deformations.
This publication concentrates on some principal developments that have recently taken
place in the application of FEM to problems in the field of nonlinear solid mechanics and
highlights issues which must be successfully resolved for the solution of complex large-scale
industrial problems. In particular, attention is focused on the computational treatment of
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solids subjected to elasto-(visco)plastic deformations involving finite strains, together with
ancillary topics such as frictional contact modelling, mesh adaptivity strategies, discrete-
element procedures and iterative solution schemes for large-scale equation systems.

Probably the most striking example of developments in the field of nonlinear solid
mechanics is the strides recently made in the numerical solution of finite-strain plasticity
problems. The formulation of rigorous solution procedures has been the subject of in-
tense debate over the last decade and only recently has some consensus been reached on
an appropriate constitutive theory based on tensorial state variables to provide a theoreti-
cal framework for the macroscopic description of a general elasto-plastic material at finite
strains. In computational circles, effort has been directed at the formulation of algorithms for
integration of the constitutive equations relying on operator split methodology. The concept
of consistent linearization has been introduced to provide quadratically convergent solution
procedures. By employing logarithmic stretches as strain measures a particularly simple
model for large inelastic deformations at finite strains is recovered. In particular, the effects
of finite strains appear only at the kinematic level and the integration algorithms and corre-
sponding consistent tangent operators for small-strain situations can be directly employed.

A further class of nonlinear problems for which considerable advances in numerical
modelling have been made in recent years is that of contact-friction behaviour. Contact-
friction phenomena arise in many important areas, for instance metal forming, and numerical
treatment in the past has, of necessity, relied on temperamental and poorly convergent
algorithms. This situation has changed markedly with recognition of the complete analogy
that exists between contact-friction behaviour and the classical theory of elasto-plasticity.
Hence, the operator split algorithms and consistent linearization procedures developed for
the latter case translate directly to contact-friction models to provide robust and rapidly
convergent numerical solutions.

A general feature encountered in the finite-element simulation of finite-strain plasticity
problems is that the optimal mesh configuration changes continually throughout the
deformation process requiring mesh derefinement as well as mesh refinement during use
of any adaptive remeshing process. Considerable benefits may accrue by implementation
of such strategies in terms of robustness and efficiency, realizing that the requirements of
computational efficiency are ever increasing. At the same time, error estimation procedures
will play a crucial role in quality assurance by providing reliable finite-element solutions.

A current area of crucial debate in the computational modelling of large-scale nonlinear
problems in solid mechanics is the relative merits of explicit and implicit solution strategies.
Issues of particular concern are the accuracy of explicit approaches in relation to implicit
solutions and the relative computational efficiency of both approaches.

The ever increasing need to solve large-scale industrial problems by an implicit approach
demands that advances be made in equation solution strategies. As equation systems extend
beyond a certain size (of the order of 20 000 d.o.f.) direct solvers become increasingly
inefficient and iterative solvers offer the most natural approach to solution. For problems
with unsymmetric stiffness matrices, as caused by the presence of frictional contact, the
conjugate gradient squared (CGS) and bi-stabilized conjugate gradient (Bi-CGStab) methods
provide efficient solution. Considerable promise is also offered by multigrid methods, in
which the problem is first solved on a coarse mesh to pre-condition the equation system for
subsequent iterative solution on a finer mesh.

The remainder of this paper discusses the above issues in more detail and provides
numerical examples illustrating the recent advances made in the finite-element analysis
of nonlinear industrial problems. Although the text is based mostly on the authors’ own
research, and inevitably emphasizes the authors’ point of view, we will attempt to offer a
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balanced review of the main advances in the field of nonlinear solid mechanics that have
taken place within the last decade or so.

2. Continuum constitutive modelling

A concept of a continuum itself is a mathematical idealization of the real material which is
applicable when the fine structure of the matter can be ignored in relation to the geometric
scale of the physical problem under consideration. A typical example of such an idealization
is presented in the constitutive modelling of metals used in engineering practice which are
on a scale of approximately 1µm composed of crystals with a uniform packing of atoms
in a crystalline lattice. Since crystals are, in typical engineering materials, oriented in a
more or less random manner, on a scale 1–100µm, metals are considered as polycrystalline
materials. On an even larger scale, the so-called macroscale, it will not be possible to
distinguish any fine structure, and the material may be considered as a continuous medium.
However, the observation (through experiments) of the phenomena at macroscale may not be
sufficient for successful constitutive modelling of the material—the knowledge of underlying
physical mechanisms at the microscale often provides the essential information required in
description of the material behaviour.

Mathematical analysis of a continuous medium that includes mechanical and thermal
phenomena is known as continuum thermomechanics. It has traditionally been divided into
two areas: (i) general principles that on the one side include geometry and kinematics of
continuum, and on the other balance laws, which govern conservation of mass, entropy,
momentum and energy, (ii) constitutive description which is guided by a set of principles
such as frame invariance, material symmetries, etc. General principles are applicable to the
continuum irrespective of the material under consideration, i.e. the underlying constitutive
equations. It is a fundamental requirement that numerical procedures based on the FEM
or other techniques also preserve the properties of the continuum stated by the general
principles and constitutive equations. It is worth pointing out that this has often proved to
be a non-trivial task.

In this section some basic concepts of the thermomechanics of continuous media
are briefly reviewed. The material presented here is standard and well established in
the continuum mechanics literature (Truesdell and Noll 1965, Fung 1965, 1977, Gurtin
1981, Lubliner 1990). Nevertheless, its inclusion at this point is convenient for later
discussion. First the general principles of continuum mechanics, such as conservation
of mass, balance of linear and angular momentum, and the first and second principles of
thermodynamics, are stated in their differential forms. In addition, some general principles
that guide the constitutive description of materials, such as locality hypothesis, frame
invariance and material symmetries, are briefly stated. Finally, a general framework
for the phenomenological description of dissipative materials is presented, which is
based on thermodynamics with internal variables. By emphasizing the link between
micromechanical processes and their mathematical representation within the framework of
continuum thermodynamics with internal variables, the purpose of this section is to establish
fundamental principles in a clear logical sequence that guides the development of continuum
constitutive models for general dissipative materials.

At this point, it is worth while emphasizing that in the numerical modelling of complex
engineering phenomena, intuition is of little help in detecting false answers (and a physical
check is often too late). Thus, it is important to adopt a high standard of mathematical rigour
from the outset, in contrast to some approaches in theoretical physics where a pragmatic
view of such rigour is allowable.
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2.1. Basics of geometry and kinematics

2.1.1. Deformation gradient. Consider a generic continuum bodyB which occupies a
region of the three-dimensional (3D) Euclidean spaceR3 in its reference configuration, with
boundary∂B. Let B be subjected to amotionϕ so that for each timet , the deformation

ϕ(·, t) : B→ R3 (2.1)

maps each material particleX of B into the positionx it occupies at timet . The set

x = ϕ(X, t) (2.2)

is called thecurrent or deformedconfiguration. The two-point tensorF defined by†

F (X, t) = Dϕ(X, t) = ∂ϕi

∂XI
ei ⊗EI (2.3)

is termed thedeformation gradient, where{EI }I=1,2,3 and{ei}i=1,2,3 are fixed orthonormal
bases in the reference and deformed configuration, respectively, typically chosen to be
coincident with the standard basis inR3. The Jacobian of the mapping (2.1) can be
represented as

J = detF . (2.4)

2.1.2. Strain tensors. By imposing the standard condition on the deformation gradient
detF > 0 ensuring that (2.1) is a one-to-one mapping, the polar decomposition theorem
admits the unique representation of the deformation gradient (2.3) in the form

F = RU = V R (2.5)

whereU ,V are positive definite symmetric tensors andR is an orthogonal tensor. Tensors
U and V are known as theright and left stretch tensors, respectively, whileR is the
rotation tensor. TensorsU (X, t) and V (X, t) measure local stretching nearX, while
R(X, t) measures the local rigid rotation of points close toX (we refer to chapter 3 of
Gurtin (1981) for detailed, yet introductory, analysis of the geometry and kinematics of a
continuum).

The fact thatU andV are associated with the stretching of material points suggests that
these tensors should be used when measuring the straining of the continuum. The choice
of a particular strain tensor has been, however, based on convenience and has resulted in
a variety of strain measures that is nowadays used in the continuum mechanics literature
(Ogden 1984). For later reference we introduce theright and left Cauchy–Green tensors,
C andB, defined by

C = F TF = U2 B = FF T = V 2 (2.6)

and thelogarithmic strain tensordefined by

ε = lnV . (2.7)

It should be emphasized that, in order to preserve the invariance of the stress work per unit
mass, a particular choice of strain measure necessitates usage of the associated dual stress
measure within the constitutive relations.

When linearized about the reference state all strain measures give the standard small
strain tensor

ε = 1
2(∇u+∇uT ) (2.8)

whereu is the displacement vector given by

u(X, t) = ϕ(X, t)−X. (2.9)

† Unless stated otherwise, the summation over twice-repeated indices is implied in the text.
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2.2. General principles of continuum thermodynamics

In order to state the laws of thermodynamics, it is convenient to introduce the scalar fields
θ(x, t), e(x, t), s(x, t) and r(x, t) defined over the deformed configurationϕ(B, t) of the
body B which represent, respectively, thetemperature, specific internal energy, specific
entropy and thedensity of heat production. In addition, the tensor fieldσ(x, t) will denote
the Cauchy stressand the vector fieldsb(x, t) and q(x, t) will denote, respectively, the
body forceandheat flux.

2.2.1. Conservation of mass.Given a partP of the bodyB, the postulate of conservation
of mass requires that∫

P
ρ0(X) dv0 =

∫
ϕt (P)

ρ(x, t)dv (2.10)

for any partP and timet , whereρ0 = ρ(X, 0), v0 andρ, v denote the mass density and
element volume in the reference and deformed configurations, respectively. By the change
of variables on the right-hand side fromx to X it follows that∫

P
ρ0(X) dv0 =

∫
P
ρ(ϕ(X), t)J (X, t)dv0 (2.11)

which must be valid for any subdomainP of the bodyB. Thus the local form of the
conservation of mass may be represented as

ρ(x, t)J (X, t) = ρ0(X) (2.12)

provided thatx = ϕ(X).
If the postulate of the conservation of mass is expressed as

d

dt

∫
ϕt (P)

ρ(x, t)dv = 0 (2.13)

then, realizing thatJ̇ = divvJ and after some simple transformations, the conservation of
mass in the local form can be identified with the well known equations of continuity

ρ̇ + ρ div[v] = 0 (2.14)

wherev is the spatialvelocity and div[·] denotes thespatial divergenceof [·].

2.2.2. Momentum balance.The (linear) momentum balance, considered to be a continuum
analogue to Newton’s second law, states that for any regionP of the bodyB and for any
time t

d

dt

∫
ϕt (P)

ρv dv =
∫
∂ϕt (P)

t(x, t,n) da +
∫
ϕt (P)

ρb dv. (2.15)

where t(x, t,n) is the surface traction vector which gives the force per unit area at the
positionx and timet over the surface element with a normaln. By invoking Cauchy’s
theorem, the linear relationship between the traction vectort(x, t,n) and the normaln can
be proved, which leads to the existence of the Cauchy stress tensorσ(x, t) such that (for
a formal proof of Cauchy’s theorem we refer to Marsden and Hughes (1983) or Ciarlet
(1988))

t(x, t,n) = σn. (2.16)
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By substituting expression (2.16) into (2.15), and by employing the divergence theorem it
follows that

d

dt

∫
ϕt (P)

ρv dv =
∫
ϕt (P)

(div[σ] + ρb) dv. (2.17)

By employing the change of variables theorem and invoking the conservation of mass (2.14),
the left-hand side may be written as

d

dt

∫
ϕt (P)

ρv dv =
∫
ϕt (P)

ρv̇ dv (2.18)

which results in the expression for the momentum balance in the form∫
ϕt (P)

(div[σ] + ρb− ρv̇) dv = 0. (2.19)

Since this expression must be valid for any subdomainP of the bodyB, including differential
regions, the local form of the linear momentum balance may be recovered as

div[σ] + ρb = ρv̇. (2.20)

wherev̇ stands for theaccelerationfield.
In a similar fashion the angular momentum balance

d

dt

∫
ϕt (P)

r × ρv dv =
∫
∂ϕt (P)

r × t(x, t,n) da +
∫
ϕt (P)

r × ρb dv (2.21)

wherer denotes the vector from the origin to the pointx, leads to the local equation

σT = σ (2.22)

which expresses the symmetry of the stress tensor. This equation is restricted tonon-polar
media, i.e. for continuum media in which stress couples are assumed absent.

2.2.3. The first principle. The first principle of thermodynamics is based on the postulate
that the balance of energy holds for each subdomainP of the bodyB and any timet in the
form

d

dt

∫
ϕt (P)

ρ(e + 1
2v · v) dv =

∫
ϕt (P)

ρ(b · v + r) dv +
∫
∂ϕt (P)

ρ(t · v + h) dv. (2.23)

This statement ensures that the change in internal energye and kinetic energy of the body
equals the work expended by the body forceb and surface forcet acting on the same portion
of the body plus the rate of change of heat energy which comprises the heat productionr

and the flow through the boundaryh.
After some manipulations, similar to those provided in section 2.2.2, the local form of

the energy balance may be explicitly expressed by the equation

ρė = σ : D + ρr − div[q] (2.24)

where

D = 1
2(∇v +∇vT ) (2.25)

is the rate of deformationor stretching tensor, with∇(·) denoting the spatial gradient of
(·).
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2.2.4. The second principle.Starting from the global form of the entropy production
inequality

d

dt

∫
ϕt (P)

ρs dv >
∫
ϕt (P)

ρr

θ
dv +

∫
∂ϕt (P)

h

θ
da (2.26)

and following similar arguments exploited in sections 2.2.2 and 2.2.3 the local form of the
entropy production inequality, also known as the second principle of thermodynamics, may
be expressed as

ρṡ + div
[q
θ

]
− ρr
θ
> 0. (2.27)

The above inequality expresses the irreversibility of entropy production.

2.2.5. The Clausius–Duhem inequality.By combination of the first and second principles
stated above, one easily obtains the inequality

ρṡ + div
[q
θ

]
− 1

θ
(ρė − σ : D + div[q]) > 0. (2.28)

The introduction of thespecific free energyψ (also known as theHelmholtz free energy
per unit mass) defined by

ψ := e − θs (2.29)

along with the identity

div
[q
θ

]
= 1

θ
div[q] − 1

θ2
q · ∇θ (2.30)

into equation (2.7) results in theClausius–Duhem inequality:

σ : D − ρ(ψ̇ + sθ̇)− 1

θ
q · g > 0 (2.31)

whereg := ∇θ is the temperature gradient.

2.3. Constitutive principles

The balance principles presented so far area priori valid for any continuum body. In order
to distinguish between different types of material, a constitutive model must be introduced.
This section presents three principles which form the basis for the development of a rather
general class of constitutive models of continua. In the present context, the guidelines for
constitutive modelling laid down by these principles should be followed regardless of the
particular kind of material to be modelled. However, in order to give predictive capability
to the constitutive relations an experimental program is required. Such a program should
be designed to quantitatively describe the constitutive model which can then be used in
modelling of generic processes with sufficient accuracy.

Before proceeding further, it is convenient to introduce the notion of a dynamic process
(see Truesdell 1969) defined by the set

{σ(x, t), e(x, t), s(x, t), r(x, t), b(x, t), q(x, t)} (2.32)

of fields overB such that the balance of momentum and the first and second principles of
thermodynamics are satisfied.



1504 D Perić and D R JOwen

2.3.1. Principle of locality. For a class ofsimple materials, which includes the majority
of common engineering materials, thelocal history ofF , θ andg suffices to determine the
history of the dynamic process for constitutive purposes. In that case, regarding the body
forceb and heat supplyr as delivered, respectively, by the linear momentum balance (2.15)
and conservation of energy (2.23), and with the specific free energy defined by (2.29), the
principle of locality implies the existence of functionsF,G, h andI such that, for a point
X,

σ(t) = F(F t , θ t , gt ) (2.33a)

ψ(t) = G(F t , θ t , gt ) (2.33b)

s(t) = h(F t , θ t , gt ) (2.33c)

q(t) = I(F t , θ t , gt ) (2.33d)

and the Clausius–Duhem inequality (2.31) holds for every dynamic process ofB. A
dependency onX is understood on both sides of (2.33) and(·)t on the right-hand sides
denotes thehistory of (·) atX up to the present timet .

2.3.2. Material objectivity. Another important principle of the constitutive theory is the
principle of material objectivityalso known as thematerial frame indifference. It states
that ‘the material response is independent of the observer’. The motionϕ∗ is related to the
motionϕ by a change in observer if

ϕ∗(X, t) = y(t)+Q(t)ϕ(X, t) (2.34)

where y(t) is a point andQ(t) an orthogonal tensor. This relation corresponds to a
rigid relative movement between the different observers and the deformation gradient
corresponding toϕ∗ is given by

F ∗ = QF . (2.35)

Scalar fields (such asθ, ψ and s) are unaffected by a change in observer but the Cauchy
stressσ(t), heat fluxq(t) and the temperature gradientg(t) transform according to the rules

σ→ σ∗ = QσQT (2.36a)

q→ q∗ = Qq (2.36b)

g→ g∗ = Qg. (2.36c)

The principle of material objectivity places restrictions on the constitutive functionals
(2.33). Formally, it requires thatF,G, h andI satisfy

σ∗(t) = F(F t∗, θ t , gt∗) (2.37a)

ψ(t) = G(F t∗, θ t , gt∗) (2.37b)

s(t) = h(F t∗, θ t , gt∗) (2.37c)

q∗(t) = I(F t∗, θ t , gt∗) (2.37d)

for any transformation of the form (2.35), (2.36).

2.3.3. Material symmetry. Thesymmetry groupof a material is the set of density preserving
changes of reference configuration under which the material response functionalsF,G, h

andI are not affected. The symmetry group of a solid material is a subset of the orthogonal
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groupO. A subgroupS of O is said to be the symmetry group of the material defined by
the constitutive functionalsF,G, h andI if the relations

F(F t , θ t , gt ) = F([FQ]t , θ t , gt ) (2.38a)

G(F t , θ t , gt ) = G([FQ]t , θ t , gt ) (2.38b)

h(F t , θ t , gt ) = h([FQ]t , θ t , gt ) (2.38c)

I(F t , θ t , gt ) = I([FQ]t , θ t , gt ) (2.38d)

hold for any time-independentQ ∈ S. A solid is said to beisotropic if its symmetry
group is the entire orthogonal groupO. In the development of any constitutive model, the
constitutive functionals must comply with the restrictions imposed by the symmetries of the
material in question.

2.4. Thermodynamics with internal variables

The constitutive equations (2.33) written in terms of functionals of the history ofF , θ
andg, in that format, are far too general to have practical applicability for modelling real
materials undergoing a real thermomechanical process. This is especially true if one has
in mind the experimental identification of the constitutive functions and the solution of
the corresponding boundary value problems. Therefore, it is imperative that simplifying
assumptions are added to the general forms of the constitutive relations stated above.

An effective alternative to the general description based on history functionals is
the adoption of the so-calledthermodynamics with internal variables. The starting point
of thermodynamics with internal variables is the hypothesis that at any instant of a
thermomechanical process, the thermodynamic state (defined byσ, ψ, s andq) at a given
point X can be completely determined by the knowledge of a finite number ofstate
variables. The thermodynamic state depends only on the instantaneous value of the state
variables and not on their past history. This hypothesis is intimately connected with the
assumption of existence of a (fictitious) state of thermodynamic equilibrium known as the
local accompanying state(Kestin and Bataille 1977) described by the current value of the
state variables. In other words, every process is considered to be a succession of equilibrium
states†.

From the mathematical point of view, the state variables can be seen as parametrizing the
history of thermomechanical processes and replacing the complex constitutive description
in terms of history functionals by an approximation involving a finite number of parameters.
For the applications with which we are mostly concerned, it will be convenient to assume
that at a certain timet , the thermodynamic state at a point is determined by the set

{F , θ, g,α} (2.39)

of state variables whereF , θ andg are theinstantaneousvalues of deformation gradient,
temperature and the temperature gradient andα is a set:

α = {α1, α2, . . . , αk} (2.40)

of k internal variablesassociated with dissipative mechanisms. Each elementαi ∈ α may
be, in general, an entity of scalar, vectorial or tensorial nature.

Following the above hypothesis, the specific free energy is assumed to have the form

ψ = ψ(F , θ,α) (2.41)

† Despite the success of the internal variable approach in numerous fields of continuum physics, phenomena
induced by very fast external actions (at timescales comparable to atomic vibrations) which involve states far from
thermodynamic equilibrium are excluded from representation by internal variable theories.
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so that its rate of change is given by

ψ̇ = ∂ψ

∂F
: Ḟ + ∂ψ

∂θ
θ̇ + ∂ψ

∂α
α̇. (2.42)

In the last term on the right-hand side of the expression above, the following convention
has been adopted:

∂ψ

∂α
α̇ =

k∑
i=1

∂ψ

∂αi
α̇i (2.43)

with the appropriate product implied. By introducing the connection

σ : D = ρ

ρ0
P : Ḟ (2.44)

whereP := det[F ]σF−T is thefirst Piola–Kirchhoff stress tensor andρ0 is the density in
the reference configuration, one obtains for the Clausius–Duhem inequality(

P − ρ0
∂ψ

∂F

)
: Ḟ − ρ0

(
s + ∂ψ

∂θ

)
θ̇ − ρ0

∂ψ

∂α
α̇− ρ0

ρθ
q · g > 0. (2.45)

Since this inequality must hold for any thermomechanical process, a standard argument
leads to the well known expressions

P = ρ0
∂ψ

∂F
s = −∂ψ

∂θ
(2.46)

for the first Piola–Kirchhoff stress,P , and entropy,s.
Then, by defining

Ai := ρ0
∂ψ

∂αi
(2.47)

as thethermodynamical forceconjugate to each internal variableαi ∈ α, the Clausius–
Duhem inequality can be rewritten as

−Aiα̇i − ρ0

ρθ
q · g > 0. (2.48)

For convenience, we shall define byA the set

A = {A1, A2, . . . , Ak} (2.49)

of thermodynamical forces.
In order to completely characterize a constitutive model, complementary laws associated

with the dissipative mechanisms are required. Namely, equations for the flux variables1
θ
q

andα̇ must be derived. Recalling the principle of thermodynamic compatible determinism,
the Clausius–Duhem inequality, now expressed by (2.48), must hold and that will evidently
place restrictions on the possible constitutive relations. An effective way of ensuring
that (2.48) is satisfied is given by postulating the existence of a scalar valueddissipation
(pseudo)potential of the form

9 = 9(A, g) (2.50)

possibly having the state variables as parameters, which is assumed to be convex with
respect to eachAi and g and zero valued at the origin{A, g} = {0, 0}. In addition, the
hypothesis ofnormal dissipativityis introduced, i.e. the flux variables are assumed to be
determined by the laws

α̇i = − ∂9
∂Ai

1

θ
q = −∂9

∂g
. (2.51)
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It should be noted that the constitutive description by means of convex potentials as
described above isnot a consequence of thermodynamics but, rather, a tool for formulating
constitutive equations without violating thermodynamics. Indeed, it is obvious that a
constitutive model defined by (2.41), (2.46) and (2.51) satisfiesa priori the dissipation
inequality. Some examples of constitutive models supported by experimental evidence
which do not admit representation by means of dissipation potentials are discussed by Onat
and Leckie (1988).

2.4.1. The phenomenological approach.Undoubtedly, the success of a constitutive model
intended to describe the behaviour of a particular material lies in the choice of an appropriate
set on internal variables. Since no plausible model will be general enough to describe
the response of a material under all conditions, the definition of the internal variables
must be guided not only by the specific material in question but, rather, by the combined
consideration of the materialand the range of processes under which it will be analysed.
In general, due to the difficulties involved in the identification of the underlying dissipative
mechanisms, the choice of the appropriate set of internal variables is somewhat subtle and
will obviously be biased by the preference of the investigator.

Basically, constitutive modelling by means of internal variables relies either on a
micromechanical or on a phenomenological approach. The micromechanical approach
involves the determination of mechanisms and related variables at the atomic, molecular
or crystalline levels. In general, these variables are discrete quantities and their continuum
(macroscopic) counterparts are determined by means of homogenization techniques. The
phenomenological approach, on the other hand, bypasses the need for measurements of
microscopic quantities. It is based on the study of the response of therepresentative volume
element, i.e. the element of matter large enough to be regarded as a continuum. The internal
variables in this case will be directly associated with the dissipative behaviour observed at the
macroscopiclevel in terms of continuum quantities (such as strain, stress, temperature, etc).
Despite the macroscopic nature of theories derived on the basis of the phenomenological
methodology, it should be expected that ‘good’ phenomenological internal variables will be
somehow related to the underlying microscopic dissipation mechanisms.

The phenomenological approach to irreversible thermodynamics has been particularly
successful in the field of solid mechanics. Numerous well established models of solids, such
as classical elasto-plasticity (Hill 1950), have been developed on a purely phenomenological
basis providing evidence of how powerful such an approach to irreversible thermodynamics
can be when the major concern is the description of the essentially macroscopic behaviour.
Direct application of phenomenological thermodynamics with internal variables will be
discussed in section 4 where the formulation of a continuum model for metals undergoing
large elasto-plastic deformations at finite strains is addressed.

3. Implicit finite-element solution strategy

Let us assume that a particular material model has been defined within the framework of
continuum thermodynamics with internal variables. The next step towards the prediction
of the behaviour of this material in situations of practical interest is the establishment of
the corresponding mathematical problem along with a numerical framework capable of
producing accurate solutions over a wide range of conditions. In this section, a general
framework for the efficientimplicit finite-element simulation of large-strain problems
involving dissipative materials is described. Its basis ingredients comprise:
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(i) an algorithm for numerical integration of the rate constitutive equations, leading to
an incremental version of the original constitutive law;

(ii) a finite-element discretization of the corresponding incremental (equilibrium)
boundary value problem stated in thespatial configuration; and

(iii) use of the full Newton–Raphson scheme for iterative solution of the resulting
nonlinear algebraic systems of equations to be solved at each increment.

3.1. Numerical integration algorithm. The incremental constitutive law

Given a generic dissipative material model, the solution of the evolution problem defined
by the corresponding rate constitutive equations and a set of initial conditions (initial values
for the internal variables) is usually not known for complex deformation (and temperature)
paths. Therefore, the use of an appropriate numerical algorithm for integration of the rate
constitutive equations is an essential requirement in the numerical simulation of problems
of interest. The choice of a particular technique for integration of a constitutive law will be
obviously dependent on the characteristics of the model considered. In general, algorithms
for integration of rate constitutive equations are obtained by adopting some kind of time
(or pseudotime) discretization along with some hypothesis on the deformation path between
adjacent time stations. Within the context of the purely mechanical theory, considering the
time increment [tn, tn+1] and given the setαn of internal variables attn, the deformation
gradientFn+1 at time tn+1 must determine the stressσn+1 uniquely through the integration
algorithm. One may regard this requirement as the numerical counterpart of the principle of
thermodynamic determinism stated in section 2. Such an algorithm defines an (approximate)
incremental constitutive functional,̂σ, for the stress tensor

σn+1 = σ̂(αn,Fn+1) (3.1)

which is pathindependentwithin one increment and whose outcomeσn+1 must tend to
the exact solution to the actual evolution problem with vanishingly small deformation
increments. Equivalently, an algorithmic functional,τ̂ for the Kirchhoff stress,τ , can
be defined:

τ n+1 = τ̂ (αn,Fn+1) = det[Fn+1]σ̂(αn,Fn+1). (3.2)

Within the small-strain elasto-plasticity theory, procedures such as the classical return
mappings (Ortiz and Popov 1985, Simo and Hughes 1987) provide concrete examples of
numerical integration schemes for path-dependent constitutive laws.

Another important aspect concerning integration algorithms for general dissipative
materials is the requirement ofincremental objectivity. As a numerical version of the
principle of material objectivity stated in section 2, incremental objectivity demands that the
algorithmic constitutive law be invariant with respect to rigid-body rotations. If this principle
is violated, an undesirable dependency of stresses on rotations exists and meaningless
results may be obtained with the application of the integration algorithm. In cases such as
hypo-elastic formulations (including hypo-elastic-based finite elasto-plasticity), incremental
objectivity may not be easily imposed (Rubinstein and Atluri 1983) and, in some instances,
its enforcement may result in rather cumbersome algorithms. We remark, however, that since
the finite-strain damage models described in this paper are based on hyperelasticity, i.e. the
stress tensor is the derivative of a (history dependent) free energy potential, incremental
objectivity can be trivially ensured.
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3.2. The incremental boundary value problem

The strong form of the momentum balance has been stated in section 2 by expression (2.20).
Its weak counterpart, theprinciple of virtual work, is the starting point of displacement-based
finite-element solution procedures (Bathe 1996, Hughes 1987, Oden 1972, Zienkiewicz and
Taylor 1989, 1991). Consider the bodyB subjected to body forces in its interior and surface
tractions prescribed on the portion0σ ⊂ ∂B of its boundary∂B. In addition, let the motion
be prescribed by a given function̄ϕ on the remaining portion0ϕ of ∂B†:

ϕt (X) = ϕ̄t (X) ∀x = ϕt (X) ∈ ϕt (0ϕ) (3.3)

so that at a timet the set ofkinematically admissibledeformations ofB (often referred to
as thetrial solution set) is defined by

C = {ϕt (·)|ϕt = ϕ̄t on 0ϕ} (3.4)

where, for simplicity, the notationϕt (•) ≡ ϕ(•, t) has been used.
The principle of virtual work, in itsspatial version, states thatB is in equilibrium att

if and only if the Cauchy stress field,σ, satisfies the variational equation

G(ϕ,η) :=
∫
ϕt (B)

(σ : ∇η − b · η) dv −
∫
ϕt (0σ)

t · η da = 0 ∀η ∈ V (3.5)

whereb and t are respectively the body force and surface traction fields referred to the
current configuration andV is the space of virtual displacements ofB:

V = {η : ϕt (B)→ R3|η = 0 onϕt (0ϕ)}. (3.6)

With the introduction of the algorithmic constitutive functionσ̂ in the weak form of the
equilibrium, theincrementalboundary value problem can be stated as follows.Given the
setαn of internal variables at timetn and given the body forces and surface traction fields
at tn+1, find a kinematically admissible configurationϕn+1(B) such that the following holds∫
ϕn+1(B)

(σ̂ : ∇η − bn+1 · η) dv −
∫
ϕn+1(0σ)

tn+1 · η da = 0 ∀η ∈ V . (3.7)

Note that due to the introduction of̂σ, the constitutive relations are satisfied only
approximately.

3.3. Finite-element discretization

In the conventional approach, approximations to the incremental boundary value problem
above can be obtained by replacing the functional setsC and V with their discrete
counterpartsCh andVh, generated through a Galerkin finite-element discretization on the
configurationϕn+1(B). A resulting system of ordinary differential equations, representing
the time evolution, is subsequently integrated in time by employing a suitable time
integration algorithm, such as, for instance, forward or backward Euler, midpoint rule,
Newmark scheme, etc. The algebraic system of equations obtained in this way is then
solved by an iterative method; typically the Newton–Raphson method is used within the
implicit timestepping scheme. Standard textbooks that provide a detailed account of the
FEM are Bathe (1996), Crisfield (1991, 1997), Hughes (1987), Oden (1972), Zienkiewicz
and Taylor (1989, 1991). In this section we shall briefly review the main steps of the
solution procedure based on the Galerkin finite-element discretization with the attention

† To simplify notation, the boundary regions0σ and0ϕ are assumed to be invariant with respect to time.
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restricted to the quasistatic processes, i.e. the processes in which the inertial effects may be
ignored.

Let NA : B → R, A = 1, . . . , nnode denote the prescribednnode global finite-
element shape (interpolation) functions which, together with the associated nodal points
xA ∈ ϕt (B), discretize the deformed configurationϕt (B) of the bodyB. The shape
functions are subjected to the standard completeness conditionNA(xB) = δAB , whereδAB
is the Kronecker symbol. In the Galerkin finite-element formulation the finite-dimensional
subspacesCh andVh are defined, respectively, as

ϕh =
nnode∑
A=1

NA(x)uA and ηh =
nnode∑
A=1

NA(x)ηA ∀x ∈ ϕt (B) (3.8)

whereuA is the nodal displacement. Inserting (3.8) into the weak form (3.7), and in view
of the arbitrariness of the parametersηA representing the virtual nodal displacements, after
some rearrangements the discrete counterpart of (3.7) may be expressed, in the matrix form,
as: find a vectorUn+1 of the global nodal displacements attn+1 such that the following
nonlinear algebraic system:

R(Un+1) := Fint
n+1− Fext

n+1 = 0 (3.9)

is satisfied, whereFint
n+1 andFext

n+1 are, respectively, internal and external global force vectors
resulting from the assemblage of the element vectors

F(e)int =
∫
ϕ(B(e))

BT sn+1 dv (3.10a)

F(e)ext =
∫
ϕ(B(e)

NT bn+1 dv +
∫
∂ϕ(B(e))∩ϕ(0σ)

NT tn+1 da (3.10b)

with B andN being, respectively, the standard discrete symmetric gradient operator and the
interpolation matrix of the element(e) in the configuration defined by displacementUn+1

andsn+1 is the vector containing the Cauchy stress components delivered by the algorithmic
function (3.1).

3.4. The Newton–Raphson scheme. Linearization

An effective and efficient way to find a solutionUn+1 to the above nonlinear system is to
use the standard Newton–Raphson iterative procedure, obtained from the exact linearization
of (3.9). During a typical Newton–Raphson iteration(k), the following linear system is
solved for the iterative displacement1U(k):

K(U(k)

n+1)[1U(k)] = −R(U(k)

n+1) (3.11)

and the new guess for the solutionUn+1 is updated as

U(k+1)
n+1 = U(k)

n+1+1U(k). (3.12)

The tangent stiffnessK is defined by the directional derivative formula

K(U)[1U] = d

dε

∣∣∣∣
ε=0

R(U+ ε1U). (3.13)

If the external loads are assumed independent ofU, then the element tangent stiffness is
given by the formula

K(e) =
∫
ϕ(B(e))

GT aG dv (3.14)
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whereG is the standard discrete spatial gradient operator anda denotes the matrix form of
the spatial elasticity tensora given, in Cartesian components, by

aijkl = 1

J

∂τij

∂FkI
FlI − σilδjk. (3.15)

Note that, since the Kirchhoff stress tensor is the outcome of the algorithmic
function (3.2), its derivative appearing in the expression above is, in fact, the derivative

∂ τ̂

∂F

∣∣∣∣
(αn,F

(k)
n+1)

(3.16)

of the incremental (rather than the actual) constitutive functional. The need for such a
consistency between the tangent stiffness and the local algorithm for integration of the rate
constitutive equations was first addressed by Nagtegaal (1982), in the context of hypo-
elastic-based finite-strain plasticity, and later formalized by Simo and Taylor (1985) who,
within the context of infinitesimal von Mises elasto-plasticity, derived a closed formula for
the so-calledconsistent tangent operatorsassociated with classical return mapping schemes.
It is worth mentioning here that whenever more complex integration algorithms and/or
material models (particularly in the finite-strain range) are involved, consistent tangent
operators may not be easily derived. Issues associated with consistent linearization aspects
in finite multiplicative plasticity are discussed in detail by Simo (1992) and Cuitiño and Ortiz
(1992). We remark that, within the present framework, consistent linearization is regarded as
a crucial aspect of the formulations presented and will receive particular attention in section 4
where models for elastic and elasto-plastic materials are described. The asymptotically
quadratic rates of convergence resulting from the exact linearization of the field equations
more than justify the importance of this issue.

4. Finite-strain elasto-plasticity

4.1. Multiplicative decomposition

The main hypothesis underlying the present approach to finite-strain elasto-plasticity is the
multiplicative split of the deformation gradient,F , into elastic and plastic parts

F := F eF p. (4.1)

This assumption, first introduced by Lee (1969), admits the existence of a local unstressed
intermediate configuration(see figure 1). Due to its suitability for the computational
treatment of finite-strain elasto-plasticity, the hypothesis of multiplicative decomposition
is currently widely employed in the computational mechanics literature (Cuitiño and Ortiz
1992, Eterovic and Bathe 1990, Moranet al 1990, Períc et al 1992, Períc and Owen 1992a,
Simo 1992).

Following the multiplicative split ofF , the velocity gradient, L ≡ Ḟ F−1, can be
decomposed additively as

L = Le +Lp (4.2)

whereLe and Lp are, respectively, the elastic and plastic contributions (Nemat-Nasser
1982)definedby

Le := Ḟ eF e−1 Lp := F eḞ pF p−1F e−1. (4.3)

Similarly, thestretching(or rate of deformation) tensor,D ≡ sym[L], can be decomposed
as

D =De +Dp (4.4)
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Figure 1. Multiplicative decomposition of the deformation gradient.

with the elastic and plastic stretchings given by

De := sym[Le] Dp := sym[Lp]. (4.5)

It will be convenient to introduce themodified plastic contribution, to the velocity
gradient†:

L̄p := Ḟ pF p−1 (4.6)

along with themodified plastic stretching:

D̄p := sym[L̄p]. (4.7)

Note thatD̄p measures the rate of plastic deformation on theintermediateconfiguration.
Since thespatial configuration will be used to formulate constitutive equations in the
following sections, the rotation of̄Dp, defined by

D̃p := ReD̄pReT = Re sym[Ḟ pF p−1]ReT (4.8)

will be adopted in the definition of the plastic flow rule. Theelastic rotation, Re, results
from the polar decomposition ofF e:

F e = ReU e = V eRe (4.9)

whereU e andV e denote, respectively, theright and left stretch tensors.

4.1.1. The logarithmic strain measure.Eulerian (or spatial) elastic strain measures can be
defined by usingV e. Use of thelogarithmic (or natural) strain measure is particularly
convenient for the description of the elastic behaviour. In addition to its physical appeal,
the use of logarithmic strains results, as we shall see in what follows, in substantial
simplifications in the stress integration algorithm and allows a natural extension, to the
finite-strain range of the now classical return mapping algorithms of infinitesimal elasto-
plasticity. The Eulerian logarithmic elastic strain is defined by

εe := ln[V e] = 1
2 ln[Be] (4.10)

where ln[•] above denotes thetensor logarithmof (•) andBe = F eF eT = V e2 is the
elastic left Cauchy–Green strain tensor.

† Lee (1969) has regarded̄Lp as the velocity gradient of thepurely plasticdeformation and concluded that the
additive decomposition (4.2) was valid only if the elastic strains were infinitesimal. This conclusion has been
later contested by Nemat-Nasser (1982) who showed that(4.32) is an equally acceptable definition for the plastic
contribution to the velocity gradient.
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The deviatoric/volumetric split of the elastic logarithmic strain gives

εe = εed + εevI (4.11)

where

εed := εe − tr[εe]I (4.12)

and the volumetric elastic strain is given by

εev := tr[εe] = ln J e (4.13)

with

J e := det[F e]. (4.14)

Note that, due to the properties of the logarithmic strain measure, as in the infinitesimal
theory, a tracelessεe corresponds to a volume-preserving elastic deformation.

4.2. General hyperelastic-based elasto-plastic constitutive model

Following the formalism of thermodynamics with internal variables described in section 2
and restricted to isothermal processes, a rather general class of isotropic hyperelastic-based
finite-strain elasto-plastic constitutive models, formulated in the spatial configuration, can
be defined by postulating:

(i) The existence of afree energy potential:

ψ(εe,α) (4.15)

expressed as a function of the elastic logarithmic strain and a generic setα ≡
{α1, α2, . . . , αk} of k internal variables.

(ii) A yield function8(τ ,A;α) that, for fixedα, defines theelastic domain, where
only reversible phenomena take place, as the set of all points{τ ,A} in the space of
thermodynamical forces for which

8(τ ,A;α) 6 0. (4.16)

The yield surface is defined by8(τ ,A;α) = 0.
(iii) A dissipative potential9(τ ,A;α), from which the evolution laws for the plastic

flow and internal variables are derived, respectively, as

D̃p = γ̇ ∂

∂τ
9(τ ,A;α) (4.17)

and

α̇i = −γ̇ ∂

∂Ai
9(τ ,A;α) (i = 1, . . . , k) (4.18)

where theplastic multiplier γ̇ satisfies theloading/unloading criterion:

8 6 0 γ̇ > 0 γ̇ 8 = 0. (4.19)
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4.2.1. The dissipation inequality.Following assumption (4.15), the time derivative of the
free energy reads

ψ̇ = ∂ψ

∂εe
: ε̇e + 1

ρ0
Aα̇ (4.20)

where the notation:Aα̇ = ∑k
i=1Aiα̇i , with the appropriate product implied, has been

adopted. Equivalently, by applying the chain rule to the definition (4.10) ofεe,

ψ̇ = 1

2

∂ψ

∂ε
:
∂(lnBe)

∂Be
: Ḃe + 1

ρ0
Aα̇ = 1

2

[
∂ψ

∂εe
:
∂(lnBe)

∂Be
Be

]
: ḂeBe−1+ 1

ρ0
Aα̇.

(4.21)

It should be noted that in the expression above, the tensorsεe, Be and ∂ψ/∂εe share the
same principal axes. Also, the tensor logarithm is a member of the class of isotropic tensor
functions discussed in de Souza Neto and Perić (1996) and de Souza Netoet al (1998).
These observations lead to the identity (see de Souza Netoet al (1998) for details):

∂ψ

∂εe
:
∂(lnBe)

∂Be
Be = ∂ψ

∂εe
(4.22)

and (4.21) can be rewritten as

ψ̇ = 1

2

∂ψ

∂εe
: ḂeBe−1+ 1

ρ0
Aα̇. (4.23)

By definition,Be := F eF eT , or, in view of the multiplicative elasto-plastic decomposition
assumption,Be = F (F p)−1(F p)−TF T . Time differentiation of this last expression and
substitution in (4.21) result, after some straightforward manipulations, in

ψ̇ = ∂ψ

∂εe
: {D + 1

2[F eF p(F p−1).F eT + F e(F p−T ).F pTF e−1]} + 1

ρ0
Aα̇

= ∂ψ

∂εe
: {D − 1

2V
eRe[L̄p + L̄pT ]ReTV e−1} + 1

ρ0
Aα̇ (4.24)

where use has been made of the relations:F p(F p−1). = −Ḟ pF p−1 =: −L̄p and
(F p−T ).F pT = −F p−T (F pT ). =: −L̄pT , obtained, respectively, by time differentiation
of the identities:F pF p−1 = I andF p−TF pT = I.

Finally, with the introduction of definition (4.8) of the spatial modified plastic stretching
tensor,D̃p, and by taking into account the elastic isotropy, the rate of change of free energy
can be expressed as

ψ̇ = ∂ψ

∂εe
: (D − D̃p)+ 1

ρ0
Aα̇. (4.25)

Restricted to isothermal processes, theClausius–Duheminequality (2.31) can be
expressed as

τ : D − ρ0ψ̇ > 0 (4.26)

so that introducing (4.25) one obtains(
τ − ρ0

∂ψ

∂εe

)
: D + ρ0

∂ψ

∂εe
: D̃p −Aα̇ > 0. (4.27)

From a standard argument, the inequality above implies the following constitutive
equation for the Kirchhoff stress:

τ = ρ0
∂ψ

∂εe
(4.28)
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Box 4.1. General finite-strain elasto-plastic model.

and the non-negative dissipation requirement is reduced to

τ : D̃p −Aα̇ > 0. (4.29)

The overall finite-strain elasto-plastic constitutive model is summarized in box 4.1.

Remark 4.1.Expressions (4.28) and (4.29), as well as the adopted plastic flow rule (4.17),
are completely analogous to their small-strain counterparts. In the small-strain limit,εe and
D̃p correspond, respectively, to the standard infinitesimal elastic strain tensor and plastic
strain rate respectively. Thus, the present approach allows a natural extension, to the finite-
strain range, of general isotropic infinitesimal elasto-plastic constitutive models. A generic
small-strain model defined by an elastic potentialψs , a yield function8s and a dissipation
potential9s can be extended to finite strains by adopting, in the constitutive equations above,
ψ , 8 and9 with the same functional format as their respective small-strain counterparts.

Remark 4.2.With Jp := det[F p] we define theplastic volumetric strainas

εpv := ln Jp = ln[λp(1)λ
p

(2)λ
p

(3)] = ln λp1 + ln λp(2) + ln λp(3) = tr[V p] (4.30)

whereλp(i) are the principalplastic stretches, i.e. the eigenvalues of the plastic left Cauchy–
Green strain tensor,V p := F pF pT . For volume-preservingF p,

det[F p] = 1⇐⇒ εpv = 0. (4.31)

It can be easily shown that the plastic flow rule (4.17) implies that

ε̇pv = γ̇ tr

[
∂9

∂τ

]
(4.32)



1516 D Perić and D R JOwen

so that, as in the infinitesimal theory, dissipation potentials whose derivatives with respect
to τ are traceless (such as the classical von Mises and Tresca functions) produceisochoric
plastic flow.

Remark 4.3.Analogously to the small-strain theory, if8 is taken as the dissipation potential,
then the well knownprinciple of maximum plastic dissipation(Hill 1950) is extended to
the finite-strain range. In that case, the loading/unloading criterion (4.19) corresponds to
the Kuhn–Tucker optimality condition for the left-hand side of (4.29) to reach a maximum
subject to the plastic admissibility constraint8 6 0.

4.3. General stress integration procedure. The exponential map algorithm

In the present context, knowingF p
n and the setαn of internal variables at timetn and given

the deformation gradientFn+1 at time tn+1, the numerical integration of the constitutive
equations of box 4.1 must determineτ n+1,F

p

n+1 and the updated setαn+1 at the subsequent
time tn+1.

Due to the underlying additive structure of infinitesimal plasticity,operator split
algorithms are especially suitable for the numerical integration of small-strain elasto-plastic
constitutive equations and have been widely used in the computational literature (Crisfield
1991, 1997, Mitchell and Owen 1988, Owen and Hinton 1980, Simo and Hughes 1987, Simo
1992). These methods consist of splitting the problem into two parts: anelastic predictor,
where the problem is assumed to be purely elastic (no plastic flow or internal variable
evolution), and aplastic corrector, in which a discrete system of equations comprising the
elasticity law, plastic consistency, plastic flow and internal variables evolution is solved,
taking the results of the elastic predictor stage as initial conditions. In the present framework
for multiplicative finite-strain plasticity an operator split algorithm will be adopted to
integrate the constitutive equations of box 4.1. The general algorithm comprises the
following steps.

(i) First, it is assumed that the pseudotime increment [tn, tn+1] is purely elastic (no
plastic yielding). Theelastic trial stateat tn+1 is then defined by the elastic trial deformation
gradient:

F e trial
n+1 := Fn+1F

p−1
n (4.33)

with F p andα frozen at tn:

F
p trial
n+1 = F p

n (4.34)

and

αtrial
n+1 = αn. (4.35)

The elastic trial Kirchhoff stress, corresponding to such an assumption, is given by

τ trial
n+1 =

∂ψ

∂εe

∣∣∣∣
(εetrial
n+1 ,α

trial
n+1)

. (4.36)

(ii) If 8(τ trial
n+1,α

trial
n+1) 6 0, then the increment is indeed purely elastic and we update:

(•)n+1 := (•)trial
n+1. (4.37)

(iii) Otherwise, plastic yielding occurs and the plastic flow rule (4.17) is discretized by
means of a backwardexponential approximation(see Weber and Anand 1990, Eterovic and
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Bathe 1990, Cuitĩno and Ortiz 1992), leading to the following discrete evolution law for
F p:

F
p

n+1 = exp

[
1γReT

n+1
∂9

∂τ

∣∣∣∣
n+1

Re
n+1

]
F p
n = ReT

n+1 exp

[
1γ

∂9

∂τ

∣∣∣∣
n+1

]
Re
n+1F

p
n . (4.38)

In addition, a standard backward Euler scheme is used to integrate the rate evolution
equation (4.18) for the internal variables:

αn+1 = αn −1γ ∂9
∂A

∣∣∣∣
n+1

. (4.39)

The incremental plastic multiplier,1γ , satisfies the discrete counterpart of (4.19):

8n+1 6 0 1γ > 0 1γ8n+1 = 0. (4.40)

4.3.1. Consequences of the exponential approximation. The small-strain return map.Some
crucially important properties result from the use of the exponential map in the discretization
of the plastic flow rule. First, the incompressibility of the plastic flow for pressure insensitive
yield criteria is carried overexactly to the incremental rule (4.38). Indeed, for a traceless
flow direction tensor,∂9/∂τ , det[exp[1γ∂9/∂τ ]] = 1 which ensures that the updating
formula (4.38) is volume preserving. In addition, under isotropic conditions, the essential
stress updating procedure can be written in the same format as the classical return mapping
schemes of infinitesimal elasto-plasticity, with all large-strain related operations restricted
to the kinematical level. This property is demonstrated in what follows.

Inversion of both sides of (4.38) followed by their pre-multiplication byFn+1 and use
of relation (4.1), gives

F e
n+1 = F e trial

n+1 R
eT
n+1 exp

[
−1γ ∂9

∂τ

∣∣∣∣
n+1

]
Re
n+1. (4.41)

Post-multiplication of both sides of (4.41) byReT
n+1 results in

V e
n+1 = F e trial

n+1 R
eT
n+1 exp

[
−1γ ∂9

∂τ

∣∣∣∣
n+1

]
(4.42)

or, equivalently,

V e
n+1 exp

[
1γ

∂9

∂τ

∣∣∣∣
n+1

]
= F e trial

n+1 R
eT
n+1. (4.43)

Then, further post-multiplication of each side by its transpose gives

V e
n+1 exp

[
21γ

∂9

∂τ

∣∣∣∣
n+1

]
V e
n+1 = (V e trial

n+1 )2. (4.44)

Due to the assumed elastic isotropy,V e andτ commute. If the potential9 is assumed to
be anisotropic function ofτ , thenτ and∂9/∂τ have the same principal directions so that
all terms on the left-hand side of the above expression commute. Under such assumptions,
expression (4.44) leads to the following simpler update formula in terms of the logarithmic
Eulerian strain tensor:

εen+1 = εe trial
n+1 −1γ

∂9

∂τ

∣∣∣∣
n+1

(4.45)

which has the same format of the update formula for the elastic strains of the standard
return mapping algorithms of the infinitesimal theory. For the elastic rotation, the following
expression is obtained:

Re
n+1 = Re trial

n+1 . (4.46)
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Box 4.2. General integration algorithm for finite multiplicative elasto-plasticity.

The resulting algorithm for integration of the large-strain elasto-plastic constitutive equations
is summarized in boxes 4.2 and 4.3.

Remark 4.4.The operations carried out in box 4.2 are related exclusively to the kinematics
of finite strains. Due to the use of logarithmic strains to describe elasticity along with the
exponential approximation (4.38) to the plastic flow rule, the essential material related stress
updating procedure, shown in box 4.3, preserves the small-strain format. It corresponds to
the well established return mapping procedures of infinitesimal elasto-plasticity.

4.4. The spatial tangent modulus

The next step towards the complete incorporation of the present model into the numerical
framework is the derivation of a closed formula for the spatial tangent modulusa, whose
general expression is given by (3.15), consistent with the integration algorithm described
above.

In the small-strain return mapping of box 4.3, the updated stressτ n+1 is obtained as a
function ofαn and the elastic trial logarithmic strain, so that this procedure can be regarded
as an incremental constitutive functional of the form

τ n+1 = τ̃ (αn, εe trial
n+1 ). (4.47)

In the general procedure of box 4.2,εe trial
n+1 is computed as a function ofBe trial

n+1 which, in turn,
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Box 4.3. General stress updating procedure—small strains.

is a function ofF p
n andFn+1. With εe trial

n+1 at hand, the Kirchhoff stress is then updated by
means of the incremental functionalτ̃ (small-strain algorithm). Thus, the overall procedure
defines a functioñτ , for the Kirchhoff stress, that can be generally expressed as

τ̂ (αn,Fn+1) := τ̃ (αn, εe trial
n+1 (B

e trial
n+1 (F

p
n ,Fn+1))). (4.48)

Clearly, τ̂ is a particular case of the general algorithmic constitutive functional (3.2).
Application of the chain rule to (4.48) gives

∂ τ̂

∂Fn+1
= ∂ τ̃

∂εe trial
n+1

:
∂εe trial

n+1

2Be trial
n+1

:
∂Be trial

n+1

∂Fn+1
. (4.49)

Substitution of this expression into (3.15) results, after straightforward manipulations, in the
following closed formula for the components of the spatial tangent modulus consistent with
the present integration algorithm:

aijkl = 1

2J
[h̃ : n : b]ijkl − σilδjk (4.50)
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whereh̃ is thesmall-strain elasto-plastic consistent tangent operator, associated exclusively
with the return map algorithm of box 4.3:

h̃ := ∂ τ̃

∂εe trial
n+1

. (4.51)

The tensorh̃ is obtained from the linearization of the algorithm of box 4.3 by following
the classical procedure introduced by Simo and Taylor (1985). The fourth-order tensorn is
defined as

n := ∂ ln[Be trial
n+1 ]

∂Be trial
n+1

(4.52)

i.e. it is the derivative of the tensor logarithm function atBe trial
n+1 . The tensor logarithm is a

member of the class of isotropic tensor functions and its derivative can be easily obtained
(de Souza Neto and Perić 1996). Finally, the Cartesian components ofb are defined by

bijkl := δik(Be trial
n+1 )jl + δjk(Be trial

n+1 )il . (4.53)

Remark 4.5.Note thath̃ is theonly material related contribution to the spatial modulusa.
All other terms taking part in its assemblage in (4.50) are related to the geometry of finite
deformations and do not depend on the particular material model adopted.

5. Contact-friction modelling

Over the last few years remarkable progress has been achieved in the field of computational
contact mechanics. Undoubtedly, a better mathematical understanding has been one of
the key factors in the development of techniques for numerical simulation of the contact
problem with friction between deformable bodies. The formulation by means of variational
inequalities (Duvaut and Lions 1976, Kikuchi and Oden 1988, Oden and Martins 1985)
as well as the use of return mapping algorithms (Giannakopoulos 1989, Laursen and Simo
1993, Períc and Owen 1992b, Wriggerset al 1990, Wriggers 1995) have provided efficient
frameworks for the numerical treatment of such problems.

Despite such advances, most numerical applications reported in the literature are still
restricted to the standard Amontons–Coulomb law of perfect friction. As pointed out by
Curnier (1984), such a simplified theory can represent only a limited range of tribological
situations. In part, restriction to the standard Amontons–Coulomb law may be justified by
the lack of more sophisticated (and well established) phenomenological models for friction.
This is in clear contrast to other areas of continuum mechanics such as elasticity and
plasticity.

The friction coefficient between two metallic bodies sliding relative to one another
depends on the nature and topography of the surfaces in contact as well as on environmental
factors (lubrication, presence of oxide films, etc) (Hutchings 1992). During continuous
sliding, these conditions at the contact interface may be constantly changing as a
consequence of complex phenomena such as the deformation of asperities, wear, internal
straining, chemical reactions, etc (Oden and Martins 1985). In experiments with iron and
carbon steel specimens, Suh and Sin (1981) observed variations of friction coefficient
before steady state condition of the contact interfaces was reached. They attributed this
phenomenon to the evolution of the surfaces’ topography and consequent changes in the
contributions of adhesion, ploughing and asperity deformation to the coefficient of friction
at the early stages of sliding. Another example of deviations from the standard Amontons–
Coulomb model was observed by Hashimotoet al (1990) in experiments with coated steel
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Figure 2. Evolution of frictional contact between two bodies: geometry and notation.

sheets. In situations involving high normal pressures and large sliding distances, typical
in deep drawing operations, the surface coating present in these materials may be worn
away exposing the bulk metal and causing a dramatic increase in the friction coefficient.
In situations such as the ones described above, the evolution of surface wear is a crucial
factor in the definition of the frictional behaviour and numerical predictions with reasonable
accuracy may demand consideration of more realistic friction rules.

The purpose of this section is the description of a simple phenomenological model, along
with an efficient computational framework, capable of simulating the frictional behaviour
of contacting bodies subjected to large sliding distances.

5.1. Mechanical description of frictional contact

With reference to figure 2, at the stage of the deformation process corresponding to the
deformation mappingsϕs and ϕm of the slave and master bodies respectively, thegap
separating a material pointx on 0s from the master boundary0m is defined by

gN(x) := [ϕs(x)−ϕm(y)] ·N (5.1)

wherey is the material point on0m currently defining the closest distance betweenx and
the master body.

Assume that contact has been established betweenx andy, i.e.gN = 0. The subsequent
relative displacement (under contact conditions) between the two material points will be
denotedu. For convenience, it will be decomposed as

u = uT + uNN (5.2)

whereuT := (I −N ⊗N )u anduN := u ·N are, respectively, the tangential and normal
components ofu.

The same additive decomposition will be considered for the contact pressure,p, acting
on the slave body, i.e.

p = pT + pNN . (5.3)
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5.1.1. Normal behaviour. In the definition of the normal contact behaviour, it is assumed
that penetration between the two bodies is admissible. In addition, a linear relation between
the normal reaction and the penetration,gN < 0, is postulated resulting in the following
constitutive function forpN :

pN =
{
−kNgN if gN < 0

0 otherwise
(5.4)

wherekN is thenormal stiffnessor penalty factor.

5.1.2. Tangential behaviour.Following standard arguments of the elasto-plasticity theory
of friction (Curnier 1984, Micha lowski and Mroz 1978, Oden and Martins 1985) the
decomposition of the tangential relative velocityu̇T into anadherenceand aslip component
is adopted,

u̇T = u̇aT + u̇sT (5.5)

along with the following constitutive law for the tangent reaction on the slave boundary

pT = −kTuaT (5.6)

wherekT is the tangential contact stiffness. The evolution law for the slip component is
defined by

u̇sT = −γ̇
∂9

∂pT
(5.7)

where theslip potential9 defines the direction of frictional sliding anḋγ is consistent with
the loading/unloading condition:

8(p, A) 6 0 γ̇ > 0 γ̇ 8(p, A) = 0. (5.8)

The slip criterion 8 above, is assumed to be a function of the contact reactionp and
(possibly) a setA of internal variables taking into account the history dependence of the
friction phenomenon.

For isotropic frictional contact, frictional sliding may occur only in the direction opposite
to the tangential reaction. Hence, the slip potential9 is given by

9(pT ) = ‖pT ‖. (5.9)

As a central hypothesis of the present model for friction with hardening, the following
particular form for the slip criterion is postulated:

8(p, w) = ‖pT ‖ − µ(w)pN (5.10)

where the friction coefficient,µ, is assumed to be a function of the single scalar internal
variable w defined on theslaveboundary.

In addition, the internal variablew is chosen as the density offrictional work expended
on the point considered. Hence, its evolution equation is defined by

ẇ = −pT · u̇sT . (5.11)

The resulting constitutive model for frictional contact with hardening is analogous to
classical work hardening plasticity.
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5.2. Numerical integration of the frictional contact model

The similarity between rate-independent elasto-plasticity and the contact problem with
friction makes techniques such as the operator split methodology, employed in section 4.3
in the context of large-strain plasticity, particularly suitable for the numerical integration of
the constitutive equations for frictional contact presented above. Thus, an algorithm similar
to the elastic predictor/plastic corrector scheme described in section 4.3 is used here to
integrate the present frictional contact model.

First, at a given configurationϕn+1, defined by an incremental displacement1u, the
normal contact reaction is updated as

pNn+1 = gN(ϕn+1). (5.12)

Then, the corresponding tangential contact reaction,pT n+1, is computed by means of the
procedure described below.

5.2.1. Elastic predictor. With the fixed contact pressure determined above, the elastic trial
state is evaluated:

ptrial
T n+1 = pT n − kN1uT . (5.13)

If the consistency condition

8trial
n+1 = ‖ptrial

T n+1‖ − µ(wn)pNn+1 6 0 (5.14)

is violated, then frictional sliding occurs and the corrector procedure must be employed to
compute the frictional force.

5.2.2. Frictional slip corrector. In this stage, the rate evolution equation forw, discretized
by a one-step backward Euler scheme, is solved in conjunction with the requirement that
the slip function8 vanishes during frictional sliding, i.e. the following system is solved for
the variables1γ andwn+1:

‖ptrial
T n+1‖ − kT1γ − µ(wn+1)pNn+1 = 0 (5.15)

wn+1− wn − µ(wn+1)pNn+11γ = 0 (5.16)

and the frictional force is updated as

pT n+1 = µ(wn+1)pNn+1
pT n+1

‖pT n+1‖ . (5.17)

5.3. Consistent linearization of the discrete frictional contact problem

If contact occurs on a certain portionγc = ϕt (0c) ⊂ ∂ϕt (B) of the body analysed, then the
contact contribution to the virtual work of the external forces:

Gc :=
∫
ϕn+1(0c)

pn+1 · η da (5.18)

must be included in the weak statement of the momentum balance (3.7). Thus, in order to
preserve the quadratic rates of convergence of the Newton–Raphson scheme for solution of
the incremental equilibrium problem, the consistent linearization of this extra term must be
carefully addressed.

In this context, the appropriate linearization of the frictional contact algorithm plays an
essential role. Since for given values ofpn andwn and an incremental displacement1u,
the numerical integration algorithm described above determines uniquely the reactionpn+1,
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an algorithmic constitutive functionp̂ can be defined such that the frictional forcepn+1 is
delivered as

pn+1 = p̂(pn, wn,1u). (5.19)

Following a standard procedure of classical elasto-plasticity, first given in a complete form
by Simo and Taylor (1985), the differentiation of the algorithmic function at converged
values fortn+1 provides the tangent relation

D̂ := ∂pn+1

∂1u
(5.20)

where the second-order tensorD̂ is the so-calledconsistent tangent operatorassociated
with the present model (and integration algorithm). It can be easily shown that the closed
form of D̂ is, for sticking and sliding conditions, respectively, given by

D̂ =


−kT (I −Nn+1⊗Nn+1)− kN(N ⊗N ) sticking

−ξkT (I −Nn+1⊗Nn+1+ ζkT (Tn+1⊗ Tn+1) sliding

−βµn+1kN(Tn+1⊗Nn+1)− kN(Nn+1⊗Nn+1)

(5.21)

whereTn+1 here is the unity vector in the direction of frictional sliding, i.e.

Tn+1 = pT n+1

‖pT n+1‖ (5.22)

and the scalar factorsξ, ζ andβ are defined by

ξ = µn+1pNn+1

µn+1pNn+1+ kT1γ =
‖pT n+1‖
‖ptrial

T n+1‖
(5.23a)

ζ = ξ − β µn+1p
2
Nn+1

kT

∂µ

∂w

∣∣∣∣
n+1

(5.23b)

β = 1

1+
(
µn+1pNn+1

kT
−1γ

)
pNn+1

∂µ

∂w

∣∣∣
n+1

. (5.23c)

It is interesting to note that the consistent tangent matrixD̂ is symmetric under
sticking conditions. However, due to the non-associative character of the frictional contact
constitutive equations, its symmetry is lost during frictional sliding. Therefore, within a
finite-element context, one should bear in mind the need for the use of unsymmetric solvers
in the solution of this class of problems.

Example 5.1 (Friction modelling for coated steel sheet material).The experimental identi-
fication of the frictional hardening curveµ(w) was carried out by means of sliding tests
of electrogalvanized (EG) steel sheets, typically employed in the manufacture of automo-
tive body shells. The equipment used and the experimental procedure are schematically
illustrated in figure 3. Once the normal force has been applied, the table slides 300 mm,
driven by a hydraulic cylinder as represented in figure 3. After sliding, the normal force is
released and the table returns to its initial position. The normal force is then reapplied and
the cycle is repeated a number of times. During each sliding, the friction coefficientµ is
determined byµ = FT /FN whereFT is the average tangential force measured by the load
cell indicated in figure 3.

The experimental points used to determine the hardening curves were obtained with
four different levels ofconstant normal force (always starting with a virgin specimen):
FN = 0.98 kN, FN = 1.96 kN, FN = 2.94 kN andFN = 3.92 kN. Points obtained
following more complex load paths, in which the normal force is variable, are also plotted in
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Figure 3. Experimental identification—sliding test.

Figure 4. Frictional hardening curves. Experimental determination. EG steel sheet. (♦)
increasing force, (+) decreasing force; (�) 3.92 kN, (×) 2.94 kN, (M) 1.96 kN (∗) 0.98 kN.

figure 4. In this case, two particular paths have been considered:increasinganddecreasing
normal pressure. For increasing normal load, starting with a virgin sheet, a sequence of four
sets of five sliding cycles each is executed, respectively, withFN = 0.98 kN,FN = 1.96 kN,
FN = 2.94 kN andFN = 3.92 kN (in this order). The procedure for decreasing normal load
is the same but with the order of the forces reversed, i.e. it is started withFN = 3.92 kN
and, in the last five passesFN = 0.98 kN.

Applying such a procedure for EG steel sheets (see de Souza Netoet al (1996a) for
details), the resulting frictional hardening curve, shown in figure 4, has been represented by
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Figure 5. von Mises effective stress distribution (N mm−2). EG steel sheet at constant 3.92 kN
normal load—20th pass.

the following polynomial relationship:

µ(w) = −0.4096× 10−6w5+ 0.2890× 10−4w4− 0.8212× 10−3w3

+0.1035× 10−1w2− 0.3148× 10−1w + 0.1568 (5.24)

wherew is expressed in 1/100 of kJ m−2.
To illustrate the predictive capability of the proposed model, the numerical simulation of

a series of sliding tests was performed and the results are compared with the corresponding
experiments (de Souza Netoet al 1996a). The simulation presented here relates to an
EG steel sheet with a frictional hardening function given in (5.24). The above functional
relationship is implemented as a sequence of linear segments with allows for a general
frictional law of the typeµ = µ(w) to be easily included for simulation.

The finite-element model employed is illustrated in figure 5. The simulation of the
sliding test is carried out under (i) an increasing, and (ii) a decreasing sequence of the
normal pressures, as described above. For each level, the sliding cycle is repeated five
times. The tip lies initially at 5 mm from the left edge of the sheet. Starting from this
initial configuration and after the normal force is applied, a relative slidingd = 25 mm
between the table and the tip is incrementally imposed. This ensures an approximately
10 mm long evenly worn region on the sheet surface (between 7.5 and 17.5 mm from the
left edge). Whend reaches 25 mm the normal force is released, the tip is lifted up and
returned to its initial position.

The tangential reaction force on the tip obtained in the numerical simulation of the
sliding tests with an EG steel sheet is plotted in figure 6 for each cycle. The results
obtained experimentally are also plotted for comparison. For all levels of normal force
a very good correspondence between numerical simulation and experiments is observed.
This is an obvious consequence of the close proximity between the experimental points for
variable force and the hardening curve observed in figure 4. Again, we remark that the
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Figure 6. Sliding tests with EG steel sheet at constant normal forces. Finite-element simulation
♦, and experiment (+). (a) Decreasing normal force: passes [1–5]→ FN = 3.92 kN, passes
[6–10]→ FN = 2.94 kN, passes [11–15]→ FN = 1.96 kN, passes [16–20]→ FN = 0.98 kN;
(b) increasing normal force: passes [1–5]→ FN = 0.98 kN, passes [6–10]→ FN = 1.96 kN,
passes [11–15]→ FN = 2.94 kN, passes [16–20]→ FN = 3.92 kN.

agreement in such complex loading paths supports the use of the density of frictional work
as the internal variable associated with variations of the friction coefficient.

6. Element technology

It is a well known fact that the performance of low-order kinematically based finite
elements is extremely poor near the incompressible limit. Problems of practical engineering
interest for which incompressibility plays a crucial role include the analysis of rubbery
solids, typically modelled as incompressible hyperelastic materials, as well as elasto-plastic
simulations under plastic dominant deformations and the assumption of isochoric plastic
flow. In such situations, spuriouslocking frequently occurs as a consequence of the inability
of low-order interpolation polynomials to adequately represent general volume-preserving
displacement fields. However, due to their simplicity, low-order elements are often preferred
in large-scale computations and several formulations have been proposed to allow their use
near the incompressible limit. Within the context of the geometrically linear theory, the class
of assumed enhanced strain methods described by Simo and Rifai (1990), which incorporates
popular procedures such as the classical incompatible modes formulation (Tayloret al 1976)
and B-bar methods (Hughes 1980) is well established. In the geometrically nonlinear
regime, however, the enforcement of incompressibility is substantially more demanding
and the development of robust and efficient low-order finite elements is by no means trivial.
To tackle such a problem, different approaches have been proposed in the computational
literature. Among others, the class of mixed variational methods developed by Simoet al
(1985), the mixedu/p formulation proposed by Sussman and Bathe (1987), the nonlinear
B-bar methodology adopted by Moranet al (1990) and the family of enhanced elements
of Simo and Armero (1992) are particularly important. One aspect that should be observed
here is that, in addition to handling incompressibility, robust formulations should also be
able to cope with the extra requirements that different problems may present. For instance,
in applications such as the prediction of failure in metal forming processes, the ability to
capture strain localization phenomena becomes crucial; in problems involving extremely
large strains, frequently encountered in the analysis of rubbery materials and metal forming
simulations, it is not unusual that a solution can be obtained only if adaptive mesh refinement
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is employed. Thus, since a single formulation is normally not sufficiently robust to produce
an optimal performance under a very wide range of conditions, the design of low-order
finite elements for large-strain analysis of quasi-incompressible materials remains an open
issue.

This section describes the development of a simple four-node quadrilateral and a
simple eight-mode hexahedron for finite-strain analysis of nearly incompressible solids.
The elements, termed F-bar elements, are based on the concept of multiplicative
deviatoric/volumetric split in conjunction with the replacement of the compatible
deformation gradient field with an assumed modified counterpart. The resulting formulation
can be used regardless of the material model adopted. In addition, the strain-driven format of
the algorithms for integration of the inelastic constitutive equations of the purely kinematic
formulation is maintained. Despite some conceptual similarities, the present approach cannot
be regarded as a geometrically nonlinear extension of the B-bar methodology. In order to
preserve the asymptotically quadratic rates of convergence of the Newton–Raphson scheme
in implicit finite-element computations, the closed form of the corresponding consistent
tangent stiffnesses is derived. It has a particularly simple structure so that existing codes
that support the conventional four-node displacement-based quadrilateral (or eight-node
hexahedron, if 3D analysis is sought) can be easily adapted to incorporate these elements.

6.1. The low-order elements for finite-strain problems

Central to the developments presented below is the concept of multiplicative split of the
deformation gradient,F , into deviatoric (volume-preserving) and volumetric (dilatational)
contributions. This multiplicative decomposition has been exploited by Simoet al (1985),
Moran et al (1990) and Simo and Taylor (1991) in the treatment of the incompressibility
constraint in finite-deformation problems. It consists of splitting the deformation gradient
according to the expression

F = FdFv (6.1)

whereFd andFv are, respectively, thedeviatoricandvolumetriccomponents ofF , defined
by

Fd = (det[F ])−1/3F Fv = (det[F ]1/3I. (6.2)

In the expressions above,I denotes the identity tensor and det[·] stands for the determinant
of [·]. Note that, by construction,Fd andFv satisfy

det[Fd ] = 1 det[Fv] = det[F ]. (6.3)

6.1.1. Stress computation. The modified deformation gradient.Consider an ordinary
displacement-based four-node quadrilateral and an eight-node hexahedron, with local
coordinates denotedξ, as illustrated in figure 7. Typically, the numerical integration of the
element internal force vector requires the computation of the stresses at a prescribed number
of Gauss points and, for geometrically nonlinear problems, the stresses are obtained from
the deformation gradient by means of constitutive functionals. LetF be the deformation
gradient computed from the standard (bilinear for the quadrilateral and trilinear for the
hexahedron) interpolation of the displacement field at a generic integration pointi, with
coordinateξi , indicated in figure 7. For the conventional elements, the Cauchy stress
tensor,σ, in the case of elastic materials is determined at each integration point by

σ = σ̂(F ) (6.4)
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Figure 7. The four-node quadrilateral and eight-node hexahedron.

where σ̂ is the corresponding elastic constitutive functional. For inelastic materials,
incremental constitutive functionals are used instead. In these cases, considering a typical
time interval [tn, tn+1], the stress is evaluated according to the relation (3.1).

The basic objective here is to design a simple four-node quadrilateral and a simple eight-
node hexahedron that circumvent, in the nonlinear range, the spuriouslocking exhibited by
the standard bilinear and trilinear elements near the incompressible limit. The key idea
underlying the present formulation is the use of an assumedmodifieddeformation gradient
to compute the stresses in (6.4). First, the volumetric/deviatoric split (6.1) is applied to
the deformation gradientF at the Gauss point of interest as well as to the deformation
gradientF0 that results from the conventional displacement interpolation at thecentroid of
the element,ξ = 0 (see figure 7):

F = FdFv F0 = (F0)d(F0)v. (6.5)

The modified deformation gradient, F̄ , is then defined as the composition of the deviatoric
component ofF with the volumetric component ofF0, i.e.

F̄ := Fd(F0)v =
(

det[F0]

det[F ]

)1/3

F . (6.6)

Having defined the modified deformation gradient, the proposed four- and eight-node
elements are obtained by replacingF with F̄ in (6.4). Thus, for the present elements,
the Cauchy stress at each Gauss point is computed as

σ = σ̂(F̄ ). (6.7)

Remark 6.1.By construction of F̄ , the deviatoric/volumetric split of the modified
deformation gradient gives

F̄d = (det[F ])−1/3F = Fd (6.8a)

F̄v = (det[F0]1/3I = (F0)v (6.8b)

i.e. the deviatoric component of̄F coincides with the current (integration point) deviatoric
deformation gradient while its volumetric part corresponds to the dilatation at the centroid
of the element. In view of (6.4), this implies that, for materials whose deviatoric and
volumetric responses aredecoupled, the present formulation results in constant pressure
distributions throughout one element.
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Figure 8. Upsetting of a cylindrical billet. Hourglass patterns. (a) Four-Gauss-point quadrature
rule and (b) nine-Gauss-point quadrature rule.

6.2. Some practical experiences

Several numerical examples, involving hyperelastic as well as elasto-plastic simulations,
are presented in this section. It provides an assessment of the performance of the proposed
four-node quadrilateral and eight-node hexahedron over a wide range of circumstances.
Some results obtained here with the four-node quadrilateral are compared with similar
computations carried out using the geometrically nonlinear enhanced strain elements Q1/E4
and Q1/E5, respectively for plane-strain and axisymmetric problems, proposed by Simo
and Armero (1992). We remark that the hyperelastic simulations are dealt with within the
context of finite elasticity set on the spatial configuration as described by de Souza Netoet al
(1994). In the elasto-plastic problems, the framework for treatment of finite multiplicative
plasticity based on logarithmic strains described in section 4 is adopted.

Example 6.1 (Upsetting of an elasto-plastic cylindrical billet).As compared with the stan-
dard isoparametric formulation, a substantial diminution of incompressibility locking and
accuracy gain in bending dominated problems is observed when enhanced assumed strain
elements are used. Nevertheless, drawbacks still exist and need to be carefully addressed.
Particularly in highly constrained compressive regimes, the presence of undesirable hour-
glass modes may be detected. This fact is well illustrated in figure 8 which shows deformed
meshes during the simulation of the upsetting of an elastoplastic cylindrical billet with the
assumed enhanced strain axisymmetric element named EAS-5 by Simo and Armero (1992).
Figures 8(a), (b) correspond, respectively, to four- and nine-Gauss-point integration rules.
Hourglass patterns are clearly visible and indicate that further research is required for the
design of enhanced assumed strain finite elements with optimal performance in a wider
range of situations.

Example 6.2 (Rubber cylinder pressed between two plates).The simulation of the compres-
sion of a rubber cylinder between two frictionless rigid plates using the F-bar element is
carried out in this example. This problem has been considered by Sussman and Bathe (1987)
in the context of theu/p formulation and by Simo and Taylor (1991), who employed a
mixed formulation in conjunction with an augmented Lagrangian procedure. The geometry
of the problem and the boundary conditions are illustrated in figure 9(a). Following Suss-
man and Bathe (1987), two different material models which fit the same experimental data
are used: (i) a regularized Mooney–Rivlin material given by the strain energy function

ψ̂(I1, I2) = C1(I1− 3)+ C2(I2− 3) (6.9)

whereI1 and I2 are the first and second invariants of the left Cauchy–Green strain tensor
B = FF T , respectively, with constantsC1 = 0.293 MPa,C2 = 0.177 MPa and bulk
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Figure 9. Rubber cylinder pressed between two plates. (a) Geometry and boundary conditions;
(b) initial mesh; and (c) deformed mesh atu = 250 mm.

modulusk = 1410 MPa, and (ii) an Ogden material (Ogden 1984)

ψ̄(λ1, λ2, λ3) =
3∑

p=1

µp

αp
(λ
αp
1 + λαp2 + λαp3 − 3) (6.10)

where λi, i = 1, 2, 3 are principal stretches while the material coefficients are given as
µ1 = 0.746 MPa,µ2 = −0.306 MPa,µ3 = 6.609× 10−5 MPa,α1 = 1.748,α2 = −1.656
and α3 = 7.671. A plane-strain state is assumed and, for symmetry reasons, only one
quarter of the cylinder cross section is considered in the simulation. It is discretized
with the mesh of 48 elements shown in figure 9(b). The deformed mesh obtained with
a prescribed displacementu = 250 mm of the plate is depicted in figure 9(c). It is in good
qualitative agreement with the deformed mesh shown by Simo and Taylor (1991). The
reaction forces per unit thickness on the plate, obtained for the Mooney–Rivlin and Ogden
models, are plotted in figure 10 against the plate deflectionu. The curves are plotted up to
u = 200 mm. For both materials the results agree with Sussman and Bathe (1987).

Example 6.3 (Elastomeric bead compression).The numerical simulation of the compression
of an elastomeric axisymmetric bead is carried out in this example. The bead—a circular
ring with trapezoidal cross section—is schematically represented in figure 11. Its function
is to provide sealing when the plate, which contacts its top edge, is pressed downwards.
In the finite-element simulation, the bottom edge of the ring seal is assumed clamped to a
flat rigid base and both plate and base are idealized as rigid bodies with frictionless contact
condition on the boundaries. The bead is modelled as a regularized neo-Hookean material

ψ̃(I1) = C(I1− 3) (6.11)

whereC = 2.5 and with bulk modulusk = 1000. A mesh of 520 elements is used
to discretize the bead. Figure 12(a) shows the mesh in its initial configuration. The
compression of the bead is simulated here with both the axisymmetric version of the four-
node quadrilateral presented in section 6.1 and the axisymmetric enhanced element Q1/E5.
For the enhanced element, the five-point integration rule is employed in order to avoid
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Figure 10. Rubber cylinder pressed between two plates. Load-deflection curves.

Figure 11. Elastomeric bead compression. Initial geometry and boundary conditions.

Figure 12. Elastomeric bead compression. Finite-element discretization on the initial
configuration and deformed meshes obtained with the present element. (a) Initial configuration;
(b) u = 0.09; (c) u = 0.17; and (d) final configuration,u = 0.25.

spurious mechanisms. With the present element, a total vertical displacementu = 0.25 is
applied to the plate in 25 increments. Deformed meshes obtained at different stages of the
compression process are depicted in figures 12(b)–(d). They correspond, respectively, to
u = 0.09, 0.17 and 0.25. At the early stage shown in figure 12(b), the lateral surfaces of the
seal make contact only with the top plate. At the later stages of figures 12(c), (d), contact
also occurs with the rigid base. The reaction–displacement curve obtained is plotted in
figure 13. The results of the simulation with the Q1/E5 element are shown in figure 14. In
this case, due to the activation of non-physical hourglass deformation modes, the enhanced
element fails to produce meaningful results. Although no severe spurious hourglass patterns
can be observed in the deformed mesh of figure 14(a), obtained withu = 0.09, at the later
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Figure 13. Elastomeric bead compression. Displacement–reaction diagram.

Figure 14. Elastomeric bead compression. Deformed meshes obtained with the enhanced
element Q1/E5 (five-point integration rule). (a) u = 0.09; and (b) u = 0.235.

stage depicted in figure 14(b), with u = 2.35, extremely severe hourglassing has spread
throughout the entire structure. The rank deficiency that triggers instability in this class of
enhanced elements seems to have been first identified by Wriggers and Reese (1996) in the
context of finite hyperelasticity. This fact was later confirmed by Crisfieldet al (1995) and
de Souza Netoet al (1995), for the elasto-plastic case and represents a serious limitation on
the applicability of these elements in the finite-strain range, particularly under compressive
dominant stresses. We remark that, so far, no pathological rank deficiency has been detected
in the F-bar formulation.

7. Further aspects of the deformation of inelastic solids at finite strains

Previous sections provide a general continuum-based theoretical and computational
framework for analysis of large deformations of inelastic solids at large strains. When
considering a specific deformation process it is often necessary to resort to further
constitutive descriptions that describe salient features of a particular material behaviour.
Although phenomenological by construction, these models are based, directly or indirectly,
on microscopic arguments and usually rely on a substantial body of physical evidence. A
number of important classes of material description may be identified. Attention here is
concentrated on three classes of materials that have proved to be useful in describing such
specific features of material behaviour. The influence of the curvature of the elasto-plastic
yield surface is examined utilizing the anisotropic yield criterion proposed by Barlat and
Lian (1989). Additionally, by introducing damage parameters the effect of continuous
deterioration of material properties is addressed. Finally, material rate dependence is
introduced through a viscoplastic constitutive model. Rate sensitivity and strain rate effects
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Figure 15. (a) Isotropic yield surfaces for several values of material constantM and for shear
stressσxy = 0. (b) The effect of yield condition on limit forming predictions.

are known to have a significant role in constitutive description for a number of materials
and processes.

7.1. Yield surface representation

For thin-sheet metal forming operations, due to the manufacturing process of the material,
the plastic behaviour of textured polycrystalline sheet is predominantly anisotropic. Use
of the Hill anisotropic criterion, which contains no shear stress, is restricted to a planar
isotropy or for cases where the principal stress axes coincide with the anisotropy axes.

Full planar anisotropy is described by the yield function introduced by Barlat and Lian
(1989) which for the plane-stress state is of the superquadric form (computational aspects
of this criterion are discussed by Dutkoet al (1993))

f (σ, σ̄ ) = a|K1+K2|M + a|K1−K2|M + (2− a)|2K2|M − 2σ̄M (7.1)

in which

K1 = σxx + hσyy
2

and K2 =
√(

σxx − hσyy
2

)2

+ p2σ 2
xy (7.2)

wherea, h, p andM are material constants andσ̄ is the yield stress from a uniaxial tension
test. For a given value of the exponentM material constantsa, h, p can be evaluated using
R-values, i.e. plastic strain ratios of the in-plane strains to the thickness strain obtained from
uniaxial tension tests in three different directions. The role of the material constantM is
illustrated in figure 15(a) obtained by plotting the function (7.1) for variousM values in
the normalizedσxx andσyy plane for the isotropic case (i.e. fora = h = p = 1) and taking
σxy = 0. The resulting set of functions span the set of yield surfaces which include the
standard von Mises and Tresca yield surfaces forM = 2 andM →∞, respectively.

An important property of the yield function described by equations (7.1), (7.2) is its
convexity when constantsa, h, p are positive andM > 1, as proved by Barlat and Lian
(1989).

It has long been accepted that the von Mises criterion represents the yielding conditions
in metals adequately. For example, even shear band formation in a thin sheet under uniaxial
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Figure 16. Stretching of a circular thin sheet by a hemispherical punch: deformed finite-element
mesh at punch displacementDp = 40.0 mm for the von Mises yield criterionM = 2.

tension may be well described utilizing simple von Mises flow theory of plasticity as shown
by Períc et al (1991). However, under biaxial tension, prediction of the onset of localized
necking requires relaxation of the normality condition through vertex formation on the
yield surface, or increase of the curvature of the yield surface that is achieved by increasing
the value of theM parameter in the Barlat model (7.1), (7.2). Figure 15(b) shows the
use of such surfaces in simulating limit forming conditions in the biaxial stretching of an
aluminium sheet. It is seen that the best correspondence with experiment is obtained for
M = 6–8 and not the von Mises value ofM = 2. Incidentally, for aluminium alloys which
are composed of face centred cubic (FCC)-type crystalline structures the value ofM = 8
has also been suggested by Barlat and Lian (1989) who, for this value ofM, found a close
correspondence with the yield surfaces obtained on the basis of microstructural arguments.

Example 7.1 (Stretching of a circular thin sheet by a hemispherical punch: elasto-plastic
material). The geometry, material characteristics and other parameters are given by Owen
and Períc (1994). The analysis is performed employing a 3D membrane formulation for
a quarter of the model with appropriate boundary conditions. The material is assumed to
follow Barlat’s yield criterion (7.1), (7.2) where parameterM is varied. The solution for
the standard von Mises material represented byM = 2 is also provided. To solve this
problem the blank is discretized with 736 constant strain triangular finite elements, and
2145 and 612 triangular flat elements are used to discretize the surfaces of the punch and
die, respectively. Results are obtained for a coefficient of friction between tools and blank
of µ = 0.30. Figure 16 gives the deformed mesh for punch displacementDp = 40 mm and
von Mises yield criterionM = 2.

The punch force versus punch displacement diagram, presented in figure 17(a), gives
a comparison between results obtained for variousM-values. The maximum punch force
decreases with increase of theM-value, which indicates a strong influence of the curvature
of the yield surface on the initiation of strain localization and its development.

The distribution of true strain in the radial direction is shown in figure 17(b) for various
M-values and for punch displacementsDp = 30 mm. A typical localization behaviour may
be observed where strain accumulates in a narrow zone, reaching high levels and leading
to failure. The appearance of localization and associated failure is less pronounced with
decrease of the curvature on the yield surface, specified by decrease ofM-value, and is
clearly delayed for a quadratic yield surface corresponding to the standard von Mises yield
criterion.
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Figure 17. Stretching of a circular thin sheet by a hemispherical punch. (a) Punch force
versus punch displacement curves for variousM-values. (b) Distribution of true strain in the
radial direction plotted over the initial configuration for variousM-values at punch displacement
Dp = 30.0 mm.

7.2. Elasto-plastic damaging solids

As experimentally verified for many materials (Lemaitre 1985, Lemaitre and Chaboche
1990), the nucleation and growth of voids and microcracks which accompany large plastic
flow causes a reduction of the elastic modulus as well as material softening and can be
strongly influenced by the triaxiality of the state of stress. In this case, the prediction of
rupture with reasonable accuracy requires consideration of the coupling between elasto-
plasticity and damage.

With attention restricted to isotropic solids, a scalar parameterD is introduced, which
represents the density of microcracks and microcavities in the body. The elasticity law is
then given by

σ = C : εe(1−D) (7.3)

whereC is the elastic modulus which is assumed constant and isotropic.
Stresses are assumed to satisfy the von Mises yield criterion in the form

f (σ, σ̄ ,D) =
√

3J2(σ)

1−D − σ̄ (7.4)

whereJ2(σ) is the second principal invariant of the deviatoric stress tensor dev[σ] and
σ̄ (ε̄P ) is the uniaxial yield stress. The evolution laws for internal variables are obtained in
a standard way employing the second law of thermodynamics in the form of the Clausius–
Duhem inequality (2.31) and adopting the normal dissipation assumption which results in

ε̇p = γ̇ 1

(1−D)
dev[σ]√
3J2(σ)

(7.5a)

Ḋ = γ̇ 1

1−D
(−Y
S0

)s0
(7.5b)

whereS0 ands0 are material constants, andY is the damage energy release rate expressible
in terms of the stresses and accumulated damage,D. A computational model for the fully
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coupled elasto-plastic damage model at finite strains is provided by de Souza Netoet al
(1994).

7.3. Elasto-viscoplastic solids

The constitutive model for von Mises elasto-viscoplasticity is represented as

f (σ, σ̄ ) = F(σ)− σ̄ (7.6a)

F(σ) =
√

3J2 (7.6b)

ε̇vp = γ 〈8(σ̄ )〉
√

3

2

dev[σ]

‖ dev[σ]‖ (7.6c)

in which8 is theviscoplastic flow potential.
For metal forming operations under high-temperature conditions, the effective stress

(usually termed the flow stress) is rate dependent, making viscoplastic approaches suitable
for simulation. Several empirical relations exist for flow stress prediction, which are based
on experimental tests, and are applicable to particular materials under specific conditions.
Three of the most commonly employed expressions are summarized below.

(1) Hajduk expression. The flow stress̄σ is assumed to be expressed in the following
form:

σ̄ = Kf 0KTKε̄K ˙̄ε (7.7)

where the three coefficients are functions of the form

KT = A1 exp[−m1T ] (7.8a)

Kε̄ = A2ε̄
m2 (7.8b)

K ˙̄ε = A3 ˙̄εm3 (7.8c)

whereAi andmi are material constants determined from tests.
(2) Sellars–Tegart expression. This is based on the following interpolation equation:

Z = ˙̄ε exp

[
Q

R(T + 273)

]
= C[sinh[ασ̄ )]n (7.9)

whereZ is the Zener–Hollomon parameter,Q is an activation energy usually independent
of temperature and in many cases also independent of strain,R is the gas constant
8.31 J mol−1 K−1, T is the temperature in degrees Celsius, whileC, α andn are material
constants.

(3) ALSPEN expression(Fjaer and Mo 1990). This expression is found to cover closely
the properties of some aluminium alloys by fitting experimental curves in the form

σ̄ = c(T )(α + α0)
n(T )ε̄m(T ). (7.10)

Coefficientsc(T ), n(T ) andm(T ) are described by Fjaer and Mo (1990) and Schönauer
et al (1993), α0 is a constant, and dα = dε̄vp for temperatures below the onset limit
T0 ≈ 700 K, otherwise dα = 0.

Since practicallyε̄ = ε̄vp and ˙̄εvp = γ8 for J2 plasticity, parametersγ and8 can be
obtained, as shown in box 7.1, for all three interpolation functions. In all three cases, the
yield stress is taken to be zero, thus the assumption is made that some part of the strain is
always inelastic.
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Box 7.1. Elasto-viscoplastic material model.

8. Thermomechanical coupling

For some classes of forming problems consideration of the coupling between mechanical
and thermal phenomena is essential for realistic simulation, since temperature changes can
induce thermal stresses and change the material properties for mechanical analysis, and
mechanical deformations can modify the thermal boundary conditions and generate heat by
frictional sliding or dissipation of plastic work.

Following similar arguments as in the case for mechanical equilibrium (3.5)–(3.7) the
incremental form of the heat balance can be expressed as∫
ϕn+1(B)

(qkn+1 · ∇η + ρcṪn+1η − (qi + qt )η) dv −
∫
ϕn+1(0q )

qN · nη da = 0 ∀η ∈ VT
(8.1)
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wherec is the specific heat,T is the temperature,qi and qt are respectively the thermal
effect of inelastic deformations and a heat source other than that caused by any mechanical
effect, qN represents the heat transfer at the boundary,qk is the heat flux governed by
Fourier’s law of conductivity,qk = −k∇T , in which k is the thermal conductivity tensor,
andη is the admissible temperature field.

Finite-element discretization results in the system of semidiscrete equations

CT Ṫn+1+Kn+1Tn+1 = Qn+1 (8.2)

in which Tn+1 are the nodal temperatures at the time instanttn+1, CT and Kn+1 are,
respectively, the heat capacity and heat conduction matrices, whileQn+1 is the heat flux
vector. The system (8.2) is solved by employing certain numerical integration algorithms
(for various choices we refer to Belytschko (1983), Hughes (1987) and Bathe (1996)) and
is normally much simpler than the corresponding mechanical problem.

When the mechanical and thermal problems are coupled, a staggered solution approach
is commonly adopted in which separate analyses are undertaken for each phenomenon with
data exchange performed at the end of each timestep or increment. In particular, the nodal
temperatures are transferred to the mechanical analysis, while the displacements, plastic
work, frictional heat flux and contact data are communicated to the thermal solution. On
the simplest level, identical meshes can be employed for analysis of the two phenomena.
However, when mesh adaption procedures are to be introduced for both phenomena, different
meshes will result, requiring data mapping between the two solution phases. The strategy
described in section 9.3 for adaptive mesh refinement can also be employed in this context.
Details of the formulation and numerical analysis of thermomechanical coupled processes
may be found in a comprehensive review by Simo and Miehe (1992).

Example 8.1 (High-speed machining).This problem involves the removal of a continuous
chip by a cutting tool and modelling requires, in addition to finite-strain elasto-plasticity
and frictional contact representation, the introduction of an appropriate material separation
criterion. Realistic modelling of this class of problem necessitates the introduction of
thermomechanical coupling effects, since the generation of heat by, principally, frictional
sliding between the chip and cutting tool and also the dissipation of plastic work can result
in large temperature increases in the tool. Due to complex and interacting features of the
problem, which, for realistic simulations, also necessitate the use of adaptive strategies
(described later in section 9), some successes in computational modelling of general high-
speed machining processes have only recently been accomplished (Marusich and Ortiz 1995,
Owen and Vaz 1998, Sekhon and Chenot 1993, Vaz 1998).

Titanium alloys are particularly susceptible to adiabatic shear localization due to their
very low thermal diffusivity and associated high sensitivity of the yield stress to temperature.
High-speed machining, therefore, amplifies these effects due to the high rate of energy
generation. The present example simulates machining of Ti-6Al-4V titanium alloy, for
which the following aspects are addressed:

(i) evaluation of the mesh refinement procedure;
(ii) evaluation of the strain localization process;
(iii) evaluation of the failure process.
The geometry of the problem and initial mesh for a rake angle of−3◦ are depicted in

figure 18 whereas material data and other simulation parameters are presented in table 1.
The yield stress adopted in the simulations is

σY = σY0(ε0+ εp)n + ∂σY
∂T

(T − T0) (8.3)
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Figure 18. High-speed machining: Geometry and initial finite-element mesh.

Table 1. Material data for Ti-6Al-4V and other simulation parameters.

Description Symbol Value

Specific mass ρ 4420 kg m−3

Specific heat c 582.2 J kg−1 K−1

Thermal conductivity k 5.86 J kg−1 m−1 K−1

Young’s modulus E 115.7 GPa
Poisson’s ratio ν 0.321
Yield stress data σY0 1231.5 MPa

ε0 0.008
T0 298 K
n 0.059
∂σY
∂T

−2.3 MPa K−1

Damage data s 1

Dissipation factor ξ 0.85
Coupling interval Every timestep

Target error ηIϕ 8%
Maximum element size hmax 0.1 mm
Minimum element size hmin 0.007 mm

Cutting speed v 4–20 m s−1

Cutting depth t 0.5 mm
Rake angle α −9◦ to +9◦
Flank angle γ 5◦
Coulomb friction µ 0.1
Tool tip radius rtip 25 µm

in which the component∂σY /∂T represents the thermal softening andT andT0 correspond
to the current and initial temperature respectively. An enhanced four-node one-Gauss-point
element is used in the simulations (Belytschko and Bindeman 1991).

The simulations employ the error indicator based on theuncoupled integration of
Lemaitre’s damage modeland are performed for cutting speeds between 5 and 20 m s−1

and rake angles between−9◦ and 9◦. Separate tests are undertaken to evaluate the effect
of the cutting speed and effect of the rake angle and to assess the capacity of the adaptive
remeshing procedure to describe the process evaluation.

The material properties of titanium alloys create favourable conditions for strain
localization at cutting speeds as low as 0.0051 m s−1 (Recht 1964). Therefore, an efficient
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Figure 19. High-speed machining: typical finite-element meshes for negative rake angles.
Cutting speedv = 10 m s−1 and rake angleα = −3◦. (a) U = 0.18 mm, (b) U = 0.39 mm,
(c) U = 0.75 mm.

Figure 20. High-speed machining: thermoplastic strain localization forα = −3◦, v = 10 m s−1

andt = 0.5 mm. (a) Equivalent plastic strain rate, (b) equivalent plastic strain, (c) temperature,
K, (d) yield stress, MPa.

error indicator should be able to translate the strain localization phenomena into refined
meshes over the critical zones for a wide range of cutting conditions.

The error indicator based on the rate of fracture indicators has been employed (Vaz
1998, Períc et al 1998) based on the principle that mesh refinement should be able not
only to capture the progression of the plastic deformation but also to efficiently produce
refined meshes at regions of possible material failure. This concept is clearly illustrated in
figures 19(a)–(c) which show the evolution of the mesh refinement process. It is worthy
of note that, in this example, material failure is inhibited, otherwise the chip would have
separated before reaching the stage shown in figure 19(c). It is also worth noting that the
small tool tip radius requires a refined mesh to ensure a proper contact between the cutting
edge of the tool and workpiece.

In the present case, localization was found to be confined, on average, to a 35µm zone,
corresponding to a region approximately five-elements wide, as depicted in figure 20(a).
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Figure 21. High-speed machining: progression of the shear band for a cutting speed of 10 m s−1,
a cutting depth of 0.5 mm and a rake angle of−3◦. (a) U = 0.23 mm, (b) U = 0.37 mm, (c)
U = 0.40 mm.

The distribution pattern of the equivalent plastic strain rate can change during the process
due to the cyclical character of the mechanisms of chip formation. However, even at very
early stages,̇εp was found to be significantly high, reaching values up to 1.2×106 s−1 for this
particular example. A high strain rate causes localized plastic deformation which is reflected
by the distribution of the equivalent plastic strain shown in figure 20(b). The shear band
geometry in high-speed machining is not a straight line and, therefore, its characterization
based on theshear angleis not particularly appropriate. On the other hand, the simulations
show that initial inclination of the shear band increases with the rake angle and tool advance.

The very essence of thermoplastic shear localization is presented in figures 20(c) and
(d), which show the distribution of the temperature and yield stress. Highly localized plastic
deformation causes the temperature to rise sharply, well above the neighbouring regions,
which in turn, causes the yield stress to decrease. Furthermore, the regions of low yield
stress are more susceptible to larger plastic deformations. The cyclical response oflocalized
plastic deformation→ temperature rise→ yield stress reduction→ large and localized
deformationinstigates a significant upward movement of the portion of the chip above the
shear band, which can eventually lead to its separation.

Analysis of the progression of the strain localization process provides useful information
on whena fractured chip is formed. Therefore, material failure is inhibited by de-activating
the algorithm responsible for the failure process. Figures 21(a)–(c) show the shear band
progression as a function of the tool advance,U , for a cutting speed of 10 m s−1 and a rake
angle of−3◦. When the tool tip touches the workpiece a well-defined shear band is rapidly
developed, as shown in figure 21(a). A further tool progression gives rise to a second
shear band, as shown in figures 21(b) and (c). The importance of the present assessment
is highlighted by the fact that the chip breaksbefore the development of a new shear band.
For further details related to numerical simulation of high-speed machining, including chip
formation and breakage, we refer to Marusich and Ortiz (1995) and Owen and Vaz (1998).

Example 8.2 (A plane-strain bulk forming of a crane hook).The geometry and material
characteristics for this example are shown in figure 22. The analysis is performed employing
a plane-strain formulation for one half of the model with appropriate boundary conditions.
The material is assumed to follow the Sellars–Tegart interpolation function (7.9) with
material parameters given as: Young’s modulusE = 120 000 N mm−2, Poisson’s ratio
ν = 0.3,C = 1.2×1012 s−1, α = 1.12×10−2 mm2 N−1, n = 3.5 andQ = 352.69 kJ mol−1.
The initial temperature of the workpiece is set atT = 1100◦C. Coulomb frictional law
is assumed with a coefficient of friction 0.3. To solve this problem the bulk material is
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Figure 22. A plane strain bulk forming of a crane hook. (a) Initial finite-element meshes for
tool and workpiece. (b)–(d) Deformed finite-element meshes with temperature distributions at
various stages of punch displacement.

discretized with 600 quadrilateral finite elements while the punch is assumed rigid and
described as a sequence of linear and circular segments. Figure 22(b)–(d) gives deformed
meshes and temperature development in the tool over one forging cycle, which is primarily
due to frictional sliding between workpiece and tool. It is seen that the areas of greatest
temperature increase coincide with regions of high curvature of the tool profile, which
results in large normal pressures and consequently relatively large amounts of frictional
work dissipated as heat.

This may provide valuable information to industrial tool designers since high-
temperature (low-hardness) and high-normal-pressure regions often coincide with regions
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of high wear. A statistical investigation covering more than 100 forging geometries has
categorized the principal causes of tool failure. Different types of wear (mainly at corners
and roundings) is the cause for scrapping of some 60% of tools, various types of crack
formation account for approximately 25% and local plastic deformation is responsible for
5%. Consequently, the prediction of tool wear is of primary concern for the implementation
of a preventive maintenance strategy within the forging industry.

9. Adaptive strategies for nonlinear problems

The formal structure of adaptive finite-element methods for linear elliptic problems is
now well understood, thus forming a solid foundation upon which effective and reliable
techniques of error estimation and adaptive refinement may be established. Although
certain issues still remain unresolved, it may be said that nowadays, adaptive strategies
for linear problems can be routinely performed within finite-element computations. Among
numerous contributions, the work by Babuška and Rheinboldt (1978), Bank and Weiser
(1985), Demkowiczet al (1985), Eriksson and Johnson (1988), Zienkiewicz and Zhu
(1987), and surveys by Johnson and Hansbo (1992), Odenet al (1989) and Zienkiewicz and
Taylor (1989) illustrate the basic ideas and numerical strategies. In contrast, although some
advances have been recorded for certain classes of nonlinear problems (see e.g. Babuškaet
al (1986) for some early contributions), only a limited amount of published work exists ona
posteriori error estimates and adaptive approaches for history dependent nonlinear problems
in solid mechanics. Notable exceptions are contributions by Ladevezeet al (1986), Jinet
al (1989), Belytschkoet al (1989), Ortiz and Quigley (1991), Johnson and Hansbo (1992),
Lee and Bathe (1994), Perić et al (1994, 1996), Gallimardet al (1996) and Bartholdet al
(1997).

On the practical side, since for a large number of industrially relevant solid mechanics
problems, the optimal mesh configuration changes continually throughout the deformation
process, the introduction of adaptive mesh refinement processes is crucial for the solution of
large-scale industrial problems. This necessitates several steps within an adaptive strategy:
(i) a remeshing criterion, (ii) specification of an appropriate error estimation criterion, (iii)
development of a strategy for adapting the mesh based on the error distribution and (iv)
automatic mesh generation tools.

In this section, some basic concepts already in standard usage are generalized in order
to describe an adaptive strategy for the elasto-plastic problem of evolution. In particular,a
posteriori error estimates based on the Zienkiewicz–Zhu adaptive strategy and the energy
norm (see Zienkiewicz and Zhu (1987), Zienkiewicz and Taylor (1989), Zienkiewiczet al
(1990) and references therein) are appropriately modified to account for the elasto-plastic
deformation at small and finite strains. We emphasize that, in this context, the generalized
energy norm appears as a natural metric for this class of problems. In addition, the intrinsic
dissipation functional, associated with the second law of thermodynamics is, by heuristic
arguments, utilized as a basis for the development of a complementarya posteriori error
indicator.

For most of the early practical simulations involving history dependent materials on
evolving meshes work has been concentrated on adopting a suitable criterion to control
the remeshing procedure. An adaptive remeshing scheme has been proposed by Ortiz and
Quigley (1991), in which the resolution of the mesh is increased in certain regions so that
the variation of the solution over each element is within a prescribed tolerance throughout
the mesh. A similar procedure is adopted by Jinet al (1989) who use isolines of effective
strain as a measure in their adaptive remeshing scheme. In each of the above schemes a
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suitable transfer operator must be defined to ensure that the state variables are correctly
distributed to the new mesh. Recently, Lee and Bathe (1994) and Perić et al (1994, 1996)
have presented an adaptive strategy for large deformation processes at large inelastic strains
which provides a discussion on important aspects of the adaptive procedure for history
dependent materials on evolving finite-element meshes. Their discussion analyses various
aspects of error indicators, remeshing algorithms and transfer operations, and some of these
aspects are discussed in this section.

9.1. Basic error estimates and adaptive refinement

9.1.1. Energy norm. It is convenient, at this stage, to introduce a unified notation associated
with Halphen and Nguyen (1975), which allows an elegant presentation of the elasto-plastic
problem of evolution. For that purpose denote by

Σ := (σ,A) (9.1a)

E := (ε, 0) (9.1b)

ξ := (εp,α) (9.1c)

and, in addition, introduce the unified modulusG as

G := diag[C,D] (9.2)

whereC denotes the elasticity tensor andD is theRnint × Rnint matrix of the generalized
hardening modulus wherenint is a number of internal variables. Denoting byΣh the
approximate generalized stresses obtained as the finite-element solution, the corresponding
error may be defined as

eΣ := Σ−Σh. (9.3)

Following standard usage for linear elliptic problems we introduce the generalized stress
error in the energy norm for a generic elementK, and a corresponding global error,
respectively, as

|||eΣ|||2K =
∫
K

(Σ−Σh) : G−1(Σ−Σh) dv (9.4a)

|||eΣ|||2 =
∑
K

|||e6|||2K. (9.4b)

An elementary procedure for the error estimation may be defined by the replacement
of the exact values of variables and relevant derivatives of the problem by some post-
processed values obtained from the available finite-element solution and the problem data.
The post-processed solution is expected to have superior accuracy compared with the original
finite-element solution. This characteristic of the post-processed solution is attributed to
the so-calledsuperconvergenceproperties, which are at present proved for certain regular
meshes. In particular, thea posteriori error estimation procedure originally proposed and
used by Zienkiewicz and Zhu (1987) for linear elliptic problems is based on the observation
that exact stressesσ may be represented accurately by smoothed stressesσ∗ obtained by a
suitable projection of approximate stressesσh which satisfies∫

B
Π(σ∗ − σh) dv = 0. (9.5)

Some possible choices for the projection matrixΠ are listed in Zienkiewicz and Taylor
(1989).
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Table 2. Error estimation procedure—energy norm error.

(i) Energy functional

ψ(Σ) = 1
2

∫
B

Σ : G−1Σ dv = |||Σ|||2.
(ii) Stress error in energy norm

|||eΣ|||2K =
∫
K

(Σ−Σh) : G−1(Σ−Σh) dv = |||Σ−Σh|||2K

|||eΣ|||2 =
∑
K

|||eΣ|||2K.
(iii) Stress projection∫

B
Π(Σ∗ −Σh) dv = 0.

(iv) Error estimate

ε2
Σ,K =

∫
K

(Σ∗ −Σh)T : G−1(Σ∗ −Σh) dv

= |||Σ∗ −Σh|||2K dv ≈ |||eΣ|||2K
|||εΣ|||2 =

∑
K

|||εΣ|||2K.

(v) Relative error

ηΣ = |||eΣ|||
ψ1/2

≈ εΣ

(ψh)1/2
.

Extending these ideas to the elasto-plastic problem of evolution and generalized stress
Σ the error estimator for an elementK and its global counterparts, may be obtained as

ε2
Σ,K :=

∫
K

(Σ∗ −Σh) : G−1(Σ∗ −Σh) dv = |||Σ∗ −Σh|||2K ≈ |||eΣ|||2K (9.6a)

ε2
Σ =

∑
K

ε2
Σ,K . (9.6b)

In addition, therelative energy norm erroris defined as

ηΣ := |||eΣ|||
ψ1/2

≈ εΣ

(ψh)1/2
. (9.7)

The above approximation is expected to hold asymptotically, i.e. for sufficiently small mesh
sizeh.

For convenience, basic steps of the error estimation procedure based on the energy norm
error are summarized in table 2.

9.1.2. Error indicator based on the dissipation functional.Recalling the expressions for

the plastic dissipation (see Perić et al 1994), and settingeξ̇ := ξ̇ − ξ̇h we observe that

|〈eΣ, eΣ̇〉| 6
∫
K

ndim∑
i,j=1

|(6ij −6h
ij )(ξ̇ij − ξ̇ hij )| dv. (9.8)

Then, in the spirit of (9.1)–(9.5), the error based on the plastic dissipation and the associated
a posteriori error indicator for an elementK may be defined, respectively, as

|eD|2K :=
∫
K

ndim∑
i,j=1

|(6ij −6h
ij )(ξ̇ij − ξ̇ hij )| dv (9.9a)
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ε2
D,K :=

∫
K

ndim∑
i,j=1

|(6∗ij −6h
ij )(ξ̇

∗
ij − ξ̇ hij )| dv (9.9b)

where| · | is the standard Euclidean norm, and an adequate extension of the corresponding
notation (9.1)–(9.5) is applied. The corresponding global quantities are obtained, in a
standard way, as|eD|2 =

∑
K |eD|2K and |εD|2 =

∑
K |εD|2K , respectively. In addition, the

relative error ηD is defined as

ηD = |eD|D1/2
≈ εD

(Dh)1/2 . (9.10)

9.1.3. Error indicator based on the rate of plastic work.It may sometimes be useful to
consider the rate of plastic work, as a basis for an error estimation procedure. Then, the
error based on the rate of plastic work and the associateda posteriori error indicator for a
generic elementK, may be expressed as

|eWp |2K :=
∫
K

ndim∑
i,j=1

|(σij − σhij )[ε̇pij − (ε̇pij )h]| dv (9.11a)

ε2
Wp,K :=

∫
K

ndim∑
i,j=1

|(σ ∗ij − σhij )[(ε̇pij )∗ − (ε̇pij )h]| dv. (9.11b)

The corresponding global quantities are again obtained, in a standard way, as|eWp |2 =∑
K |eWp |2K and |εWp |2 = ∑K |εWp |2K , respectively. In addition, the relative errorηWp is

defined as

ηWp = |eWp |
(Wp)1/2

≈ εWp

(Wp,h)1/2
. (9.12)

Observe that if, for the present elasto-plastic model the equivalent expression for the
rate of plastic workWp = σ̄ ˙̄εp is also included in the error expression (9.9), the error
indicator based on the plastic work|ẽWp | would be identical to the one based on the
plastic dissipation (9.7b), i.e.|ẽWp | = |eD|. The relative error thus would be given as
η̃Wp = |ẽWp |

(2Wp)1/2
.

9.1.4. Refinement strategy.The mesh refinement procedure is constructed in a standard
way (see e.g. Zienkiewicz and Zhu 1987, Zienkiewicz and Taylor 1989, Zienkiewiczet al
1990) with the objective of achieving a uniform distribution of local error. In addition, the
relative errorηΣ(ηD) is required to be within specified limits. In our numerical examples,
the element size is predicted according to the asymptotic rate of convergence criteria of the
linear model.

9.2. Mesh generation/adaption techniques

Structured and unstructured meshes (Weatherill 1990) can be used in the discretization of
the domain. There exists little doubt that there is a role for both categories of meshes in
the finite-element simulation of industrial applications.

Mesh adaption is generally required in the finite-element simulation of industrial
problems such as forming operations where the geometry and material characteristics are
evolving with deformation in the course of the process. Taking the above constraints into
account, the unstructured approach in mesh generation/adaption is employed here. The
unstructured mesh generation process implemented is a Delaunay-based two-stage scheme
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Figure 23. Transfer operator diagram.

(George 1996) whereas the mesh adaption scheme is designed upon the node-basedh-
adaptation approach. The implemented mesh adaption scheme takes advantage of the data
structure created in the mesh generation scheme. This mesh adaption scheme is particularly
suited for local mesh refinement, which is more economical than the mesh regeneration
approach.

The mesh adaption scheme implemented is capable of performing the mesh adaption
according to the mesh prediction data. These mesh prediction data, usually in the form
of mesh density variation or mesh refinement indices, are interpreted from the error data
created by some error indicator, as was discussed in section 9.1.

9.3. Transfer operators

The issue of transfer of variables to new meshes must be properly addressed as it is expected
to be critical in finite-element simulations based on the implicit approach. Important aspects
which must be considered include:

(i) consistency with the constitutive equations,
(ii) requirements of equilibrium,
(iii) compatibility of the state transfer with the displacement field on the new mesh,
(iv) compatibility with evolving boundary conditions,
(v) minimization of the numerical diffusion of the state fields.
In this section general aspects of the transfer operation for evolving finite-element

meshes are provided for the case of a typical elasto-plastic material whose behaviour is
described by a set of internal variables. First, some concepts related to the mapping of
internal variables between two finite-element meshes, denoted byh andh + 1, are given.
This mapping is theessentialpart of the adaptive strategy that is employed in simulation of
history dependent material processes on evolving general unstructured meshes. The mapping
of internal variables is formally denoted as the transfer operatorT1. In addition, a transfer
operator is employed that transfers the displacement field from the old to a new mesh. In
the context of the backward Euler scheme where solution is sought at time instanttn+1, this
transfer provides a trial solution. The mapping of displacements is formally denoted as the
transfer operatorT2.

To describe the transfer operation, let us define a state arrayhΛn :=
(hun,

hεn,
hε
p
n ,

hσn,
hAn) wherehun, hεn, hε

p
n ,

hσn,
hAn denote values of the displace-

ment, strain tensor, plastic strain tensor, stress tensor and a vector of internal variables at
time tn for the meshh (see figure 23). Assume, furthermore, that the estimated error of
the solutionhΛp respects the prescribed criteria, while these are violated by the solution
hΛn+1. In this case a new meshh + 1 is generated and a new solutionh+1Λn+1 needs to
be computed.
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As the backward Euler scheme is adopted, the plastic strainh+1ε
p
n and the internal

variablesh+1An for a new meshh+1 at timetn need to be evaluated. In this way the state
h+1Λ̃n = (•, •, h+1ε

p
n , •, h+1An) is constructed, where a tilde is used to denote a reduced

state array. It should be noted that this state characterizes the history of the material and,
in the case of a fully implicit scheme, provides sufficient information for computation of a
new solutionh+1Λn+1.

Figure 23 summarizes, on a conceptual level, a typical transfer operation that includes
both the mapping of the internal variables and mapping of the displacement field.

9.3.1. Mapping of internal variables—transfer operatorT1. Let T1 be thetransfer operator
between meshesh andh+ 1 defined by

(h+1εpn ,
h+1An) = T1[hεpn ,

hAn]. (9.13)

The variables(hεpn , hAn) specified at quadrature points of the meshh, are transferred by the
operatorT1 to every point of the bodyB, in order to specify the variables(h+1ε

p
n ,

h+1An)

at the quadrature points of the new meshh + 1. The operatorT1 can be constructed in
different ways.

(i) A simple version of the transfer operator may be constructed by taking constant
values over the area associated with every quadrature point. Note that this construction is
local.

(ii) Another possibility is to construct a solution which is continuous, for instance by a
least-squares method, or by a suitable projection ofhε

p
n which satisfies∫

B
Π[(hεp∗n ,

hA∗n)− (hεpn , hAn)] dv = 0 (9.14)

whereΠ is the so-called projection matrix. Some possible choices for the projection matrix
are listed in Zienkiewicz and Taylor (1989). This type of transfer operator can be global or
local.

A local transfer of the second type (ii) is described here. Within this approach there
exist various possibilities for the transfer. The choice for transfer operators that has been
made was guided by the future application of the methodology to classes of problems where
large deformations of inelastic materials at finite strains and complex boundary conditions
with possible frictional contact will be standard operating conditions. Thereforesimple, but
generally applicable, transfer operators are adopted. The basic steps of theimplementation
procedurewhich is applicable for any type of finite element may be described as follows.

The continuous plastic strain tensorhεp∗n and the internal variable vectorhA∗n are
obtained by projecting the Gauss-point (G.P.) componentshε

p

n,G and hAn,G to the nodal
points (N.P.) thus obtaininghεpn,N and hAn,N . To project the Gauss-point components to
the nodes, the shape functions of the element are used. The nodal-point averages of the
projected values are then performed resulting inhε

p∗
n,N andhA∗n,N .

The nodal components of the plastic strain tensorhε
p∗
n,N and the internal variable vector

hA∗n,N for the meshh are then transferred to the nodes of the new meshh+ 1 resulting in
componentsh+1ε

p∗
n,N and the internal variable vectorh+1A∗n,N . The components at the Gauss

points of the new meshh + 1, h+1ε
p

n,G and h+1An,G, are finally obtained by interpolation
using the shape functions of the finite elements.

The transfer operationT1 is schematically presented in figure 24.

9.3.2. Mapping of the displacement field—transfer operatorT2. In the context of the
backward Euler scheme with astrain driven format and Newton–Raphson iterative
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Figure 24. Schematic representation of the transfer operator(h+1ε
p

n,G,
h+1An,G) =

T1[hεpn,G,
hAn,G].

Figure 25. Schematic representation of the transfer operator
h+1un+1,N = T2[hun+1,N ].

procedure, the transferred displacement field on a new mesh is used to provide an initial
guess (trial solution) for the displacements in the first iteration of the Newton–Raphson
scheme. Hence the trial displacement field is prescribed as

h+1utrial
n+1 = T2[hun+1] (9.15)

i.e. by the transfer of the displacement fieldhun+1 obtained with the meshh at timetn+1. It
is important to observe that the transfer operatorT2 can be easily constructed since the nodal
values of displacements and finite-element shape functions fully prescribe the displacement
field.

For convenience, a schematic diagram of the transfer operatorT2 is presented in
figure 25.

Remark 9.1.Details of implementation of the general transfer operation given in
sections 9.3.1 and 9.3.2 are described for the case of evolving finite-element meshes
composed of constant strain triangles in Perić et al (1996). With minor modifications this
procedure is applicable to other types of finite elements. For instance, in the case of a mesh
composed of quadrilateral or higher order elements we proceed by simply subdividing these
elements into a local mesh of constant strain triangles. Since, at present, our aim is to employ
general unstructured meshes composed of low-order elements this procedure is considered
as an appropriate choice. In a recently published article Lee and Bathe (1994) described an
adaptive strategy based on quadrilateral element meshes that may be composed of higher
order elements. The evaluation of local coordinates in elementhB(e) of the background
(old) meshh corresponding to each node of the new meshh + 1, for quadrilaterals and
higher order finite elements results in a nonlinear problem. Lee and Bathe have solved this
problem by employing the so-called ‘inverse isoparametric mapping technique’ which is
based on a Newton–Raphson-type iterative procedure.
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Remark 9.2.An adaptive mesh procedure for nonlinear problems has also been described by
Belytschkoet al (1989). The applications provided in this work relate to the explicit dynamic
analysis of shells. In essence, their strategy consists ‘in splitting a single quadrilateral into
four equal-sized smaller elements (fission), or four elements may be derefined or combined
into a single element (fusion)’. In this way material history diffusion is minimized and
transfer of the state variables is not a serious issue. In contrast, the transfer operation
procedure described here is applicable to problems involving transfer between general
unstructured meshes. This is of particular importance since our aim is to apply this
procedure to the modelling of complex large deformation processes at large strains (using
both implicit and explicit algorithms), where a complete regeneration of the finite-element
meshes has often provedessentialfor a successful simulation.

Remark 9.3.In the context of the implicit timestepping scheme only internal variables
[hεpn , hAn] are transferred, while stresses and strains [hσn,

hεn] are not transferred to a new
meshh+1. As discussed earlier in section 9.3.1 (see also Lee and Bathe (1994), section 4.4
for a discussion) the transfer of the complete state arrayhΛn = (hun, hεn, hεpn , hσn, hAn)

would result in data that may not be self-consistent. For instance, the yield condition
φ(h+1σn,

h+1An) may not be satisfied.

Remark 9.4.As has been observed earlier, the set of internal variables(h+1ε
p
n ,

h+1An)

prescribed at each quadrature point characterizes in full the history of the material on the
new meshh+1. In the case of a fully implicit strain driven computational scheme in which
h+1un+1 (andh+1εn+1) aregiven, these internal variables provide sufficient information for
computation of a new solutionh+1Λn+1 = (h+1un+1,

h+1εn+1,
h+1ε

p
n ,

h+1σn+1,
h+1An+1).

This may clearly be observed from box 4.3 in which the stress return procedure is presented.

Example 9.1 (Extension of a double-notched rubber sheet).In this example, the finite-
element simulation of the plane-stress stretching of a notched rubber sheet is presented.
The sheet, with initial mesh shown in figure 26(a) is assumed to be made of aMooney–
Rivlin material with constantsC1 = 80.1938 andC2 = 2.0. The length of the sheet is
2L = 30.0, width is 2B = 10.0, and thickness ist = 1.0. Due to symmetry, only one
quarter of the sheet is considered. As an error indicator the classical Zienkiewicz–ZhuL2

stress norm is used. The maximum size of elements is restricted tohmax = 5.0 and the
minimum size ishmin = 0.3.

A total of five increments is used to apply displacementU = 3L and the convergence
tolerance control is 1.0× 10−6 on residual force and displacement norms.

Example 9.2 (Stretching of a strip with a hole).In this example, the finite-element simula-
tion of a problem is presented with a localized shear band formation. The specimen
is assumed to be made of an elasto-perfectly plastic material with Young’s modulus
E = 100 GPa, Poisson’s ratioν = 0.3 and yield stressσ = 100 MPa. Due to sym-
metry, only one quarter of the strip is considered. In analysis an error indicator based on
generalized energy norm (9.4) is used and the maximum size of elements is restricted to
hmax= 0.7 and the minimum size ishmin = 0.15.

Meshes obtained after adaptive remeshing are shown in figures 27(b)–(d). Also the
distribution of effective plastic strain is depicted in figure 27(d).

Example 9.3 (Axisymmetric piercing).The finite-element simulation of the axisymmetric
piercing of a cylindrical workpiece is presented. The geometry of the problem is shown in
figure 28(a) and the initial mesh in figure 28(b). The workpiece is assumed to be made
of an elasto-plastic material with Young’s modulusE = 210 GPa, Poisson’s ratioν = 0.3,
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Figure 26. Extension of a double-notched rubber sheet:
finite-element meshes. (a) Initial mesh, (b) U1 = 2L,
(c) U1 = 3L, (d) distribution of effective stress for
U1 = 3L.

yield stressσY = 100 MPa and linear hardening with hardening modulusH = 900 MPa,
while the punch is assumed to be rigid. Frictional contact between workpiece and tool is
defined by a Coulomb law with coefficient of frictionµ = 0.1.

In analysis an error indicator based on the rate of plastic work is used. The initial
mesh consists of 101 quadrilateral elements and the final mesh contains 426 elements.
Convergence of the finite-element solution is established on the basis of the standard
Euclidean norm of the out-of-balance forces with a tolerance of 10−3. No difficulties related
to the convergence have been observed during the simulation despite frequent remeshings.

Distribution of effective plastic strain on deformed meshes at various stages of the
process is shown in figure 29. The deformed meshes show no hourglassing patterns, which
is in agreement with analyses of a similar class of problem carried out by de Souza Neto
et al (1996b).

Example 9.4 (Closed-die rail forging).A simulation of plane-strain forging is presented to
illustrate the application of the developed adaptive strategy to thermomechanically coupled
problems. Anadiabatic thermomechanical algorithm is adopted in the simulations, in
which heat generation due to dissipation of plastic and frictional work is accounted for. An
unstructured meshing approach based on Delaunay triangulation is adopted for both initial
and subsequent mesh adaptions. Enhanced four-node one-Gauss-point elements are also
employed to control hourglassing (Belytschko and Bindeman 1991).

The geometry of the problem is shown in figure 30 whereas the material data for mild
steel and other simulation parameters are summarized in table 3.
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Figure 27. Stretching of an elastic-plastic strip with a hole. (a) Initial mesh, (b) U2 = 0.04,
(c) U1 = 0.06, (d) U1 = 0.415.

Figure 28. Axisymmetric piercing. (a) Geometry and (b) initial finite-element mesh.

The simulation is performed using aJ2 elasto-perfectly plastic material for the
workpiece, rigid tools and a constant friction coefficient. The initial temperature is 300 K
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Figure 29. Axisymmetric piercing. Evolution of effective plastic strain. (a) U = 0.62, (b)
U = 5.66, (c) U = 9.83, (d) U = 11.00.

for both die/punch and workpiece, which is updated every 200 timesteps. The dissipation
factors for both plastic work and frictional work are assumed to be constant throughout the
process.

Remeshing is an essential tool for a successful simulation of forging processes due to
the large elasto-plastic deformation involved. The necessity of remeshing is assessed every
400 steps using criteria based onelement distortion. Element distortion is evaluated by
splitting the quadrilateral elements into four overlapping three-noded triangular elements
at which a relative area change is computed asηe = 1

4

∑4
i=1

Ai−A0
A0

, whereAi andA0 are
respectively the current and initial (or immediately after remeshing) areas of the triangular
elements. It is worth noting that, conceptually,element distortionis not anerror estimator
but an indicator of degradation of the element shape. In this simulation, the new mesh
is created so that the element sizes over the die, punch and workpiece are as uniform as
possible (the die and punch geometries require smaller elements near corners). Figure 31(a)
shows a typical mesh, in which the elements over the die/punch and workpiece possess a
characteristic length† around 20 and 5 mm respectively. The necessity of remeshing is
clearly illustrated in figures 31 and 32(a) and (b), which show the finite-element mesh at

† In this example the maximum edge length is defined as the characteristic size of the elements.
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Figure 30. Closed-die rail forging: geometry and initial finite-element mesh.

Table 3. Material data and other simulation parameters.

Description Symbol Value

Specific mass ρ 7800 kg m−3

Specific heat c 483.3 J kg−1 K−1

Thermal conductivity k 48 J kg−1 m−1 K−1

Young’s modulus E 200.0 GPa
Poisson’s ratio ν 0.3
Coulomb’s friction coefficient µ 0.1
Yield stress σY 275.0 MPa

Initial temperature T0 300 K
Plastic dissipation factor ξp 0.85
Friction dissipation factor ξf 0.85
Coupling interval 200 timesteps

Error checking 400 timesteps
Element distortion ηe 0.25%
Element size (workpiece) hw 5.0 mm
Element size (die/punch) 20.0 mm

the same compression stage for constant and adapted meshes respectively.
Figure 33 presents the distribution of the equivalent plastic strain for three different

compression stages. In this example, due to the geometry of the die, the beginning of the
process is characterized by a large plastic deformation near the centre of the workpiece and
contact interface. As the punch advances, the excess material flows around the cavity edges
to form the so-calledflash, which, in conjunction with a narrowing gap, causes a greater
increase of plastic deformation and friction.
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Figure 31. Closed-die rail forging: evolution of finite-element meshes. (a) Gap= 60 mm, (b)
gap= 30 mm, (c) gap= 6 mm.

Figure 32. Closed-die rail forging: typical finite-element meshes. (a) Without remeshing, (b)
with remeshing.

Heat generation due to dissipation of plastic work and frictional work are the main
thermal components involved in the process. The importance of the individual effects
at different compression stages can be evaluated from figure 34. At early stages, plastic
deformation is the dominant factor, which is reflected as a similar distribution pattern for the
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Figure 33. Closed-die rail forging: equivalent plastic strain evolution. (a) Gap= 60 mm, (b)
gap= 30 mm, (c) gap= 6 mm.

equivalent plastic strain and temperature, as illustrated in figures 33 and 34 respectively. As
the punch advances, the increasing friction effects cause localized heating near the contact
zones. At the end of the process, the flow of the excess material through a narrow space
causes a great increase of the frictional work and, consequently, the temperatures. In this
example, the maximum temperatures are found near these regions on the surfaces of the die
and punch.

10. Explicit solution strategies

The remarkable recent advances that have taken place in the development of implicit solution
techniques for large-strain elasto-plastic problems with frictional contact conditions have
been described in the preceding sections. In summary, consistent linearization has been
achieved in all algorithmic aspects of the solution procedure and the element technology
has been extended to deal with the incompressible nature of plastic deformation.

In contrast, the solution strategies for the explicit dynamic analysis of large-strain
plasticity problems with contact are well established and there have been no significant
developments in this direction over the last decade. The essential features of the explicit
approach to finite-element analysis are summarized in section 10.1.
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Figure 34. Closed-die rail forging: temperature evolution in K. (a) Gap= 60 mm, (b) gap
= 30 mm, (c) gap= 6 mm.

In practice, the majority of industrial problems, such as forming operations, are
sufficiently slow to be classified as quasistatic, with the material response being rate
independent. Therefore, the sole justification of using explicit transient dynamic
solution procedures for what are essentially quasistatic simulations is the much reduced
computational times required, in comparison with quasistatic implicit analysis, for large-
scale problems.

However, in order to achieve significant computational advantage several numerical
artefacts have to be introduced into the explicit solution procedure. Whereas for quasistatic
implicit analysis the process and material parameters utilized are the physical ones, some
parameters are given artificial values in explicit analysis in order to provide acceptable
CPU times. In particular, and with reference to metal forming operations, the following
parameters are invariably modified.

(i) Material density. Since the maximum permissible timestep length, as defined by the
Courant stability limit, is directly proportional to the square root of the material density,
this parameter is increased; usually by one order of magnitude at least.

(ii) Punch velocity. In order to reduce the total number of timesteps necessary to model
the forming process, the punch velocity is increased; again by at least an order of magnitude.

(iii) Loading history. Since increasing both the material density and punch velocity
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results in increased inertia forces, the punch travel must be suitably controlled so as to
minimize the inertia effects.

The amounts by which the material density and punch speed can be increased are limited,
as the inertia forces may become unacceptably large—even with a judiciously designed
loading history—resulting in erroneous solutions. For example, in deep drawing operations
the predicted material stretching near the punch is often larger than seen in practice whilst
the predicted draw is too small.

10.1. The discretized dynamic equations

Commencing from the linear momentum equation, the weak form of the equilibrium
equations can be derived, which when discretized in the normal finite-element manner
leads to

Mün +Cu̇n + P (un) = F (tn) (10.1)

in which un represents the displacement vector at timetn,M andC are respectively the
mass and damping matrices andP (un) represents the internal force contribution from the
element stress field which satisfies the (nonlinear) constitutive relations. The termF (tn)
represents the external forces arising from applied tractions and contact conditions.

The introduction of central difference approximations for the velocity and acceleration
in terms of displacements gives a recurrence relation from which the displacements at time
tn+1 can be evaluated in terms of quantities at time stationstn and tn−1

un+1 = (M +C1t/2)−1[1t2(Fn − Pn)+ 2Mun − (M −C1t/2)un−1]. (10.2)

The above time integration scheme is conditionally stable with the permissible timestep
being governed by theCourant stability limit. The severe restrictions resulting from
this condition make the use of mass lumping procedures possible which, with the added
assumption of mass proportional damping, leads to the following uncoupled equation system

uA,n+1 = [MA(1+ α1t/2)]−1{1t2(FA,n − PA,n)+ 2MAuA,n −MA(1− α1t/2)uA,n−1}
(10.3)

in which α is the mass-proportional damping coefficient. This expression permits the
evaluation of displacement on an individual nodal basis with internodal coupling occurring
only through the calculation of the internal forcesPn.

The kinematic equations must model finite-deformation effects and by using corotational
measures of stress and strain the incremental large-strain constitutive relation can be written

1σc = C : 1εc. (10.4)

Particular forms of the constitutive tensorC follow from standard elasto-plastic or elasto-
viscoplastic descriptions. Different strain measures may be employed, but considerable
computational benefits arise from use of the logarithmic stretch so that

1εc = ln[U ]. (10.5)

The total stress at any timetn+1 is obtained from

σcn+1 = σcn +1σc (10.6)

and the Cauchy stress is then given by

σn+1 = Rn+1σ
c
n+1R

T
n+1 (10.7)

whereRn+1 is an orthogonal rotation tensor defined by polar decomposition at time instant
tn+1.
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Figure 35. Drawing of a U-strip specimen: initial setting and final product.

10.2. Element methodology

The finite-element models employed for the simulation of industrial processes are invariably
large and therefore in analysis a compromise between accuracy and computational efficiency
has to be reached. This has led to the use of reduced integration procedures to primarily
reduce computation time, but which also counter the overly stiff behaviour associated with
full integration. For linear elements this implies single-point integration which, however,
can result in spurious zero-energy (hourglass) modes of deformation (Belytschkoet al 1984,
Belytschko and Bindeman 1991, Belytschko and Leviathan 1994, Flanagan and Belytschko
1981, Hallquist 1991, Hauget al 1989, Schweizerhofet al 1992).

In order to obtain reliable results, various control methods have been proposed
to eliminate hourglassing by providing restraint which the element lacks under single-
point integration, but without stiffening the element’s adequate response to other modes
(Belytschkoet al 1984, Flanagan and Belytschko 1981). Two principal ways of resisting
hourglassing are with viscous damping and by introduction of artificial stiffness, both of
which are capable of eliminating the spurious singular modes but have a negligible effect on
the stable global modes. However, it should be stressed that hourglass control does not fully
remove the kinematic modes and, in particular, coarse meshes and meshes loaded with large
nodal forces, resulting either from boundary conditions or from contact, are susceptible to
hourglassing despite the use of control techniques.

Example 10.1 (Drawing of a U-strip specimen).Figure 35 provides a schematic representa-
tion of a U-strip drawing operation, whereby a flat sheet of material is drawn into a die
cavity by a much stiffer punch thus creating a U-strip. This problem is modelled both by
a full 3D explicit analysis and also as a two-dimensional (2D) implicit quasistatic problem.
For the 3D simulation four-node shell elements are employed with single-point integration
and hourglass stabilization. The blankholder is modelled in two ways.

(i) Deformable blankholderin which the blankholder is represented by solid continuum
elements with a pressure load applied to the upper surface.

(ii) Rigid modelwhere a rigid contact surface is used in conjunction with a constraint
equation to ensure that the total normal interface pressure is equal to the blankholder
pressure.

For the 2D simulation continuum elements are used for both the strip and the
blankholder.

Figure 36 illustrates the effect of punch speed on the prediction of the forming force.
It is seen that the solution is significantly affected by the punch speed, with increasing
velocities resulting in greater oscillations. The results of the explicit analysis could be
considered acceptable up to a punch speed of 5 m s−1 provided that the loading is suitably
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Figure 36. Drawing of a U-strip specimen: punch force with increasing punch velocity.

ramped. The material density has been scaled by 10 for solution.
The history of contact is shown in figure 37(a). The rigid contact surface algorithm

provides an almost exact blankholder pressure, due to the constraint equation and
consequently the total friction force on the blankholder is also accurate. The results for the
deformable blankholder show large oscillations in the blankholder pressure, primarily due
to points making and losing contact due to the inertia effects. This results in a friction force
which is on average 25% lower than the expected value. The effect of this under-prediction
of the blankholder friction force may be seen in figure 37(b). The punch force history
for the rigid blankholder case agrees well with implicit solution, whereas the deformable
blankholder prediction is some 30% too low.

Example 10.2 (Deep drawn automotive headlamp panel).Finally, the explicit simulation of
an industrial component is illustrated in figure 38 which defines the finite-element description
of the sheet and tooling for the pressing of a deep drawn automotive headlamp panel.
Features of the problem include a non-planar blankholder, a deep draw resulting in relatively
large sliding distances and wrinkling in certain regions of the finished part. The sheet is
modelled by 5500 four-node shell elements and rigid tools are assumed, with the blankholder
being pressure controlled. The final pressed shape is shown in figure 39 where it is seen that
the wrinkling that occurs in the prototype is reproduced by the finite-element simulation.
This wrinkling is caused by both lack of blankholder restraint at one end and a mismatch
between the punch and die.

11. A combined finite-/discrete-element method

The finite-element approach is rooted in the concepts of continuum mechanics, and for
physical situations exhibiting strong discontinuities in material and geometric behaviour, a
finite-element description does not offer the most appropriate modelling approach. Examples
of such problems include the behaviour of jointed rock, mining and rock blasting operations,
ultimate load behaviour of masonry structures and various processes involving granular
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Figure 37. Drawing of a U-strip specimen. (a) Comparison of rigid and deformable blankholder
algorithms. (b) Punch force against the punch travel.

materials, such as, material flow in silos and powder compaction processes. The treatment
of these classes of problems is more naturally related in finite-/discrete-element concepts,
in which individual material elements are considered to be separate and are (possibly)
connected only along their boundaries by frictional contact.

The use of discrete elements was originally developed for geotechnical applications
in the late 1960s. A model by Goodmanet al (1968), for example, was aimed at the
simulation of jointed rock and was accomplished by introducing discontinuities into an
existing continuum. In the early 1970s models based on thea priori assumption of
discontinuous behaviour were introduced, with continuum behaviour being treated as a
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Figure 38. Deep drawn automotive headlamp panel: definition of finite-element model.

special case. The methodology was later applied in modelling various industrial processes
incorporating granular media (Cundall and Strack 1979). The set of methods developed
was generally termed thedistinct-element method.

Further development took place in the 1980s with the incorporation of deformation
kinematics for the more precise modelling of individual elements, and the termdiscrete-
element methodbecame widely accepted. The modelling of local deformation has
permitted a more rigorous treatment of both the contact conditions and energy preservation
requirements. This has also lead naturally to a combined finite-/discrete-element approach in
which the problem is analysed by a combination of the two methods (Munjizaet al 1995).
This solution method is particularly suited to problems in which progressive fracturing
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Figure 39. Deep drawn automotive headlamp panel: location of wrinkles in simulation.

takes place as is the case, for instance, in missile impact simulations and composite
fracture/delamination. Conference proceedings edited by Jenkins and Satake (1983), Satake
and Jenkins (1988), Mustoe (1992) and Williams (1995) offer a comprehensive review of
the subject and areas of application.

In a finite-/discrete-element simulation, starting from a continuum representation by
finite elements of the solid region in question, progressive fracturing within elements is
allowed to take place according to a prescribed fracturing criterion, thereby forming discrete
elements which may be composed of one or more deformable finite elements. Subsequent
motion of these discrete elements and further fracturing of both the remaining continuum and
previously created discrete elements is then modelled. This evolution process is continued
until either the system comes to rest or up to the time of interest.

In essence, in a finite-/discrete-element analysis the main issues which require
consideration, for both dynamic and quasistatic behaviour, are as follows.

(i) Appropriate element modelling of the continuum and discrete regions with a view to
incorporating the deformation mechanisms necessary to model stress, strain and subsequent
fracturing of the original continuum.

(ii) The development of appropriate material models, and particularly fracture criteria.
(iii) The development of remeshing algorithms to convert fractured zones into a discrete-

element representation.
(iv) Detection procedures for monitoring contact between discrete-element regions.
(v) Representation of contact interaction conditions for contacting elements.
By far the most crucial operation which governs the efficiency of any discrete-element

analysis is the multibody contact detection procedure. Algorithms which employ fast,
bounding box search techniques, drastically reduce the number of local, geometrically based
calculations required to define contact tractions between interacting bodies. In particular, the
alternating digital tree (ADT) algorithm solves this problem with a computational expense
proportional toO = N log2(N), whereN represents a number of contact interactions.
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Figure 40. Impact of an elasto-plastic projectile on a ceramic block. (a) Geometry and loading
conditions. Evolution of deformed mesh at various time instants: (b) t = 0.013 ms, (c)
t = 0.026 ms, (d) t = 0.050 ms.

The power of the method, and its potential applicability to the modelling of a wide
range of practical problems is illustrated by the following examples.

Example 11.1 (Impact of an elasto-plastic projectile on a ceramic block).Geometry and
loading for this problem are depicted in figure 40(a). The projectile is assumed to be
made of an elasto-plastic copper material with Young’s modulusE = 117 GPa, Poisson’s
ratio ν = 0.35 and yield stressσY = 400 MPa with linear isotropic hardening modulus
H = 100 MPa. The target is made of an elasto-plastic brittle material with Young’s
modulusE = 211.69 GPa, Poisson’s ratioν = 0.286, yield stressσ = 958 MPa and
fracture energyDf = 100 J m−2.

A Coulomb law with coefficient of frictionµ = 0.9 defines frictional contact between
the projectile and target and the initial velocity of the projectile isv0 = 1800 m s−1. In
analysis an error indicator based onL2 stress norm is used. Analysis is performed by a
transient dynamic explicit time integration approach in view of the high loading rates.

Continuous change in geometry of the projectile near the contact area necessitates
frequent adaptive remeshings during the process. In addition, mesh adaption is required to
provide for accurate description of multiple fracturing of the block. It should be emphasized
that the present discrete-element model allows for crack propagation both along element
boundaries, and through the finite elements. The deformation of the projectile, the adapted
finite-element meshes and fracturing process of the block are depicted in figure 40(b)–(d).

Example 11.2 (Shot peening simulation).Shot peening operations, in which the surfaces of
components are systematically impacted with steel or ceramic shot are extensively employed
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Figure 41. Shot peening simulation: evolution of the horizontal stress component (in N m−2)
at two stages of the process.

in the aerospace, automotive, off-shore and other industries, with three specific objectives:
(i) the most common aim is to induce an initial state of compressive stress in the vicinity
of the surface to inhibit fatigue crack growth under operational loading, (ii) to shape
form components to produce a desired curvature and shape or to correct the shape of
components, (iii) to relieve tensile stresses that contribute to stress-corrosion cracking. All
these operations rely on plastically deforming the surface locally either to produce an initial
compressive pre-stress or a local curvature condition.

Figure 41 illustrates the impacting of a sheet by some 150 shot. The problem is
treated as a 2D dynamic transient analysis and the uniform compressive horizontal stress
distribution produced in the vicinity of the surface is shown, which is in close agreement
with experimental measurements in terms of both intensity and depth.

12. Advanced equation solution strategies for solid mechanics

The finite-element simulation of industrial-scale problems within an implicit scheme gives
rise to large algebraic equation systems of the form

Ax = b (12.1)

whereA is ann × n non-singular matrix,b is the known vector, andx is the solution to
be found.

In solution of the algebraic system (12.1), iterative methods offer compelling promise
over direct methods with regard to the following aspects:

(i) much easier to exploit system sparsity and thus the computer memory required may
be substantially reduced, especially for large problems;

(ii) relatively simple in implementation;
(iii) accuracy may be more controllable and thus computing time may be saved in cases

where only a lower level accuracy is required;
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(iv) they may lead to a more synergistic incorporation in the solution of evolving
nonlinear problems;

(v) these methods may prove more conducive to effective implementation in emerging
computer systems with vector and parallel processing facilities.

Symmetric positive definite problems could arise if problems without friction are
simulated. Otherwise, a set of non-symmetric algebraic equations can be expected if a
process is analysed where frictional contact is essential, as is the case for most metal
forming processes. In the former case, it seems quite clear that theconjugate gradient
(CG) methodis the most efficient iterative solver to date. In the past decade, a number of
Krylov-type methodshave been proposed that are applicable to non-symmetric cases, which
include:

(i) CGS, conjugate gradient squared method(Sonnenveld 1989)
(ii) Bi-CGStab,bi-conjugate gradient stabilized method(van der Vorst 1992)
(iii) GMRES, generalized minimum residual method(Saad 1986).
These methods require only three operations in the implementation: saxpy operations,

inner products, and matrix–vector multiplications. As a result they can be efficiently
implemented on scalar, vector and parallel computers.

12.1. CGS and Bi-CGStab methods

The CGS approach is an accelerated version of thebi-conjugate gradient method, which
is an extension of CG to non-symmetric cases. CGS sometimes suffers from severe
numerical instability, even though it often exhibits good convergence. Bi-CGStab is the
stabilized version of CGS, whose superior performance can be demonstrated by numerical
experiments. The Bi-CGStab algorithm involves two matrix–vector multiplications and two
pre-conditioning operations at each iteration, and requires seven working vectors. For more
details concerning the algorithm we refer to van der Vorst (1992).

12.2. Galerkin multigrid method

The essential multigrid principle is based on the observation that the smooth (or long-
wavelength) part of the error, which may not be efficiently swept out by iterative methods
such as CG and Bi-CGStab, can be substantially reduced by a coarse mesh correction. The
success of multigrid strategies lies primarily in (i) their excellent convergence characteristics,
which theoretically should not depend on the size of the finite-element mesh; (ii) their high
efficiency whereby solutions of problems withneq unknowns are obtained withO(neq) in
terms of work and storage for large classes of problems. Several different schemes of
multigrid techniques have been put forward in the last decade (Hackbusch 1985). In this
section we focus on one particular scheme termed the Galerkin multigrid (GMG) method
proposed by Fenget al (1997).

To illustrate the basic idea of the GMG scheme we consider its two-grid form. Suppose
thatGc andG are, respectively, coarse and fine grids which discretize the same geometrical
domainB, and that the fine grid is supposed to represent the current problem considered.
We use subscriptc to distinguish the quantities of the coarse grid from those of the fine grid.
LetAc be the coarse-grid matrix, andP andQ be, respectively, the matrix representations
of the interpolation and projection operators. In the GMG method, the coarse-grid matrix
Ac is constructed by direct projection of the fine-mesh matrix as

Ac = QAP . (12.2)
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Here projection operatorQ is taken asQ = P T , and therefore

Ac = P TAP . (12.3)

Efficient computation ofAc is crucial to achieve on overall high performance of the complete
GMG method. Such an implementation can be found in Fenget al (1997). LetS(x, µ)
denote the smoother withx as the initial guess andµ the maximum number of iterations, and
µ1 andµ2 be the maximum iterations of the pre- and post-smoothing procedures performed
respectively before and after the coarse-grid correction which is accomplished by a profile
solver.

Obviously, the efficiency of GMG is dependent on the quality of the coarse grid and
the appropriate selection of interpolation and projection operators. OnceAc,P andQ
are determined, the performance of GMG will entirely depend on the smootherS and
the numbers of iterationsµ1, µ2. The practical selection of smoothers can range from
very simple Jacobi (or diagonal scaling), Gauss–Seidel, successive over-relaxation (SOR),
symmetric SOR (SSOR) to incomplete decomposition, and even to any iterative algorithm.
In our case, pre-conditioned Bi-CGStab is chosen as the smoother.

In order to enhance the performance of GMG, the outer loop of the multigrid iterations
is further accelerated by GMRES and it is equivalent to nonlinear GMRES with multigrid
as its pre-conditioning scheme. For more details regarding this enhancement, we refer to
Fenget al (1998).

As the Galerkin strategy has been fully adopted for the generation of coarse-mesh
equations and no material and loading information for coarse meshes is utilized, the
GMG approach is relatively easy to incorporate into existing solution procedures, and is
particularly suitable for implementation in material nonlinear cases, including frictional
contact. For geometrically nonlinear cases, the approach uses a constant transfer operator
throughout the whole solution process without significantly influencing the convergence
property. Another important feature of the GMG method is that coarse and fine meshes
can be non-nested and unstructured which not only allows for easy treatment of complex
geometry problems, but also provides a possibility of easy combination with adaptive mesh
refinement techniques.

Example 12.1 (Stretching of a circular thin sheet by a hemispherical punch).The geometry
for this example is as follows: blank thickness ist = 1 mm, blank radius isR = 59.18 mm,
while the punch and die radii areRp = 50.8 mm andRd = 6.83 mm respectively. It is
assumed that the blank material is described by a large-strain elasto-plastic constitutive
model with Young’s modulus given byE = 2.1× 105 N mm−2, Poisson’s ratioν = 0.3
and isotropic hardening, which relates the equivalent stressσ̄ and the equivalent plastic
logarithmic strainε̄p as σ̄ = 589× (10−4 + ε̄p)0.216 N mm−2. The analysis is performed
employing a membrane formulation for a quarter of the problem with appropriate boundary
conditions. From a numerical point of view this problem is considered as a full 3D analysis
with appropriate algorithmic treatment of the frictional contact problem. Results are obtained
for a coefficient of friction between tools and blank ofµ = 0.30.

To solve this problem the blank is discretized with 17 666 constant-strain triangular
finite elements resulting in 26 298 active d.o.f. The surfaces of the punch and die are
respectively represented by 2145 and 612 triangular flat elements. Spatial discretization of
the problem is depicted in figure 42(a), and figure 42(b) shows the deformed mesh at a
punch displacement ofDp = 30 mm.

Within the multigrid strategy the above mesh represents the fine mesh, while the coarse
mesh contains 841 constant-strain triangular finite elements with 1230 active d.o.f. It should
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Figure 42. Stretching of a circular thin sheet by a hemispherical punch. (a) Spatial finite-
element discretization of blank, punch and die surfaces. (b) Deformed finite-element mesh.

be emphasized that the fine and coarse meshes are fully unstructured meshes and have been
obtained independently from each other.

A full Newton–Raphson method, with an unsymmetric tangent stiffness arising from
the non-associated frictional contact law, is employed in all computations. Convergence of
the finite-element solution is established on the basis of the standard Euclidean norm of the
out-of-balance forces.

Three solution algorithms are employed in the solution of the algebraic system of
equations: profile (direct) solver, Bi-CGStab iterative solution and multigrid algorithm.
A comparison of performances of these algorithms, in terms of CPU time (seconds) and
memory requirements (Mbytes), is presented in figure 43(a). It is clear that both the Bi-
CGStab and multigrid solution provide a significant improvement over the standard direct
solver. Memory requirements and CPU time have both been reduced by approximately 7–8
times in comparison with the direct solution. It should be emphasized that, in comparison
with the Bi-CGStab solution, the multigrid strategy requires some small additional storage,
but shows almost twofold reduction in the CPU time. In addition, the multigrid solution is
expected to have a more stable behaviour in the solution of complex 3D problems that may
arise in simulation of industrial processes.

The Bi-CGStab solution has also been implemented in parallel on a Silicon Graphics
Power Challenge with eight R4400 processors. The results, in terms of speed-up and
efficiency, are given in figure 43(b), for two, four, six and eight processors. Although very
successful (94% efficiency) for two processors, the performance of the parallel version of
the iterative solution slowly degrades with increase in the number of processors, and has
an efficiency of 64% for eight processors. However, for larger problems, better efficiencies
are to be expected.

13. Concluding remarks

Some recent advances in the finite-element analysis of nonlinear solid mechanics problems
have been reviewed, indicating the progress that has been made both in the theoretical
understanding of inelastic material behaviour under finite strains and the associated
numerical implementation. Whilst the state of knowledge in some areas is relatively
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Figure 43. Stretching of a circular thin sheet by a hemispherical punch. (a) A comparison of
performances, in terms of CPU time (seconds) and memory requirements (Mbytes), for three
equation solution algorithms: profile (direct) solver, Bi-CGStab iterative solution and multigrid
algorithm. (b) Performances, in terms of speed-up and efficiency, of a parallel version of the
Bi-CGStab iterative solution on a shared memory parallel computer with two, four, six and eight
processors.

mature, considerable further understanding and development is required in others. For
example, issues related to the modelling of complex contact-friction phenomena are far
from settled and a more comprehensive treatment of friction may necessitate the integration
of micromechanical studies with computational approaches.

Although adaptive strategies are, at present, routinely performed for linear elliptic
problems, their extension to nonlinear elliptic problems—in particular to forming problems
where, typically, large inelastic deformations at finite strains are standard working
conditions—is by no means trivial.

Apart from the issues briefly mentioned in section 9, several important aspects of
adaptive strategies related to nonlinear industrial applications need further attention.

(i) Inclusion of various types of error estimators and their comparative analysis. In this
respect,a posteriori error estimators of the residual type show particular promise.

(ii) The history dependent nature of elasto-plastic problems necessitates transfer of all
relevant variables from the old mesh to the new one, as the successive mesh adaption is
implemented during the process simulation. A careful further consideration must be given
to: consistency with the constitutive equations and consequences for global equilibrium,
compatibility of the state transfer with the displacement field on the new mesh.

The adequacy of explicit dynamic transient solutions for essentially quasistatic
simulations is still a subject of debate. The primary justification of using such techniques is
the much reduced computational effort involved, for large-scale industrial problems at least.
However, the quality of the solutions obtained is invariably inferior to the corresponding
implicit quasistatic solution, which is brought about by inertia effects and by the scaling of
process and material parameters necessary to provide acceptable CPU times.

In future the competitiveness of implicit quasistatic solution methods may be improved
by developments in iterative methods and sparse matrix techniques for equation solving
which, when accompanied by increased computer memory availability, may make the
solution of large-scale industrial problems by such approaches a realistic proposition.
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Implementation of the procedures discussed in preceding sections will increasingly
rely on parallel processing concepts in order to provide solutions to industrial problems
within acceptable computing timescales. The use of parallel processing techniques and
associated hardware for the solution of finite-element problems is currently an active research
topic (Papadrakakis 1997). Parallel processing offers a natural approach to improving
computational power and the next generation of workstations will increasingly employ
multiprocessor architectures to achieve significantly advanced performance.

This review has concentrated on the field of solid mechanics, which, in the narrow
sense, excludes problems of coupling of the traditional fields of solid and fluid mechanics,
together with possible thermal field and phase changes, commonly known asmultiphysics
problems. At present the formulation and numerical solutions of multiphysics problems are
being pursued for a large number of applications, ranging from defence to medicine.

The approach taken here to describe the solution of industrial problems at a macroscopic
scale is rooted in the traditional view of solid mechanics based on the phenomenological
approach. However, the last decade or so has witnessed establishment of the field
of computational micromechanics (Ortiz (1996) provides a recent review of the field)
whereby direct computational simulation at the microscale has been employed in generating
information that is, directly or indirectly, used at the macroscopic level. This approach
has been encouraged by considerable advances in computational resources, both in terms
of hardware and software developments. Since computational micromechanics inevitably
requires spanning over multiple length scales, the advances in this field and their practical
applications will be closely linked with further advances in computational resources.
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Curnier A 1984Int. J. Solids Struct.20 637–47
Demkowicz L, Devloo Ph and Oden J T 1985Comput. Methods Appl. Mech. Eng.53 67–89
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