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Theory of first-order phase transitions 

Kurt Binder 

Institut fur Physik, Johannes-Gutenberg-Universitat Mainz, Postfach 3980, 0-6500 Mainz, West Germany 

Abstract 

An introductory review of various concepts about first-order phase transitions is given. 
Rules for classification of phase transitions as second or first order are discussed, as 
well as exceptions to these rules. Attention is drawn to the rounding of first-order 
transitions due to finite-size or quenched impurities. Computational methods to calcu- 
late phase diagrams for simple model Hamiltonians are also described. 

Particular emphasis is laid on metastable states near first-order phase transitions, 
on the ‘stability limits’ of such states (e.g. the ‘spinodal curve’ of the gas-liquid 
transition) and on the dynamic mechanisms by which metastable states decay 
(nucleation and growth of droplets of a new phase, etc). 

This review was received in July 1986. 
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1. Introduction 

785 

Phase transitions-such as the condensation of water, the melting of ice, etc-are very 
familiar phenomena; nevertheless, some of their basic physical aspects are still incom- 
pletely understood. From the viewpoint of statistical mechanics, a connection is drawn 
between the macroscopic phases of the system and the microscopic properties (such 
as the forces between the atoms, etc). On a quantitative level, this is still largely 
impossible: even if the effective atomic interactions are known (e.g. van der Waals 
type, similar to Lennard-Jones potentials, in rare gases such as Ar), it is hardly possible 
to predict theoretically under which thermodynamic conditions (temperature T, press- 
ure p ,  etc) phase transitions occur. Analytical methods for predicting phase diagrams 
are mainly useful for lattice problems: for example, order-disorder phase transitions 
in the face-centred cubic (FCC) alloy Cu3Au, where in the ordered phase the Au atoms 
populate mainly one of the four simple cubic sublattices, while in the disordered phase 
the Au atonis are equally distributed over all four sublattices. For off -lattice problems, 
such as the solid-liquid and liquid-gas transitions of Ar, one has to rely entirely on 
numerical computer simulation approaches (‘Monte Carlo’ and ‘molecular dynamics’ 
techniques). 

In this review we shall deal with this problem of phase diagram calculations only 
rather briefly in D 3; instead we shall emphasise qualitative aspects, applying to a large 
class of transitions and not only to a particular material. First we are concerned with 
understanding the ‘order’ of a transition: this basic thermodynamic classification 
considers the thermodynamic potential (e.g. the Helmholtz free energy F )  and its 
derivatives at the transition. If first derivations of F exhibit jump singularities there, 
the transition is called ‘first order’; if first derivatives are continuous but second 
derivatives are singular (at least one of them then is divergent), we have a ‘second-order’ 
transition, i.e. a critical point in the phase diagram. Critical points are much more 
special than first-order transitions: for example, at the gas-liquid transition of a 
one-component system the Gibbs free energies Ggas( T, p )  and Gllquid( T, p) of the two 
phases must be equal, which means that in the temperature-pressure plane the gas- 
liquid transition shows up as a transition line Tcond(p). The additional condition that 
the compressibility diverges is satisfied only in a single point, the critical point Tc= 
Tcond(pc) where the gas-liquid transition line terminates. In more complicated systems 
(e.g. mixtures of two fluids), the space of thermodynamic variables is larger: the 
first-order transitions occur at surfaces of a three-dimensional parameter space and 
critical phenomena occur along lines where such surfaces terminate. One then also 
may find multicritical phenomena, at ‘multicritical points’ where several distinct critical 
lines meet. 

Although critical and multicritical phenomena are more special than first-order 
transitions, they are theoretically much better understood. This is because critical 
phenomena arise due to a diverging correlation length of the fluctuations of the ‘order 
parameter’, a thermodynamic variable distinguishing the phases. Close to the critical 
point, this length is very large, and only the structure of the configurations of the 
system on this large length scale is important, while the behaviour on the much smaller 
scale given by the range of direct interactions becomes irrelevant. As is well known, 
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this fact is responsible for the scaling behaviour of thermodynamic functions near a 
critical point; it also forms the basis for the renormalisation group approach. At a 
first-order transition, however, there is no diverging correlation length, and in general 
one cannot restrict attention to long-wavelength phenomena; thus no such universality 
as in critical phenomena is to be expected. 

Nevertheless, the renormalisation group theory has also contributed to a better 
understanding of first-order transitions, namely the prediction of whether a particular 
transition should be first order or second order. While in the above example of a 
simple liquid-gas transition this is not a problem, this is not so for order-disorder 
transitions in metallic alloys: for example, the body-centred cubic ( BCC) @-brass (CuZn) 
has a second-order transition, while the FCC CuAu has a first-order transition. Similar 
problems occur in order-disorder transitions of monolayers adsorbed on surfaces, in 
structural phase transitions of various crystals, etc. This problem will be mentioned 
in § 2, together with other problems which are closely related to the theory of critical 
phenomena: for example, there is a finite-size scaling behaviour for first-order transi- 
tions similar to finite-size scaling at second-order transitions. As we shall see in 9 2 ,  
first-order transitions show up in the framework of renormalisation group theory via 
‘discontinuity fixed points’. Therefore the renormalisation group helps us to understand 
them although there is no diverging length. 

A problem familiar already from the gas-liquid condensation is the phenomenon 
of metastability: one may undercool the transition and obtain metastable supersaturated 
gas. This leads us in § 4 to several challenging problems of statistical mechanics. How 
does one define a metastable state thermodynamically? Is there a significance to the 
concept of a ‘limit of metastability’? Is there a precursor effect due to droplets of the 
other phase heralding a first-order transition? The droplet model in fact is a reasonable 
starting point also for a description of the dynamics of first-order transitions ( §  5), 
namely the theory of nucleation, droplet growth and coarsening, etc. 

2. Phenomenological concepts 

In this section we present first an elementary thermodynamic discussion of phase 
transitions on the basis of Landau’s theory (Landau and Lifshitz 1958, Aizu 1970, 
Khachaturyan 1973, Michell980, Toledano 1981, Schick 1981). This serves to introduce 
the concept of an order parameter; the expansion of the free energy in powers of the 
order parameter, together with symmetry arguments, gives a first criterion on the order 
of the transition ( 5  2.1). In 9 2.2 we discuss instances where renormalisation group 
treatments lead to different conclusions. Note that we aim neither at a complete 
exposition of the Landau classification of various transitions nor at an exhaustive 
review of the renormalisation group results-either of these topics would fill a review 
of its own. We wish rather to describe the spirit of the approach and to give the flavour 
of the type of results that one can obtain. In addition, Landau theory is a convenient 
starting point also for a discussion of finite-size effects at first-order phase transitions 
( 5  2.3) and of effects due to quenched impurities ( 9  2.4). 

2.1. Order parameters and the Landau symmetry classi5cation 

Table 1 lists some condensed matter systems which can exist in several phases, and 
identifies an extensive variable (denoted symbolically by 4 )  which distinguishes them- 
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Table 1. Order parameters for phase transitions in various systems. 

System Transition Order parameter 

Liquid-gas Condensation/evaporation Density difference Ap = pllquld - pgas 
Binary liquid mixture Unmixing 

Quantum liquid Normal fluidosuperfluid ($), $ = wavefunction 
Liquid-solid Melting/crystallisation pc, G = reciprocal lattice vector 

Composition difference Ac = cLzLx - c:6ax 
Nematic liquid Orientational ordering t ( 3  cos2 0 - 1 )  

Magnetic solid Ferromagnetic (T,) Spontaneous magnetisation M 
Antiferromagnetic ( TN) Sublattice magnetisation M, 

Solid binary mixture Unmixing AC = ciZLx - c!& 
AB Sublattice ordering $ = (Ac” - A c ’ ) / ~  
Dielectric solid Ferroelectric (T,) Polarisation P 

Antiferroelectric ( T,) 
Molecular crystal Orientational ordering Y,,(O, $1 

Sublattice polarisation P, 

the ‘order parameter’. It is identically zero in the disordered phase and non-zero in 
the ordered one. We then use the thermodynamic potential F which has the ‘field’ H 
conjugate to the order parameter 4 as a ‘natural variable’ (in addition to temperature 
T )  : 

4 = - ( d F / d  H )  T (2.1) 

The other derivative of F is the entropy S=-(dF/dT), .  Studying the change of 4 
when an independent variable is varied (e.g. T ) ,  4 may disappear at the transition 
continuously ( 4  CC (1 - T /  T,)p, ‘second-order transition’, figure 1 ( a ) )  or discon- 
tinuously (‘first-order transition’, figure 1( b ) ) .  At a second-order transition, the ‘sus- 
ceptibility’ xT and the specific heat CH typically have power law singularities: 

(e.g. ferroelectric: polarisation P = -(dF/dE),) .  

Here a, p, y, . . . are the well known ‘critical exponents’ (e.g. Stanley 1971). At the 
first-order transition, typically a jump discontinuity AS of entropy occurs, and hence 
a latent heat A Q  = T,AS; second derivatives of F often are finite at T, and rather seem 
to diverge at the ‘stability limits’ To and TI of the disordered and ordered phases 
respectively. 

It is now natural to classify the transitions according to whether 4 is a scalar 
quantity or has vector or tensor character: for fluids or mixtures the density or 
concentration differences are obviously scalar; for the A transition of 4He the complex 
wavefunction has two components (real and imaginary part) and hence + is a vector, 
as in magnetic or dielectric systems; for orientational order, both in liquid crystals and 
in molecular crystals, 4 is a tensor of second rank. 

First we formulate Landau theory for a scalar order parameter density @(x).  The 
free energy functional 9 { 4 ( x ) }  is then expanded as (dx is a d-dimensional volume 
element) 
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Figure 1. Order parameter q5 and associated order parameter susceptibilities above (x+) 
and below the transition (x - )  plotted schematically against temperature ( a )  at a second- 
order transition and ( b )  at a first-order transition. 

Here 4 ( x )  is assumed small (no terms 46, etc), slowly varying in space (no terms 
(V2q5(x)I2, etc), and the coefficients U 0 and R > 0; in addition, for H = 0 a symmetry 
against the change of sign of 4 is required (no term 43(x) ) ,  

Now 9 is minimal for the homogeneous case, VC$J(X) = 0, and implying further that 
r = rr (  T - T,) with another coefficient r r  > 0, we find for PI = 0 ( V  being the volume 
of the system) 

Thus (2.3) yields a second-order transition when T is varied (figure l (a ) ) .  For T < T, 
a first-order transition occurs as a function of H, however, since 4 jumps from ( - - r / u ) ’ l 2  
to - ( - r /u)1’2  as H changes sign. Thus we also consider the response to fields: we 
introduce a wavevector-dependent field AH(x) = Hk exp(ik x)  and consider the 
response A4(x),  putting 4 ( x )  = 4-t A+(x) and linearising the functional derivative 

S(9’kBT) = r (  6 + A ~ ( x ) )  + ~ ( 6 ~  + 3&*A4(x)) -- AH, exp(ik. x)  -- 1 R2V2(A4(x)) = 0. 
W ( X )  k, T d 
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With A ~ ( x )  = A4k exp(ik x) the solution of ( 2 . 5 )  is 
- 1  1 XT 

d ) 1 + k 2 t 2  
r + 3 ~ $ ~ + - - R ’ k ’  =- 

where the susceptibility xT and the correlation length 5 of the order parameter 
fluctuations are 

Now there are several ways a first-order transition driven by temperature can arise 
in this Landau theory with a scalar order parameter. 

(i) If U < O  in ( 2 . 3 ) ,  one must not stop the expansion at fourth order but rather 
must include a term (x), with v>O.  While in the second-order case 9(4) has 
two minima for T <  T ,  which merge at T ,  (figure 2 ( a ) ) ,  9(4) now has three minima 
for To< T < TI (figure l (b ) )  and T, is reached when these minima are equally deep 
(figure 2 ( b ) ) .  One finds from r = r’( T -  T o )  that 

and the order parameter jumps at T, from &= * ( 3 u / 4 ~ ) ” ~  discontinuously to zero. 
Note that when external parameters p (other than T, H )  are varied, it may happen 
that U changes sign at a value p , ,  and hence a line T , ( p )  of second-order transitions 
ends there, at a so-called tricritical point T, = T,(p , ) ,  and continues as a line of first-order 
transitions. 

T,= T o + 3 u 2 / 3 2 r ’ v  TI = To+ u 2 / 8 r ’ v  ( 2 . 8 )  

4 0  Q O  

la1 
-90 QO 

Ib l  

Figure 2. Variation of the Landau free energy at transitions of ( a )  second order and ( b )  
first order as a function of the (scalar) order parameter I$, assuming a symmetry around 
r$ = o .  

(ii) If there is no symmetry of 9 between 9 and -4, a term 4 ~ 4 ~  will exist in ( 2 . 3 ) .  
For u > 0, 9(4) may have two minima (figure 3 ( a ) ) ;  again the transition occurs when 
they are equally deep. For r = r’( T -  To) this happens for T, given by 

( 2 . 9 )  
and the order parameter jumps at T, from Cb0= -9r /  w to zero. Again To and TI  have 
the significance shown in figure l(6)-stability limits of the disordered and ordered 
phases respectively. 

The simplest first-order transition occurs when we consider for ( 2 . 3 )  the variation 
of 4 with the field H at T <  T, (figure 3 ( b ) ) .  From ( 2 . 7 )  one finds the stability limit 

T, = To + 8 w ’1 8 1 ur ’ TI = To+ w2/4ur‘  
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w91-J (01 
+ 
4 

T = T ,  8- Unstable 

Metastable 
branches, 

( 0 1  l b l  

Figure 3. ( a )  Variation of the free energy with q5 in the presence of a cubic term. ( b )  
First-order transition due to variation of the field H at a temperature less than the critical 
temperature of a second-order transition (i H, are the corresponding limits of metastability). 

(spinodal) 4s as 

cps = = t ( - r / 3 ~ ) ” ~ =  4,/J3 H ,  = = t ( - 2 r / 3 ) 3 / 2 / J ~ .  (2.10) 

At this point, an important caveat must be added: free energy functions as drawn 
in figures 2 and 3( a )  are so commonly used that many researchers believe these concepts 
to be essentially exact. However, general thermodynamic principles tell us that in 
thermal equilibrium the thermodynamic potentials are convex functions of their vari- 
ables. As a matter of fact, 9(4) should then be convex as a function of 4, which 
excludes multiple minima! For figure 2 this means that for states with -do < 4 < 4,, 
the thermal equilibrum state is not a pure phase: the minimum free energy state is given 
by the double-tangent construction to 9( 4 )  and this corresponds to a mixed-phase state. 
Now it is standard folklore, dating back to van der Waals, to interpret the part of 9( 4 )  
in figures 2 and 3 ( a )  lying above this doub1e:tangent free energy as ‘non-equilibrium 
free energies’: states with xT > 0, i.e. (a2F/a42)T > 0, are interpreted as metastable 
states (chain curves in figure 3 ( b ) ,  while states with xT < 0 (broken curves in figure 
3 ( b ) )  are interpreted as unstable states. As we shall see in § 4, this notion is intrinsically 
a concept valid only in mean-field theory, but lacks any fundamental justification in 
statistical mechanics. Pictures such as figures 2 and 3 ( a )  make sense for a sort of local 
‘coarse-grained free energy functional’ only, but not for the global free energy. 

We now return to the Landau expansion and consider the case where the order 
parameter has vector character: how do we find the appropriate structure of the 
expansion of F in terms of +? The answer to this question is, of course, that F must 
be invariant against all symmetry operations of the symmetry group Go describing the 
disordered phase. In the ordered phase, some symmetry elements of Go fall away 
(spontaneously broken symmetry); the remaining elements form a subgroup G of Go. 
Now the invariance of F must hold for terms q5k of any order k separately. As an 
example we consider a cubic crystal exhibiting a transition from a paraelectric phase 
to a ferroelectric one, where a spontaneous polarisation P appears. Then F is given 
by ( P = ( P l ,  . . . ,  Pn), n = 3 )  

9 / k B T =  F o / k B T +  P:+ V P:P-) + ( R / 2 d )  i (VP,)‘]. 
1<,=1 r = l  

(2.11) 
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While the quadratic term of a general dielectric medium would involve the inverse of 
the dielectric tensor X ~ l ( ~ ; l ) , l P l < ,  this term is completely isotropic for cubic crystals. 
Inversion symmetry requires invariance against P + - P  and hence no third-order term 
occurs. The fourth-order term now contains the two ‘cubic invariants’ Z,P:‘and (E, Pf)*. 
One here invokes the principle that all terms allowed by symmetry will actually occur. 
Now (2.11) leads, in the framework of Landau theory, to a second-order transition if 
both 

while otherwise one has a first-order transition (then terms of sixth order are needed 
in (2.11) to ensure stability). 

Another approach to construct the Landau expansion, which is useful if one 
considers a particular model Hamiltonian X ,  is the formulation of the molecular field 
approximation ( MFA) where one then expands the molecular field free energy directly. 
For example, consider the model introduced by Potts (1952), where each site of a 
given lattice may be in one of Q equivalent states and an energy J is won only if two 
neighbouring sites are in the same state: 

(2.13) 

The symbol ( i j )  denotes a summation over all pairs of lattice sites. In the MFA, the 
free energy is found by adding the entropy of mixing to the enthalpy term ( n ,  is the 
fraction of sites in state a): 

u > o  and u + v > o  (2.12) 

%,tt, = - c J6,. 
(U) 

ZJ Q Q 
-- - -- n’,+ n, Inn,. 
VkBT 2kBT , = I  a = l  

9 
(2.14) 

Here z is the coordination number of the lattice and X:=, n, = 1. In the disordered 
phase, n, = 1/Q, so we expand 9 in terms of the Q variables qbi = ni - 1/ Q, i = 1, .  . . , 
Q - 1 (Kihara et al 1954, Straley and Fisher 1973). Assuming qbl = ( Q  - l ) m / Q  and 
qbi,l = m / Q ,  where m is an order parameter with 0 s  m s 1, we find 

Thus for Q > 2  the Landau expansion of the Potts model contains a third-order 
invariant, as expected, since there is no symmetry against $I + -qbi.  So Landau theory 
would imply a first-order transition for Q > 2 and a second-order transition for Q = 2 
(where (2.13) reduces to the Ising model). 

As a third example, consider rare gas monolayers adsorbed on graphite: at low 
temperatures and pressures the adatoms form a ‘J3 structure’ commensurate with the 
graphite lattice. This J 3  structure can be viewed as a triangular lattice decomposed 
into three sublattices, such that the adatoms occupy one sublattice preferentially. As 
an order parameter, one takes mass density waves (Bak et al 1979, Schick 1981) 

(2.16) 

Here the q, are the three primitive vectors associated with the reciprocal lattice o f the  
rare gas monolayer ( a  being the lattice spacing of the triangular lattice) 

2’ 2d3 
(2.17) 

and $, and $-, are (complex) order parameter amplitudes. In constructing the free 
energy expansion with the help of (2.16), one must note that the periodicity of the 
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underlying graphite lattice allows invariant ‘umklapp’ terms (the phase factors of 
third-order terms add up to a reciprocal lattice vector of the graphite lattice). Keeping 
only those terms in the Landau expansion which are non-zero in the J 3  structure, one 
obtains with the real order parameter components 

3 3 

4 2 =  ( $ o - $ - o ) / 2 i J 3  
0 = l  

41 = c ($0 + $-,)/2J3 
0 = l  

(2.18) 
9 --L - 2 1 ( 4 : + 4 : ) + f W ( ~ : - 3 ~ , 4 : ) + a u ( 4 : +  432 V k B  T 

which is identical to the three-state Potts model (Alexander 1975). A three-dimensional 
analogue of this order (where the planes exhibiting J 3  structure are stacked together 
to form a hexagonal lattice) occurs in the intercalation compound C6Li (Guerard and 
Herold 1975, Bak and Domany 1979). 

Finally we state the general symmetry conditions for which Landau theory allows 
second-order transitions (Lifshitz 1942) in group theoretical language. 

(i)  The order parameter 4 transforms as a basis of a single irreducible representation 
X of Go. 

(ii) The symmetric part of the representation X 3  should not contain the unit 
representation. 

(iii) If the antisymmetric part of X 2  has a representation in common with the 
vector representation, the wavevector q associated with X is not determined by 
symmetry. In this case one expects q to vary continuously in the ordered phase. 

If these conditions are met, a transition can nevertheless be first order, because a 
fourth-order term may be negative. If they are not met, the transition must be first 
order according to the Landau rules. However, in d = 2 dimensions the Potts models 
with Q = 3 and 4 are well known counter-examples to these rules (violating rule (ii), 
see (2.15) and (2.18)), as shown exactly by Baxter (1973). One now expects that in a 
generalised Potts model with continuous Q there would be a line Q c ( d )  such that the 
transition is second order for Q < Q , ( d )  and first order for Q > Q , ( d ) .  Landau theory 
is correct only for d exceeding the upper critical dimension d ,  ( d ,  = 6 for the Potts 
model; see, e.g., Wu (1982)). So Q, ( d  2 6) = 2, but Qc ( d )  exceeds 2 for d < 6 and 
reaches Q, ( d  = 2 )  = 4. It is believed, however, that Qc ( d  = 3) < 3, so in d = 3 for 
integer Q the Landau rule would not be violated (Blote and Swendsen 1979). However, 
an experimental example where there is a third-order invariant (Bak and Mukamel 
1979) but the transition seems nevertheless to be second order is the transition to a 
charge density wave state in 2H-TaSe2 (Moncton et a1 1977). It is of course possible 
that the transition is very weakly first order so that experimentally it could not be 
distinguished from second order. Other systems where the Landau rules are apparently 
violated are discussed by Toledano and Pascoli (1980) and Toledano (1981). 

Before we discuss the effect of fluctuations beyond Landau theory ( 5  2.2), we 
mention briefly transitions where no group-subgroup relation between the two groups 
GI and G, exist: they must be first order. Examples for this case are well known for 
structural phase transitions: for example, the tetragonal-orthorhombic transition of 
BaTi03 or the ‘reconstructive’ transition from calcite to aragonite (Guymont 1981). 
For the so-called ‘non-disruptive transitions’ (Guymont 1981), where the new structure 
can be described (i.e. its symmetry elements, Wyckoff positions of atoms, etc, can be 
located) in the frame of reference of the old structure, Landau-type symmetry arguments 
still yield information on the domain structures arising in such phase transitions 
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(Guymont 1978, 1981). The tetragonal-orthorhombic transition of BaTiO, is con- 
sidered as an example of such a non-disruptive transition, while reconstructive transi- 
tions and martensitic transitions (e.g. the FCC-BCC transition in Fe) are disruptive. 

It is sometimes useful to incorporate such a situation into Landau theory by 
considering the more general situation involving a third structure Go, of which both 
G, and G2 are subgroups. As an example, we mention the weakly anisotropic Heisen- 
berg antiferromagnet in a magnetic field Hi1 : 

(2.19) 
I 

where we assume J < 0 (antiferromagnetism) and for A > 0 the easy axis is the z axis. 
For small HI, we have a uniaxial antiferromagnetic structure and the order parameter 
is the z component of the staggered magnetisation M:. For stronger fields HI/, however, 
we have a transition to a spin flop structure (two-component order parameter, due to 
the perpendicular components M :  and M :  of the staggered magnetisation). Clearly 
there is no group-subgroup relation in this transition. However, one may formulate 
a Landau theory by including also the magnetically disordered phase (Go)  and using 
all three components of M, as order parameters. In terms of M,’ and M :  ((M,’)’ = 
(Mg)’+ (AT:)’)  one finds 

9 Fo 
k E T  k E T  

dx{frll( M,”)’+;r,(  M:)’+~uii( M,’)4+$u,( Mg’)4+$v(  Mf)*( M,1)2 

+ . . . +gradient terms}. (2.20) 

In this example, to which we shall return in 0 3.3 below, there are second-order 
transitions to the disordered phase at TL (HI,) (where M,’ vanishes) and at T& (HI , )  
(where M :  vanishes). Both lines TI? (Hll) and T i  (Hll) as well as the first-order line 
between the two antiferromagnetic structures join in a bicritical point. 

Finally we draw attention to phase transitions between commensurate and incom- 
mensurate superstructures (e.g. Ishibashi 1978, 1981, Aslanyan and Levanyuk 1977, 
1978, Hornreich 1979, Guilluy and Toledano 1981) discussed in the framework of 
Landau theory, a topic which is outside of consideration here. 

2.2. Second- against jirst-order transitions in renormalisation group theory 

It has been emphasised above that double-well or multiple-well free energies as drawn 
in figure 2 and 3 ( a )  respectively are not permissible as bulk free energies of a 
macroscopic system. However, expressions such as (2.3), (2.11), (2.20), etc, do make 
sense as the result of coarse graining. Let us assume that we start from a microscopic 
Hamiltonian such as (2.13) or (2.19) and we wish to eliminate short-wavelength 
fluctuations (which are not important if the transition is second order or very weakly 
first order). We can do this by dividing the system into cells of linear dimensions L 
and introducing an order parameter field +(x) as (SI being the n-component spin at 
lattice site i, in (2.19), for instance) 

(2.21) 

such that x is the centre of gravity of the cell Ld ( d  is the dimensionality). We then 
define a coarse-grained Hamiltonian %&{+(x)} by 

(2.22) 

1 
+b)=- c SI Ld iEL‘‘  

exP(-x~g{+(x)}/k~T) = gl p({+(X)},  {SI}) exp(-x{Sl}/kBT) 
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where the projection operator P ( { + ( x ) } ,  { S , } )  means that we perform a restricted trace 
only, keeping a particular configuration {+(x)} (which is then related to the spin 
configuration {S i }  via (2.21)) fixed. Although the procedure (2.22) can hardly ever be 
carried out in practice, the common belief is that the coarse-grained Hamiltonian XC, 
{+(x)} will have the Landau form if one is close to a second-order transition and 
L<c 6. If L = 6 or L> 6, Xcg(+)  no longer needs to have an analytic expansion in +; 
at least the expansion coefficients must then have a singular temperature dependence 
(Kawasaki et a1 1981). For Ising models, an approximate construction of Xcg(+) ,  in 
the form (2.31, has been attempted via Monte Carlo methods (Kaski et al 1984, Milchev 
et a1 1986). We shall return to this problem in 0 4 and assume for the moment that 
Xcg{+(x)}  = 9, as given by (2.3) for instance. Then the free energy F is obtained as 

F = -kBT In 2 = -k,Tln d{4} exp(-${$(x)}/k,T). (2.23) 

If the distribution exp(-9{4(x)}/kBT) is very sharply peaked at the minimum of 
9 { 4 ( x ) } ,  we may replace the actual distribution by a delta function, instead of dealing 
with the fluctuations around the minimum still included in the functional integral 
(2.23), and then it is simply 9 { 4 ( x ) }  which has to be minimised in order to describe 
thermal equilibrium. Thus the Landau theory of 8 2.1 is simply an approximation to 
(2.23) where statistical fluctuations are neglected. 

Next we describe a simple argument to check whether this neglect of fluctuations 
is legitimate-the ‘Ginzburg criterion’ (Ginzburg 1960, Ma 1976, Patashinshii and 
Pokrovskii 1979). Below T,, fluctuations 64 = +(x) - 4o will make a small contribution 
to (2.23) only as long as they are small in comparison with the order parameter 4o itself 

(2.24) 

Here we have explicitly indicated that the mean-square fluctuation has to be averaged 
over the coarse-graining volume (of linear dimension L )  considered in (2.21). Now 
this fluctuation can be rewritten as 

I 

(( 64 ( X I  I2>T,L << 4;. 

(2.25) 

where the integration is extended over a sphere of volume Ld. Since the correlation 
function in (2.25) is related to the wavevector-dependent susceptibility x( k )  through 
the static limit of the fluctuation-dissipation relation 

k,Tx(k)  = S ( k )  = I dx exp(ik. X ) ( ( 4 ( 0 ) 4 ( X ) ) T  - 43  (2.26) 

we find from (2.25) and (2.6) for x s  6 
(4(0)4(x)) j -  -4i.C R - 2 ~ - ‘ d - 2 ’  (2.27) 

while for x >> 6 the correlation function decays exponentially, proportional to 
exp(-x/[). From (2.25) and (2.27) we obtain ((84(x))2)TLa R-2L2-d. Choosing now 
the maximum permissible value for L, L -  6, (2.24) yields (using (2.7) with 

(2.28) 

This condition is fulfilled if either the interaction range R is very large or the dimension- 
ality d exceeds the upper critical dimension, d ,  = 4. For d < 4 and finite R, however, 
(2.8) always breaks down close to T,, fluctuations becoming important, and the Landau 
mean-field theory becomes very inaccurate. 

= c $ ~ )  
l<< R 2 6 d - 2  4 o a R d ( l  2 - T/Tc)‘4-d) ’2 .  
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A correct description of critical phenomena then is achieved by the renormalisation 
group approach (Wilson and Kogut 1974, Fisher 1974, Ma 1976). Rather then attempt- 
ing to solve the functional integral (2.23) in a single step, one constructs an iteration 
scheme where short-wavelength fluctuations are integrated out step by step. Formally 
the renormalisation group transformation can be written as (we now interpret 9 as a 
Hamiltonian X) 
E{4‘} = R l - W 4 1 1  P { ~ ” } = R [ X ‘ { ~ ’ } ] .  . .  X e ‘ k ) { 4 k } = R k [ X { 4 } ]  (2.29) 

where the operator R reduces the degrees of freedom by a factor bd ( b  > 1 being the 
scale factor) and the spin field 4’ is a rescaled version of 4 (this rescaling is necessary 
since we require (2.29) to keep the partition function 2 invariant). Thus, while initially 
we keep all fluctuations with wavelengths exceeding L, after one renormalisation we 
keep fluctuations with wavelengths exceeding bL, after two steps b2L, etc. If we work 
above T,,  after a sufficient number k of iterations the length b k L  must exceed 6, and 
then the ‘block spin’ 4 ( k )  describing the spin field averaged over a block of size b k L  
will be essentially decoupled from neighbouring blocks. The X(k+co) converges towards 
a trivial limit, the ‘infinite temperature’ fixed-point Hamiltonian, describing a simple 
Gaussian distribution of the spin field. On the other hand, exactly at criticality, repeated 
iterations will lead to X(k+co)  + X*, a non-trivial fixed-point Hamiltonian. We now 
linearise R near X*, and this linearised renormalisation group operator L is represented 
by eigenoperators Qj and eigenvalues Aj  as usual, LQ, = AjQj .  Then near X* the 
renormalisation group relation can be written as (the hj are called ‘scaling fields’) 

X= %*+E hjQj 
(2.30) 

Thus one obtains diagonalised recursion relations 

hj=  Ajh, = bAJhj (2.31) 

where the Aj are independent of the choice of the scale factor b. Since the free energy 
density f {  X} has to be rescaled as f {  E }  = bdf {  %}-remember that 2 and hence F are 
kept invariant and the number of degrees of freedom decreases by a factor bd in a 
renormalisation step-we find from (2.30) and (2.3 1 )  that 

f ( h , ,  h z ,  h 3 , .  . . ) = b - d f ( b A i h l ,  bA2h2, bA3h3,.  . . ). (2.32) 

This relation is basically the asymptotic homogeneity relation implying scaling proper- 
ties of the free energy density. Relating hl to the temperature, hl = k,( 1 - T /  T J ,  h2 
to the ordering field, h2 = k,H, k, and k2 being constants, and choosing bAl ( 1  - T /  T,) = 1 
yields 

f(1- TI Tc, H, h3, * * ‘ 1 
~ ( 1 -  T / T J d ’ ” f  (k1, kZH/(l-  T/Tc)AJAl,h3/(l  - T/Tc)A3’Al , .  . . ). 

(2.33) 

From this A ,  is identified as the ‘thermal eigenvalue’ l / v  and h2 the ‘magnetic 
eigenvalue’ pa/ Y, where p, 6 and v are standard critical exponents (Ma 1976); at an 
ordinary critical point, there are only two relevant scaling fields (having positive 
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eigenvalues), h, being ‘irrelevant’ (i.e. A3 < 0; this yields a ‘correction to scaling’ (Fisher 
1974)). 

If we work at T <  T,, however, the renormalisation group flow takes the system to 
another trivial Iimit, the zero-temperature strong-coupling limit: in this case we still 
have a fixed-point behaviour as described in (2.30)-(2.32), but with only one relevant 
eigenvalue, h2 = d. This behaviour reflects the discontinuity of the magnetisation at 
zero conjugate field (figure 3( b ) ) ,  and hence a fixed point with an eigenvalue A = d is 
called a ‘discontinuity j x e d  point’ (Nienhuis and Nauenberg 1975, Niemeijer and van 
Leeuwen 1976). The description of a first-order transition in a renormalisation group 
framework hence occurs via such a discontinuity fixed point. 

Formally, the description of first-order transitions in terms of scaling (equation 
(2.32)) and renormalisation group can also be obtained as a limiting case of second- 
order transitions (Fisher and Berker 1982). Consider a transition driven by a field H 
occurring at HI in an Ising-type model. Then the magnetisation should vary as 
M - MI = *DI H - HII’” where MI = 4 [M(H,+)  4 M ( H l - ) ]  is the mean magnetisation 
on the phase boundary (for the standard Ising model, of course, H, = 0 and M ,  = 0, 
by symmetry). A first-order transition is described simply by 6 -+ a3 which leads to a 
discontinuity in M ( H ) .  Now, if this transition is represented by a renormalisation 
group fixed point, we have a recursion relation H‘ = h”H (taking HI = 0 for simplicity) 
and f ( H )  = b - d f ( H ‘ ) .  Thus, choosing b = /Hi -”” ,  we obtain f ( H )  ;= D,lHld’” with 
D, =f(*l) .  Since M a  (d f /dH) , ,  this leads to d / A  = 1 - 1/6. In the limit 6 +. 00 this 
in turn reduces to A = d. 

At this point we mention that in the isotropic n-vector model ((2.19) for A = O  is 
an example for n = 3) below T, at H + 0 additional singularities occur (Wegner 1967, 
Vaks et a1 1967, Halperin and Hohenberg 1969): 

H - ( 4 - d ) / 2  ( 2 < d < 4 )  
X ( H ) a { / l n H \  ( d  =4) .  

(2.34) 

These singularities (due  to spin waves) superimposed at thejrst-order transition at H = 0 
have been confirmed by the renormalisation group approach (BrCzin and Wallace 1973, 
Nelson 1976, Schafer and Horner 1978). 

A similar behaviour has also been shown to occur at the first-order transition of 
(2.19) at the critical field Hi, from the uniaxial antiferromagnetic structure to the spin 
flop phase (Feder and Pytte 1968): the uniform susceptibility x diverges as X K  
IH - Hcj-1’2 on both sides of the transition. 

2.3. Beyond Landau theory: fluctuation-induced jrst-order transitions 

There are many transitions which the above three Landau symmetry criteria would 
permit to be second order but which are actually observed to be first order. Notable 
examples are type I or type I1 antiferromagnetic structures, consisting of ferromagnetic 
(100) or (1 11) sheets respectively with alternating magnetic moment direction between 
adjacent sheets. Choosing king spins, these structures can also be translated into 
models of alloy ordering (figure 4). Experimentally first-order transitions are known 
for F e 0  (Roth 1958), TbP (Bucher et a1 1976, Kotzler et a1 1979), TbAs (Levy 1969) 
(these systems have order parameter dimensionality n = 4), UO, (Frazer er a1 1965) 
( n  = 6), MnO (Bloch and Mauri 1973), NiO (Kleemann et a1 1980) and ErSb (Knorr 
et a1 1983) ( n  = 8) for instance. (Further systems are listed in Grazhdankina (1969).) 
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Figure 4. Some examples of structures for FCC king  antiferromagnets and the correspond- 
ing binary alloy systems (AB) when A is associated with 'spin up' and B with 'spin down' 
(from Binder et al 1981). 

The standard phenomenological understanding of the first-order transitions in these 
materials invoked magnetostrictive couplings (Bean and Rodbell 1962, Lines and Jones 
1965) or crystal field effects (in the case of U 0 2 ;  see Blume 1966), which make the 
coefficient U in (2.3) negative and thus produce a free energy of the type shown in 
figure 2(b). 

Now it has been suggested that the first-order character of the phase transition in 
these materials is a fundamental property due already to the large number n of order 
parameter components and the symmetry of the Hamiltonian (while U and U in (2.11) 
may still be positive, strong magnetoelastic couplings not being involved): in a renor- 
malisation group expansion in E = d ,  - d near d ,  = 4, one finds for cubic systems with 
n 2 4 order parameter components that there is no stable fixed point (Mukamel et a /  
1976, Mukamel and Krinsky 1976a, b, Bak et a1 1976, Brazovskii and Dzyaloshinskii 
1975, Allesandrini et a1 1976). Since upon renormalisation one encounters a 'runaway' 
into a region where U is negative, this is interpreted as a first-order transition induced 
by fluctuations. In fact, this already occurs for the cubic model with n = 3, (2.11), if 
(2.12) is satisfied (so Landau theory yields a second-order transition) but either U < 0 
or U - 3u > 0 (Aharony 1976). A closely related mechanism would be that, though a 
stable fixed point exists, it is inaccessible (Nattermann and Trimper 1975, Nattermann 
1976, Rudnick 1978). 

Other classes of models argued to have fluctuation-induced first-order transitions 
are systems in which the order parameter couples to a fluctuating gauge field, examples 
being the superconducting and the nematic-smectic-A phase transitions (Halperin et 
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a1 1974). However, since the Ginzburg criterion (2.28) shows that the non-mean-field 
region of superconductors is extremely narrow, the first-order character is not observ- 
able in practice. It is disturbing, however, that liquid crystals are found (Als-Nielsen 
et a1 1977) in which the nematic-smectic-A transition is second-order; this discrepancy 
between theory and experiment is not yet understood. 

The third class of systems with fluctuation-induced first-order transitions are 44 
models with an O ( n )  symmetric vector field + for which the quadratic terms in the 
Landau-Ginzburg- Wilson Hamiltonian attain their minimum value not at wavevector 
q = 0 but on a surface of m - 1 dimensions in q space (Brazovskii 1975, Swift 1976, 
Swift and Hohenberg 1977, Mukamel and Hornreich 1980, Ling et a1 1981). This 
situation occurs for the nematic-smectic-C transition, which is hence argued to be of 
first order (Swift 1976). This conclusion must be taken with caution, however, since 
d = 3  is the lower critical dimension for smectic-C phases, so strictly speaking there 
is no positional long-range order (Als-Nielsen et a1 1977). For the convective Rayleigh- 
BCnard instability studied by Swift and Hohenberg (1977), on the other hand, the 
region where thermal fluctuations are important, and hence the transition is turned 
first-order again, is extremely narrow and hardly observable in practice. (Of course, 
at this point the additional assumption is invoked that one can construct some analogue 
to the free energy functional also for the BCnard problem, a system far from thermal 
equilibrium.) 

So antiferromagnets with n 2 4 order parameter components seem practically to 
be the most important cases of fluctuation-induced first-order transitions. Unfortu- 
nately, also for this renormalisation group prediction there exist many counter- 
examples, i.e. cubic n 2 4 antiferromagnets with second-order transitions: CeS, CeSe, 
CeTe (Hulliger et a1 1978, Ott et al 1979), GdS, GdSe, GdTb (Hulliger and Siegrist 
1979) (all these systems have n = 4), GdSb and GdBi (McGuire et a1 1969) ( n  = 8; for 
additional examples see Kotzler (1984)). Now this discrepancy between theory and 
experiment can have two reasons (Mukamel and Wallace 1979). 

(i) The critical number n * ( d )  of order parameter components separating the regime 
where second-order transitions occur ( n  < n * ( d ) )  from the first-order regime ( n  > 
n * ( d ) )  increases from n*(d  = 4 )  = 4  with decreasing d, sufficiently so that for d = 3  
second-order transitions are again possible for n = 4-8. This possibility is unlikely, 
since one rather expects n* ( d  = 3) = 3.1 (Aharony 1976, Mukamel and Wallace 1979). 

(ii) The phase transition in all the above compounds is in fact first order, albeit 
so weakly that they are erroneously identified as second order in all the experiments. 
If this interpretation of Mukamel and Wallace (1979) is correct, an explanation is 
needed why in some systems the order parameter discontinuity is unobservably small, 
while in other systems it is very large, such as in TbP, which is frequently quoted as 
an example of a fluctuation-induced first-order transition (Mukamel and Krinsky 1976a, 
Brazovskii et a1 1976, Kerszberg and Mukamel 1981a, b, Blankschtein and Aharony 
1981). In fact, this interpretation has been questioned by Kotzler (1984), who points 
out that, using data on the magnetostrictive coupling (taken from the softening of the 
elastic constant when approaching the magnetic transition in TbP), standard mean-field 
theory along the lines of Lines and Jones (1965) does account for the temperature 
dependence of spontaneous sublattice magnetisation, susceptibility and specific heat 
quantitatively (figure 5; see also Kotzler and Raffius (1980) and Morin and Schmitt 
(1983)). Moreover, the same approach accounts very well for the data on TbBi and 
TbSb, which have second-order transitions (to within experimental accuracy). Clearly 
not every first-order transition in an  n 3 4 antiferromagnet needs to be fluctuation- 
induced ! 
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Figure 5. ( a )  Spontaneous sublattice magnetisation and ( b )  zero-field susceptibility for 
TbP (Kotzler et al 1979) and TbBi (Nereson and Arnold 1971). Points show experimental 
data, while full curves are due to a mean-field calculation which includes crystal field 
effects and magnetostrictive couplings taken from other measurements (from Kotzler 1984). 

Another mechanism for first-order transitions in cases where a low-order Landau 
expansion predicts a second-order transition is the ‘renormalisation’ of the low-order 
coefficients due to high-order terms (Galam and Birman 1982). For a range of values 
of the coupling constant of the anisotropic eighth-order term, the sign of the effective 
coefficient of the fourth-order term is reversed. Galam and Birman (1982) suggest that 
this mechanism might explain the first-order transitions in Cr, Eu, U 0 2  and MnO, 
instead of the fluctuation-induced mechanism. 

When a fluctuation-induced first-order transition occurs, application of a symmetry- 
breaking field may effectively reduce the order parameter dimensionality and hence 
restore a second-order transition in the renormalisation group framework (Bak et a1 
1976, Domany et a1 1977, Kerszberg and Mukamel 1979, 1981a, b, Blankschtein and 
Mukamel 1981). The crossover from first order to continuous transition observed in 
MnO under a [ 11 11 uniaxial stress (Bloch et a1 1980) and in RbCaF3 under a [ 1001 
uniaxial stress (BuzarC et a1 1979) is interpreted along such lines (Aharony and Bruce 
1979). Blankschtein and Aharony (1981, 1983) show that near tricritical points one 
finds a regime where the transition is second order although Landau theory would 
predict it to be first order: fluctuations simply shift the tricritical point into the region 
where U is negative. However, such a ‘fluctuation-driven continuous transition’ may 
be turned back to first order by suitable symmetry-breaking fields, and hence very 
complicated phase diagrams may result, where several tricritical points occur. 
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Blankschtein and Aharony (1983) predict that application of pressure to a metamagnet 
at a fixed temperature above the tricritical point may turn the continuous transition 
into first order, and thus interpret experiments on FeCl, and FeBr, (Vettier et al 1973). 

Perhaps the most convincing demonstration of fluctuation-induced first-order transi- 
tions could be given by applying the Monte Carlo computer simulation method (Binder 
1979, 1984a) to suitable model Hamiltonians, for which the MFA is easily worked out. 
In fact Mouritsen et a1 (1977) and Knak-Jensen et al (1979) found a rather weak 
first-order transition in a classical Heisenberg antiferromagnet with suitable interactions 
stabilising an n = 6 AF type I1 structure. Phani et af (1980) study the Ising Hamiltonian 

%,sing = - JijSiSj - H Si (Si = * 1) (2.35) 

with exchange interactions J,,, < 0 between nearest neighbours and Jnnn < 0 between 
next-nearest neighbours in zero field at the FCC lattice. This model provides an example 
for an n = 4 AF type I1 structure. Phani et al (1980) find a first-order transition for 
J,,,,,/ J,,, d 1, while for J,,,,/ J,, 3 1 the data are consistent with a second-order transition. 
Unfortunately, due to finite-size effects, the distinction of the order of transitions in 
computer simulations may be very difficult (see 9 2.4). So more work is needed to 
clarify the questions about fluctuation-induced first-order transitions. 

As a final point of the section, we draw attention to elastic phase transitions where 
the order parameter is the strain tensor Ejk (Cowley 1976, Folk et al 1976) and hence 
the Landau expansion is (applying the summation convention) 

i # j  i 

+ $ C ~ ~ ~ m r s u u ~ i k ~ l m ~ r r ~ u u  +. . .+gradient terms). (2.36) 

Here the C ; k l m  are elastic constants and C$]mrs and Cj~l)mrsuv analogous coefficients of 
anharmonic terms. For most elastic transitions, symmetry permits some non-zero 
Cjk3]mrs and hence leads to first-order transitions. The elastic distortions at these 
transitions may be very large: for example, for transitions where no group-subgroup 
relation exists, such as the martensitic transformations in Fe-C and Fe-Ni, eik at the 
transition is of order lo-’; in other systems, however, they are extremely small (Eik = 
in Nb,Sn and V,Si). (In fact Toledano (1981) mentions V,Si as a second-order transition 
violating the Landau rules.) Unlike magnetic first-order transitions, where microscopic 
molecular field theories can sometimes account for experimentally observed jumps 
(figure 5), the microscopic molecular field theory for elastic transitions is much more 
difficult, and even for well investigated transitions like that of KCN it still remains at 
a rather qualitative level (De Raedt et al 1981). 

Unlike the magnetic and structural transitions discussed above, one expects that 
fluctuation effects are much less important for elastic phase transitions. This is seen 
for the cases where the symmetry of (2.36) admits second-order transitions (Folk et a1 
1976): the upper critical dimension below which Landau theory breaks down close to 
the second-order transitions is lowered to d ,  = 3 or even d ,  = 2.5 in several cases of 
experimental interest. Nevertheless a fluctuation-induced first-order transition might 
occur for the transition from cubic to rhombohedral symmetry (which has d ,  = 3), 
where the softening of acoustic modes (elastic constant C44+ 0) implies a divergence 
of the mean-square displacements of the atoms at the transition (Folk et af 1976). A 
transition belonging to this class has recently been discovered in (KBr)o.27 ( KCN),,,, 
but the transition in fact is continuous (Knorr er a1 1985). 
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2.4. Finite-size eflects und jinite-size scaling at jirst-order phase transitions 

In a first-order transition driven by temperature (figure l ( b ) )  a 6 function singularity 
occurs in the specific heat at the transition temperature T, due to the latent heat; 
similarly, in a first-order transition driven by the ordering field (figure 3( b ) )  a 6 function 
singularity occurs in the ordering susceptibility at the transition, due to the jump in 
the order parameter. However, such singularities can occur only in the thermodynamic 
limit where the volume L“ of the system tends to infinity: forfinite linear dimension L 
we expect the transition to be both rounded and shifted. (Only the cube geometry with 
all linear dimensions equal is considered here-for a discussion of other geometries 
see, e.g., Privman and Fisher (1983), Cardy and Nightingale (1983) and Fisher and 
Privman (1989.) 

While such finite-size effects on second-order transitions (where the power law 
singularities are rounded and shifted) have had a lot of attention (Fisher 1971, Barber 
and Fisher 1972) (for recent reviews see Barber (1983) and Binder (1987)), finite-size 
effects on firsr-order transitions were only discussed rather recently (Imry 1980, Fisher 
and Berker 1982, Privman and Fisher 1983, Binder and Landau 1984, Challa et a1 
1986). At a second-order transition, the correlation length 6 diverges ( 6 E  I T - T,/-”) 
and it is then the ‘thermal eigenvalue’ 1/ v of the renormalisation group, which controls 
rounding and shifting, both being of the order of L-””. For a first-order transition, 
the only eigenvalue of the discontinuity fixed point is the dimensionality d, and hence 
one predicts a rounding and shifting of the order of L-d. 

We now describe a more quantitative theory of finite-size scaling at first-order 
transitions, which also yields explicit expressions for the scaling functions involved 
(Binder and Landau 1984, Challa et a1 1986). We start from (2.23) and integrate out 
spatial fluctuations to obtain the probability distribution of finding an order parameter 
4, in the system 

(2.37) 

where f ( $ )  is the free energy density of the system. At the first-order transition, f ( 4 , )  
for the various phases coexisting there is precisely the same; consequently PL(4, )  
there consists of several sharp peaks of exactly the same height, representing the various 
phases. 

At a transition driven by temperature, we consider the energy distribution P L ( E )  
to discuss the smearing of the latent heat. Suppose the transition at T, occurs from 
one disordered state (energy E,) to a q-fold degenerate ordered state (energy E-) .  
Since all q peaks of (2.37) representing ordered states superimpose in the energy 
distribution, we must have P L ( E - )  = qP,(E+) at T = T,. Now standard thermodynamic 
fluctuation theory states that the probability distribution P , ( E )  for a single phase is 
Gaussian (Landau and Lifshitz 1958), PL( E )  Cc exp[ - Ld ( E  - Eo)2/2kB T ’ C ] ,  C being 
the specific heat and Eo the average energy. This result is straightforwardly generalised 
to the present situation where several phases compete, for AT = T - T,,  

PL (4, ) OC ex p ( - L d f (  $ )/ kB T ,  ( L - +  *) 

(2.38) 

C, and C- being the specific heats in the disordered and ordered states respectively, 
and the two peaks are weighted according to the free energy difference A F  = F, - F- 
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of the two phases. Using F+( T,) = F-( T J ,  one finds AF = - (E+  - E - ) A T /  T,. From 
(2.38) it is easy to obtain the energy ( E ) L = j y m  EPL(E) dE and specific heat C, = 
L d ( ( E 2 ) L - ( E ) ~ ) / k B T 2  of the finite system. One finds (Challa et a1 1986) that the 
maximum of C, occurs at T: given by 

( T : - T , ) / T , = -  k B T c  in[ q ( & ) ’ / ’ ] ~ - d  

E+ - E- c+ 
and has the height 

Ld 
(E+ - E-)’ 

4 k ~ T ’  
C y ”  = 

(2.39) 

(2.40) 

The area underneath C,( T )  is just given by the latent heat E+ - E - ,  since the width 
over which the 6 function is smeared is just given by [ ( E +  - E - ) L d ] - ’ .  

As an example, figure 6 shows Monte Carlo results for the specific heat of the 
two-dimensional ten-state Potts model obtained by Monte Carlo methods (Challa et 
a1 1986). Figure 7 shows the same data in rescaled form, compared to the scaling 
function which follows from (2.38),  

--.- ci:B - [ ( E +  - ~ ~ ) / k B ~ , ] 2 q ( ~ ~ / ~ + ) ” 2 [ e ” + e ~ “ q ( ~ ~ / ~ + ) ” 2 ] ~ 2  

where x = L d ( E + -  E - ) A T / 2 k B T : .  

600. 

500. 

Loo- 
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(2.41) 
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Figure 6. Specific heat of the ten-state Potts model plotted against temperature, as obtained 
from Monte Carlo simulation of various L x L lattices with periodic boundary conditions. 
The transition for L+ cc) occurs at k,TJ J = 0.701 232 (Baxter 1973) (from Challa er a /  1986). 
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0.30 r 

Figure 7. Scaling of the specific heat results for the ten-state Potts model. The full curve 
represents (2.41) (from Challa et al 1986). 

Similar results are readily derived for the case of a first-order transition driven by 
the ordering field (figure 3 ( b ) ) .  As an example, figure 8 shows the susceptibility xL of 
finite square Ising lattices, and the same Monte Carlo data replotted in scaled form, 
together with the scaling function (Binder and Landau 1984) 

xLILd =&I kBT cosh2(H&Ld/kBT). (2.42) 

In this case there is no shift of the transition, due to the symmetry H t ,  -H.  
The result (2.42) only holds for anisotropic magnets (Heisenberg spins). For 

isotropic magnets (Heisenberg spins), the susceptibility peak x L a  Ld as given by (2.42) 
is superimposed on another peak of width proportional to L-* and height L4-d due 
to spin waves (Fisher and Privman 1985). 

80 
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14 A 

1 8 0 : ;  12 

14 A 

0 0.025 0.050 
HIJ HL IJ 

Figure 8. ( a )  Susceptibility ,yL of finite square Ising lattices with nearest-neighbour coupling 
J plotted against field at k,T/J =2.1 (note k,T,/J =2.269), for various L. ( b )  Scaling of 
the susceptibility data: the broken curve is the scaling function (2.42) (from Binder and 
Landau 1984). 



804 K Binder 

While qualitative evidence for finite-size rounding of first-order transitions has been 
obtained from specific heat measurements of phase transitions in monolayers adsorbed 
on surfaces (Marx 1985), a quantitative analysis of such phenomena for real systems 
still remains to be done. 

2.5. Impurity effects on jirst-order transitions 

This section presents a brief phenomenological discussion of phenomena due to 
quenched (immobile, frozen) randomly distributed impurities (point defects), following 
a discussion of Imry and Wortis (1979). There is no need to discuss the case of annealed 
(mobile) impurities-they act just like an additional component and thus simply enlarge 
the space of thermodynamic variables. 

\’e consider a lattice model where each site has a probability p of being occupied 
by an impurity species: the system is assumed to have a transition at a temperature 
T,(p) .  When p = 0, the system is pure, and we suppose the transition to be weakly 
first order: the correlation length 5 (measured in units of the lattice spacing) at the 
transition is large but finite. We now assume that the average number of impurities 
in a correlation volume, p t d  >> 1-then probability theory shows that the typicalfluctu- 
ation of this impurity number is hp- [p(l  -p)]1/25-d’2. Correspondingly one has a 
spread in ‘local intrinsic transition temperatures’ AT, = /dT,(p)/dplhp. Of course, it 
would be wrong to think that each correlation volume undergoes a transition at its 
own T,(p + Ap), thus leaving the sample in an inhomogeneously mixed phase between 
T,(p)-ATc and T,(p)+AT,: thereby one would create a lot of interfaces, which is 
unfavourable. If the average impurity concentration p at a temperature T,(p)  - AT 
corresponds to a state in phase 2, a correlation volume can be in phase 1 only if the 
cost in interface energy is not too great: 

(2.43) 

where C is a geometrical factor, Ant is the interfacial tension and f l  and fi are the bulk 
free energy densities of the two phases. Since T, (p )  is defined from fl(p, T , ( p ) )  = 
f2(p, Tc(p) ) ,  and since the variation of f l  and f2 with Ap and AT is linear for Ap, 
A T +  0, one concludes that 

t d [ f 2 ( p  +AP, ~ c ( p )  - A T )  -fl(p +Ap, ~ c ( p )  + A T ) ] >  CLnttd-’ 

and hence (2.43) yields 

(2.44) 

where the latent heat at the transition, L ( p )  = T d / d T ( f ,  -fl)p,Tc(p) is introduced. 
If for some interval AT close to T, (p )  (2.44) holds for the typical fluctuation 

Ap - [ p (  1 -p)]1/25-d’2, one expects a rounding of the transition: the discontinuity is 
either removed completely or at least reduced by a fraction of order unity. If for the 
typical fluctuation (2.44) does not hold, it may still be satisfied in the rare cases where 
Ap in some correlation volumes is much larger than its typical value hp: then close 
to T J p )  the system will already contain some impurity-induced small ‘precursor 
domains’ of the other phase. These przcursor effects, however, are exponentially small. 

In this discussion we have tacitly assumed that the interactions in the system driving 
the transition are in a sense ‘simple’, and then the impurities can either produce a 

- 
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rounding of the transition or at least produce precursor effects, but cannot change its 
character. In systems with competing interactions, however, the addition of quenched 
impurities may in fact stabilise an ordered phase which does not occur in the pure 
system, or it may even lead to a glass-like structure. An example where both of these 
effects occur has recently been provided by the molecular crystal NaCN diluted with 
NaCl (Elschner et al 1985) (see figure 9). 

100 . 
Wj 

9 e 601 

40 i- 

T (Kl 
Figure 9. Order parameter Acu = 90 - cy,, cy, being the rhombohedral cell angle, plotted 
against temperature for the (NaCI),-,(NaCN), system for three values of x. For x = 0.71 
the transition is to a mixed phase, rhombohedral order and quadrupolar glass phase, while 
for xGO.68 only the glass phase occurs (from Elschner et a1 1985). 

3. Some computational technqiues 

3.1. Models 

While the phenomenological theories of § 2 yield qualitative insights about phase 
transitions, they cannot describe any real material quantitatively; also model Hamil- 
tonians such as (2.13), (2.19) and (2.35) need a more detailed analysis. 

The phenomenological theory hence needs to be complemented by a more micro- 
scopic approach. In a first step, the essential degrees of freedom for a particular 
transition are identified and an appropriate model is constructed. In a second step, 
the statistical mechanics of the model is treated by suitable approximate or numerical 
methods. (We disregard here the rare cases where the transition temperature of a 
first-order transition can be located exactly from duality, such as the two-dimensional 
Potts model with Q > 4 states (Baxter 1973) or the FCC lattice with purely four-spin 
interaction (Pearce and Baxter 1981, Liebmann 1981).) 

We have already mentioned the modelling of magnetic systems in terms of Ising 
and Heisenberg models-indeed it is believed that a large class of systems exists for 
which such models are appropriate (De Jongh and Miedema 1974). Thus we discuss 
here the modelling of the order-disorder phase transitions in solids (figure 10). There 
occur transitions where the basic degree of freedom is the (thermally activated) diffusion 
process of atoms between various lattice sites. This happens for unmixing alloys such 
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Figure 10. Degrees of freedom essential for the description of various order-disorder 
transitions in solids. 

as Al-Zn or for ordering alloys such as p-CuZn or the Cu-Au system for instance. 
Since this diffusive motion is so much slower than other degrees of freedom (such as 
lattice vibrations), we may describe the configurational statistics of a substitutional 
binary alloy by local occupation variables {c l} (  c, = 1 if lattice site i is taken by an atom 
of species B, c, = 0 if it is taken by A) and neglect the coupling between these variables 
and other degrees of freedom. The Hamiltonian then is 

2 = 2 0  + [ C,CJUBB( XI - XJ ) + 2c, ( 1 - c,) v A B (  XI - XI ) + ( 1 - c,) ( 1 - c, ) VAA( XI - XJ )] + 9 
* 

1 f J  

(3.1) 

where v A A ,  vAB and vBB are pairwise interactions between pairs of AA, AB and BB 
atoms. In fact, terms involving three- and four-body interactions may also occur, but 
are not written down here. 

As is well known, (3.1) can be reduced to the king model (2.35) by the transforma- 
tion S, = 1 -2c, = *l ,  apart from a constant term which is of no interest to us here. 
The 'exchange interaction' JIJ and magnetic field H in (2.35) are related to the interaction 
parameters of (3.1) by 

Jv = [ ~ v A B ( x ~  - x,) - vAA(x, - x,) - v B B ( x t  - x,)l/4 
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where Ap is the chemical potential difference between the two species. The same 
mapping applies for the lattice gas model of interstitial alloys or adsorbed layers on 
surfaces, where A corresponds to a vacant site and B to an occupied site. 

We emphasise here these Ising-type models just for their simplicity. They serve as 
a testing ground for various approximate methods of statistical mechanics and for 
numerical methods, as will be discussed further in §§ 3.2-3.4. 

On the other hand, many structural transitions in solids are of a rather different 
kind (figure 10): we encounter periodic lattice distortions where atomic displacements 
are comparable with those of lattice vibrations. Short-wavelength distortions may give 
rise to ‘antiferrodistortive’ and ‘antiferroelectric’ orderings, as exemplified by the 
perovskites SrTi03, PbZrO, , etc. Long-wavelength distortions corresponding to optic 
phonons give rise to ‘ferroelectric’ orderings, while those corresponding to acoustic 
phonons give rise to ‘ferroelastic’ or ‘martensitic’ ordering. 

A further distinction concerns the effective single-particle potential felt by the atoms 
undergoing the distortion. Suppose the ordered structure is doubly degenerate: then 
the atoms can sit in the right or the left minimum of a double-minimum potential 
below T,. If the potential above T, is essentially the same, and only the distribution 
of the atoms over the minima is more or less random, the transition is called of 
‘order-disorder-type’. This occurs, for example, for hydrogen-bonded ferroelectrics 
and is analogous to the sublattice ordering case mentioned above. On the other hand, 
if the single-particle potential changes above T, to a single-well form, the transition 
is called ‘displacive’. We may consider (2.3) as a model Hamiltonian of such a system, 
+(x) being the displacement at lattice site x. A more microscopic description of 
structural transitions is of course based on the phonon concept: displacements ui(x) 
can be related to phonon normal coordinates Qk,A via 

u I ( x )  = (NMI)-”* exp(ik * x)e l (k ,  
k A  

(3.3) 

where q ( k ,  A )  is a phonon polarisation vector, M I  is the mass of the atom at site R f  
in the ith unit cell, A labels the phonon branch and k its wavevector. Now ( Q k o , A o ) T .  

plays the role of an order parameter component for the transition: in mean-field theory, 
the associate eigenfrequency vanishes at a temperature To (‘soft phonon’). If this 
happens for a phonon with wavevector ko at the Brillouin zone edge, we have an 
antiferroelectric order (if the phonon is polar, i.e. producing a local dipole moment) 
or antiferrodistortive order (for non-polar phonons). Soft optic phonons at the Brillouin 
zone centre give rise to ferroelectric (or ferrodistortive) orderings and soft acoustic 
phonons to ferroelastic ordering. 

Note that the Qk,A are defined such that the Hamiltonian of the crystal in the 
quasi-harmonic approximation is diagonalised (Born and Huang 1954): 

%f= [ a 2 u / ( a R l ) , ( a R : ’ ) , 1 u P ( R , ) u ~ ( R , ) =  1 w 2 ( k ,  A ) Q - k , A Q k , A *  (3*4) 
l,J, kA 
L 

* , P  

Thus, in the spirit of the Landau expansion, the coefficient w 2 ( k o ,  A,) in front of 
the square of the order parameter corresponds to the term r = r’( T -  T,) in (2.3). Of 
course, as in the Landau theory, higher-order terms in the expansion (2.3) are crucial 
for the description of the ordered phase: one needs to include anharmonic terms here 
which then couple the Qko,ho also to the non-critical This is quite analogous to 
the couplings produced in (2.3) by 4‘(x) if one diagonalises the quadratic part of 
9 { 4 ( x ) }  by introducing the Fourier transform A 4 k  (cf (2.6)). 



808 K Binder 

It is rather clear from this description that realistic microscopic models for most 
structural phase transitions are rather complicated. Thus we shall not discuss them 
further and rather refer to the recent literature (Bruce and Cowley 1981). 

If one restricts the analysis entirely to the framework of the quasi-harmonic 
approximation, one can write the free energy at temperature T and volume V as 

F ( T ,  V ) =  Uo(V)+t  h w v ( k , A ) + k , T  ln[l-exp(-hwv(k,A)/k,T)]. (3.5) 
k, A k , A  

Thus, if effective potentials specifying the dynamical matrix a’U/(aR:) , (dR:’) ,  in 
(3.4) are known, one can obtain the phonon frequencies w v ( k ,  A )  for a given volume 
and obtain F ( T ,  V ) .  Of course, in this approach, knowledge of the structure of the 
material is supposed. First-order transitions between different structures can be handled 
by performing this calculation for both phases and identifying the temperature T, 
where the free energy branches of the two phases cross. Since the quasi-harmonic 
theory is a calculation of the mean-field type, as pointed out above, first-order transitions 
also show up via stability limits of the phases, where the soft modes vanish (thereby 
one is not locating T, but rather temperatures To or T I ,  cf figure l (b) ,  which are often 
not very far from the actual transition temperature, however). This quasi-harmonic 
approach to structural phase transitions has been tried for many materials: recent 
examples include RbCaF, (Boyer and Hardy 1981) and the systems CaF, and SrF, 
(Boyer 1980, 1981a, b) which show phase transitions to a superionic conducting state. 

3.2. Molecular field theory and its generalisation (cluster variation method, etc) 

The molecular field approximation (MFA) is the simplest theory for the description of 
phase transitions in condensed matter systems; it still finds widespread application 
and has been described in great detail in various textbooks (Brout 1965, Smart 1966). 
For first-order transitions it is still a rather popular approach, as it is thought that the 
statistical fluctuations neglected in this approach are less important than for second- 
order transitions. We shall see, however, that this statement has to be taken with a 
pinch of salt. 

Here we do not wish to expose the MFA in full, but rather give only the spirit of 
the approach. For simplicity, we only deal with the Ising model (2.35). One can find 
the exact free energy formally as the minimum of the functional (Morita 1972) 

where the sums extend over all configurations of spins in the system and P ( { S , } )  
is the probability that a configuration { S I }  occurs: this yields Peq ( {S , } )a  
exp[-x,~,,,,,({S,})/k,T], as desired. The MFA can now be found by factorising the 
probability P ({S,}) of a configuration of the whole lattice into a product of single-site 
probabilities p ,  which can take two values: p = (1 + m ) / 2  that the spin at site i is up 
and p1 = (1 - m ) / 2  that it is down ( p  - p i  = m is the magnetisation). Now the 
expression Jl,SIS,p,p, summed over the possible values p simply yields J,,m2, 
and hence (3.6) reduces to 

and p 

- qM FA = t J (  0) m ’ .- Hm + k ,  T [ 
In( y) + In( T) ] N L  (3.7) 

where J ( k )  = XCj(+,) Jij exp[ik (ri - r j ) ] .  Minimising now gMFA with respect to m yields 
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the standard result 

1 
m = tanh - ( J ( 0 ) m  + H ) .  (3.8) 

kB T 
Now a systematic improvement is obtained if one approximates the probability of 

configurations not just by single-point probabilities but by using ‘cluster probabilities’. 
We consider probabilities p,,,( k, i )  that a configuration k of the n spins in a cluster 
of geometry c occurs ( k  = 1, .  . . , 2 ” ) .  These probabilities can be expressed in terms 
of the multispin correlation functions gnc( i )  3 (SzS,, . . . S,,,) where the set of vectors 
r,, - r , ,  . . . , q,, - r, defines the n-point cluster of type c located at lattice site i. Now 
the free energy functional to be minimised in this cluster variation method (Kikuchi 
1951, Sanchez and de Fontaine 1980, 1982) is a more complicated approximation to 
(3.6) than (3.7) but has the advantage that the energy term in F = U - TS is treated 
exactly; one now rather approximates the entropy. We find 

s = f C C J , , . g , , , ( i ) + k B T C C  Y n c  2 P n , c ( k  i ) l n p n , c ( k  i ,  (3.9) 

where the coefficients ync are combinatorial factors depending on the lattice geometry 
and the clusters included in the approximation. Assuming the ordered structure to be 
known, one can apply the symmetry operations of the associated group to reduce the 
number of variational parameters in (3.9) to a finite number. While in the MFA one 
has a single non-linear self-consistent equation, (3.8) (or a set of equations involving 
the order parameter components, if one considers a problem more complicated than 
the Ising ferromagnet), one now ends up with a much larger set of coupled non-linear 
equations involving the short-range order parameters gnc(  i )  when one minimises (3.9). 
Thus while the simple MFA is still manageable for a wide variety of systems (Brout 
1965, Smart 1966), the cluster variation (cv) method is essentially restricted to Ising-type 
problems relevant for phase transitions in metallic alloys (de Fontaine 1979, Binder 
1986). We shall discuss the merits of the various approaches when we discuss a few 
examples which have also been studied by Monte Carlo computer simulation (§ 3.4). 

i j  i n,c k = l  

3.3. Position space renormalisation group methods for phase diagrams exhibiting jirst- 
order transitions 

In § 2.2 we have already briefly encountered the renormalisation group approach, 
where the partition function is calculated step by step, integrating out long-wavelength 
degrees of freedom in a transformation %{I$’}  = R[%’{I$}] which is iterated. Now we 
are concerned with the practical realisation of such methods in d = 2 and d = 3 
dimensions to obtain phase diagrams. Again a thorough discussion of these ‘real space’ 
or ‘position space’ renormalisation group methods is beyond the scope of this review 
and can be found in the literature (Niemeijer and van Leeuwen 1976, Burkhardt and 
van Leeuwen 1982). We restrict ourselves to brief comments. 

To give explicit meaning to (2.29), we consider for simplicity the Ising model (2.35) 
and assume that spins { S , }  in blocks of linear dimension b (e.g. b = 2 or 3) are grouped 
together to form a ‘block spin’ Si.  This transformation is made precise by defining a 
weight function P ( { S : } ,  { S , } )  which satisfies P ( { S : } ,  { S , } )  = 1. An example is 
the ‘majority rule’ 
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We choose a convention where a factor - l / k B T  is absorbed in the Hamiltonian, 
%'E -X/ ksT, and we also wish to eliminate additive constants by requiring c{s,) %'= 0. 
Then the transformation (2.29), consistent with the requirement that the partition 
function is left invariant, is 

(3.10) 

Here G is an additive constant independent of the spin configuration. In practice the 
step (3.10) can only be carried out with uncontrolled approximations. Iterating (3.10), 
one would generate more and more coupling constants {K,}= {Jy/kBT,.  . .}: one has 
then not only pairwise interactions Jy but also multispin interactions. In approximate 
calculations only a finite subset of these couplings can be kept, which we denote as 
K. Then (3.10) yields for the free energy per spin, f =  F /  N ( g  = G / N ) ,  

f(W = g ( K )  + f ( K ' ) / b d  K ' =  K ' ( K ) .  (3.11) 

~ X P ( G  + %({s:o)) = C P({w, {s,})exp(%'({s,I)). 

Iterating (3.11) yields an explicit expression for the free energy 
m 

f ( K )  = 1 b-"dg(K'"' )  + lim b-"df(K'"') 
n =o m - m  

(3.12) 

where K'"' is the set of coupling constants after n iterations. The fixed points mentioned 
in § 2.2 are found from K" = K ' ( K * ) ,  and the eigenvalues Aj (see (2.31)) are found by 
diagonalising the matrix Tap = (dKh/dK,),=,*. A fixed point Aj = d leads to a discon- 
tinuity in derivatives of the free energy, as has been shown by the scaling analysis 
discussed after (2.33) (Fisher and Berker 1982, Nienhuis and Nauenberg 1975), and 
hence corresponds to a first-order transition. 

These concepts were tested for the Potts model (2.13), and at first it was a major 
puzzle that many variants of these approaches invariably yielded second-order phase 
transitions irrespective of the number of states Q (Dasgupta 1977, Burkhardt et a1 
1976, den Nijs 1979). This problem was resolved by Nienhuis et a1 (1979), who argued 
that it is necessary to generalise the model (2.13), including vacancies, to make it a 
Potts lattice gas. The reason for this is that it is essential that one is able to characterise 
the thermodynamic phases of the system by states of one or a few cell variables, since 
only the configurations associated with the phases survive under the renormalisation 
transformation. For the Ising model in a field, the first-order transition takes place 
between two ordered phases: thus the two states of an Ising spin suffice to characterise 
the phases. The first-order transition in the Potts model takes place between ordered 
and disordered phases. In this case, more than a few sites would be needed to represent 
the disordered phase. This problem is circumvented by generalising the model, since 
now a vacant site can represent the disordered phase: under renormalisation the Potts 
model may develop vacancies and the first-order transition happens by a 'condensation' 
of effective vacancies (see also Berker and Andelman 1982). The fact that there exists 
a critical value Q, such that the transition is second order for Q < Q, and first order 
for Q > Q, is interpreted by the fact that for Q < Qc there are two fixed points, a critical 
and a tricritical one, which merge at Qc and annihilate each other (Nienhuis er a1 
1979). This approach has been applied also to models for Kr adsorbed onto graphite 
(Berker et a1 1978), where one can account qualitatively for the phase diagram of the 
commensurate solid 4 3  phase and the disordered phase exhibiting a tricritical point 
and a two-phase coexistence region. 

Thus, choosing a weight function to capture the essential physics in a simple 
approximate transformation appears sometimes to be a rather subtle matter demanding 



Theory of first-order phase transitions 811 

considerable physical insight. On the other hand, by constructing transformations for 
the equivalent one-dimensional quantum problem (the ‘Hamiltonian version’ of the 
Potts model), the correct fixed-point structure emerges straightforwardly (Sdlyom and 
Pfeuty 1981, Igldi and Sdlyom 1983a, b), but the accuracy of the determination of Qc 
is poor: Qc = 6.81 for b = 2 and Q, = 5.85 for b = 5 ,  while the Kadanoff (1975) variational 
method applied to the Potts lattice gas yields 0,-4.08 (Nienhuis et a1 1980a, b, 
Burkhardt 1980), close to the exact value Q,=4 (Baxter 1973). 

An alternative approach to (3.10) is the phenomenological renormalisation using 
transfer matrix calculations of strips of finite width L (Nightingale 1976, 1982). Under 
a length rescaling transformation from L to L’, the correlation length 5 scales as 

S L ( W  = (L/L’)SL,(K’)  (3.13) 

because all length scales change by the same scale factor b = L/L’  and the relation 
K ’  = Kb( K )  is interpreted as a renormalisation group transformation. A critical point 
is found as a fixed point of this transformation. Rikvold et a1 (1983) have applied 
this method to a square lattice gas model with nearest-neighbour repulsion and 
next-nearest-neighbour attraction. Both the tricritical point and the first-order phase 
boundary could be located accurately, and also estimates for the discontinuity at the 
first-order transition were obtained from the transfer matrix calculation. On the other 
hand, this was no longer possible for a more complicated lattice gas model (Rikvold 
et a1 1984). 

While at a second-order transition K ”  the bulk correlation length 6 = CO and hence 
this is a fixed point of (3.13) for L, L’+ CO, at the discontinuity fixed point corresponding 
to a first-order transition one iterates to 5 + 0 in the bulk. However, tL as extracted 
from the transfer matrix for infinitely long strips does not measure this ‘bulk’ correlation 
length but rather the average distance between walls separating ordered domains along 
the strip. This behaviour is very reasonable, since the strip is a quasi-one-dimensional 
object and the free energy cost to create a wall is finite, proportional to L, in the 
ordered region. The situation is qualitatively similar to the one-dimensional Ising 
model at non-zero temperature, where the energy cost to introduce ‘walls’ between up 
spins and down spins is also finite, and the correlation length there also measures the 
average distance between these ‘walls’. This length increases exponentially with L in 
the ordered region, while in the disordered region tL is small and, for L + CO, indepen- 
dent of L. Thus (3.13) is also suitable for locating a first-order transition. 

Igldi and Sdlyom (1983b) address the problem of how the latent heat shows up in 
the transfer matrix renormalisation for the ‘Hamiltonian’ version of the Potts model, 
and suggest that in the corresponding excitation spectrum the first-order transition 
shows up as a ‘level crossing’, while there remains a gap in the spectrum-the mode 
does not become ‘soft’ as at a second-order transition. 

Finally we emphasise that these position space renormalisations are practically 
rather successful for d = 2 but not for d = 3. Attempts to study the FCC Ising antifer- 
romagnet in a field by such methods have yielded rather unsatisfactory results (Mahan 
and Claro 1977). 

3.4. Computer simulation methods 

In a computer simulation, one considers a finite system (e.g. a cubic box of size Ld 
with periodic boundary conditions) and obtains information on the thermodynamic 
properties, correlation functions, etc, of the system which is exact, apart from statistical 
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errors. The principal approaches of this type are the molecular dyanamics ( M D )  
technique (Rahman 1964) and the Monte Carlo (MC) technique (Metropolis et a1 
1953). In the former, one numerically integrates Newton’s equation of motion which 
follows from the chosen Hamiltonian; assuming ergodic behaviour, the quantities of 
interest are obtained as time averages from the simulation. In the MC method, one 
uses random numbers to construct a random walk through the configuration space of 
the model system; again averages are obtained as ‘(pseudo)time’ averages along the 
trajectory of the system in phase space, the only difference from the M D  method being 
that the trajectory now is stochastic rather than deterministic. 

Both methods have been extensively reviewed recently (Binder 1979, 1984a, 1985, 
Heermann 1986, Alder and Hoover 1968, Sangster and Dixon 1976, Hockney and 
Eastwood 1981, Abraham 1982); hence we shall give only the main points relevant for 
the investigation of first-order phase transitions, emphasising why this may still be 
difficult. 

One principal difficulty is the finite-size rounding and shifting of the transition. In 
principle the phenomena are well understood (0 2.4); in practice this makes it difficult 
to distinguish between second-order and weakly first-order transitions. For example, 
rather extensive work was necessary to show (Abraham 1983, 1984, Bakker et a1 1984) 
that the melting transition in two-dimensional Lennard-Jones fluids is in fact first order, 
and the suggested two continuous transitions involving the hexatic phase (Nelson and 
Halperin 1979) do not occur in these systems. 

Another difficulty is that the periodic boundary condition (for a chosen shape of 
the box) prefers certain structures of a solid and suppresses other ones which do not 
‘fit’: this is a particularly cumbersome problem for off-lattice systems (studies of the 
fluid-solid transition or phase transitions between different lattice symmetries). The 
traditional approach has been to repeat the calculation for different box shapes and 
compare the free energies of the different phpses. An interesting alternative method 
has recently been suggested by Parrinello and Rahman (1980) and Parrinello et al 
(1983), who generalised the M D  method by including the linear dimensions of the box 
as separate additional dynamical variables. 

Another problem is the occurrence of metastability and hysteresis: the system may 
get trapped in a metastable state, the lifetime of which is longer than the observation 
time of the simulations. The distinction of such long-lived metastable states from 
equilibrium states is difficult and may require computation of the free energies of the 
phases in question. 

One must be aware of these problems when one studies first-order transitions by 
computer simulation, choosing suitable box sizes, observation times and preparations 
of the initial states. Then, employing sufficient effort in computing time-which is not 
cheap-and performing a careful analysis of all the possible pitfalls mentioned above, 
one can obtain very reliable and useful results which are superior in most cases to any 
of the other methods discussed here. 

As an example, we mention the problem of binary alloy order-disorder transitions 
on the FCC lattice, relevant, for example, for CuAu alloys. The simplest model which 
has been extensively studied (Shockley 1938, Li 1949, Kikuchi 1974, Gahn 1973, 1974, 
1982, 1986, Binder 1980a, 1981a, Binder et a1 1981, Finel and Ducastelle 1986, Sanchez 
et a1 1982, Mohri et al 1985, Polgreen 1984, Lebowitz et a1 1985, Diep et a1 1986) is 
(3.1), where the interaction J ,  < O  is restricted to nearest neighbours. Figure 11 shows 
that the phase diagram found in the mean-field approximation (Shockley 1938, Gahn 
1973, 1974), in the quasi-chemical approximation (Li 1949) (this can be viewed as a 
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Figure 11. ( a )  Temperature concentration phase diagram of a binary alloy AB at the FCC 
lattice with nearest-neighbour interaction J,,, according to three approximations: (i) the 
Bragg-Williams molecular field approximation (Shockley 1938); (ii) the quasichemical 
approximation (Li 1949); (iii) the cluster variation calculation in the tetrahedron approxi- 
mation (Kikuchi 1974). The AB and A3B structures are displayed in figures 4 ( a )  and 4(c) 
respectively (from Binder 1980a). ( b )  Experimental phase diagram of the CuAu system. 
The CuAu I1 phase is a long-period superstructure, while CuAu I is the structure shown 
in figure 4 (from Hansen 1958). 

special case of (3.9), the largest cluster being a nearest-neighbour pair) and in the cv  
method, choosing the tetrahedron as the largest cluster (Kikuchi 1974), differ consider- 
ably from each other. Choosing larger clusters in the cv  method still changes the 
phase diagram somewhat (Mohri et a1 1985, Fine1 and Ducastelle 1986), although all 
transitions found are of first order! Thus fluctuation effects at this transition are still 
important. This conclusion is corroborated by the Monte Carlo work (Binder 1980a, 
1981a, Binder et al 1981, Polgreen 1984). Figure 12 compares the phase diagram found 
by Binder er a1 (1981) with that of Kikuchi (1974). Although there is still controversy 
about one feature of the Monte Carlo predictions, namely whether the triple point 
between the AB, A3B and disordered phases appears at zero temperature (Binder 
1980a, 1981a) or at a (low!) temperature kBT/IJl< 1.0 (Gahn 1986, Diep et al 1986), 
it is well established that no analytical approximation method has so far been found 
which reproduces this phase diagram with an accuracy of 5 %  or better. Polgreen 
(1984) estimates, for cB=0.5,  the correlation length at T, to be about 2.5 lattice 
spacings-too large already for the methods of 0 3.2 to be accurate, but too small for 
any renormalisation group approach. In fact, an attempt to study this phase diagram 
with the position space renormalisation group method failed (Mahan and Claro 1977). 

Now one could argue that the nearest-neighbour FCC alloy problem and the 
equivalent problem ( FCC antiferromagnet in a field) are exceptional pathological models 
due to their high ground-state degeneracy (Danielian 1964). However, similar dis- 
crepancies have recently been found between MFA, c v  and MC calculations for order- 
disorder transitions on the BCC lattice (Diinweg and Binder 1987); the BCC lattice has 
no effects due to ‘frustration’ (Toulouse 1977) and non-degenerate ground states. 
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Figure 12. Temperature concentration phase diagram of a binary alloy AB at the FCC 

lattice with nearest-neighbour interaction J according to Monte Carlo work (full circles 
and open circles refer to the grand canonical and canonical ensemble respectively; broken 
curves are only to guide the eye) and the c v  method in the tetrahedron approximation 
(Kikuchi (1974), full curves) (from Binder et a/ 1981). 

A study of the FCC lattice with nearest-neighbour interaction J,,<O and next- 
nearest-neighbour vnteraction J,,, > 0 (Binder 1981a, Binder et a1 1983) is also very 
educative (figure 13). For R = Jnnn/J,,> R , -  -d all phase transitions are first order 
and the transition from AB to A,B ends in a triple point, as well as that from AB to 
AB,. For R < R,, however, the two triple points have merged at c,=O.5 and the 
transition from the AB phase to the disordered phase is of second order. This behaviour 
has been discussed by Domany et a1 (1982) from the symmetry classification point of 
view: the AB phase belongs to the class of the three-state Potts model (2.13) and the 
A3B phase to the class of the four-state Potts model. Consequently, the direct transition 
of either phase to the disordered phase should be first order in d = 3, as observed 
(figure 13). However, if both transitions coincide (figure 13), the transition acquires 
the symmetry of the Heisenberg model with cubic anisotropy and hence a second-order 
transition is predicted. In any case, this example of the FCC AB structure at cB = 0.5 
shows that, depending on the ratio R of the interactions, the transition may be either 
second or first order and symmetry considerations alone do not sufJice to predict the order 
o f t h e  transition, since symmetry does not tell us whether to expect a phase diagram 
of the type of figure 13(a) or 13(b). 

For models with continuous degrees of freedom, such as the anisotropic Heisenberg 
antiferromagnet in a field (2.19), neither the c v  method nor the position space renor- 
malisation group method is convenient: MFA and MC methods are the only techniques 
for such problems available so far. Figure 14 compares the phase diagrams resulting 
from these approaches for an anisotropy parameter A = 0.2 (Landau and Binder 1978). 
In this system, the MFA overestimates somewhat the stability of the ordered phases; 
the location of the first-order line between antiferromagnetic and spin flop phases is 
predicted rather accurately by the MFA at low temperatures, but the bicritical point 
where the first-order line ends occurs at a distinctly lower temperature. 
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Figure 13. Phase diagram of binary alloys on the FCC lattice with nearest (.Jnn) and 
next-nearest interaction ( J , , , ) ,  for ( a )  R = /,,,/J,, = -0.2 and ( b )  R = -1. The upper 
parts of the figures show the temperature-composition phase diagram, while the lower 
parts show the corresponding diagram in the 'magnetic field'-temperature plane. For 
notation of phases cf figures 4 ( a )  and 4(c) respectively ( ( a )  from Binder 1981a, ( b )  from 
Binder et al 1983). 

As discussed in 9 3.3, the position space renormalisation group method is most 
powerful for two-dimensional problems with discrete variables (Ising, Potts spins, etc). 
But even for such problems, the computer simulation method may be competitive or  
even superior, if the model exhibits a larger range of interactions and/or  large unit 
cells in the ordered structure. Figure 15 shows, as an  example (Landau and Binder 
1985), the phase diagram of an  Ising model on the square lattice with nearest-, 
next-nearest- and  third-nearest-neighbour interactions (J, ,  , J,,, , J 3 ) .  Large unit cells 
(4 x 2 and 4 x 4 structures) d o  occur in a certain parameter range. As expected from 
symmetry classification arguments (Schick 1981), these structures have first-order 
transitions, while the 2 x 1 and  c(2  x 2 )  structures have second-order transitions. 

4. Metastable states near first-order phase transitions 

4.1. How metastable states in statistical mechanics can be dejned and their properties 
computed 

Metastable phases are very common in nature, and for many practical purposes not 
at all distinct from stable ones (for instance, diamond is only a metastable modification 
of graphite!). Also, approximate theories of first-order phase transitions easily yield 
free energy branches which d o  not correspond to the thermal equilibrium states of 
minimum free energy, and  hence are commonly interpreted as metastable or unstable 
states. We have seen this for the Landau theory of a ferromagnet (cf figure 3 ( b )  and 
(2 .10) ;  the same result follows from the molecular field equation of state, ( 3 . 8 ) ) ,  and 
similar behaviour occurs in many other theories as well: for example, the van der 
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Figure 14. Phase diagram of a uniaxial classical Heisenberg antiferromagnet on the simple 
cubic lattice, as a function of temperature T and field Hi, applied in the direction of the 
easy axis. The anisotropy parameter A in the Hamiltonian (2.19) is chosen as A = 0.2. Both 
Monte Carlo results and mean-field predictions (chain lines) are shown. The broken lines 
are the theoretical scaling axes. The triangles show the critical field in the T- Hi plane 
(from Landau and Binder 1978). 

Waals equation of state describing gas-liquid condensation exhibits an analogous loop 
of one-phase states in the two-phase coexistence region. 

Unfortunately, while the description of metastability in the framework of mean-field 
approximations (MFA) seems so straightforward, this is not so if one deals with the 
more rigorous approach of statistical thermodynamics. A heuristic computational 
approach, discussed in § 3.2, consisted of going beyond MFA by the cluster variation 
method, taking more and more short-range correlations into account the larger one 
chooses the cluster. Computing the isotherms for a nearest-neighbour Ising ferromagnet 
in this way (Kikuchi 1967), one finds that the stable branch is nicely convergent, while 
the metastable loop becomes flatter and flatter the larger the cluster, i.e. the critical 
field H, (2.10) converges towards zero-an exact calculation of the equation of state 
yields the magnetisation jump from do to -do as H changes from O+ to 0- in figure 
3 ( b ) ,  but does not yield any metastable state! This is not really a surprise, of course: 
statistical mechanics is constructed to yield thermal equilibrium states, and the partition 
function is dominated by the system configurations yielding the minimum free energy. 
In a magnet with H <0,  states with negative magnetisation have lower free energy 
than those with positive magnetisation, and hence the latter do not result from the 
partition function in the thermodynamic limit. 

Similarly, a more rigorous treatment of the gas-fluid system, even with long-range 
interactions for which the van der Waals equation of state becomes exact in the 
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Figure 15. ( a )  Ordered structures and ( b )  global phase diagram occurring in a square 
lattice gas with nearest- (Jnn), next-nearest-(J,,,) and third-nearest-neigbour (J , )  repulsive 
interactions as a function of temperature T/lJnnl, R = Jnn,,/lJn,, and R ' =  J&,,I. The 
(4 x 2) phase occurs in the dark region in the centre of the phase diagram; its transition is 
of first order, as for the (4 x 4) phase, which occurs for large R' on the right-hand side of 
the phase diagram. The 4 2  x 2) phase (left forward part of the figure) and (2 x 1 )  phase 
(left backward part) have second-order transitions to the disordered phase. Different 
orderings coexist at T=O only (from Landau and Binder 1985). 

one-phase region, yields only mixed-phase configurations for densities inside the 
coexistence curve (Lebowitz and Penrose 1966). This statement holds if one proceeds 
in the usual manner, taking first the thermodynamic limit (particle number N + m )  
and afterwards the interaction range R + 00. However, if one proceeds differently, 
taking both limits together in such a way that one suppresses mixed-phase states 
satisfying the condition ( ro is the nearest-neighbour distance) 

one does recover the standard metastable branches of the van der Waals equation 
(Penrose and Lebowitz 1971). 

Hence the idea originates that for defining a metastable state in the framework of 
statistical mechanics one has to constrain the phase space suitably: by calculating 
suitable 'restricted partition functions' one forbids two-phase configurations and hence 
defines metastable states. The question, of course, is how this should be done in 
practice. Various approaches of this type have been suggested. In an Ising ferromagnet 
at low temperatures one can, for the state with positive magnetisation in a negative 
field, forbid all spin configurations containing clusters of overturned spins exceeding 
some given size (Capocaccia et al 1974). Of course, the properties of metastable states 
defined in this way must depend to some extent on this cut-off cluster size-only for 
T +  0, where such excitations no longer contribute, is a unique, but trivial, answer 
obtained. At finite T, one needs guidance from physical arguments as to how this 
cut-off size should be optimally chosen. A prescription to do this results from nucleation 
theory in the framework of the droplet model-we shall return to this point in Q 4.2. 

Another approach (e.g. Langer 1974), to suppress phase separation into the two 
phases with order parameters 4pOex and +ye' coexisting at a first-order phase transition, 
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consists of constraining the system by dividing it into cells of size Ld and requiring 
that an order parameter 4 with 4P,"< 4 < 4yex is fixed not only globally but inside 
each cell. (For the example of the Ising magnet, 4Yex = -bo and 4s"'" = &, 4o being 
given by the spontaneous magnetisation.) If L is small enough, phase separation within 
a cell cannot occur and hence one obtains a coarse-grained free energy density fc, ( 4 )  
of states with uniform order parameter 4. This is essentially the same procedure 
encountered in Q 2.2,  where a coarse-grained Hamiltonian was introduced which is 
related to fc, (4) by 

Now identifying f,, ( 4 )  with the free energy density of metastable and unstable states 
is not fully satisfactory either, since fc, (4) shows some dependence on the coarse- 
graining length L (figure 16). This must occur, since any long-wavelength fluctuations 
with wavelengths exceeding L are suppressed. In the one-phase region, if we let L + a3 
then fc, ( 4 )  tends towards f(4), the true free energy density. If we let L + a  in the 
two-phase region, however, we allow phase separation already within each cell: these 
phase-separated configurations have a free energy density excess down by a surface-to- 
volume ratio L-' in comparison with the free energy excess of uniform states (of order 
unity), and hence dominate completely. As an example, figure 17 shows isotherms 
calculated for various cell sizes in the lattice gas model (Furukawa and Binder 1982). 
It is seen that the maximal supersaturation p -pcoex reached (which corresponds to 
H ,  in the Ising magnet) decreases as L-' for increasing L. 

t 

Figure 16. Schematic plot of the coarse-grained free energy density f,, (4 )  as a function 
of order parameter 4 in a first-order transition from $;,,, to 6s"'". Spinodals $i"''( L )  
defined from inflection points of fcg(+) depend distinctly on the coarse-graining length L. 

A completely different approach starts from the fact that experimentally one 
observes time averages only which are equivalent to ensemble averages in thermal 
equilibrium if the system is ergodic; but a metastable state is a situation far from 
equilibrium and hence is much more naturally defined by considering the dynamic 
relaxation of the system (Binder 1973). If we again consider the Ising model as an 
example, we can associate dynamics with it by assuming a Markovian master equation 
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Figure 17. Chemical potential g of the three-dimensional simple cubic lattice gas model 
with nearest-neighbour interactions J plotted against density p at a temperature k , T / J  = 4.0 
(k ,T, /J  = 4.51). Recall that this model is isomorphic to the king ferromagnet at magnetisa- 
tion +o(p = ( 1  - do)/2); the magnetic field translates into the chemical potential difference, 
H = - ( y  -gcoex)/2. Several linear dimensions L= V”’ are shown as indicated (from 
Furukawa and Binder 1982). 

for the probability P (Sl,  . . . , S N ,  t )  that a spin configuration { S , ,  . . . , S N }  occurs at 
time t (Glauber 1963, Kawasaki 1972): 

(4.3) 

The transition probability W(Si + -Si) is given by 

W ( S i +  - S i )  = (27J-’[l -tanh (SX/2kBT)] (4.4) 
where T~ is a time constant fixing the time unit and 8% is the energy change produced 
by the spin flip. 

Now let us consider the relaxation of the system after sudden changes of the field 
H from a positive value H ’  to H = H’S A H  < 0. We define a ‘non-equilibrium relaxa- 
tion function’ 

yAH(t) = ( ( 4 ( t ) ) T , H ’ - ( 4 ( ~ ) ) ~ , H ‘ ) / ( ( ~ ( 0 ) ) ~ , H ’ - ( 4 ( ~ ) ) ~ , H ’ I  (4.5) 

where ( 4 (  t ) )  = Z i  Si ( S ,  , . . . , S N ,  t )  is a time-dependent order parameter. In the 
function YAH(t) ,  metastability will show up as a relaxation occurring in two steps. 
After a short time (which is of the order of the order parameter relaxation time T : ~  in 
equilibrium if H ’  and AH are small) the system will settle down at a value ( 4 (  f ) )T ,Ht  = 
4,,, the order parameter of the metastable state. As a consequence, we expect a 
plateau in a plot of YAH(t)  against time. Only at a much larger timescale 7TS, the 
‘lifetime’ of the metastable state, can one see that the metastable ‘equilibrium’ is in 
fact no stationary state but slowly relaxing. The condition that metastability occurs is 
then simply that the two timescales are clearly distinct: for example (Binder 1973), 
7;’ 3 1027:q-the equality sign would yield an extreme ‘limit of metastability’ defined 
in a purely kinetic sense. 

Although this approach is conceptually very different from the restricted partition 
function approach, practical results need not be different: for example, Penrose and 
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Lebowitz (1971) also consider an ‘escape rate’ from the metastable state and show that 
it becomes very small in the limit considered in (4.1). For example, choosing R/ro  = 6, 
(4.1) is satisfied for macroscopic volumes ( N  = and the inverse of the escape rate 
exceeds a time 7, exp [constant x ( R /  rO)’ ] .  Even if T~ is microscopic, T~ = s, this 
bound for the lifetime may exceed the age of the universe! Similar conclusions also 
apply for the nearest-neighbour Ising model at T+O when one considers the rate at 
which the ‘forbidden’ clusters would form (Capocaccia et a1 1974). 

As an example of the kinetic approach to metastability we first consider Ising 
ferromagnets where the range R of the exchange Jii is very large. Then fluctuations 
of Z k  A!& may be neglected and one obtains from (4.3) and (4.4) a time-dependent 
Ginzburg-Landau equation for 4(x, t )  = SkP ({Si}, t )  in the continuum limit where 
the coordinate x corresponds to lattice site k (Binder 1973): 

H 1 T, 
kBT 2d T 

d 
d t  

- T ~ -  4 ( ~ ,  t )  = - 4 3 ( ~ ,  t )  +--- - R 2 V 2 4 ( x ,  t ) .  (4.6) 

Due to the neglect of fluctuations, (4.6) for H /  H ,  < 1 describes the relaxation into the 
metastable state only: metastable states have infinite lifetimes in molecular field theory. 
A more interesting behaviour is found if H exceeds H ,  slightly (figure 18): then 
relaxation in two steps is indeed observed, and the flat region of Y A H (  t )  may be taken 
to define q5,,,s from a time average over times which are much larger than T : ~  but much 
smaller than 77’. This ‘flatness’ behaviour of Y A H (  t )  has an interesting interpretation 
if one continues the metastable and unstable solutions M of (3.8), which merge at 
H = H,  (figure 3 ( b ) )  into the complex plane for H / H , >  1: while the value of 4 in 
the flat part of Y A H (  t )  is approximately given by Re M, the lifetime of the metastable 
state is proportional to Im M !  
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Figure 18. Non-equilibrium relaxation function Y A H  ( 1 )  plotted against time for different 
choices of H s =  H / k , T .  The results are not dependent on temperature when one chooses 
a scaled time ? s = ( ? / T s ) ( l -  T / T J  and H,*= H , / k , T  (from Binder 1973): 

This observation leads us to discuss the concept of defining metastable states via 
analytic continuations of the free energy beyond the first-order transition. In mean-field 
theory this analytic continuation is a real function, but the lifetime of the metastable 
state in mean-field theory is infinite and there is not really any distinction between 
equilibrium and metastable states then. Beyond mean field, a real analytic continuation 
beyond a first-order transition does not exist (see 9 4.3, where the ‘essential singularity’ 
due to droplet-type fluctuations is discussed). But the concept that a metastable state 
can be described by a complex analytic continuation of the free energy, the imaginary 
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part of which is related to the lifetime of the metastable state, remains valid for H + 0 
(Langer 1967). 

The kinetic approach to metastability has also been used in the study of nearest- 
neighbour Ising models by means of Monte Carlo simulations (Binder and Muller- 
Krumbhaar 1974, Binder 1976). As an example, figure 19 shows that again flat regions 
in the time evolution of the magnetisation are detected. From such data it is possible, 
at least within reasonable error margins, to ‘measure’ the field dependence of magnetisa- 
tion, susceptibility and relaxation time as one moves deeper and deeper inside the 
metastable region. In fact the data seem to be compatible with a critical behaviour at 
a ‘pseudospinodal’ point, which can be located by extrapolation (Chu et a1 1969) but 
not actually reached because the metastable state is already quickly decaying before 
then. We discuss further the significance of this ‘critical’ behaviour in 4 4.4. 

We conclude this discussion of metastable states by remarking that Y A H (  t )  can be 
precisely defined, but the properties of the metastable ‘state’ itself can only be defined 
within some intrinsic uncertainty. This uncertainty is extremely small when a metastable 
state close to the first-order transition is considered, but becomes larger and larger the 
deeper one gets into the metastable region. This is also true in experiments: in order 
to prepare a system in a metastable state, one has to change some external control 
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Figure 19. ( a )  Variation of the magnetisation (coarse-grained over a time interval of 40 
Monte Carlo steps ( MCS) spin) with time for a field H/ k,T = -0.1 at the inverse temperature 
J /k ,T  =0.6 in a two-dimensional square Ising lattice with nearest-neighbour exchange J. 
The log-log plot indicates the estimation of a ‘pseudospinodal’ H *  by fitting data on the 
susceptibility ,y to a law ,y ( H  - H*)-”*. ( b )  Inverse relaxation time (left part), magnetisa- 
tion m and susceptibility ,y (right part) of metastable states in the two-dimensional Ising 
model at J /  k,T = 0.6 plotted against magnetic field (from Binder 1976). 
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parameters (such as T, H ) .  One then has to wait some time until the relaxation process 
into the metastable state has died out; at the same time the relaxation out of the 
metastable state towards full equilibrium may already have started. Thus some intrinsic 
time dependence is inevitable in principle, though often not relevant in practice. 

Still another approach to metastability is based on the analysis of the eigenvalues 
of the transfer matrix in a transfer matrix approach to calculate the partition function 
(e.g. Newman and Schulman 1980, Privman and Schulman 1982). This approach is 
beyond the scope of our introductory discussion. 

4.2. Droplets of the other phase and droplet models 

At a first-order transition, creation of a domain of one phase embedded in the other 
coexisting phase will cost only a contribution due to the interfacial free energy density 
Ant between the two phases, which is proportional to the domain surface area; there 
is no bulk term (proportional to the domain volume), since the free energies of the 
two phases are equal. Thus spontaneous formation of such domains ('droplets') due 
to statistical fluctuations is relatively easy. In a metastable state, formation and growth 
of sufficiently large droplets ('nucleation') is the basic mechanism of decay towards 
the stable equilibrium state (0 5.1), but such 'heterophase' fluctuations occur already 
in the one-phase region and are thought to be responsible for the 'essential' singularity 
at the coexistence curve (§  4.4). Hence we shall briefly review some of the basic ideas 
about 'droplet models' here. 

The standard line of thinking (Becker and Doring 1935, Zettlemoyer 1969) is to 
consider droplets as macroscopic objects that can be described by bulk and surface 
terms. In an isotropic system the shape of the minimum free energy at a given volume 
V will be spherical, and hence the formation free energy of a droplet of radius p is 

(4.7) A F ( p )  = H ( 4 Y " " -  4 F " " " ) p d v d  + S d p d - ' L n t  

where s d  and v d  denote surface area and volume of a d-dimensional unit sphere and 
we consider the phase with 4YeX = &, as the background phase. Forf;nt, the interfacial 
tension of a flat planar interface between infinitely extended bulk phases is taken 
('capillarity approximation'). 

In a solid J n t  in general is anisotropic and so the construction of the equilibrium 
shape of a droplet is a formidable problem (Rottman and Wortis 1984, Wortis 1985), 
which we shall not consider here. But even in an isotropic system, (4.7) is a crude 
approximation only, valid at best to leading order for p + CO. 

(i) Ant need not be the same quantity for small droplets as for an infinite flat 
interface. A phenomenological way to account for this is the idea of a curvature- 
dependent interface tension (Tolman 1949). 

(i i)  Apart from the droplet shape that yields the minimum droplet free energy, one 
should also take fluctuations around this shape into account. It has been shown (Langer 
1967, Giinther et a1 1980) that capillary wave excitations yield an additive correction 
to A F ( p )  proportional to In p. 

(iii) The macroscopic separation of the droplet free energy into bulk and surface 
terms becomes meaningless when the droplet radius p is of the same order as the 
correlation length 6, since the latter length also describes the intrinsic interface thickness. 
If one describes this smaller-scale fluctuation also by droplets, then ramified or fractal 
clusters should also be taken into account, not only compact droplets. 
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Obviously to make progress with these questions one would need a more precise 
definition of what exactly is meant by a ‘droplet’. This lack of a generally accepted 
precise definition also hampers the work on small droplets of atoms or molecules 
interacting with realistic potentials (Lee et a1 1973, Abraham 1974). As an operational 
definition, a droplet then is often defined in terms of a constraining box with hard 
walls, which keeps together the atoms that build up the ‘droplet’. Unfortunately some 
residual dependence of the droplet properties on the size of this artificial constraining 
box is expected, which is negligible only (for gas-liquid coexistence) if the gas pressure 
is very small (Binder and Kalos 1980). Other definitions for liquid droplets in a gas 
have also been discussed (e.g. Binder 1975a, Abraham and Barker 1975), but these 
too suffer from some arbitrariness. In addition, conclusions about the validity of 
corresponding numerical work are difficult, since neither the gas pressure at gas-liquid 
coexistence nor the gas-liquid interfacial tension are known exactly, but rather have 
to be determined by computer simulations as well. 

Neither of these two latter difficulties occurs for the two-dimensional Ising ferromag- 
net: the first-order phase transition occurs precisely at H = 0, and the interface tension 
Ant is known exactly (Onsager 1944). In addition, for a lattice model it is no problem 
to define ‘clusters’ of reversed spins in terms of closed contours separating them from 
the surrounding up spins. Consequently the study of such clusters in the Ising model 
both for d = 2 and d = 3 has had much attention (Fisher 1967, Stoll et a1 1972, 
Muller-Krumbhaar 1974a,b, Muller-Krumbhaar and Stoll 1976, Binder 1976, Coniglio 
and Klein 1980, Binder et a1 1975, Stauffer et a1 1982, Dickman and Schieve 1982, 
Marro and Toral 1983, Jacucci et a1 1983, Hu 1984, Heermann et a1 1984, Binder and 
Heermann 1985, Heermann and Klein 1983a,b, Nauenberg and Cambier 1986). Despite 
this large activity, clusters in the Ising model are still incompletely understood, and 
hence our discussion will focus on a few aspects of this problem only. 

We denote the number of reversed spins within a cluster by 1 and the number of 
broken bonds at the surface of the cluster by s. Then magnetisation m and internal 
energy U per spin are expressed in terms of the number Np(1, s) of clusters with 
coordinates 1, s as follows (Binder 1976): 

u = -J z - 2 sp(l, s)) - Hm ( 1,s 
(4.8) m = 1-2 lp( l ,  s) 

1,s 

where z is the coordination number. When one considers the magnetisation only, it 
suffices to work with a reduced cluster concentration nl : 

(4.9) 

The droplet model of Fisher (1967) assumed that nl = no exp(-AFl/k,T) with a 
non-classical expression for the droplet free energy AF,  ( n o  and a are some coefficients): 

(4.10) 

It was shown that, by choosing the exponents U = l / pS  and T = 2 + 116, with p and S 
the critical exponents of the magnetisation of the Ising model ( m (  T, H = 0) CC 

(1 - T /  T‘)p, m( T = T,, H) a HI”), (4.9) and (4.10) yield a qualitatively reasonable 
equation of state in the critical region. 

Since m = -(aF/aH),, one can write the free energy in this droplet model as 

Fdroplets = - H - kB T c n1. 

A Fl = a J ( 1 - T/ T,) 1“ + 2 HI + k, TT In 1. 

(4.1 1) 
I 
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Equation (4.11) is just an ideal gas law for a non-interacting assembly of droplets of 
different sizes 1 occurring at densities n,. This is a physically reasonable picture as 
long as the droplets are very dilute, but not in the critical region where m + 0. Therefore, 
while (4.9) is exact, the H dependence of AF, in (4.10) certainly is not. In (4.10), one 
may interpret 2HZ as the analogue of the bulk droplet free energy H(+SoeX-~f"'") 
p d v d  in (4.7), and aJ(  1 - T /  T,)Z" + kBT7 In1 as the analogue of the surface free energy 
term Sdpd- 'A, ,  While the latter has a singular temperature dependence Cflnta 
(1 - T / T c ) ' d - ' ' " ) ,  (4.10) is regular in T as T +  T,, as expected for a finite cluster of 
fixed size Z which should have only smooth temperature dependences. In any case, 
the form AF,, and hence n,, is rather arbitrary; it only should be considered as a special 
case of a general scaling formula (Binder 1976) 

n,=l-'2'Y'"n"(Hl'/kBT,(1-T/T,)ly'PS) ( T +  T,, H + 0 )  (4.12) 

which involves an additional, undetermined, exponent y and an unknown scaling 
function n". In addition, it was suggested (Binder et a1 1975, Binder 1976) that one 
should not interpret 1 as the total number of reversed spins, but rather as the excess 
number of down spins in a volume region V, defining the cluster, with V, cc Zltl": then 
it is possible to have y = 1 in (4.12), and for clusters of the order of a correlation 
volume (V,  = t d )  one has an order parameter excess 

// V, a 1-l" 
v ; I / ( S + l ) a  t - d / ( S + l ) a  € d v / ( S + l )  = € 6  

using the scaling law (Stanley 1971)dv = p(S + 1). Therefore a smooth crossover from 
the term 2H1 in (4.10) to the bulk term in (4.7) at V, = td is possible, as well as of the 
term a J (  1 - T /  TJI" to the surface term in (4.7). Hence it was argued that there is not 
really a contradiction between (4.8)-(4.12) and the classical droplet model: rather the 
latter describes only very large droplets, with V, >> td, while for droplets describing 
critical fluctuations (V,  = t d )  a different theory is required. 

In any case, clusters in the Ising model must represent groups of spins which are 
strongly thermally correlated, and this is the main drawback of the 'geometric' cluster 
definition in terms of contours around reversed spins: even when one studies Ising 
magnets at T + 00 as a function of H, one would have large clusters, and a percolation 
transition (Stauffer 1979) occurs, where a cluster of infinite size occurs, when H I T  
becomes less than a critical value. But these geometric clusters at T + 00 have no 
physical significance, there are no spatial correlations ((SzSJ)m = 8, + m2( 1 - and 
the equation of state is trivial ( m  = tanh ( H /  k B T ) ) .  This random percolation transition 
is the T + 00 limit of a line of correlated percolation transitions which exist throughout 
the paramagnetic region (Coniglio and Klein 1980) and ends for d = 2 in the critical 
point T = T,, m = 0, while for d = 3 it ends even below T, at the coexistence curve 
(Muller-Krumbhaar 1974b). Thus the behaviour of the 'geometric' Ising clusters 
strongly reflects the approach towards this percolation transition, which has no effect 
on the behaviour of the Ising spin pair correlations. 

Consequently, even in the Ising ferromagnet a cluster definition different from the 
geometric one is needed (Binder 1976) if one wishes the cluster properties to be related 
in a transparent way to physical properties of the Ising system, as assumed in (4.7)- 
(4.12). An explicit suggestion for such a cluster definition, due to Coniglio and Klein 
(1980) and modified by Hu (1984), is only to count such spins as part of a cluster 
(inside a 'geometric' cluster) if they are connected by an 'active bond'; they show that 
choosing bonds active with probability pB = 1 - exp( -2J/ kB T )  ensures that the percola- 
tion transition coincides with the point T = T,,  m = 0 at all dimensionalities. While 
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this cluster definition seems to be useful along the whole coexistence curve (H = 0, 
T < T J ,  the problem of a cluster definition valid at non-zero field or T > T, is still not 
solved ! 

Finally we mention a rather different approach, where clusters are defined in the 
continuum limit of Ising systems in terms of randomly nested domain walls (Bruce 
and Wallace 1983). This approach can be worked out in a controlled fashion near the 
Ising lower critical dimension, d = 1, and one can show that the cluster size distribution 
takes a scaled form near T,, similar-but not identical-to the suggestion (4.12). The 
reason for this discrepancy is not understood. 

Although the first principles theory of droplets and cluster models is thus still in 
bad shape, the concept nevertheless is very useful in a heuristic way, if one uses it at 
low enough temperatures. For example, figure 20( a )  shows the droplet distribution 
in a two-dimensional Ising model (Binder and Muller-Krumbhaar 1974) at J / k B T  = 
0.46; it happens to agree nicely with the Fisher (1967) model, (4.10), but this is 
somewhat accidental-for d = 3 this model does not fit (Muller-Krumbhaar and Stoll 
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1976, Marro and Toral 1983). In this case, (4.10) can now be used to treat nucleation 
(§ 5.1) and predict the properties of metastable states. In the framework of the droplet 
model, this is done by using a modified form of (4.9), which will be justified later: 

I ”  

m = 1-2 C InI. 
/ = I  

(4.13) 

Here the ‘critical cluster size’ I” is defined from the maximum of AFI, d(AFI)/all,* = 0 
(see § 5.1).  Figure 20(b) shows that the resulting prediction for the metastable continu- 
ations of m are in reasonable accord with observations from computer simulations. 

4.3. ‘Essential’ singularity at a Jirst-order phase transition 

While isotropic magnets exhibit a divergent susceptibility x = (am/aH), for H + O+ 
at all temperatures below T,, as discussed in § 2.2, it has been proven rigorously for 
the Ising model that all derivatives of the free energy F at the coexistence curve (i.e. 
for H + O+) exist (Martin-Lof 1973). Nevertheless, there occurs a (very weak!) singular- 
ity at the coexistence curve, the so-called ‘essential singularity’ (Fisher 1962, 1967, 
Andreev 1964, Langer 1967, Binder 1976, Gunther et a1 1980). This implies that 
expanding F for H = 0 in a power series in H one obtains a series, the radius of 
convergence of which is zero, i.e. 

(4.14) 

This singularity was first suggested by Fisher (1962, 1967) using his droplet model, 
(4.9) and (4.10). As discussed in § 4.2, we feel that (4.10) is not meaningful for V, >> td, 
where one has the classical droplet model (4.7) instead of (4.10). Thus the treatment 
presented here (Binder 1976) is close in spirit to that of Andreev (1964). 

Let us assume we have performed a coarse graining over cells of size L >> 5 (cf 
(2.21) and (2.22)). The total free energy of the system is then Xcg plus a correction 
due to fluctuations of linear dimensions exceeding L. There are two kinds of such 
fluctuations. First we have ‘homophase fluctuations’ where the local order parameter 
+(x) deviates from m by *&b. For L>> 6, S + / m  +O; in addition, P ( S + )  is essentially 
a Gaussian distribution (Binder 1981b). These fluctuations will not produce any 
singular behaviour as H + 0. So the important fluctuations are the ‘heterophase’ 
fluctuations, i.e. droplets. Since only droplets with radii V ; l d  > L >> 6 can occur, 
all smaller-scale fluctuations being integrated out, it makes sense to use F =  
Zcg- k,TZ,,,d n,,inanalogyto(4.11),andchoose(4.7)innI= noexp(-AFI/kBT),i.e. 

2mH 
F (  T, H )  = Xcg( T, H )  - no lLy d V exp( -= V) exp( -bV’-’’d) 

(4.15) 

where the sum has been transformed into an integral and b = SdV~/d-’(J, , /kBT). 
Now with h = -2mH/k,T one finds 

00 akF akxcg 
g = x - n o  I,. d W k  exp(-bV’-’’d). (4.16) 
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Since for k + 00 the lower limit of the integration may be replaced by zero with negligible 
error, and the term ak%’,,/ahk may be neglected against the integral which is propor- 
tional to r ( [ l / ( d - l ) ] ( k - l - l / d ) - l ) ,  one finds 

(4.17) 

The result (4.17) remains valid irrespective of any logarithmic correction terms as in 
(4.10) or (4.12) (see Binder 1976). 

An alternative calculation, due to Langer (1967) and Gunther et a1 (1980), starts 
from the field theoretic Hamiltonian (2.3) and (2.23) and evaluates the contribution 
to the free energy due to ‘droplet’ or ‘instanton’ solutions (Lowe and Wallace 1980) 
of the non-linear analogue of (2.5): 

H 1  
W ( X )  kBT d 
-- 6 9 /  kB T - r 4 + ~ 4 ~ - - - -  R 2 V 2 4 ( ~ ) = 0 .  (4.18) 

For H < 0 ,  (4.18) admits a spherically symmetric solution with non-uniform 4 such 
that c$=-+~ ( = ( - r / u ) ” ’ ,  cf (2.4)) for radii p < p *  and 4 = 4o for radii p > p * ,  the 
critical droplet radius (cf figure 21) being given by 

(4.19) 

This droplet solution prevents a real analytic continuation of F from positive H to 
negative H, because F has a cut singularity along the negative H axis when analytically 
continued in the complex plane. The discontinuity across the cut, or equivalently the 

Figure 21. ( a )  Order parameter profile @ ( x )  across an interface between two coexisting 
bulk phases, the interface being oriented perpendicular to the z direction, and the radial 
order parameter profile for a marginally stable droplet ( b )  near the coexistence curve and 
(c )  near the spinodal curve. In ( a )  and ( b )  the ‘intrinsic’ thickness of the interface is of 
the order of the correlation length at coexistence, &,,,, while in (c )  it is of the same order 
as p* (from Binder 1984b). 
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imaginary part of F, arises from the existence of the critical droplet, (4.19), and is 
given by (Giinther et a1 1980) 

Im F(H,arg H = ? r ) = - B I H J a  ~ X ~ [ - A I H I - ‘ ~ - ’ ’ ( ~ + O ( H ~ ) ) ]  (4.20) 

where the exponent a = -7/3 for d = 3 and a = (3 - d ) d / 2  for 1 < d < 5 ,  d # 3. The 
correction term I HI” includes fluctuations of the droplet surface (namely capillary 
wave excitations). A and B in (4.20) are non-universal constants. Langer (1967, 1969) 
shows in the framework of a Fokker-Planck description for the dynamics of the 
metastable state that Im F controls the lifetime of the metastable state: the nucleation 
rate is simply proportional to Im F. In the Fokker-Planck description, one constructs 
the flow over the saddle point in the multidimensional configuration space; this saddle 
point, separating the metastable minimum from the stable one, is also due to a 
configuration containing a critical droplet. Since Im F is also related to the probability 
that a critical droplet occurs, it is not surprising that Im F and the nucleation rate can 
be related in the limit H + 0-. 

Lowe and Wallace (1980) use (4.20) in the Cauchy integral formula with the contour 
enveloping the cut 

d H’ 
Im F(arg H‘=?r)--- 

H‘-H’ 
(4.21) 

Discarding the contour at infinity, they obtain the expansion coefficients Fk of the 
series F = Z k  HkFk and show that indeed Fk OC T ( ( k  - a ) / ( d  - l ) ) ,  consistent with the 
leading behaviour resulting from (4.16). Lowe and Wallace show further that systematic 
low-temperature series expansions (Baker and Kim 1980) yield numerical evidence in 
favour of their results for Fk. This evidence has been strengthened by Harris (1984). 
Also position space renormalisation group arguments (Klein et a1 1976) lead to the 
conclusion that there exists an ‘essential’ singularity at the Ising model coexistence 
curve (H = 0, T < TJ.  

On the other hand, it must be emphasised that the existence of this singularity has 
not yet been established rigorously. In fact, if one postulates fully ramified droplets 
(surface area proportional to their volume), one gets a real continuation of F ending 
in a spinodal singularity (Domb 1976, Klein 198 1). Also droplet-droplet interactions 
might shift the ‘essential’ singularity off the axis H = 0 into the metastable region 
(Domb 1976). We feel that these criticisms are not valid, and an ‘essential’ singularity 
due to compact droplet-like excitations does exist at all first-order transitions (in cases 
where there is no stronger singularity, as, for example, would happen in isotropic 
magnets). But clearly more work on this problem would be desirable. An important 
step towards a rigorous proof of the essential singularity in Ising models has been 
taken by Isakov (1984). He shows that 

1 akF [ ( kyT 
lim - -- ( k ! ) ” ( d - ’ )  2(d - 1) -+ C( 
h - 0  k !  ahk  - (4.22) 

where k > (2J/  k B T ) d ,  C is a constant depending only on dimension, and 161 S 1 for 
sufficiently low T. A metastable state in his treatment is defined through an expansion 
at h =0,  A = Z  Akhk, which is asymptotic: the expansion has to be cut off at the 
minimum of the sequence Akhk. The last term of this series can be taken as a measure 
of the uncertainty E with which a metastable state can be defined, 

(4.23) 
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Interestingly, the same result is found from the droplet model description (4.13), taking 
as the uncertainty the contribution of precisely the critical size itself (Isakov 1984). 

4.4. On the significance of the ‘spinodal curve’ and related limits of metastability 

In this section we return to the mean-field description of metastability, and recall that 
already in § 2.1 we have found a critical divergence at the ‘limit of metastability’. For 
example, in the thermally driven first-order transition of figures 1( b )  and 2( b )  we find 
x T X ( T -  To)-’, while in the transition driven by the field (figure 3 ( b ) )  we find 
xT a (H, - H ) - 1 / 2 X  ( 4 - 4J-I. In the following we consider mainly the singular 
behaviour at the ‘spinodal curve’ &( T ) ,  but remember that other mean-field limits of 
metastability have similar properties. 

From (2.6) we find, putting 6 = 4 - &+ 4s = 4 - &+ ( - r / 3 u ) ’ I 2 ,  that 6 = 
( R / J d ) [ 3 u (  4 - &) (4  + this divergence of the correlation length implies that 
the spinodal curve just behaves as a line of critical points (Binder and Muller- 
Krumbhaar 1974, Compagner 1974, Saito 1978). In renormalisation group treatments 
of mean-field systems ( R  + a), this line is described by a ‘spinodal fixed point’ (Gunton 
and Yalabik 1978, Dee et a1 1981). 

As discussed in § 4.1, these metastable branches are meaningful in the mean-field 
limit, R +a, and so it is natural to ask to what extent mean-field theory is still accurate 
for large but finite R.  This question can be answered, for instance, by extending the 
Ginzburg criterion for the critical point (2.24) and (2.28) to a metastable state close 
to the spinodal curve. We require (Binder 1984b) 

( ( 8 4 ( x ) ) 2 ) T , L < <  ( 4  - 4 ~ ) ~  (4.24) 

and using (2.25)-(2.27) with L = 5- [ R / ( 6 d ~ q b , ) ” ~ ] ( 4  - 

1 << ~ 2 6 d - 2 ( 4  - +s)*a ~ d 4 : 2 - d ) / 2 ( 4  - + s ) ( 6 - d ) / 2 a  R ~ ( H , -  ~ ) ( 6 4 / 4 ,  (4.25) 

This condition is fulfilled if either the interaction range is very large or d exceeds 
d ,  = 6 .  This self-consistency of the spinodal for d > 6, equivalent to the fact that for 
finite R the ‘spinodal fixed point’ is stable for d > 6 but unstable for d < 6 (Gunton 
and Yalabik 1978), is not yet understood. 

The result d ,  = 6 for the ‘spinodal fixed point’ can also be simply understood by 
the fact that the associate Ginzburg-Landau field theory has a V3 term in the variable 
V = 4 - &. But the problem is the physical meaning of this spinodal singularity which 
might exist for d > 6: the lifetime of metastable states is finite everywhere in between 
coexistence curve and spinodal, but will diverge to infinity when the spinodal is 
approached ! 

As will be shown in 0 5.4, the condition that the lifetime of the metastable state is 
very large is also given by (4.25). Therefore the practical limit of metastability is 
reached when (4.25) is taken as an equality. Hence the maximum value which Xr can 
reach is X T a x ~  ~ Z d l ( 6 - d )  Cc R 2 ( d  = 3 ) .  Figure 22 shows Monte Carlo evidence for the 
approach towards mean-field behaviour, as obtained for Ising models with equal 
interaction strength between z neighbours, with z between 6 and 348 (Heermann et a1 
1982). 

Thus for R finite a stability limit where xT actually diverges is not accessible. It 
is possible, of course, to define a hypothetical stability limit by extrapolation (see 
figure 19), but, this ‘pseudospinodal’ lacks any deeper physical significance-in its 
immediate vicinity the states are gradually relaxing towards equilibrium, and this 

yields 
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Figure 22. Inverse susceptibility of Ising ferromagnets plotted against h = - H /  k ,  T at 
T /  TYF = $ for various ranges of the exchange interaction: each spin interacts with equal 
strength with q neighbours. The full curve is the molecular field approximation, the broken 
curve a fit to (4.13) (from Heermann er al 1982). 

relaxation has no features associated with any singular character of this 'pseudo- 
spinodal'. Actually, the transition from the decay of metastable states (via nucleation) 
to the decay of unstable states (via long-wavelength instabilities such as spinodal 
decomposition) is completely gradual (see § 5.4). In addition, this extrapolation is not 
really unique and hence the pseudospinodal H" in figure 19 is not well defined. 
(Choosing in the law xr  cc ( H "  - H)-" an exponent x different from x = 4 would also 
be consistent with the data, but with a different H".) 

An alternative definition of a spinodal curve 4, (T)  is given in terms of the 
coarse-grained free energy fc,(4) (see (4.2)) via its inflection point 
(a2fc,(4)/a4*).I,=,, = 0. Again, the answer obtained in this fashion is not unique 
either-rather 4s depends distinctly on the cell size L used in the coarse graining. This 
point is illustrated in figure 23, where an approximate Monte Carlo calculation of 4s 
is presented (Kaski et a1 1984). This calculation is approximate, since it is assumed 
that the order parameter 4 in a block of linear dimension L (which is a subsystem of 
a large system) is given by PL (c$)ocexp(-Ldfc,(qb)/kgT).  By sampling PL ( 4 )  one 
can obtain fc,(4) from this assumption. Figure 23 shows that the relative distance 
1 - +,/~,,, of the spinodal from the coexistence curve (the latter here is measured as 
the position &,ax where PL( 4 )  is maximal) agrees with the mean-field value (1 - 1/43 = 
0.41) only for L/(<< 1; in the opposite limit, L / [  >> 1, this relative distance tends to 
zero. A similar behaviour in fact is also expected for the actual f c ,  ( 4 ) ,  which is not 
easily accessible by such Monte Carlo methods. 

Obviously a definition of a stability limit in terms of kinetics is a more sensible 
approach: we call a state metastable as long as it has not decayed during some given 
(large) time, the precise value of which is arbitrary. For the 'cloud point' of gas-liquid 
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Figure 23. Monte Carlo results for the cell size dependence of the relative distance of the 
‘spinodal’ from the coexistence curve, as deduced from cell distribution functions of the 
three-dimensional nearest-neighbour Ising model in the critical region. By scaling L with 
the correlation length, all temperatures superimpose on one ‘scaling function’ (from Kaski 
et al 1984). 
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Figure 24. Stability limit of metastable states in the two-dimensional nearest-neigbour 
square Ising lattice. Full curves are due to the MFA and the Schofield (1969) ‘linear model’ 
equation of state. Chain lines represent bounds estimated by Capocaccia et al (1974) for 
T+O. Crosses and full circles denote Monte Carlo results due to Binder and Muller- 
Krumbhaar (1974) and Binder (1976) respectively (from Binder 1976). 
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nucleation this time may be 1 s or 1 h; in Monte Carlo simulations of the Ising square 
lattice (figures 19 and 24) this time may be 1027, or 103.r,, 7, being the order parameter 
relaxation time in equilibrium. Of course, the precise choice of this time affects the 
location of this kinetic stability limit somewhat: the larger is the time chosen, the closer 
the stability limit moves towards the coexistence curve. In practice, however, this 
variation may be rather small. We emphasise that such a kinetic limit of metastability 
(close to this limit nucleation starts to become very easy) agrees with the spinodal 
curve only for R +.CO, as discussed further in § 5.4; for example, in figure 19 the kinetic 
stability limit occurs at Hc/  k B T  = -0.09, while the ‘pseudospinodal’ occurs at about 

A similar behaviour is expected for stability limits in other systems as well. For 
example, the famous ‘Kirkwood instability’ (Kirkwood 1951) of fluids can be viewed 
as the mean-field spinodal of the supercooled liquid at the liquid-solid transition. This 
instability is not physically meaningful for systems with short-range forces in finite 
dimensions (Kunkin and Frisch 1969), but can be justified in the long-range case 
(Grewe and Klein 1977a,b, Klein and Brown 1981) or in the infinite-dimensionality 
limit as has recently been suggested for hard sphere fluids (Frisch et a1 1985, Klein 
and Frisch 1986). 

H ” / k g T =  -0.11. 

5. Dynamics of first-order phase transitions 

The dynamics of first-order phase transitions has been a field of great activity, and it 
recently has been reviewed extensively elsewhere (Gunton et a1 1983, Binder 1984c, 
Binder and Heermann 1985, Furukawa 1986). Hence this section does not at all aim 
at completeness, but is rather a tutorial introduction to the main concepts about the 
subject. 

The initial stages of such a phase transformation are treated in § §  5.1 and 5.3, and 
the role that the spinodal curve plays for dynamics is elucidated in § 5.4. Some aspects 
of the late stages of the transformation are discussed in § §  5.2 and 5.5. 

5.1. Decay of metastable states via nucleation 

The neglect of fluctuations in mean-field theory yields metastable states of infinite 
lifetime. Now it has been known for a long time (e.g. Becker and Doring 1935) that 
the important fluctuations which lead to a decay of the metastable state are ‘droplets’ 
or ‘heterophase fluctuations’ (see § 4.2). We now consider the dynamics of such 
droplets. In a gas, a fluid droplet may grow or shrink by condensation or evaporation 
of single atoms; then the number n r ( t )  of droplets containing I atoms (an ‘ I  cluster’) 
in the unit volume at time t can be described by a rate equation for these processes: 

dn,( t ) /dt  = Gr-,nl-,(t) - G,nl(t)+Sr+lnr+l(t)  -Srnl(t) ( 1 2 2 )  ( 5 . 1 ~ )  

d n , ( t ) / d t = - G , n , ( t ) + S , n , ( t )  ( I =  1) (5.lb) 

where GI and SI are the rates for growth and shrinking of an 1 cluster. These rates 
are assumed not to depend explicitly on time-thus any depletion of monomers is 
neglected in ( 5 . 1 ~ ) .  In the spirit of § 4.2, such clusters occur already in thermal 
equilibrium in the one-phase region and at the coexistence curve. It is natural to 
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assume that a detailed balance condition holds between any growth process and the 
inverse shrinking process, i.e. 

Gln;q= S,+ln;21 = W(1, 1). (5.2) 

Thus the rates GI and S, in (5.1) can be eliminated in favour of one rate factor (denoted 
here as W (1, l ) )  and the equilibrium cluster concentration n;q = no exp(-AFl/ k,T), 
which again is expressed by the cluster formation free energy A F l  (see (4.7) or (4.10), 
for instance). This yields in ( 5 . 1 ~ )  

dn,( t ) /dt  = W(1-1, 1 )  

+ W ( l , l ) ( m - )  n?21 nYq ( 1 3 2 ) .  

nl*l(t)  - n d t )  *-(-)+--(-) a n r ( t )  1 a2 n d t )  

U=.[ W(1,1) :(%)I G -- a J,.  

We now transform this rate equation into a differential equation by expanding 

nY21 n?q d l  n;" 2 d12 n;q 

W ( 1 - l , l ) =  W ( l , l ) - d W ( l , l ) / d l  

and find 

d t  a1 a1 

(5.3) 

5 . 4 ~ )  

5.46) 

(5.5) 

Here we have defined a 'cluster current' J,  to emphasise the fact that (5.5) has the 
structure of a continuity equation in cluster size space { I } .  If we generalise (5.1) such 
that we allow growth and shrinking not only by evaporation/condensation of monomers 
but also by (small) clusters of size l ' ,  we still find an equation similar to (5.5), namely 
(Binder and Muller-Krumbhaar 1974, Binder and Stauffer 1976, Binder 1977) 

(5.6) 

where we have defined a cluster reaction rate RI in terms of rates W(1,l') describing 
reactions 1, l ' e l  + 1': 

1 
n;' 

RI = - 1 1 1 2  W( 1, 1'). (5.7) 

From (5.6) it is seen that the current JI in cluster size space consists of two terms: a 
'diffusive term'-R,an,(t)/al and a 'drift term' [a(AF,/k,T)/dl] R,nl(t) .  It is now 
assumed that (5.6) holds not only in equilibrium but can be carried over to metastable 
states, where one assumes that AF ,  is still given by (4.7) or (4.10), for instance. Since 
now the bulk free energy of the droplet is negative, we encounter a free energy barrier 
AF* which occurs for 1 = 1 * ,  the maximum of A F  (see figure 25). While a general 
solution of (5.6), which can be viewed as a description of Brownian motion in cluster 
size space { I } ,  usually cannot be found, it is clear that the critical cluster size I" plays 
a special role. For 1 < 1" the drift acts against the diffusion; so if a large cluster forms, 
it is rather likely that it disintegrates again. For 1 > I* the drift acts in the same direction 
as the diffusion; hence such supercritical clusters will grow steadily. 
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Figure 25. ( a )  Formation energy of a cluster as a function of cluster size ( I )  and the 
associated mechanism of cluster growth over the critical size I*.  ( b )  Cluster concentration 
n, for metastable and equilibrium states. (e) Non-equilibrium cluster distribution in a 
steady state nucleation process (schematic) (from Binder 1975b). 

As the system is being brought to a metastable state, one first encounters a transient 
period where the cluster concentrations nr(  t )  for 1 < I* grow until they nearly saturate 
at their 'equilibrium' values. After this 'time lag'-which is discussed in Kashchiev 
(1969), Binder and Stauffer (1976), Gitterman and Rabin (1984), Rabin and Gitterman 
(1984) and Trinkaus and Yo0 (1987)-the nucleation current at the maximum, JI*, has 
nearly reached a steady state value J. We obtain this so-called nucleation rate J from 
(5.6) by imposing the following boundary conditions: instead of (5.lb) we require 
liml,o n,( t ) /  nTq = 1; also we imagine that large droplets formed are removed from the 
system, and hence lim n l ( t ) / n T q = O .  From (5.6) it then is easy to obtain the steady 
state cluster concentration n?, since we must have an;" /a t  = 0, i.e. JI = J independent 
of 1, and thus 

J = n T q R I - ( - )  d n;B - = J / ,  n y  * - dl' 
d l  nPq n :q Rlfn7Q (5.8) 

where we have used the boundary conditions at 1-0 and I - C O .  In cases where 1" is 
very large, one can approximate (5.8) by performing a quadratic expansion of AFl at 
I * ,  AF, = AF,* - f g k , T (  1 - I*)* ,  and hence 

(5.9) 
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Thus it is seen that n;5/nYq changes from unity to zero in a relatively small region 
around I* (figure 25). This behaviour was also the reason for choosing I* as a cut-off 
size in the cluster size distribution describing a metastable state (see (4.13)). 

Now this simplest version of nucleation theory (Becker and Doring 1935, Zettle- 
moyer 1969) has been generalised in various ways. One obvious approach is the 
generalisation to several cluster coordinates; i.e. we have a multidimensional space { f }  
(Binder and Stauffer 1976; see also Binder 1980b). This may be useful for including 
fluctuations in cluster shape (in addition to the size 1 we may keep the surface area 
excess s over the minimal possible area as a second coordinate, etc) or to treat problems 
where droplets are formed from two constituents: nucleation of a fluid mixture droplet 
from the gas (Stauffer 1976), nucleation of voids filled with He gas in irradiated metals 
(Trinkaus 1983), etc. If we still work in the steady state approximation, the problem 
is formally equivalent to Maxwell's equations for steady state currents in the cluster 
size space { I } :  

(5.10) v x E ( f )  = 0 V * j ( l )  = 0. 

Here the 'field' is expressed in terms of a 'potential' 4 
E ( f )  = -v+ 4 = - n s s ( f ) / n e q ( f )  (5 .11)  

and we maintain the boundary condition at the origin that steady state cluster concentra- 
tion nss( I )  and equilibrium concentration neq( I )  are equal, and hence 4( f + 0) = - 1 .  
For very large clusters, lll+co, we have again n s s ( f ) / n e q ( I )  = O ;  thus the steady state 
current is maintained by a potential difference. Just as in the electrical analogy of a 
battery supplying electrons to maintain an electric current, here thermal fluctuations 
supply small clusters (in this continuum description at f = 0) which are fed into the 
nucleation process and maintain the steady state nucleation current. The nucleation 
rate J, i.e. the number of large clusters formed per unit volume and unit time, then is 
the total current at large distances from the 'source' at the origin, J = $ j (  I )  d j  

As in the electrical analogy, the current density j ( f )  is related to E ( f )  via the 
'conductivity tensor' a( I ) :  

j ( f ) = a ( f )  E ( f ) =  n e q ( I ) R ( f )  E ( I )  (5.12) 

with R( I )  a tensor of cluster reaction rates describing purely kinetic factors. But unlike 
the one-dimensional case (5.6), which was solved formally by (5.8) in the steady state 
case, no such general solution exists for (5.10)-(5.12). Since we expect a saddle point 
geometry for A F ( f )  (see figure 26), we resort to an expansion around the saddle point: 

(5.13) 

where the matrix G has one negative eigenvalue, -g, and otherwise positive ones. 
Introducing the effective cross sectional area A* of the saddle point region, one finds 
(Binder and Stauffer 1976) 

(5.14) 

This result closely resembles (5.9); only the pre-exponential factor now is different. 
We emphasise, however, that there are cases of practical interest where this saddle 
point approximation fails. If there is a strong enough disparity between the rate factors 
included in R(f), the main flux of clusters does not occur in the direction towards the 
saddle point, I * ,  and then it does not pass the saddle point region but passes offset 
from the saddle point over the ridge (Stauffer 1976). Such phenomena are likely to 
occur in solids, where huge activation barriers may occur in the rate factors, and strong 

A F ( l ) / k , T = A F ( l * ) / k , T +  ( f  - f * )  G * ( f  - f * )  +. . . 

Jccexp(-AF(l*)/kBT)Jg(A* * R(f*)  - A*)/IA*I. 
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Figure 26. Free energy functional A s  schematically displayed as a function of two phase 
space coordinates, 7) and 6: ( a )  shows a minimum (corresponding to a stable or metastable 
homogeneous phase), while ( b )  exhibits a saddle point configuration, representing a 
metastable phase plus one droplet (here 6 and 7) may actually represent coordinates of 
the droplet) (from Binder 1984b). 

disparity between different rates can be expected. Indeed, this effect is predicted to 
occur in the example ofvoid nucleation in irradiated metals, mentioned above (Trinkaus 
1983). 

So far our discussion of nucleation has been based on a description of droplet 
growth and shrinking in terms of rate equations, similar to chemical kinetics. We now 
turn to a rather different approach, the mean-field theory of nucleation as formulated 
first by Cahn and Hilliard (1959). Here one does not attempt to treat the problem of 
the droplet size distribution developing with time, but rather focuses on the description 
of the free energy barrier (figures 25 and 26). This barrier is due to a droplet which 
just has the critical size, and sits on the background of a (uniform) metastable state. 
The fact that the critical droplet corresponds to an extremum of the free energy 
functional, namely a saddle point, suggests that one can find the free energy barrier 
by the usual procedure of extremising the free energy functional (see (4.18)); but rather 
than for a uniform solution (where V24(x) = 0) corresponding to a stable state or a 
metastable state without a droplet, we now look for a spherically symmetric solution 
(figures 21(b) and (c)) which corresponds to a metastable state containing one critical 
droplet at the origin. When one solves (4.18) for 4 ( p )  subject to the boundary condition 
4 ( p  + CO) = 4ms, one can insert this solution into the free energy functional 8 itself 
and can obtain the energy barrier AF* as the free energy difference between the 
non-uniform solution and the uniform one (where 4 ( p ) =  &,s for all p ) .  This is 
essentially the same method as used for obtaining the interface free energyJ", associated 
with the flat planar interface between coexisting phases (figure 21(a)): there one looks 
for a solution non-uniform only in the z direction, perpendicular to the interface, with 
the boundary conditions 4 ( z  + -00) = +Poex and +(z = CO) = q5ye", and obtains hnt as 
the excess free energy contribution putting the profile 4(z )  into the functional (2.3). 
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In the limit where &,,+ c$YoeX this mean-field approach agrees precisely with the 
conventional nucleation theory as sketched above, where one uses the classical formula 
(4.7) for the droplet free energy. One obtains a free energy barrier 

(5.15) 

where we have used p* (aAF(p)/dp = 0 for p = p * )  from (4.7) and eliminated H in 
favour of q5ms = c $ ~ ~ ~ ~ + x ~ ~ ~ ~  H, disregarding terms of order H 2 .  Obviously, the free 
energy barrier as given by (5.15) diverges for &,s+ ,ye". On the other hand, if one 
moves deep into the metastable regime, (5.15) would predict that the barrier decreases 
gradually; classical nucleation theory does not contain any hint of a spinodal singularity. 

Mean-field theory of nucleation, on the other hand, does yield a singular behaviour 
when one moves towards the spinodal (Cahn and Hilliard 1959, Klein and Unger 
1983). Although the critical radius p* first decreases as predicted by the classical 
theory, near c$~ it starts to increase again since the correlation length 6 diverges as 
4 + c$~ (see 0 4.4) and p* cannot be less than 5. At the same time, the order parameter 
difference from the interior to the exterior of the droplet becomes very small (figure 
21(c)); the physical interpretation of such a 'diffuse' droplet is that it is not a compact 
drop as described in (4.7) but rather a ramified cluster (Heermann and Klein 1983a,b, 
Klein and Unger 1983). In the mean-field critical region of a system with large but 
finite interaction range R, one obtains then for the free energy barrier near the spinodal 
(Binder 1984b) 

while near the coexistence curve (5.15) yields 

(5.16a) 

(5.166) 

It is seen that for d < 6  AF" vanishes as one approaches the spinodal; but for large R 
one may nevertheless come close to the spinodal, since the scale for the nucleation 
barrier throughout the whole metastable region is set by the (large) factor R d ( l -  
T/Tc)(4-d)'2. One may expect that ( 5 . 1 6 ~ )  is meaningful as long as one requires 
AF*/kBTc>> 1-and one finds that this condition is exactly the same as (4.25)! 

One may substantiate this suggestion that ( 5 . 1 6 ~ )  is valid if one stays inside a 
region for which the Ginzburg criterion renders the considered metastable state 4,,,s 
self-consistent, by extending the Ginzburg criterion to the mean-field theory of 
nucleation itself. Just as for the stable and metastable minima of the free energy 
functional (figure 26( a)), the saddle point occurs in a high-dimensional configurational 
space representing the effect of fluctuations (figure 26( 6)). The Cahn-Hilliard theory 
of nucleation assumes that a single non-uniform spherically symmetric state which 
extremises (2.3) also dominates the functional integral (2.23) when we look for non- 
uniform states near the metastable minimum. It is now clear that a necessary self- 
consistency condition requires that the mean-square amplitude of fluctuations of 4 (x)  
along the radial profile + ( p )  obtained from the extremisation must be smaller than 
the square of the difference between 4 ( p  = 0) and + ( p  + CO) described by the profile 
itself: 

(5.17) 
Since + ( p  = 0) - + ( p  + a)a &- &,,, (5.17) is equivalent to (4.24) and (4.25). Note 

( (w(x) )2)T<< ( 4 ( P  = 0) - 4 b  + = ) ) I 2 .  
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that (5.17) considers only the effect of ‘bulk fluctuations’ on the interface profile. In 
addition to these bulk fluctuations there are also typical long-wavelength fluctuations 
associated with distortions of the local interface position away from its equilibrium 
position. These capillary waves, which for d S 3 lead to a complete delocalisation of 
flat interfaces (Buff et a1 1965, Widom 1972), represent fluctuations of the droplet 
shape around its average (hyper) spherical shape. Although these fluctuations have a 
pronounced effect on the droplet free energy, in that they yield a logarithmic correction 
to the classical barrier (5.16b) (see Langer 1967, Gunther et al 1980), they are not 
considered here as they do not alter our conclusions on the validity of mean-field theory. 

The advantage of this mean-field theory of nucleation is that it can be worked out 
for any phase transition for which an explicit mean-field theory exists, and quantities 
such as &-needed in the conventional nucleation theory based on (4.7)-are obtained 
within the same formalism. As an example, we mention work based on the mean-field 
theory of the fluid-solid transition (Ramakrishnan and Yussouf 1977, 1979, Yussouf 
1981, Ramakrishnan 1982): interfacial free energies and nucleation barriers were 
obtained essentially along the lines of the Cahn-Hilliard approach as sketched here 
(Haymet and Oxtoby 1981, Oxtoby and Haymet 1982, Harrowell and Oxtoby 1984, 
Grant and Gunton 1985). Of course, this work is still open to question as the anisotropy 
of the interfacial tension of solids is not considered. 

Another problem of the mean-field approach is that it yields only the free energy 
barrier directly, while there are clearly other factors entering the nucleation rate, as 
pointed out in the framework of the conventional theory of nucleation (see (5.9) and 
(5.14)). There must be kinetic prefactors as well as counterparts of the ‘Zeldovitch 
factor’ (Zeldovitch 1943) dg  controlling the width of the saddle point region and hence 
the time a critical cluster can spend there before it substantially grows. Langer and 
Turski (1973) have addressed this problem by formulating a hydrodynamic theory of 
nucleation for the gas-liquid transition into which the mean-field result for the 
nucleation free energy barrier enters as an input. This approach avoids the confusion 
that has arisen in the earlier nucleation literature concerning correction factors due to 
droplet rotational and translational degrees of freedom-see Zettlemoyer (1969) and 
Abraham (1974) for discussions of this problem. For the solid-fluid transition, the 
hydrodynamic approach has recently been formulated by Grant and Gunton (1985). 
We are not exposing these elegant but complicated theories here-partly because of 
lack of space, partly because the predictive power of any nucleation theory is still 
rather uncertain. Even for the nearest-neighbour Ising model, it is not yet clear at 
which value of A F * / k B T  significant deviations from the classical result, (5.16b), set 
in or in which direction they go (Stauffer et al 1982, Furukawa and Binder 1982) (see 
figure 27). While there is no doubt that the classical theory holds for A F * / k B T + m ,  
significant deviations are possible-though not yet proven without doubt-for barriers 
in the range 2 0 6  A F * / k B T S  60, which is the range of experimental interest. Further 
work is needed to clarify the situation and obtain the scaling function 7 for the 
nucleation rate in the critical region, as defined by Binder and Stauffer (1976) and 
Ehder  (1980b): 

J = ( l -  T / T , ) ” ‘ d + Z ) ~ ~ [ 6 ~ / ( ~ S o e x - ~ ~ e X ) ]  (5.18) 

where v is the correlation length exponent, z the dynamic exponent and 7 a (non- 
universal) amplitude factor. Lack of knowledge of this function still hampers the 
theoretical interpretation (Binder and Stauffer 1976, Langer and Schwartz 1980) of 
nucleation experiments in the critical region. 
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Figure 27. ( a )  Nucleation barrier AF*/k ,T ,  plotted against the variable [2(4, , -  
4yX)/p(+;"'" - 4yX)]-2,  as obtained from Monte Carlo simulations of lattice gas models 
in the critical region (Furukawa and Binder 1982). The straight line represents (5.15). 
Note that two-scale factor universality (Stauffer er al 1972) implies that this plot should 
also apply for real gas-fluid systems and binary mixtures near their critical point. ( b )  
Nucleation rate J observed in a nearest-neighbour Ising magnet at T /  T, = 0.59 in Monte 
Carlo simulations of a lattice of size 1683. Both J (circles) and the concentration n,. of 
clusters of critical size (squares) are plotted logarithmically against h-* where h = 
-2H/k,T. The full line is an expression consistent with classical nucleation theory (from 
Stauffer et al 1982). 

5.2. Later stages of droplet growth: coagulation, the Lifshitz-Slyozov mechanism and 
phenomenological structure factor scaling 

Nucleation is only the first step by which the decay of a metastable state begins. As 
nucleated droplets grow, they take a larger and larger volume fraction of the system. 
This fact gives rise to several effects. 

(i)  In the space taken by the droplets, no further nucleation and growth events 
can take place; further nucleation events can take place only in the parts of the system 
which have not yet been transformed. 

(ii) If the order parameter is conserved, as it is for the condensation of supercooled 
gas which occurs at constant overall density (or for the unmixing of supercooled binary 
mixtures (AB) at constant overall concentration c B ) ,  the growth of the droplets of the 
high-density phase (or B-rich phase) requires transport of mass (or B atoms) from the 
low-density (or A-rich) phase to the droplets. Thereby the supersaturation of the 
metastable phase must decrease, and thus further nucleation in the phase which has 
not yet transformed becomes more difficult and finally impossible-the final equilibrium 
is a two-phase mixture of macroscopic regions of saturated gas (or A-rich phase) 
coexisting with liquid (or B-rich phase) at the other branch of the coexistence curve. 
In systems with no conservation laws-for example, when one considers the phase 
transition of an anisotropic magnet below T, driven by the field-the final equilibrium 
is a one-phase state again, and no effect analogous to the decrease of supersaturation 
in regions not yet transformed occurs. 

These examples already illustrate one important distinction: the qualitative aspects 
of nucleation phenomena are rather universal-and different dynamic properties of 
various systems, as exemplified in conservation laws, for instance, enter only via 
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different kinetic prefactors RT in the nucleation rate, (5.9). In the later stages, however, 
different laws governing the dynamic evolution of the various systems do show up 
very distinctly, and there is much less universality. 

(iii) As droplets grow, it may occur that neighbouring droplets coalesce. This 
‘coagulation’ mechanism may get greatly enhanced if the droplets move around (‘cluster 
diffusion and coagulation’ mechanism, as discussed for phase separation by Binder 
and Stauffer (1974), Binder (1977) and Binder and Kalos (1980)). Even in solid alloys, 
some motion of clusters takes place: due to random evaporation and condensation of 
atoms at the surface of the clusters, the cluster centre of gravity performs a random 
diffusive motion. Of course, the cluster diffusion constant decreases quickly with 
increasing cluster size. In fluid mixtures, on the other hand, Brownian motion according 
to the Stokes-Einstein formula yields a cluster diffusion constant which decreases only 
with the inverse of the cluster radius. In fluids where both phases percolate, yet another 
mechanism occurs: mass may flow from the weak links of the random percolating 
networks to the stronger ones, and thereby the network coarsens (Siggia 1979). 

(iv) A particularly interesting mechanism occurs when the order parameter is 
conserved and the cluster mobility is small, as happens in the late stages of phase 
separation in solid mixtures. Then the supersaturation is so small that no further 
nucleation events occur, and coarsening of the structure proceeds via a competition 
mechanism proposed by Lifshitz and Slyozov (1961). There one considers the random 
evaporation and condensation of atoms from and to the clusters; these events maintain 
diffusion fields between the clusters with gradients such that the largest clusters will 
most likely gain atoms and the smallest will lose atoms, until they are finally dissolved 
again. This process leads to a power law for the growth of the average linear dimension 
L( t )  with time, namely L( t )  a t”3 ,  independent of the dimensionality d 5 2. Also the 
other mechanisms mentioned above lead to power laws, as discussed by Binder and 
Heermann (1985) and Furukawa (1986), though the interplay of the various mechanisms 
is not yet fully understood. An interesting consequence of these power laws is a scaling 
behaviour predicted for both droplet size distribution nr( t )  and structure factor S ( k ,  t )  = 
( 4 ( k ,  t ) 4 ( - k ,  t ) ) - ( l4 (k ) I ) ’  (see, e.g., Binder 1977, Binder et a1 1978): 

nr( t )  = ( T( t))’n’( I /  T( t ) )  (Z+O, t + O )  (5.19) 
S(k ,  t )  = (L (  t ) )ds”(  kL( t ) )  ( k + 0 ,  t + ~ ) .  (5.20) 

Here T ( t ) a  tdx  is the mean cluster size and n’(z) and s”(zf) are scaling functions. 
Quantitatively reliable theoretical predictions for these scaling functions are also a 
challenge for further theoretical work. 

We shall not go into the mathematical details of the various mechanisms which 
may lead to (5.19) and (5.20) here, since many points are still under discussion. We 
note only that this scaling property is superficially similar to scaling assumptions near 
critical points-cf, for example, (4.12). But in the present case there is only one 
non-trivial exponent, x; the second exponent in the prefactor multiplying the scaling 
function follows from simple normalisation sum rules. While approaching a critical 
point, a system reaches a structure which is self-similar on all length scales, ruled by 
some fractal dimensionality d,; no such fractal dimensionality can be identified in the 
present problem. This fact again is evident for the Lifshitz-Slyozov theory, for which 
G(z) can be explicitly calculated for 4,  + 4 ; O e x ,  and one finds that n’ (z 3 zmax) = 0, 
n’(z + 0) + 0 and a smooth maximum occurs in between (figure 28). In contrast, (4.12) 
reflects nicely the fractal structure of the cluster size distribution at criticality ( H  = 0, 
1 - T /  T, = 0) due to its power law decay. 
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Figure 28. Scaling function {(z) plotted against z/z,,, (z,,, is denoted as zo in the figure), 
calculated in the spirit of the theory of Lifshitz and Slyozov (1961) for d = 2. Here A is 
a renormalisation constant fixed by the condition 41 - 4y" = 1; dzzG([) (from Binder 
1977). 

5.3. Decay of unstable mixtures via spinodal decomposition 

In the previous sections we have been concerned with the dynamics of the transition 
when the initial state where the transition starts to take place is metastable. We now 
consider the alternative situation when the initial state is unstable: then no nucleation 
barrier needs to be overcome in the phase transformation. Rather the instability of 
the initial state shows up in the spontaneous growth of long-wavelength fluctuations 
(figure 2 9 ( a ) ) .  

For many transitions this decay of unstable initial states proceeds so quickly that 
it is impossible to observe it under well defined conditions: the system never can be 

X +  X -  

Figure 29. Unstable fluctuations in the two-phase regime of a binary mixture AB at a 
concentration cB ( a )  in the unstable regime inside the spinodal curve c i  and ( b )  in the 
metastable regime in between the spinodal curve cb  and the coexistence curve cLtbx. The 
local concentration c ( r )  where r = (x, y, z), is schematically plotted against the spatial 
coordinate x at some time f after the quench. The diameter of a critical droplet is denoted 
as 2R* ,  and correlation length of concentration fluctuations as 5 (from Binder 1981~) .  
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brought to an unstable state instantaneously, but only at a finite ‘quenching rate’. Then 
often most of this decay occurs already during the quench. (Figure 30 indicates typical 
quenching experiments schematically.) 

An interest in the initial stages of the decay of unstable states hence exists only if 
the dynamics of the system considered is sufficiently slow. This happens for binary 
mixtures, when one brings (e.g. by sudden temperature changes) the system from a 
state in the one-phase region, where it is homogeneous to deep inside the two-phase 
region. The resulting spontaneous growth of long-wavelength concentration fluctu- 
ations is known as ‘spinodal decomposition’ of the mixture (Cahn and Hilliard 1958, 
Cahn 1961, 1968). Here we describe the theory of spinodal decomposition only in its 
simplest form-more thorough recent reviews can be found in Gunton et a1 (1983) 
and Binder (1984~).  

In the binary mixture the order parameter 4(x, t )  is a local concentration variable 
and satisfies a continuity equation 

&$(x, t ) / d t + V  * j ( x ,  t )  = O  (5.21) 

where j is a concentration current. Equation (5.21) expresses the fact that the average 
concentration (obtained by integrating 4(x, t )  over the total volume) is conserved. 
The current j is now assumed to be proportional to the gradient of the local chemical 
potential difference p (x, t ) :  

j ( x ,  t )  = - M V p ( x ,  t )  (5.22) 

- 
C 

cl2x Ccr t t  ciiJx- 

Figure 30. Schematic description of quenching experiments where the system at time f = 0 
is rapidly cooled from an initial temperature in the one-phase region to a final temperature 
in the two-phase region ( a )  for a gas-fluid system at constant density p and ( 6 )  for a 
binary (fluid or solid) mixture AB at constant concentration. As time elapses, the system 
starts to separate in a two-phase mixture of two distinct phases: a mixture of saturated gas 
and saturated liquid (at final densities pgar, pllquld) in case ( a ) ) ,  a mixture of A-rich and 
B-rich coexisting (fluid or solid) solutions (at final concentrations c!L&, cLEix) in case ( b ) ) .  
In the following the order parameter ( p  - pcr,t or c - c,,,, respectively) is denoted again by 
4, so pgas or c$kix are denoted as 4 y ,  pilquld or cLtLx as $y“, etc (from Binder 1980b). 
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with M a mobility. Here p ( x ,  t )  is obtained by generalising the thermodynamic relation 
p = (aG( T, 4 ) / a ( b ) T ,  where G = F - p+ is the Gibbs potential per atom, to functional 
derivatives (in the notation of 0 2, p is just the ordering field H) to obtain (cf (4.18) 
and (4.2)) 

(5.23) 

Then (5.21)-(5.23) yield the Cahn-Hilliard equation (Cahn and Hilliard 1958, Cahn 
1961, 1968) 

(5.24) 

Since af,, (4) /a4 is highly non-linear (cf figure 16), (5.24) is not analytically soluble. 
The standard assumption (Cahn 1968) now is that in the initial stages of unmixing 
4(x, t )  everywhere in the system is close to its average value 6. Then it makes sense 
to linearise (5.24) in the variable S + ( x ,  t )  = + ( x ,  t )  - 6:  

Introducing Fourier transforms 

&bk( t )  = dd exp(ik x ) S + ( x ,  t )  J (5.26) 

one readily finds 

W k ( t )  = W k ( 0 )  exp(o(k)t)  (5.27) 

where the ‘amplification factor’ w ( k )  follows from (5.25)-(5.27) as 

(5.28) 

The quantity of interest for scattering experiments is the equal-time structure factor, 
defined as 

S ( k ,  t )  ( W - k ( t ) W k ( t ) ) =  ( W - k ( o ) W k ( O ) ) T  e x p ( 2 4 k ) t ) .  (5.29) 

Here the prefactor is simply the static structure factor of the initial state (at temperature 
To) before the quench: 

( s 4 - k ( o ) S 4 k ( o ) ) T  = ( S 4 - k S 4 k ) T o  = S T O ( ~ ) .  (5.30) 

Thus (5.29) implies that fluctuations with wavevector k contained in the initial state 
grow exponentially with the time t after the quench (which is assumed to occur 
instantaneously from To to T at t = 0) if w (  k )  > 0, they decay if o ( k )  < 0, while S ( k ,  t )  
is independent of time for the ‘critical wavevector’ k ,  for which o ( k , )  = 0. From (5.28) 
we see that the amplification factor is positive for long wavelength A = 2 7 ~ /  k, namely 
for 

(5.31) 

Thus fluctuations with wavelengths A > A, should increase exponentially fast with time, 

O <  k <  k , = 2 7 ~ / A , = [ - ( a ~ f , , ( 4 ) / a ~ ~ ) ~  I + -&  d l R 2 1 ’ / 2 .  
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the fastest growth occurring for k = k,,, = k,/2, until non-linear terms limit the growth. 
Of course, an unlimited growth of concentration differences in the case of figure 29(a) 
would not make any sense. It also is obvious that by this linearisation approximation 
we have lost the information on non-linear unstable fluctuations, the ‘heterophase 
fluctuations’ or droplets of figure 29(b). In the regime in between the coexistence 
curve and the spinodal, where (a”,,( 4 ) / ~ 3 4 ~ ) ~  > 0, the present linearised theory predicts 
that all ‘homophase fluctuations’ decay, another expression of the notion that the state 
is ‘metastable’, while inside the spinodal it is ‘unstable’. 

A convincing experimental test of this theory is not straightforward for several 
reasons. 

(i) The parameters M, ( ~ ? f , ~ ( 4 ) / ~ 3 4 ~ ) ~  1+=6 and R are usually not known indepen- 
dently; if they are used as adjustable fitting parameters, a full test of the theory is no 
longer performed. 

(ii) The actual quench never leads instantaneously from one state to another, as 
assumed in figure 30, but at a finite quench rate. This leads to significant deviations 
of the structure factor S(k ,  t )  from its behaviour for instantaneous quenches, as model 
calculations show (Carmesin et a1 1986). 

(iii) In systems where the diffusion proceeds relatively fast, one can investigate 
intermediate and late stages of phase separation only, while early stages are hardly 
accessible. 

In view of these problems, the usefulness of the linearised Cahn-Hilliard theory 
for experiments has been a matter of long discussion in literature (Gunton et a1 1983, 
Binder 1984c, Haasen et a1 1984). A very convincing test, however, is possible by 
computer simulations of Ising models where none of the problems (i)-(iii) occur. For 
the nearest-neighbour Ising model, the linearised theory of spinodal decomposition is 
found to be qualitatively wrong (Bortz et a1 1974, Marro et a1 1975, Sur et a1 1977) 
(see figure 31). There is neither a time-independent intersection point k, of the structure 
factor S ( k ,  t )  at different times nor a time-independent position of maximum growth, 
k,,  nor is there a regime of initial times where S (  k, t )  grows according to an exponential. 
Rather k,( t )  -j 0 as t -j CO, reflecting a ‘coarsening’ of the structures which are built 
up, and this behaviour sets in already during the initial stages of phase separation. 
The initial growth of S ( k ,  t )  at fixed k is even slower than linear with time. On the 
other hand, if one considers Ising models with a large but finite range of the forces 
(Heermann 1984a), one finds much better agreement with the linearised theory of 
spinodal decomposition. There is an initial regime of exponential growth clearly visible 
(figure 32(a)), and the resulting growth rate agrees with the theory quantitatively 
(which is easily worked out in the MFA without adjustable parameters being present 
(figure 32(b)). Thus we find, as in our discussion of metastability (§ 4.1) and nucleation 
( 8  5.1), that it matters whether or not a system behaves mean-field-like. 

We shall return to a discussion of the validity of the linearised theory for systems 
with a large but finite range of the forces in § 5.4, and here merely emphasise that, for 
systems with a very short range of interaction, the linearised theory is completely 
invalid, since non-linear effects are important from the start. The full non-linear 
equation (5.24), which also has to be supplemented with a random force term (Cook 
1970) to account for thermal fluctuations at the final temperature T of the quench, 
has been studied by various authors (e.g. Cahn 1966, Langer 1971, 1973, Langer and 
Baron 1973, Binder 1974). A fairly successful approximation was finally developed 
by Langer et a1 (1975)-for extensions see also Kawasaki and Ohta (1978a,b), Binder 
et a1 1978, Billotet and Binder (1979), and Horner and Jungling (1979): this theory 
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k Time ( M o n t e  Carlo steps per atom1 

Figure 31. ( a )  Spherically averaged structure factor of a three-dimensional simple cubic 
Ising system with nearest-neighbour ferromagnetic exchange plotted against wavenumber 
k for various times. The system is quenched from a random spin configuration (correspond- 
ing to To+ CO) to T = 0.6Tc, and evolves there according to a spin exchange dynamics (spin 
up corresponds to atomic species A, spin down to B, and the concentration has its critical 
value c = i. Time is measured in units of attempted Monte Carlo steps per atom; the lattice 
spacing is unity. Due to the periodic boundary condition for the 30 x 30 x 30 lattice k is 
defined only for discrete values k ,  = 2nn /30 ,  n = 1 , 2 , .  . . ; these discrete values of S ( k , , ,  
t )  are connected by straight lines to guide the eye. ( b )  Similar data, but plotted as the 
logarithm of the structure factor against time for n = 1,2, 3 for c = 0.2 (from Marro et a1 
1975). 

yields predictions for S ( k ,  t )  in fair agreement with the computer simulations at early 
times, at least for the quenches at critical concentration. However, we shall not expose 
this theory here as it also has its drawbacks (Binder et a1 1978, Billotet and Binder 
1979): it yields neither a reasonable description for the gradual crossover from non- 
linear spinodal decomposition to nucleation and growth, as one moves in concentration 
towards the coexistence curve, nor a good description of the scaled structure factor 
(5.20) at the later stages of the quench. In contrast, extending nucleation theory to a 
‘cluster dynamics’ approach which takes the conservation of concentration (or density) 
(5.21) properly into account, both the gradual transition from nucleation to spinodal 
decomposition and the scaling (5.20) emerge in a natural way (Binder and Stauffer 
1974, Binder 1977, Mirold and Binder 1977, Binder et a1 1978). However, this approach 
shares all the disadvantages of the conventional theory of nucleation, as discussed in 
§ §  4.2 and 5.1: the ‘clusters’ are somewhat ill defined, and many unknown phenomeno- 
logical parameters are involved. Although one can estimate the scaling function s” in 
(5.20) with plausible assumptions (Rikvold and Gunton 1982), a quantitatively reliable 
theory for predicting both L( t )  and s” in (5.20) is still not at hand. (This problem can 
only be solved easily in the (unrealistic) spherical model limit n-vector Hamiltonian 
with n + CO; see Tomita (1978) and Mazenko and Zannetti (1984).) In this author’s 
opinion, the relatively most reliable theoretical predictions for L ( t )  and s” in binary 
mixtures are due to Monte Carlo computer simulations (Marro et a1 1979, Lebowitz 
et a1 1982, Fratzl er al  1983). We shall not continue this subject here, as some aspects 
are still rather controversial, but rather refer to recent other reviews (Gunton et a1 
1983, Binder and Heermann 1985, Furukawa 1986) for more detailed discussions and 
further references, as well as for a discussion of corresponding experiments. 
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Figure 32. ( a )  Logarithm of spherically averaged structure factors of a 603 simple cubic 
Ising lattice, where each spin interacts with 9 = 124 neighbours with equal interaction 
strength J ,  quenched from infinite temperature to T = $TFF =dqJ/k , .  Three concentrations 
are shown, as indicated in the figure, and the five smallest wavevectors k, =2nn/60. 
Straight lines for short times indicate exponential growth and thus yield w ( k ) .  ( b )  Plot of 
w ( k ) / k 2  against k2 ,  as extracted from data such as shown in ( a ) .  Crosses are the Monte 
Carlo results; straight lines are the predictions of the linearised theory (from Heermann 
1984a). 

A general point, however, is not controversial and deserves to be emphasised. 
Whether or not there is a rather gradual or a rather sharp distinction between the 
decay mechanisms during the initial stages of phase separation (nucleation against 
spinodal decomposition), :his distinction plays no role at late stages: there we always 
expect (5.20) to hold, and S gradually changes with volume fraction 64/(4?'" - 4f"'") 
of the minority phase as one moves away from the coexistence curve towards the centre 
of the miscibility gap in figure 30. While the morphology of the phase-separated 
structure changes-an assembly of well separated growing droplets near 4yex (see 
Binder and Stauffer 1976) and an interconnected 'percolating' structure in the centre 
of the miscibility gap-the percolation transition separating these regimes (Binder 
1980c, Heermann 1984b) hardly affects S ( k ,  t )  and has nothing to do with the spinodal 
curve. 
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5.4. The spinodal curve revisited 

In the previous section we have seen that the simple Cahn (1961, 1968) linearised 
theory of spinodal decomposition is completely invalid for systems with short-range 
interactions, but holds approximately for systems with a large but finite range of 
interaction. This again raises the question on the significance of the spinodal curve, 
which in the theory sketched in (5.21)-(5.31) shows up by the fact that the range of 
unstable wavenumbers (0 < k < k,) shrinks to zero when the spinodal is approached, 
since there A , + o o .  Using a free energy function f,,(+) consistent with the phase 
diagrams of figure 30, we have 

(5.32) 

Thus A, diverges when 4 + 4, in a fashion completely analogous to that of the 
correlation length 5 when one approaches the spinodal from the metastable side (see 
9 4.4). This observation already suggests that we again apply the Ginzburg criterion 
to check also the validity of the linear theory of spinodal decomposition. Similar to 
(4.24), we now must require 

A , a  R (  1 - T /  TC)-’I2( 1 - 4/4s)-1’2. 

( ( W ( X ,  f))2)T,L<< ( 4  - AI2. 

((w(x, t )12)T ,L  e ( ( ~ + ( x ,  0 ) I 2 ) , L  exp(2w(kmax)t) 

(5.33) 

(5.34) 

We may estimate ((64(x, t ) )2 )T ,L  as 

and estimate ((&#J(x, O))2)T,L=((S4(x))2)To,L as in (4.24) and (4.25), but using now 
L = A, as the maximum permissible choice of a coarse-graining cell size. This yields 

R-’Azpd exp(2w(kma,)t)cc ( 4  - 4J2 (5.35) 

and using also (5.32) we find 

exp(2w(km,,)t)<< R d ( l  - T/Tc)(4-d”2(l  - 4 / + s ) ( 6 - d ) / 2 .  (5.36) 

Thus the time range over which the linearised theory is valid increases only slowly 
with increasing R, namely logarithmically, t a In R. After this time non-linear effects 
come into play already, which limit the exponential growth, (5.29). Of course, in order 
to have an initial regime where the linearised theory is valid, the right-hand side of 
the inequality (5.36) must exceed unity: this is exactly the same condition as formulated 
already in our discussion of metastability, (4.25), and the mean-field theory of 
nucleation, (5.16a) ! 

In the centre of the miscibility gap, on the other hand, 4 - 4s is of the same order 
as the order parameter 4,,,,, and A, of the same order as tcoex: then (5.35) yields 

(5.37) 2 d - 2  exp(2w(kmax)t) << 4foexR tcoex. 

In the mean-field critical region, which occurs for 1 << Rd (1 - T /  Tc)(4-d)/2, 
exp(2w(km,,)t)<< R d ( l  - T /  T,)(4-d)/2. (5.38) 

On the other hand, for a system with short-range forces we would find in its critical 
region, from (2.25), that 

4 c o e x a  t2iv y / v - d  ( ( 4  ( X ) ) ~ ) T , L = ~ ~ , , ~ ~  a t o e x  

and hence 

exp(2w( k,,,)t) << t&~+2p) ’” ,  (5.39) 
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Since the hyperscaling relation implies d v  = y+2p,  the right-hand side of (5.39) is 
unity, and hence the linearised theory of spinodal decomposition is then never self- 
consistent. This conclusion is corroborated by approximate theories of non-linear 
effects in spinodal decomposition, such as the theory of Langer et a1 (1975). These 
non-linear effects are controlled in strength by a parameter l/fo given by 

(5.40) 

where to, B and r are the critical amplitudes of correlation length, order parameter 
and susceptibility. This parameter f o  is essentially the same as that which appears on 
the right-hand side of the Ginzburg criterion. In fact, two-scale factor universality 
(Stauffer et a1 1972) implies that fo is a universal constant. On the other hand, in the 
mean-field critical region fog R d (  1 - T /  T,)(4-d)’2 >> 1, and hence non-linear effects are 
initially small, as demonstrated by explicit calculation (Carmesin et a1 1986). Unfortu- 
nately, this Langer-Baron-Miller theory does not become exact even in first order in 
f ; ’ ,  and a more systematic theory is very complicated (Grant et af 1985). 

Figure 33 summarises our statements on the validity of the spinodal line and the 
mean-field theories of nucleation and spinodal decomposition. We emphasise that 
both the linearised theory of spinodal decomposition (exponential amplification of 
fluctuations, with time-independent k,,, and k,) and the concept of ‘spinodal’ 
nucleation (Klein and Unger 1983, Heermann and Klein 1983a,b), i.e. nucleation of 
ramified droplets which first compactify and then grow, are concepts which hold in a 
mean-field critical region only. One expects to find such a behaviour in polymer 
mixtures (Binder 1983, 1984~) .  In most other systems, however, we expect a behaviour 

f o x  (1 - T /  Tc)-du+2P+Y 50 B*IT 

‘ t  

Figure 33. Various regions in the temperature-order parameter plane near T,. Due to the 
symmetry around the critical point, only one half of the phase diagram is shown. Full 
curves are the coexistence and spinodal curves. The regime inside the two chain curves 
around the spinodal curve is the regime where a gradual transition from nucleation to 
spinodal decomposition occurs. The regime between the coexistence curve and the left of 
the two broken curves is described by classical nucleation theory. In this regime, a further 
smooth crossover occurs at R d  (1 - T /  Tc)(4-d)’Z from mean-field-like critical behaviour 
to non-mean-field-like behaviour. The regime between the right broken curve and the left 
chain curve is the regime of ‘spinodal nucleation’ via ramified clusters. It  exists only in 
the regime of mean-field critical behaviour. (from Binder 1984~) .  
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as sketched in figure 34(b). Close to the coexistence curve, we have high nucleation 
barriers and classical nucleation theory applies. Moving deeper into the two-phase 
region, however, the barriers are no longer much larger than k,T. Then nucleation is 
relatively easy; many nuclei are formed and grow simultaneously in the system, leading 
to a quick decay of the metastable state. The situation is not fundamentally different 
from a description in terms of a wavepacket of growing unstable modes, strongly 
coupled by non-linear effects. Thus there is a wide regime of undercooling (or 
supersaturation or order parameter difference 4 - 4,,,,) where a completely gradual 
transition from nucleation to spinodal decomposition occurs. We think that essentially 
the same picture applies for other first-order phase transition too: 4 - 4,,,, in figure 
34 simply has to be replaced by the appropriate parameter driving the considered 
transition. Usually, however, the phase transition proceeds very quickly when AF* is 
no longer large; and then the regime of long-wavelength instabilities cannot be reached 
in practice, although it exists in principle. 

5.5. The completion time 

In this section we briefly discuss the concept of the ‘completion time’ rc (e.g. Binder 
and Stauffer 1976, Langer and Schwartz 1980, Goldburg 1981, Avrami 1939), i.e. the 
time it takes in a quenching experiment (figure 30) for the reaction (condensation or 
unmixing) to go halfway to completion. 

Consider, for simplicity, the growth of supercritical liquid droplets out of a meta- 
stable gas phase. At a droplet of radius r, we will have a net current j ,  = D ( p  - pgas)/ r 
where D is the diffusion coefficient. Experimentally, the temperature is varied by T 
at constant density p (see figure 30). Expanding p = pgas-ST(dpga,/dT) and using 

current impinging on the droplet, the droplet radius increases as (in three dimensions) 
(5.41) 

Pliquici-Pgasa(1- T/TJP gives j r  = (D/r)(Pl iquid-Pgas)[PST/2(Tc-  771. Due to the 

4.irr2Jr = (pliquid - p)4.irr2dr/d t. 

9 C O E X  4 SP 9 

k“ *- 
LL a 

t 

Classical nucleation 

( b )  

nucleation t o  spinodal 
,,decomposition 

>- ‘,.. 
+we, 4 S P  9 

Figure 34. Schematic plots of the free energy barrier for ( a )  the mean-field critical region, 
i.e. R d ( l  - T /  Tc)(4-d)’2 >> 1 and ( b )  the non-mean-field critical region, i.e. R d ( l  - 
T/Tc)(4-d) ’2<< 1, lower part. Note that due to large prefactors to the nucleation rate, the 
constant of order unity, where the gradual transition from nucleation to spinodal decomposi- 
tion occurs, is about 10’ rather than 10’ (from Binder 1984~) .  
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Putting p = pgas in this relation and using the expression for j , ,  (5.41) is readily integrated 
as 

D( t - t ‘ )  (5.42) ( r ( t  - t ’ ) ) 2  = r * ’ + P -  
6T 

T,- T 

where we have assumed that the droplet was nucleated (at critical size r*) at time t ’ .  
Through the combined effect of nucleation with a rate J (  t )  and growth, the fraction 

6p(t ) / (Pl iquid-&as)  will be transformed according to the law 

(5.43) 

A time dependence of J (  t )  is expected because of the decrease in supersaturation and 
because of time lag effects (Binder and Stauffer 1976). A simple explicit estimate is 
only obtained, however, if the time dependence of J (  t )  is neglected. We now consider 
the completion time in the critical region, usitg for J ( t )  the steady state expression 
(5.18), neglecting r* in (5.42), and using D = D (1  - T /  T,)”, z = d = 3: 

(5.44) 

Here we have changed the argument a+/ (  r$yex - r$Y””) of the scaling function j to 
ST/ (  T,- T ) ,  which is convenient if we wish to compare the theory with experimental 
data. The completion time 7, results from (5.44) by putting 6 p ( t ) / ( p l i q u i d - P g a s )  =; 
(another fraction of order unity would lead to an unimportant change of the prefactor 
only). Thus 

T,- T 

This result shows that dynamic scaling (Hohenberg and Halperin 1977) also holds 
far from equilibrium; while the explicit expression for the scaling function 7, cer- 
tainly is rather approximate, we believe that the scaling structure 7,= 

(1 - T /  Tc)3y;c[ ST/ ( T, - T ) ]  holds general for liquid-gas condensation and phase 
separation of fluid binary mixtures, not only in the regime where the phase separation 
starts by nucleation, but also in the regime where it starts by spinodal decomposition. 
For solid binary mixtures, we have instead T, = (1 - T /  T,) y+2”&ST/(  Tc - T ) ] ,  y being 
the ‘susceptibility’ exponent. Figure 35 shows the supercooling 6 T / (  T,- T )  for which 
7, = 1 s as a function of 1 - T /  T, for various gas-liquid systems and fluid binary 
mixtures (Goldburg 1981). Although the data are somewhat rough, they indicate th?t 
the dynamic scaling behaviour (5.45) probably is valid, though the scaling function 7, 

proposed by Binder and Stauffer (1976) certainly is not quantitatively accurate. Langer 
and Schwartz (1980) took the time dependence of J (  t )  due to the decrease of supersatur- 
ation into account, by combining the coarsening theory of Lifshitz and Slyozov (1961) 
and nucleation. Their scaling function yields a much steeper rise of 6 T / (  T,- T )  as 
T, - T + 0 in figure 35. The quantitative explanation of the nucleation experiments 
shown in figure 35 is thus still under discussion. Gitterman and Rabin (1984) and 
Rabin and Gitterman (1984) rather suggest that critical slowing down of the time lag 
yields the important time dependence of J ( t )  needed for a proper interpretation of 
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Figure 35. Reduced supercooling S T / A f =  ST/I T,- T -  6TI plotted against the relative 
distance from the critical point, AT/ T, = IT,- TI/ T,, for binary mixtures C,F,,-C7H,4 
(open diamonds, from Heady and Cahn (1973)), 2.6 lutidine-water (full and open circles, 
from Schwartz et a/ (1980)) and simple fluids, 'He (crosses, from Dah1 and Moldover 
(1971)) and CO, (triangles, from Huang et al (1975)). The horizontal broken line is the 
Becker-Doring theory, with parameters relevant to CO,. The chain curve is the theoretical 
result of Binder and Stauffer (1976), calculated for a completion time T~ = 1 s (after Goldburg 
1981). 

the experiments. Their conclusion, however, seems at variance with direct measure- 
ments of J in isobutyric acid/water mixtures performed with a new two-step quench 
technique (Siebert and Knobler 1984). Alternative theories were also proposed by 
McGraw and Reiss (1979) and Furukawa (1983). Thus more work seems necessary 
to understand nucleation and spinodal decomposition near critical points completely. 
We also note in passing that behaviour similar to figure 35 is also seen in phase 
separation experiments near the tricritical point of 3He-4He mixtures (Alpern et a1 
1982, Sinha and Hoffer 1983, Hoffer and Sinha 1986). 

The Langer-Schwartz (1980) approach of a combined numerical treatment of 
nucleation, droplet growth and droplet coarsening has been extended by Kampmann 
and Wagner (1984) to solid alloys off the critical region, and reasonable agreement 
with their own experiments could be obtained (Kampmann and Wagner 1984, 1986). 
Other recent measurements of completion times in solid alloys are found in a pioneering 
paper by Simon et al (1984), where also the anisotropy of the scaling function s" in 
(5.20) was demonstrated. Finally we draw attention to recent elegant work on 
nucleation under time-dependent supersaturation conditions (Trinkaus and Yo0 1987). 

6. Concluding remarks 

The purpose of this brief final section is twofold: (i) to provide a summary of the main 
concepts described in this review and (ii) to draw attention to topics which also would 
fall under the heading 'theory of first-order phase transitions' but have not been covered 
because of lack of space and expertise. 

This review has emphasised a phenomenological description of phase transitions 
within the framework of statistical mechanics. No first principles description of 
condensed matter systems was intended; for example, we have not discussed phase 
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transitions between various solid phases at T = 0 K driven, e.g., by pressure: for this 
problem, reliable calculations of electronic properties (band structures, ground state 
energies, etc) are required rather than statistical mechanics. Also, finite temperature 
transitions which require an essentially quantum mechanical treatment are left aside 
as well. 

Thus our description has been centred around the Landau description of phase 
transitions and related mean-field-type theories of a slightly more microscopic charac- 
ter. We have not intended to present exhaustive classifications of various phase 
transitions which can occur in Landau theory-doing this just for two-dimensional 
orderings would fill a separate review (see e.g. Ipatova and Kitaev 1985, Schick 1981); 
rather we tried to give the general spirit of the approach, describe the type of results 
that can be obtained, and discuss their validity, particularly with respect to the neglect 
of statistical fluctuations. For the latter purpose, we have given short descriptions of 
the renormalisation group approach to phase transitions, mainly in its position space 
version. We have emphasised the question to what extent the theory is able to predict 
correctly the order of a phase transition and to compute accurately the phase diagram. 
We have seen that neither of these problems is fully solved: for example, comparing 
renormalisation group predictions on fluctuation-induced first-order transitions with 
experiment, one apparently encounters both successes and failures. Further work, 
both theoretical and experimental, seems necessary to resolve such discrepancies. 
Similarly, phase diagram calculations beyond the mean-field or self-consistent phonon 
level are possible mainly for simple lattice models with discrete degrees of freedom. 
The specific examples which have been discussed show that an accurate treatment of 
statistical fluctuations is essential also for the statistical mechanics of first-order transi- 
tions, if a description on a quantitatively reliable level is desired. 

At this point it must be emphasised that this review is intended to give an introduc- 
tion for a broad audience, rather than address the experts in the field; so we have 
aimed neither at completeness nor at rigour. Thus problems which are mainly of 
interest in mathematical physics but not in practical applications to real systems have 
been left out. For example, we have not discussed ‘anomalous first-order transitions’ 
(Fisher and Milton 1987), where jumps occur in isotherms in an intensive rather than 
extensive variable (e.g. a jump in a pressure isotherm occurring at constant density). 
These occur in various somewhat pathological models with effectively long-range 
interparticle interactions (Fisher 1972, Milton and Fisher 1983, Israel 1975, 1979). 
Similarly, the reader interested in the more rigorous aspects of the theory of metastability 
should consult the review by Penrose and Lebowitz (1979) and the references contained 
therein. 

In our discussion of metastability, nucleation and transition kinetics we again have 
emphasised the general concepts, in particular the mean-field theories of nucleation 
and spinodal decomposition, the significance of the spinodal curve, etc. Topics of 
current research, such as theories of coarsening, kinetics of domain growth and structure 
factor scaling, non-linear theories of spinodal decomposition, etc, are treated only 
rather briefly. In addition, not much attention is given to the application of these 
concepts to particular physical systems, which is outside the scope of this review. (For 
a recent discussion of nucleation and growth of thin films at surfaces see Venables et 
a1 (1984) for instance.) Thus our discussion has focused on the general ideas about 
the initial stages of the dynamics of first-order transitions. We have seen that even 
this problem is not yet fully understood-in particular, a quantitative theory describing 
the gradual crossover from nucleation to long-wavelength instabilities (such as spinodal 
decomposition in mixtures) is still lacking. 
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A field with much recent activity is the problem of ‘surface effects’. If a first-order 
transition from an ordered to a disordered state occurs, one may see a gradual decrease 
of order near the surface, such that the local order parameter vanishes continuously 
at the surface though it disappears discontinuously in the bulk. For reviews on the 
‘surface-induced disordering’ see Lipowsky (1984, 1987). On the other hand, one may 
also have phase transitions at the surface when there is no transition in the bulk. In 
the wetting transitions of gas-fluid systems, on a wall of a container one may observe 
a transition from a ‘non-wet’ state (the wall is exposed to the gas phase, with no fluid 
adsorbed at the wall) to a ‘wet’ state (with a thick fluid layer adsorbed at the wall). 
This wetting transition typically is first-order but may also become second-order. 
Related phenomena occur in binary mixtures too. We refer to Sullivan and Telo da 
Gama (1985), de Gennes (1985) and Dietrich (1987) for recent reviews on this 
subject. 

Finally we emphasise that important recent progress has been made in the theoretical 
description of first-order transitions for particular systems which also has been some- 
what outside the scope of this review. An example are the order parameter theories 
of the solid-fluid transition (Ramakrishnan and Yussouf 1977, 1979, Yussouf 1981, 
Ramakrishnan 1982), where using data on the liquid phase one can make reasonable 
predictions for the transition towards the solid phases and their properties. 
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