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Abstract. In this article the effect of resonances (i.e. metastable states capable 
of decaying by electron emission) on electron-molecule and heavy particle col- 
lisions is considered. In part I resonances are classified into different types: 
shape resonances, and electron-excited and nuclear-excited Feshbach resonances 
Many of the observed resonances and their properties are discussed in terms of 
this classification. In part I1 resonance scattering theory is summarized. A survey 
is given of experiments, and their theoretical analysis, on resonance phenomena in 
processes such as vibrational excitation and dissociative attachment of molecules 
by electron impact and electron detachment in atom-atom collisions. 

1. Introduction 

In  this article we shall discuss resonances in molecules and molecular ions, that 
is states in which an electron is temporarily retained by a molecular system. Such a 
resonance is not a true bound, i.e. stationary, state but is a temporary state capable 
of decaying by electron emission. In  collision processes the formation of a resonance 
from the target and projectile will show up since it generally leads to a severe dis- 
tortion of the projectile wave function. This will be the case provided the lifetime 
T of the resonance is long compared with the time the projectile takes to traverse the 
target. There are different mechanisms for retaining a projectile electron in the 
target which produce very different characteristic features in scattering experiments. 
Many of these features have been observed. We shall survey these experiments and 
their theoretical interpretation in such a way as to facilitate the understanding of 
similar situations. 

Resonances in atoms have recently been reviewed by Burke (1965) and Smith 
(1966). In  molecules a whole wealth of new features arise owing to the motion of 
the nuclei. I n  particular there can now be an exchange of energy between electronic 
and nuclear motion which shows up in elastic scattering and in inelastic processes 
such as vibrational excitation. The  comparatively long lifetime of a resonance will 
lead to severe distortion of the nuclear motion and greatly enhanced inelastic cross 
sections. Another new feature results from the possibility of the molecular 
resonance complex dissociating, and this process will occur in competition with 
autoionization, i.e. the re-emission of the electron. These features will also show 
up  in the inverse processes of atom-atom and atom-ion collisions. 
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The  basic physical property of molecules is the large ratio of nuclear to elec- 
tronic masses. This leads to nuclear velocities being very slow compared with 
electronic velocities. This is the basis of the Born-Oppenheimer separation of 
electronic and nuclear motions. A modification of this approach also leads to a wave 
equation for the nuclear motion in an electronic resonant state. This equation 
allows for the decay of the resonance in which the nuclei move and, in the case of 
electron scattering, for the formation of the resonance through electron capture by 
the target. 

In  part I of this article we shall discuss the different types of resonance 
mechanisms in detail and give examples of such resonances. I n  atoms one has 
shape resonances (where the projectile is retained in the ground state or an excited 
state of the target by a potential barrier) and electron-excited Feshbach resonances 
(where the projectile loses energy in electronic excitation of the target and is left 
with insufficient energy to escape). I n  molecules there exists the new possibility of a 
nuclear-excited Feshbach resonance, i.e. the electron excites the nuclear instead 
of the electronic degrees of freedom of the target. 

All these types of resonances occur as intermediate states in collision processes, 
and most of the information about resonances has been derived from an analysis 
of scattering experiments. Typical processes are 

(i) elastic or inelastic scattering 

e + AB +AB- + e + AB(*) (1.1) 
(ii) dissociative attachment or recombination 

e +AB + AB-+ A +  B- 

e +AB++ AB+ A +  B 

(iii) atom-negative-ion collisions such as 

A + B-+ AB-+ AB + e 

A + B-+ AB-+ A + B + e 

(1.4) 

(1.5) 
or 

and so on. 
What all these processes have in common is that they occur via an intermediate 

complex which can autoionize. There may also be other decay modes. The  
interesting situations are precisely those where competition occurs between such 
different modes. 

In  part I1 of this article we shall study resonant collision processes. We shall 
mainly be concerned with diatomic molecules for which most theoretical work has 
been done. After a review of the several formalisms which have been applied to 
molecules, we shall consider particular collision experiments and their theoretical 
analysis. 

I. The structure of resonances 
2. The classification of resonances in molecules 

As was stated in the introduction, a resonant state '3!% can be regarded as a 
temporary bound state of the projectile and target, capable of decaying by electron 
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emission. It will therefore have a time dependence 

yn cc exp (-iwn;) 
with a complex energy 

It follows that 
W = E  --i 

n-  n rn* 

i.e. the state Y, decays with a lifetime T = %/Pn. Pn is called the width of the 
resonance. 

For a resonance to occur there must be some mechanism for binding the electron 
temporarily to the target. Thus we can classify resonances according to the means 
by which the projectile is trapped. 

2.1. Shape resonances 
The  simplest trapping mechanism is a potential barrier. Let us suppose that 

the incident particle experiences a region of attractive potential surrounded by a 
region of repulsive potential. If the particle enters the region of attractive potential 
its escape will be hindered by the potential barrier surrounding it. Resonances 
which are supported by potential barriers will be called shape resonances. The  
best-known examples are the radioactive nuclei which decay by the emission of an 
01 particle which has tunnelled through the Coulomb barrier. 

For simplicity we shall consider resonances occurring in the collisions of elec- 
trons with diatomic molecules. The  target states will be expressed as products of 
electronic wave functions xv(q, R) and nuclear functions &(R) (q denotes the 
coordinates of all the target electrons and R the internuclear position vector). The  
energy of each target state will be denoted by cy. If the coordinates of the incident 
electron are represented by r the resonant wave function Yn(r, q, R) can then be 
expressed in a close-coupling expansion : 

yn(r, Q, R) = C x v ( 4 ,  R) L(R)fnv(r)* (2.4) 

Throughout the article v will be used as a collective index to denote any or all of 
the quantum numbers of the system. 

I n  the simplest shape resonances the electronic motion of the target is affected 
little by the presence of the incident particle. In  this case the expansion (2.4) is 
dominated by the terms involving the ground electronic state xo(q, R). An example 
of such a resonance is the 3 ev resonance of H,-. This has the structure of the 
ground state of H, together with an electron in the orbital (2pcru) (see $3.1). 

There are other shape resonances in which the wave function (2.4) is dominated 
by the terms corresponding to an excited electronic target state. In  these the 
incident electron excites a target state whose energy is less than the resonant energy. 
The  extra electron has sufficient energy to escape from the target leaving it in its 
excited state. If the potential experienced by the electron as it is moving in the field 
of the excited target contains a barrier then its escape will be hindered and the 
electron will become temporarily bound to the target. The  simplest example of 
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these core-excited shape resonances is the IP state of H- at 10.22 ev (Macek and 
Burke 1967). Its wave function has two dominant terms, one corresponding to the 
target electron being in the 2s state and the other with the target electron in the 2p 
state. The  2s and 2p states of H are degenerate at an energy 0.018 ev below the 
energy of the resonance. 

The  characteristic of shape resonances is that the wave functions are dominated 
by the open-channel components. I n  the expansion (2.4) the important terms are 
those corresponding to target states with energies less than the resonant energy. 
This means that shape resonances are often broad, but there are narrow ones (the 
H- resonance quoted above has a width of 0.015 ev). 

2.2. Electron-excited Feshbach resonances 
Feshbach resonances occur when the incident electron loses energy in exciting 

the target and finds itself with insufficient energy to escape while the target remains 
in its excited state. Before the electron can be emitted it must reabsorb energy from 
the target. 

The  simplest situation would be that the incident electron excites only a single 
electronic target state xY(q,R) for which the vibrational levels E,, lie above the 
resonant energy. I n  this case the expansion (2.4) would be dominated by the terms 
containing this electronic state x,,(q, R) .  In  the more general case several electronic 
states of the target may be important, but for a Feshbach resonance it must be 
closed-channel components which predominate. 

The  fact that the open-channel components are small means that the resonance 
is narrow. Thus Feshbach resonances are nearly always narrow although for large 
nuclear separations some become broad (see $6.1). T h e  wave functions for narrow 
Feshbach resonances can be approximated by the removal of the open-channel 
components which turns them into bound states. 

Feshbach resonances in molecules can be divided into two types, depending on 
whether the kinetic energy of the incident electron is absorbed into the electronic 
or nuclear motion. The  two types will be treated separately since they often reveal 
themselves in different processes. 

Examples of Feshbach resonances in which electronic excitation occurs are the 
two resonances occurring in e-H, collisions at about 12 ev. These and other 
examples will be discussed in 8 4. 

2.3. Nuclear-excited Feshbach resonances 
These are Feshbach resonances in which the kinetic energy of the incident 

electron is absorbed solely into the nuclear motion of the target. The  collision does 
not involve excitation of the electronic motion in the target. 

The  previous two types of resonance can be discussed within the Born- 
Oppenheimer separation of nuclear and electronic motion. In  this third type the 
resonances are formed by an interchange of energy between these two modes, and 
thus the existence of the resonance is a consequence of the breakdown of the Born- 
Oppenheimer approximation. Thus inclusion of the nuclear motion is essential to 
the definition of these resonances. If the nuclei were kept fixed the resonances 
would become stable against electron emission. 
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The situation can be illustrated by means of figure 1. This shows the potential 
curves for a molecule XY- and for the ground state of the corresponding neutral 
molecule XY. It will be seen that the ground vibrational state of XY- is a bound 
state. However, its excited vibrational levels are above the ground state of XY. 
Thus, for example, the first excited vibrational level of XY- can be formed tem- 
porarily in the collision of electrons of energy with molecules XY in their 
vibrational ground state. This resonant state will decay by the emission of electrons 
of the same energy and the target will revert to its original state. 

R -  

Figure 1. The potential energy curves for the ground states of the molecules XY and XY-. 
The excited vibrational levels of XY- will act as resonances in e-XY scattering. 

The  resonances of this type which have received most attention from both 
theoreticians and experimenters are the vibrationally excited Rydberg states with 
high principal quantum number. For values of this quantum number greater than 7 
almost all the vibrationally excited levels lie above the energy of the ground state 
of the corresponding positive ion (see $$5.2 and 12.1). For principal quantum 
numbers of the order of 30 or more even the rotationally excited levels of the lowest 
vibrational state will be unstable against electron emission. 

3. Shape resonances 
We have already stated that shape resonances occur when the incident particle 

experiences a region of attractive potential surrounded by a repulsive potential 
barrier. This is illustrated in figure 2. The  energy E, at which the resonance occurs 
is determined mainly by the depth Vmin and the extent of the attractive potential. 
On the other hand, the resonant width is determined by the height V,,, - E, of the 
barrier above the resonant energy and by the size r2 - r1 of the region in which the 
potential is greater than this energy. This is clear if one remembers that the width 
is directly proportional to the rate at which the particle escapes by tunnelling 
through the potential barrier. 

It is of interest to consider the effect on a shape resonance of a variation in the 
depth Vmin of the inner region of attractive potential. As this depth is increased, 
the energy level of the resonance is lowered. As a consequence of the lowering of the 
energy the particle finds it harder to penetrate through the barrier so that the width 
becomes smaller. As the energy of the resonance tends to zero, so does the width. 
If the depth of the attractive potential is increased further the energy of the resonance 
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becomes negative, escape of the particle is then impossible and so the resonance is 
turned into a bound state. Thus, although shape resonances are normally broad, it 
is possible that the width can be very small if the energy available to the escaping 
electron is small compared with the barrier height. This is illustrated by the 
10.22 ev IP resonance of H- mentioned in $ 2.1. This has a width of only 0.015 ev 
and the kinetic energy of the emitted electron is 0.018 ev. 

V',, 

E, 

\ 
? r - +  
c. 
L 

I 
Figure 2. A typical potential capable of supporting a shape resonance. The  real part of the 

resonant energy is E,. The region of the effective barrier extends from rl to r2. 

The potential necessary for the existence of shape resonances can be found in 
both nuclear and molecular systems. I n  nuclear physics the attractive potential is 
due to the short-range nuclear forces, and the potential barrier is produced by the 
Coulomb repulsion between protons and by the centrifugal force. In  atomic and 
molecular systems the attractive potential is due to the Coulomb attraction of 
electrons and protons, whereas the barrier is normally caused by the centrifugal 
force. 

The  centrifugal force produces barriers which are of the order of several volts 
high with thicknesses of a few Bohr radii. Thus narrow shape resonances in which 
the target is not excited electronically will normally be found at low energies, say 
between 0 and 5 ev. For the existence of a state with such an energy the short- 
range attractive potential must be strong enough that it can almost, but not quite, 
support a bound state. Thus in order to find shape resonances one should examine 
those molecules which do not have a stable negative ion and in which the lowest 
unfilled orbital has non-zero angular momentum. 

3.1. The 3 eV Yesonance of H,- 
The simplest molecule which meets these two conditions is hydrogen, for which 

the lowest unfilled orbital is ( 2 ~ 4 .  I n  escaping from this orbital an electron from 
H,- must tunnel through a p-wave centrifugal barrier. This barrier has a maximum 
height of about 5 ev and so can prevent the escape for a very short time only. By 
using a variational method which will be mentioned in $8, Bardsley et al. (1966 a) 
have shown that at small nuclear separations the ground state of H,- is indeed a 
shape resonance with a lifetime of about 

For shape resonances and electron-excited Feshbach resonances the essential 
properties of a resonance can be indicated by giving its energy and width at each 

s. 
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internuclear distance. The  calculated potential energy curve for the H,- state is 
shown in figure 3. Also shown is the potential curve for the ground state of H, 
calculated by the variational method using a wave function of similar complexity 
to  those used to describe the resonant state. The  H,- state was found to be unstable 
for nuclear separation less than 2.9 Bohr radii. The  calculated width, shown in 
figure 4, is of the order of a few ev. We suggest that this is typical for p-wave shape 
resonances. 

Figure 3. The potential energy curves of the 
(lsu,)2 (2puu) z&+ resonance of Ha- 
and of the H, ground state calculated 
with wave functions of similar com- 
plexity. The line PQ marks the 
Franck-Condon region. R is the 
internuclear distance. (From Bardsley 
et aZ. 1966 a.) 

Figure 4. The width of the (1sug)2 (2~0,) 
resonance of H2-. R is the inter- 
nuclear distance. (From Bardsley 
et  al. 1966 a.) 

Eliezer et al. (1967) have carried out a further variational calculation on this 
state using a much more flexible trial wave function. However, the variational 
method which they use gives only the real part of the energy and not the resonant 
width. Their aim is to calculate a wave function of bound-state form which most 
closely resembles the true resonant state. However, for such a wide resonance as 
this, it is likely that allowance for the decay of the resonance will cause a consider- 
able shift in the real part of the energy as well as producing the resonant width. 

The  effects of this resonance have been observed in vibrational excitation (see 
$11.3) and dissociative attachment (see $ 10.2). It also causes electron detachment 
in H-H collisions (see Q 13). 

3.2. The 2 eV resonance of N2- 
Considerable structure has been observed in the scattering of low-energy 

electrons by N,. Analysis of the experimental data has shown the structure to be 
due to a single resonance near 2 ev with a width of between 0.15 and 0.2 ev (see 
0 11.5). Gilmore (1965) suggested that this may be a shape resonance with the 
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configuration of the ground state of N2-, namely 

(lsu,), ( ~ P c J , ) ~  ( 2 ~ ~ 7 ~ ) ~  ( 3 ~ 0 , ) ~  ( 3 s ~ ~ ) ~  (2~77,)~ (3d77,) VI,. (3.1) 
This configuration is formed by adding the (3d77,) orbital to the ground state of N,. 

The  barrier supporting this resonance arises from the d-wave centrifugal force. 
Bardsley et al. (1967) have constructed a model to represent this barrier and have 
shown that a width of about 0.2 ev is reasonable for a d-wave shape resonance at 
2ev.  The  very different values for the width of the low-energy H,- and N2- 
resonances can thus be ascribed to the different probabilities of electron penetration 
through the p-wave and d-wave barriers. 

Further confirmation of Gilmore’s identification of this resonance has been 
obtained by Ehrhardt and Willman (1967) who have measured the angular dis- 
tribution of inelastically scattered electrons. Their results are just as one would 
expect for a shape resonance with the extra electron in a rg orbital (see $11.5, 
figure 26). 

3.3. The 1.75 e v  resonance of CO- 
A low-energy resonance has also been observed in electron scattering by CO at 

an energy close to 1.75 ev (see $11.5). Since CO is isoelectronic with N, it is 
natural to ascribe the resonance to the configuration (3.1). However, there is one 
difference between the two molecules. The  CO molecule is not symmetric with 
respect to inversion, so that the g-u symmetry is no longer valid. This means that 
the 3dv orbital contains p-wave components. The effect of these p-wave com- 
ponents on the scattering cross sections will be discussed in $ 11.5. 

3.4. The 1.2 eV resonance of c,H,- 
This example shows that shape resonances are not confined to diatomic 

molecules. By studying inelastic electron scattering by a scavenger technique 
Compton et al. (1966a) observed resonances near 1 ev in benzene and six of its 
derivatives. Boness et al. (1967) also studied the benzene resonance by passing a 
beam of electrons through benzene and measuring the transmitted current. After 
removing the background current they obtained the results shown in figure 5. I t  
will be seen from this figure that some of the vibrational structure of the resonance 
has been resolved, so that the resonance must be narrow with a width not exceeding 
0.05 ev. 

Let us therefore consider the structure of the ground state of C6H6- to see if this 
narrow width can be explained. The  neutral benzene molecule has 42 electrons. 
Twelve of these are localized in 1s orbitals of the carbon atoms. Twenty-four 
electrons are in ‘U orbitals’ which extend over all the atoms in the molecules. The  
remaining six electrons are in ‘77 orbitals’ which are shared between the carbon 
atoms. These T orbitals have the form of linear combinations of 2p orbitals of the 
carbon atoms, each directed normally to the plane of the molecule. If these atomic 
orbitals are indicated by p,, the 77 orbitals can be expressed as 

6 

a=l 
# = c cap,. 

32 
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Because of the sixfold axis of symmetry the coefficients c, must take the values 
exp(imm/3). There are six 7~ orbitals with m = 0, f 1, I 2,3. In  the neutral 
molecule C6H6 three of these orbitals are fully occupied. These have m = 0 and i- 1. 
The  ground state of C6H6- will be formed by adding an electron in a 7~ orbital 
with Iml = 2. 

I I 1 I I 
0.8 I .2 1.6 

Incident electron enerqy (ev) 

Figure 5.  The transmitted current for electrons passed through benzene. 
(From Boness et al. 1967.) 

Thus the extra electron in the C6H6- ground state has angular momentum 2 
about the axis of symmetry. The  parity of the extra orbital is odd; hence if its wave 
function is expanded in spherical harmonics the first term will have I = 3. Thus 
the resonance is supported by an f-wave barrier. Penetration of an electron through 
this barrier would be very difficult and it seems probable that the width is even less 
than 0.05 ev. 

It seems that the determination of the width of this resonance will demand the 
use of electron beams with very high resolution. A useful experiment which should 
be within the scope of present equipment is the measurement of the angular 
distribution of inelastically scattered electrons. This would test whether the 
scattering is indeed dominated by the f-wave components. 

4. Electron-excited Feshbach resonances 
In  these resonances the incident electron becomes bound to an electronically 

excited state of the target. Most of the resonances which have been observed in 
atomic systems are of this type. They also play an important role in electron col- 
lisions with both neutral and positively charged molecules. The  resonances in 
electron-ion scattering are of particular interest since they lead to dissociative 
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recombination. The  recombination process can be represented as 

e + XY++ XY* -+ X + Y 

i.e. it occurs through the formation and subsequent dissociation of molecular 
resonant states XY* (Bates 1950, Nielsen and Dahler 1966, Bardsley 1968 b). 

The  potential energy curves necessary for recombination to occur are shown in 
figure 6. Since the electron-ion collisions involve thermal electrons, the curve 
XY must cross over that of the ionic ground state XYf near to the equilibrium 
separation of the latter. Unless this is the case the probability of resonance forma- 
tion in thermal collisions will be very small. Secondly, the dissociation limit of 
XY* must be less than the ground-state energy of XY+, in order that the molecule 
should dissociate after the formation of the resonant state. 

(4.1) 

Figure 6. Potential energy curves for dissociative recombination. The  line PQ marks the 
Franck-Condon region of the XY+ ion. 

There are two problems in the calculation of the rates of dissociative recombina- 
tion. Firstly, the potential energy curves of suitable resonant states XY* must be 
determined and, secondly, the rate of resonance formation must be found. The  
latter problem is equivalent to the calculation of the widths of the resonant states. 
Two methods have been proposed for tackling these problems, and we shall give 
two examples which illustrate these methods. 

4.1. Dissociative recombination in Hz+ 
It is feasible that a priori calculations will soon be made of the rate of the 

recombination of electrons with H,+ ions. The  determination both of the potential 
energy curves and the widths of the appropriate states should be within the capacity 
of present computational techniques. 

The  dominant configurations of electron-excited Feshbach resonances in H, 
must have both electrons in excited orbitals. The  resonant states whose potential 
curves are most likely to be suitable for recombination are those for which both 
electrons are in the (2s0,), (2~0,)  or (2pnJ orbitals. Three of the states which can 
be formed in this manner have already been investigated using perturbation theory. 
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(2pall) ( 2 P 4  ( 4 4  
(2PUll) ( 2 s 4  3&+ (4.3) 

( 2puu)2 1Zg+. (4.4) 
The first two of these states were studied by Bauer and Wu (1956). They used 

perturbation theory both in the determination of the potential curves and in the 
calculation of the resonant formation cross section. Unfortunately, they used 
plane waves to describe the initial electron-ion scattering wave function, and the 
cross sections they obtain for the state (4.2) show an energy dependence far from 
that expected (Bardsley 1968 a). The  results for state (4.3) seem much better and 
calculations using Coulomb wave functions by Wilkins (1966) have given similar 
numbers. Wilkins estimated the contribution of this state to the recombination rate 
to be 3 x cm3 s-l at 300 OK. The resonant state (4.4) has also been studied in 
perturbation theory by Dubrovsky et al. (1967). They predict the contribution of 
the state to the recombination rate at 300 O K  to be 2 x 10V cm3 s-1. 

The rate of recombination in hydrogen has been measured by Popov and 
Afanaseva (1960) to be 3 x lo-* cm3s-l. An earlier experiment by Persson and 
Brown (1955) had established this value as an upper limit to the recombination rate. 
Since the nature of the ions involved is not certain (they may be H,+ ions) one can 
only conclude that the rate of recombination of H,+ ions does not exceed 
3 x 10-8 cm3 s-l. However, there is already a minor disagreement between theory 
and experiment in that the estimated contribution of two resonances exceeds the 
observed upper limit for the recombination rate. 

The  most crucial part of the calculation of the recombination rate lies in the 
determination of the resonant potential curves. In  this respect the methods so far 
used do not seem to be sufficiently accurate for the present results to be regarded as 
reliable. 

4.2. Dissociative recombination in NO+ 
The gases in which large rates of dissociative recombination have been observed 

are the atmospheric gases N2+, NO+, 02+, and the rare gases Ne2+, Apt, Kr2+, Xe2+ 
(Oskam and Mittelstadt 1963, Danilov and Ivanov-Kholodnyi 1965). The a priori 
calculation of these rates will be much more difficult than for H2+. The main 
difficulty will be in the determination of the resonant potential curves with sufficient 
accuracy. I n  order to obtain the recombination rate to within 10% it will be 
necessary to find the cross-over point of the curves XY+ and XY* to within 0.01 A. 
An alternative approach has been suggested by Bardsley (1968 b) who showed that 
spectroscopic evidence could be used in the determination of potential energy curves 
and also in the estimation of the resonant widths. 

The method was illustrated by the example of nitric oxide. The  ground state 
of NO+ has the following configuration : 

[ ( i s q  (zso)2 ( 2 p q  (3sa)2] (3p42  (2p44 TZ+. (4.5) 
Electron-excited Feshbach resonances of NO can be formed by the excitation of an 
electron from any of these orbitals and the addition of the extra electron into an 
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unfilled orbital. Bardsley suggested that the following two configurations may lead 
to resonances suitable to cause recombination : 

[(lsu), ( 2 ~ u ) ~ ( 2 p a ) ~ ( 3 ~ a ) ~ ]  (3pa) ( 2 ~ n ) ~ ( 3 p n ) ~  (4.6) 
[ ( l ~ u ) ~  ( 2 s ~ ) ~  ( 2 ~ 0 ) ~  ( ~ S U ) ~ ]  (3pu), ( 2 p ~ ) ~  (3pn),. (4.7) 

The  configuration (4.6) leads to two states I zX and B' 2A and the configuration (4.7) 
leads to the states B,II and L'W. 

Enough spectroscopic evidence has been obtained for the reconstruction of the 
potential curves of two of these states, B TI and B' ,A. It was found that both curves 
cross over that of the ground state of NO+ within the Franck-Condon region of the 
latter. (We define the Franck-Condon region as the range of nuclear separations 
between the classical turning points.) It was found also that the spectroscopic data 
could be used to estimate the resonant widths, and hence to obtain the cross 
sections for resonance formation. Thus  the contribution of these two states to  the 
recombination rate was assessed. The  sum of the two contributions was found to be 
2.6 x lo-' cm3 s-l as compared with the observed values of (4.6i:::) x lo-' cm3 s-l 
of Gunton and Shaw (1965), and ( 5  & 2) x lo-' cm3s-l of Young and St. John (1966). 

A 

- 

4.3. The 12 eV resonances of H,- 
The  elastic and inelastic scattering of electrons by H,, HD and D, shows a lot 

of structure around 12 ev (see 6 11.4 for a discussion of the experimental results). 

I O  , I I 
I I I I I I I L 

1.2 1.6 2.0 2.4 2 . 8  
R ( A  U . )  

Figure 7. Potential energy curves of the two *C,+ resonances of Hg- and of their parent states. 
Full curves, Hz-; broken curves, Hz. A, (lsu,) (2pn,) c In,; B, (lsu,) (2pn,) c 311u; 
C, (c lrIi,) (2pnu) 2&+; D, (c 311u) (2pn,) %,+. (From Eliezer et al. 1967.) 

The structure has been ascribed to the vibrational levels of two electronic reson- 
ances. These resonances have been identified by Eliezer et al. (1967), who proposed 
that both have the form 

(1 sug) (2pn,)2 ,Eg+. 
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The two resonant states differ in the way the electron spins are coupled. One 
resonance is dominated by the term representing an electron bound to the 
(lsa,) (2~77,) c 311, state of H,, whereas the other represents almost purely an 
electron bound to the (lso,) (2~57,) c lIT, state. The  potential curves of the two 
resonances and their parent states are shown in figure 7 .  The  fact that both resonant 
curves lie below the corresponding curves for the parent molecular state demon- 
strates that these are indeed Feshbach resonances. There is no theoretical evidence 
concerning the width of these resonances, but the observed cross sections show that 
the resonances are narrow. 

5. Nuclear-excited Feshbach resonances 
These resonances have been observed in low-energy electron-molecule scatter- 

ing and also in the ionization of molecules by electron and photon impact. We 
shall first discuss a specific example and then describe three groups of these 
resonances which are of special interest. 

5.1. The electronic ground state of 0,- 
This type of resonance is expected to exist in oxygen, since there exists a stable 

0,- ion. Several experiments have studied the formation of this stable 0,- ion by 
electron attachment to neutral molecules. This attachment takes place in two 
stages, involving a Feshbach resonance as an intermediate state. First a low-energy 
electron collides with a molecule and is trapped through the vibrational excitation 
of the molecule. Secondly, the excess vibrational energy is lost in a collision with 
another molecule and the negative ion is stabilized. 

Since this is a three-body process, its rate will be dependent upon the gas 
pressure unless saturation can be achieved, that is unless the pressure is so high that 
every resonant state is stabilized by a further collision. Bloch and Bradbury (1935) 
appeared to have achieved saturation but recent experiments (Van Lint et al. 1960, 
Chanin et al. 1962) make it seem unlikely that it was accomplished. This is 
unfortunate since the cross section for resonance formation could be obtained from 
the experiments if saturation could be reached. Chanin et al. attempted to place 
limits on the resonant width. They estimated the resonant lifetime to be between 
lO-I3 and 10-1Os. This corresponds to a width between and ev. 

5.2. Rydberg states of neutral molecules 
Associated with every electronic state of molecular positive ions is a series of 

states of the neutral molecule formed by adding to the ion an electron in a hydro- 
genic orbital with high principal quantum number. The  higher members of these 
Rydberg series have very small electron affinities and the energy of many of their 
excited vibrational states will be above the energy of the lowest vibrational level of 
the corresponding ion. Thus these states will lead to many resonances which may 
be observed in low-energy electron-ion collisions or in the ionization of neutral 
molecules just above threshold. The  existence of these resonances was used by 
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Beutler and Junger (1936) in the determination of the ionization potential of hydro- 
gen. References to many more recent ionization experiments are given by Berry 
(1966). The  theory of these resonances will be discussed in $ 12.1. 

Excited rotational levels of Rydberg states may also be unstable against electron 
emission and so lead to resonances. However, these resonances will only be 
observed in those members of the Rydberg series for which the energy required to 
detach an electron is less than (or of the same order as) the rotational spacing. For 
the case of hydrogen this means that the outermost electron must move in an orbit 
with principal quantum number of the order of 30 or more. I t  will be very difficult 
to observe these resonances in ionization experiments because of the very small 
probability for excitation of these levels. However, it has been shown by Stabler 
(1963) that in thermal collisions of electrons with molecular positive ions the cross 
section for the formation of these resonances should be as high as cm2. 

Both rotationally excited and vibrationally excited resonant states have been 
examined as possible intermediate states in dissociative recombination (Stabler 
1963, Chen and Mittleman 1967, Bardsley 1968 b). I n  thermal electron collisions 
with molecular ions these resonances will be formed and they will have lifetimes 
varying from 10-l2 to s (see $ 12). If the Rydberg state can be stabilized against 
electron emission then recombination will take place. Stabler (1963) found that this 
stabilization could not be achieved by further collisions or by the emission of 
radiation, but Bardsley (1968 b) has suggested that predissociation may occur 
sufficiently rapidly for these states to be significant in the recombination. However, 
for predissociation to occur before electron emission it is necessary that the formation 
of the resonance should have involved vibrational excitation. These suggestions 
have yet to be substantiated but, if they are proved to be well founded, it will not be 
possible to treat dissociative recombination simply as the analogous process to 
dissociative attachment as will be done in $ 10. 

or 

5.3. Large molecules 
The resonances formed by vibrationally excited levels of stable electronic states 

are of particular interest in large polyatomic molecules. I n  these the energy which 
is transferred from the incident electron is distributed among the many vibrational 
modes of the molecule. A considerable time may then elapse before the excess 
energy is concentrated again in one mode so that it can be given back to the extra 
electron. Thus these resonances will have extremely long lifetimes. Compton et al. 
(1966 b) have measured the lifetimes of four of these resonances, in C,H5N02-, 
SF,-, (CH,CO)2- and (CHO),-, to be 40, 25, 12 and 2.5 ps respectively. The  
interpretation of these results will be discussed in $12.2. 

5.4. Polar molecules 
There has been much controversy in recent months about the cause of the high 

momentum-transfer cross sections observed in thermal collisions of electrons with 
polar molecules. The  cross sections were calculated using the Born approximation 
by Altshuler (1957), and all the observed cross sections are found to exceed the 
predictions of the theory, sometimes by factors of 2 or more. Turner (1966) has 
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pointed out that most of the discrepancies could be caused by the induced polariza- 
tion of the molecules, but that this could not be so for H,O, D,O and H,S which 
have small polarizabilities. 

Turner suggested that the high cross sections for these cases could be attributed 
to the formation of temporary negative ions. He  assumed that the interaction between 
the electron and the polar molecule could lead to a bound state with a very small 
electron affinity. The  excited rotational or vibrational levels of the state could then 
act as resonances in the electron-molecule scattering. 

The  validity of this proposal clearly depends on the existence of weakly bound 
states of the electron-molecule system. After the publication of Turner’s paper 
many authors examined the spectrum of electrons moving in the field of a dipole 
moment. They found that, if the dipole moment exceeds a critical value of 0.64 A.u., 
there are an infinite number of bound states, whereas for moments below this value 
there are no bound states (see e.g. Levy-Leblond 1967). This critical value is 
smaller than the dipole moment of H,O and D,O, but larger than that of H,S. 

Contrary to the conclusion of several authors, this fact does not mean that 
nuclear-excited resonances cannot exist for H,S. For molecules with small dipole 
moments there will not be an infinite number of bound electronic states of the 
negative ion, but the combination of the short-range electrostatic interaction and 
the long-range dipole field may be sufficient to support a single bound state 
(Crawford 1967). 

Thus it is still unclear whether the capture of the incident electron through 
nuclear excitation is responsible for the high momentum-transfer cross sections. 
Recent evidence suggesting that nuclear excitation may be involved comes from the 
observation of Stockdale et al. (1967)) who show that the cases where the dipole 
moment is less than or greater than the critical value can be distinguished from the 
experimental evidence. On the other hand Crawford et al. (1967) have pointed out 
that even without any nuclear excitation it is very likely that the momentum- 
transfer cross section would be considerably in excess of the predictions of the Born 
approximation of Altshuler (1957). Support for the latter view has been given by 
the demonstration by Takayanagi and Itikawa (1968) that the dipole field may 
give rise to a shape resonance. 

6. Further examples of resonances 
6.1. The 10 ev resonance of H,- 

This resonance is of interest because of its role in dissociative attachment in 
e-H, collisions (see $10.3), and in electron detachment in H-H- collisions (see 
$13.1). In  the asymptotic limit of large R the resonance leads to the ground states 
of H and H-. Its symmetry is ,E,+ and for most internuclear distances the dominant 
configuration is (lso,) ( 2 ~ ~ 7 , ) ~ .  

The  nature of the resonance can be best described by dividing the complete 
range of nuclear separations into four regions by introducing the critical values of 
RI, R,, R,. The  resonant energy and width in the four regions are schematically 
shown in figure 8. 

For R < R, the resonant energy lies below the energies of all the excited states 
of H,. The  resonant wave functions contain only a small component of the H, 
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ground state, and so the state is a narrow electron-excited Feshbach resonance. The  
united atom limit is the 2S resonance of He- at 19.3 ev which has a width of the 
order of 0.01 ev (Schulz 1963, Kwok and Mandl 1965). 

state 
of H,. Since the resonant wave function is dominated by the configuration 
(lso,) ( Z ~ U , ) ~  the width is large in this region. The  only constraint which prevents 
the electron from immediately escaping, leaving the molecule in the 3Cu+ state, is the 
p-wave centrifugal barrier in this channel. Thus for these values of R the state is a 
core-excited shape resonance. 

For RI < R < R, the resonant energy is above that of the (lsu,) (Zpu,) 

R- 
Figure 8. A schematic representation of the potential curve and resonant width for the lowest 

z&+ state of Hz-. 

For R, < R < R,, the resonant energy is again below that of the 3Eu+ state of 
H,.t The  calculations of Eliezer et al. (1967) suggest that R,E 1.5 A.U. If this is 
so, then for values of R just greater than R, the ground-state components in the 
resonant wave function will still be small and the state will again be a narrow 
electron-excited Feshbach resonance. However, as R is increased the ground- 
state components become more important since the asymptotic form of the wave 
function for large R demands an equal contribution from the ground-state and 
excited-state components of the wave function (Bardsley et al. 1966 a). Hence for 
the larger values of R within this range the resonance will have a large width, of the 
order of 1 ev. 

For R > R, the resonant energy is below that of the ground state of H, and so the 
resonance is a bound state. 

The  potential curve and the width of this resonance were calculated by Bardsley 
et al. (1966 a) using the variational principle mentioned in 0 8. The  wave functions 

t Burke (1968) has pointed out that the opening and closing of the channel, as R varies, 
leads to an interesting mathematical problem. He shows that as a new channel opens or closes 
one of two things must happen. Either the resonant width must be zero at the critical value 
of R or else there must be two poles of the S matrix which are important. On physical grounds 
the second explanation seems most reasonable. The effect on cross sections will probably 
be small. 



488 J.  N.  Bardsley and F. Mandl  

used were relatively crude and the resonance was found to be above the 3Xu+ state 
of H, throughout the range of nuclear separations from 1 to 6 A.U. Thus the width 
was found to be large within this range. For small R the width was dominated by 
decay to the state but at large R decay to the ground state was also important. 
The results are shown in figures 9 and 10. The calculations of Eliezer et al. (1967) 
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Figure 9. Potential energy curves of the ground (l&+) and lowest excited states of H,, 
and of the (hug) ( 2 ~ 0 , ) ~  z&f resonance of Hz-. The line PQ marks the Franck- 
Condon region. (From Bardsley et al. 1966 a.) 
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Figure 10. The width of the (lsug) (2pu,J2 2Xc,+ resonance of Hz-. (From Bardsley et al. 
1966 a.) 

are shown in figure 11. They used a better wave function but their variational 
method does not allow for the effects of decay. Thus they do not calculate the 
resonant width, but the potential curve is probably better than that shown in 
figure 9. 

6.2. The transmission peaks in NO and 0, 
Boness and Hasted (1966) have measured the current transmitted by a beam 

of electrons passing through gases of either NO or 0, molecules. The  results 
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(figure 12) show a series of peaks between 0.5 and 1.5 ev. Both of these molecules 
possess a stable negative ion and so the resonances causing these peaks could belong 
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Figure 11. Potential energy curves for H2- resonances and some associated H2 states. Full 
curves, Hz-; broken curves, H,. A, (C In,) (2pnJ ,E,+; B, (c 3111,) (2pn,) ?Xg+; 
C, (Isu,) (2pu,) %,+; D, (Isu,) (2puJ2 2Zg+; E, (1~0,)~ (2~~7,) TZU+; F, x lZ,+. (From 
Eliezer et al. 1967.) 

to any of our three types. It is difficult to decide on theoretical grounds to which 
type these resonances belong and so more experimental work would be valuable. 
The  most helpful experiment would be the measurement of the angular distribution 
of inelastically scattered electrons. Estimates of the absolute values of the cross 
sections and of the widths of the resonant peaks would also be useful. 

6.3. The 11.5 eV resonance of N,- 
The  electron transmission experiments of Heideman et al. (1966 a) show struc- 

ture in the transmitted current at energies between 11 and 12 ev, as shown in 
figure 13. The  most obvious feature is a sharp peak at 11.48 k 0.05 ev. Two 
additional peaks are seen at 11.75 ev and 11.87 ev. The  nature of these resonances 
has not yet been determined, but Heideman et al. suggest that the 11.48 ev peak 
might be due to an electron-excited Feshbach resonance with an electron bound to 
a state with a potential curve similar to that of the N, ground state. This would 
explain why a series of several vibrational levels is not seen. 
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Heideman et al. point out that the 11.48 ev peak may be very useful in the 
calibration of energy scales. They have checked its position against resonances of 

E Cev)  

E (eV) 
Figure 12. Electron current transmitted through NO and 0, as function of mean electron 

energy E (ev). (From Boness and Hasted 1966.) 
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Figure 13.  Transmission of electrons by N2 showing a sharp ‘window’-type resonance at 
11.48 i. 0.05 ev. (From Heideman et al. 1966 a.) 

atomic helium and argon and claim an accuracy of 0.05 ev in their determination of 
its position. The  great advantage of using this resonance is that its energy is below 
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the ionization potential of many gases and this makes it possible to avoid changes in 
contact potentials caused by ion formation. 

6.4. The low-energy resonances of C,H4- 
Boness et al. (1967) have observed two resonances in the transmitted current of 

electrons in a gas of ethylene, as shown in figure 14. T h e  peaks occur at energies 
close to 0.2 ev and 1.3 ev, but it is not possible to estimate the resonant widths from 
their experiment. The  upper resonance has also been seen by Bowman and Miller 
(1965), but at an energy of 1.7 ev. 

1 
0 0.4 0.8 1.2 I .6 

Figure 14. The transmitted current for electrons passed through ethylene. (From Boness 
I n c i d e n t  e l e c t r o n  e n e r q y  (ev) 

et U Z .  1967.) 

Ethylene is similar to benzene in that the lowest unfilled orbital is a n orbital. 
Fourteen of its sixteen electrons are in U orbitals, which are symmetric with respect 
to reflection in the plane of the molecule. Of these fourteen electrons, four are 
localized near the carbon nuclei, and the other ten are shared between all the atoms. 
The  remaining two electrons are in bonding ‘nu orbitals’ between the carbon atoms 
(lb3u in the notation of Herzberg 1966). The  lowest unoccupied orbital is the anti- 
bonding ‘ng orbital’ between the carbon atoms (1b2J. 

Assuming that there is not a stable negative ion of ethylene the state of C,H4- 
obtained by adding an electron in a ng orbital to C,H, in its ground state should 
show up as the lowest shape resonance. It is effectively a d-wave resonance like the 
ground state of N,- (0 3.2). If, as suggested by the experiment of Boness et al., the 
state occurs at an energy of 0.2 ev, its width should be extremely small, of the order 
of 0.001 ev. If, on the other hand, this lower peak at 0.2 ev is not caused by a 
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resonance and this lowest shape resonance occurs near 1.5 ev, then the expected 
width would be of the order of 0.1 ev. 

There may also be a low-lying electron-excited Feshbach resonance in which 
the rU orbital is occupied by only one electron and the higher vg orbital by two. If 
the 0.2 ev peak of Boness et al. does correspond to the C,H,- ground state then the 
upper peak could be due to this Feshbach resonance. 

The  identification of these two resonances would be facilitated by a measurement 
of the angular distribution of inelastically scattered electrons. 

11. Collision processes 
7. Resonance formalisms 

In  part I1 of this article we shall show how the cross sections of various collision 
processes can be expressed in terms of the properties of the resonant states, and we 
shall analyse the results of experimental studies of resonant scattering processes. In  
this section we shall briefly describe the three resonant scattering formalisms which 
have been applied to molecular problems. 

7.1. The theories of Siegert, and of Kapur and Peierls 
In  $ 2  we saw that the time dependence of a resonant state Y ,  is formally the 

same as that of a stationary state but with a complex energy W, (equations (2.1)- 
(2.2) ). It follows that Y, obeys the time-independent Schrodinger equation 

H Y ,  = W,Y, (7.1) 

where H is the Hamiltonian of the system. The  bound-state solutions, for which 
W, is real and negative, are obtained by demanding that the wave functions should 
become exponentially small if one or more interparticle separations become large. 
For a resonant state one must instead demand that for large separations the wave 
function represents pure outgoing waves due to the decay of the resonance. 

For simplicity let us consider s-wave potential scattering. The  outgoing-wave 
boundary condition for the radial wave function +,(Y)/Y then has the form 

i.e. 

This definition of a resonance as an eigenfunction of the Hamiltonian with this 
outgoing-wave boundary condition was first introduced by Siegert (1939), and we 
shall call resonant states defined in this way Siegert states. Since the resonant wave 
functions are solutions of the wave equation with no incoming waves, their energies 
W, give the positions of the poles of the S matrix. This fact can be used as basis 
for a resonant scattering formalism (Humblet and Rosenfeld 1961). 

The  Siegert approach has two disadvantages which arise from the occurrence 
of the resonant energy W, in the boundary condition (7.2)-(7.3). It makes the 
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calculation of resonant states more difficult and, more seriously, it means that 
different Siegert states are not orthogonal. 

These difficulties are avoided in the theory of Kapur and Peierls (1938). They 
define resonant states in the same way as Siegert, except that in the boundary 
condition (7.2)-(7.3) the resonant energy W, is replaced by the real energy E of the 
system. These Kapur-Peierls states form an orthonormal set, in terms of which one 
can expand the scattering state and hence find the cross sections. The  disadvantage 
of this method is that the properties of the individual resonant states depend some- 
what on the energy E and on the value of r at which the boundary condition is 
imposed. 

The  study of molecules demands an extension of the resonance theory as 
applied to atomic and nuclear problems. The  method that will be discussed in 
$$ 8 and 9 contains elements of both the Siegert and Kapur-Peierls theories. As for 
these two, the essence of the method is that resonant states are defined as eigen- 
states of the complete Hamiltonian which satisfy outgoing-wave boundary 
conditions. 

7.2. The projection operator formalism of Feshbach 
Although resonant states are temporary, their lifetimes are often long on the 

atomic scale. In  these cases the resonant wave function will be very nearly that of 
a bound state. The Feshbach resonances, discussed in $9 2.2 and 4, are of this kind, 
Feshbach (1958, 1962) first stressed the importance of this resonance mechanism 
and developed the projection operator formalism for handling it. 

I n  this approach, projection operators P and Q 1 - P are introduced to divide 
the wave function Y into two parts P Y  and QY?. The open-channel component 
P Y  has the same asymptotic form as Y. It has an outgoing-wave component and 
so allows an electron to escape to infinity. The  closed-channel component Q Y  
vanishes asymptotically for large electron separation. The definition of the pro- 
jection operators is an asymptotic one and is thus not unique. (This problem is 
discussed by Burke (1965, 33.2) and by Smith (1966, $5.1) who give examples 
of some of the definitions of projection operators used in atomic problems. 
References for molecular problems are given below.) This flexibility in the choice 
of projection operators is essential in order to ensure that molecular resonant 
states have the proper dissociation limit. This is necessary for the determination 
of accurate potential energy curves and is particularly important for a simple 
treatment of dissociation processes. The  correct dissociation limit is obtained 
by defining QY? to contain an admixture of the target ground state (and, if necessary, 
other energetically accessible target states). The projection operators P and Q 
satisfy the relations 

P + Q = l ,  P 2 = P ,  Q 2 = Q ,  PQ=O. (7.4) 
The  Schrodinger equation for the scattering wave function Y! leads to the 

following coupled equations for its two parts P Y  and Q Y :  
P(H - E )  P Y  = - PHQY 
Q(H- E )  QY = - QHPT,  

(7.5) 

(7.6) 
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The  terms on the right-hand sides of these equations represent the coupling of 
open and closed channels. If these terms are replaced by zero, the resulting equa- 
tions are decoupled and describe the scattering in the open channels and the 
bound-state problem in the closed channels. 

If we formally solve (7.6) for QY" and substitute in (7.5) we obtain a single 
equation for P Y :  

1 
QP - E )  Q (7.7) 

The  term P(H- E )  P is the operator which would have applied if we had 
retained open-channel components only in Y.  The  effect of the closed-channel 
components is to introduce into (7.7) the optical potential 

QHP. (7.8) 
1 

Q W - E )  Q y0,t - PHQ 

In  order to study the significance of the closed-channel components we introduce 
the eigenfunctions Y,, of the operator QHQ, defined by the equation 

QHQTQ, EQ, YQ,. (7.9) 
In  terms of these wave functions the optical potential becomes 

(7.10) 

One consequence of this expression is that, provided the experimental energy E is 
less than all the eigenvalues EQ,, the optical potential is necessarily attractive, and 
indeed each term in the summation in (7.10) is attractive. From this property of the 
optical potential one can derive variational bounds for the reactance matrix 
(Hahn et al. 1964). 

Let us consider the solution of equation (7.7) for an energy E close to one 
particular eigenvalue EQn. We write (7.7) as 

where 

(7.11) 

(7.12) 

For E near E,, the left-hand side of equation (7.11) is then a slowly varying function 
of energy compared with the right-hand side. If G+ is the outgoing-wave Green 
function of equation (7.11) and YTpE the solution of the corresponding homo- 
geneous equation, the solution of (7.11) becomes 

(7.13) 

(7.14) 
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Since the asymptotic form of Y is determined by that of PY, equation (7.13) 
suffices to give the scattering cross section. It can be seenthat the cross section will 
have a pole at the energy EQ,+A,. This gives the connection with the Siegert 
resonance theory. It shows that an eigenstate of the operator QHQ leads to a 
resonance at an energy E,, + A,. The  width of this resonance is 

r, = - WA, = 2n I (Y Qn 1 QHP I yPE) 12. (7.15) 

The  application of the projection operator formalism to atomic problems has 
been reviewed by Burke (1965) and Smith (1966). The  method has been applied to 
molecular systems by Chen (1966 b, 1967) and O'Malley (1966, 1967 c). These 
authors have shown how to obtain cross sections for such processes as dissociative 
attachment and associative detachment. The  application of the method to the 
calculation of potential curves for resonant states has been demonstrated by 
Eliezer et al. (1967) who have obtained the curves for two states of H,- (see $4.3). 
They used the bound-state variational method and restricted their wave function to 
have only closed-channel components. Thus they found the bound states YQ,  
which closely approximate the resonant states. They have not calculated the energy 
shifts or widths associated with the resonances. 

7.3. The Configuration interaction theory of Fano 
This method is very similar to the projection operator approach. Although 

formally it is not so complete, its simplicity makes it ideal for numerical calculation 
and for the analysis of experimental results. 

The  method is based on the independent-particle model for the electrons in 
atoms or molecules. In this, one approximates the state of the system by a one- 
configuration wave function. Although an actual state of the system contains a 
mixture of many different configurations it can often be approximated closely by 
including only one or two of these configurations. 

The  mixing of two configurations is of special interest when one belongs to a 
discrete spectrum and the other to a continuous spectrum. The  effect of the mixing 
is to turn the bound state of the discrete spectrum into an autoionizing or resonant 
state. The  theory of such configuration interaction was first given by Rice (1933) 
who applied it to predissociation, but the real significance of the approach for 
resonances in electron scattering and photon absorption was shown by Fano 
(1935, 1961). 

Let Ynd and YEc be approximate wave functions of the system representing 
different configurations, the state Ynd belonging to a discrete spectrum and the 
state YEc to a continuous spectrum. Let us consider the mixing of these states, 
which we take as orthonormal 

(YEc1Ynd) 0, (YEc~Ypc) = 6(E-E ' )  
and satisfying 

We define 
(YEc I H 1 YE,') = E6(E - E'). 

E ,  E (Yna IHI Ynd), V, = (YECIHI Ynd). 

(7.16) 

(7.17) 

(7.18) 
33 
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We assume that the total scattering state '€? of the system at an energy E can be 
written 

Y = aYna + dE' bE YEc. (7.19) s 
By demanding that 

( Y n d I H - E I Y )  = 0, (YE,c lH-EIY)  = 0 (7.20) 

one can determine the coefficients a and bF. This leads to the result 

where 

(7.21) 

(7.22) 

The significance of the three terms in (7.21) is clear. The first represents the 
scattering state in a single-configuration approximation. The second term repre- 
sents the temporary formation of the discrete state of the other configuration, while 
the third term gives the scattered wave which results from the formation and decay 
of that state. 

I t  follows from (7.21) that the cross section will have a pole at the complex 
energy E, + A,. The width of the corresponding resonant state is given by 

l7, = -29A, = 2771 & I 2  
(7.23) 

A comparison with equations (7.13)-(7.15) shows that these results of Fano's 
approach can be derived from the corresponding results of the projection operator 
formalism by approximating Y,, and Q'r by YEc and 'rnd respectively. 

The  great success of Fano's theory in electron scattering and photon absorption 
by atoms arises from its simplicity and its ability to treat the interference between 
resonant and non-resonant scattering amplitudes, i.e. the third and first terms in 
(7.21). (The second term in equation (7.21) gives no contribution to  the scattering 
since it decreases exponentially at large distances.) 

We have discussed the configuration interaction method for the simple case of 
one discrete state overlapping with one continuum. Fano (1961) has also given the 
generalizations to the interaction of one discrete state with many continua or of 
many discrete states with a single continuum. When one considers autoionizing 
electronic states of molecules, one nearly always has many discrete states interacting 
with many continua, because of the vibrational motion of the nuclei. This com- 
plication can arise even though there are only two electronic configurations involved. 
The  necessary extension of the theory has been described by Bardsley (1968 a), who 
showed that for thermal electron-molecule collisions this approach is more suitable 
than the theory which will be developed in $$8 and 9. The  Fano approach can also 
be used in the study of nuclear-excited Feshbach resonances as will be shown in 5 12. 
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8. Definition of molecular resonances 
The  common feature of the different types of resonances discussed in $ 2  is that 

they can decay by electron emission. This implies that resonant states satisfy 
outgoing-wave boundary conditions corresponding to these decay modes. One can 
use this property to characterize resonances and this approach due to Siegert (1939) 
(see also Herzenberg et al. 1964, Bardsley et al. 1966 a) will now be developed for 
molecules. 

New and important features occur for molecules, as compared with atoms, 
owing to the extra degrees of freedom associated with the nuclear motion. We shall 
employ an extension of the Born-Oppenheimer procedure for bound states, 
i.e. calculate resonances adiabatically with the nuclei fixed in position. Important 
modifications of this approach are required to allow for the exchange of energy 
between electronic and nuclear motion which is often very large. This adiabatic 
approach is of course not possible for nuclear-excited Feshbach resonances (see 
§$5 and 12). 

Let us consider an ( N +  1)-electron molecular system. We write its Hamiltonian 

H = H,(R) + Hel-v+l(r, q, R) 

where H,,(R) is the kinetic energy operator of the nuclear motion and HelX+l is the 
electronic Hamiltonian of the system. The  nuclear coordinates are collectively 
denoted by R and the coordinates of the target electrons by q, while r stands for the 
coordinates of the projectile electron which is incident on the target and is emitted 
in autoionization. In  practice it is necessary and possible to antisymmetrize the 
theory with respect to projectile and target electrons (see Bardsley et al. 1964, 1966 b) 
but this complicates the details greatly. In  order to explain the essential features 
clearly and simply we shall treat the projectile electron as distinguishable, but shall 
state the final results in their correct form. 

A resonant state Yn(r,q,R) is defined adiabatically in terms of the electronic 
Hamiltonian HelA'fl by 

{Her+l(r, 4, R)- Wn(R)}Yn(r, 4, R) = 0. (8.2) 
The  nuclear coordinates R occur in (8.2) only parametrically, i.e. one calculates with 
the nuclei fixed at R. This leads to electronic wave functions Yn and eigenvalues 
Wn(R) which serve as potential energy terms in the Schrodinger equation for the 
nuclear motion. This is the adiabatic Born-Oppenheimer procedure which is 
justified by the large ratio of nuclear to electron mass as a consequence of which the 
velocities of the nuclei are very slow compared with those of the electrons. 

The  distinction from the case of bound states arises through the boundary 
conditions which Yn must satisfy. Let us consider the close-coupling expansion 
of Y*: 

where !2 stands for the polar angles of the projectile electron and qv represents the 
target state of the N-electron target molecule, with energy EvN(R), coupled to the 
angular momentum part of the projectile electron's wave function, i.e. +vn(y,  R) is 
the radial wave function of the projectile electron in the channel v, (We shall use v 
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to stand collectively for all quantum numbers of the system or those that are 
relevant. These quantum numbers specify the nuclear and electronic state of the 
target molecule and the angular momentum quantum numbers of the projectile.) 
K.apur and Peierls (1938) then impose the outgoing-wave boundary conditions 

hv+ is an outgoing-wave spherical Hankel function and 

The  boundary conditions (8.4) are imposed at a ‘joining radius’ r = yo such that for 
r > ro the projectile is free, i.e. all the interaction is contained within the internal 
region r < yo. (These are the boundary conditions for a potential of finite range. If 
the target is a positive ion, or to allow for other long-range effects, one can replace 
the free-particle wave functions h,+ in (8.4)-(8.5) by Coulomb or distorted waves.) 
Equation (8.6) defines the energy 5i2kvz/2m for the electron to autoionize into 
channel v, the total energy of the system being E and the nuclei being held fixed at 
R all the time. 

Equations (8.4)-(8.6) are the boundary conditions one would have for atoms. 
They will not do for molecules in general, because of the considerable exchange of 
energy between the electronic and nuclear motion. It may happen that all the 
available energy of the resonance is transferred to the nuclear motion so that no 
energy is available for electron emission. This is the basic mechanism of dis- 
sociative attachment. T h e  boundary conditions for electron emission then depend 
on the nuclear motion, i.e. on the complete solution, leading to a very complicated 
self-consistency condition. Fortunately, in the case of a single electronic resonance 
it can be shown (Bardsley et al. 1964, 1966 b) that the correct boundary conditions 
reduce to equations (8.4)-(8.5) with 

This definition of the resonant state is independent of the nuclear motion and of the 
energy of the system; it is precisely that of a Siegert state. It can be shown that for 
fixed R, W,(R) is a pole of the scattering matrix in the complex energy plane. This 
definition of a Siegert state is independent of the choice of joining radius yo pro- 
vided it is beyond the range of the interactions of the projectile with the target. 
( In  the Kapur-Peierls definition such a spurious yo dependence does occur.) In  the 
case of long-range interactions one must either truncate and neglect these beyond a 
certain distance or use distorted waves in the boundary conditions (8.4)-(8.5), just 
as in the Kapur-Peierls theory. 
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Because of the complex boundary conditions, the energy eigenvalue W,(R) is, 
in general, complex: 

where J?,(R) is the width of the decaying state and 7i/Fn(R) its lifetime. Siegert’s 
definition of a resonance is analogous to that of a bound state into which it goes 
over for W, real and negative. 

It follows from (8.7) that the wave-vectors K,,  are complex. Consequently the 
Siegert-state wave functions diverge exponentially at large distances. (Physically 
this corresponds to the fact that, in a time-dependent picture, the wave function at 
large distances must have leaked out from the decaying resonant ion at very much 
earlier times when its wave function had a much larger amplitude.) Because of this 
exponential divergence it is necessary to restrict integrals involving Siegert-state 
wave functions to finite domains of integration only. 

One can calculate Siegert states from a modified form of the Rayleigh-Ritz 
variational principle which incorporates surface terms which lead to the Siegert 
outgoing-wave boundary conditions (8.4)-(8.5). Herzenberg and Mandl (1963) 
have given such a variational principle for resonances defined with Kapur-Peierls 
boundary conditions ; this can be extended, by an iteration procedure, to cope with 
Siegert boundary conditions. This method has been applied successfully to the 
3 ev and 10 ev resonances of Ha- (Bardsley et al. 1966 a). The  advantage of this 
method is that it gives both the real part and the imaginary part (i.e. the width) of 
the resonance energy W, variationally. 

Alternative variational methods for calculating resonant states are discussed by 
Taylor et al. (1966). They depend on suitably restricting the trial functions. For 
Feshbach resonances this is easily achieved by decoupling open and closed channels 
using projection operators or, equivalently, restricting the trial wave functions to 
contain closed-channel components only. Taylor et al. (1966) have refined these 
methods to apply also to shape resonances, and have successfully used these methods 
to calculate the 3 ev, 10 ev and 12 ev resonances of H,- (Eliezer et al. 1967). So far 
these methods have only given E,(R), the position of the resonance, and not its 
width r’,(R). 

From equation (8.2) and its complex conjugate an expression can be derived 
for the width F,(R). For the completely antisymmetrized theory this reads 
(Bardsley et al. 1966 b) 

W,(R) E,(R) - $iF,(R) (8.8) 

where Q(ro) is the internal region, i.e. all rt < y o ,  as discussed earlier in this section. 
Equation (8.9) is typical for a total width. It consists of contributions from the 

different channels v ,  each contribution depending on a reduced width (proportional 
to I +vn(~o ,  R) 1’) and a barrier penetration factor (proportional to $F,(K,,, ro) ). If 
we approximate W,(R) in (8.7) by E,(R), which is justified for a narrow resonance, 
then it follows from (8.9) that only open channels (E,(R) > EvN(R)) contribute to the 
width. I t  is possible to re-express equation (8.9) in terms of a matrix element for the 
interaction of the projectile with the target molecule (Herzenberg et al. 1964, Kwok 
and Mandl 1965). 
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9. The nuclear wave equation 
9.1. Derivation of the nuclear wave equation 

We next derive the wave equation for the nuclear motion. As in the usual Born- 
Oppenheimer theory, this will contain the eigenvalue W,(R) of the electronic 
problem (8.2) as potential. This potential is now complex corresponding to the 
decaying nature of the electronic state YP,. As a second new feature the nuclear wave 
equation may contain a 'feeding term' corresponding to the formation of the 
resonant state through electron capture by the target molecule. 

The  wave function of the complete system satisfies 

( H -  E)Y(r, 4, R) = 0. 
We write 

HefvT1(r, 4,  R) = He,"(q, R) + K O  + V(r, q, R) (9.2) 

where He," is the electronic target Hamiltonian, KO the kinetic energy operator of 
the projectile electron and V its interaction with the target. We put 

Y(r, 4, R) = f,(R) q r ,  4, R) + Yso(r, 4, R) (9.3) 
where Ysc is the scattered wave and [,a, the wave function of the initial target 
state plus the non-interacting incident projectile electron. Qp is the adiabatic 
electronic wave function 

q r ,  4, R) = xp(4, R) exp (ik,  r) (9.4) 

(9 .5 )  

(9.6) 

with xp, the initial target state, satisfying 

{HelAr( 4, R) - E,*'( R)} x,( 4, R) 0 ; 

f ,  is the initial nuclear wave function which satisfies 

{H,v + E,"@) - E,} Cp(R) = 0. 
The total energy E of the system, the energy E, of the initial target state and the 
kinetic energy of the incident projectile are related by 

k 2 k  
2m E = c y + > .  (9.7) 

p labels the quantum numbers of the initial state [,(Pp which will usually be the 
ground state of the target molecule and for simplicity we shall refer to it as such. 

Using the fact that the electronic wave function xP(q,R) is a slowly varying 
function of R compared with the nuclear wave function [,(R) and equations (8.1) 
and (9.2) to (9.7), we can rewrite equation (9.1) in the form 

We shall restrict ourselves to resonant processes which at a given energy E are 
due to a single electronic resonance state Yn. The  scattered wave is then due solely 
to the decay of this single electronic resonance. We shall assume that the scattered 
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wave can be written as the product of the adiabatic electronic wave function Yn 
and a nuclear wave function i,(R): 

Y*o(r, 4, R) = L(R) Yn(r ,  4, W. (9.9) 

Equation (9.8) then becomes, on account of (8.2) and again using the adiabatic 
approximation to replace ev({, Y,) by ",(ev F,), 

W," + K ( R )  - E )  i m  = J,(R) 

= - c,(R)/ dr  dq Y , t ( r ,  4, R) ~ ( r ,  4, R) alL(r, Q, RI. 
n(Q) 

(9.10) 
Here Y',, is normalized by 

(9.11) 

Q(YJ being the internal region defined in Q 8. Y,+ is defined by replacing, in equation 
(8.3), Y, by Y,t and the 71" by their complex conjugates ?I"*. 

The nuclear wave equation (9.10) is our basic result. It is fundamental for 
molecular collision processes involving resonances. It displays the two character- 
istic features mentioned above: it has a complex potential corresponding to the 
decaying nature of the resonance, and it has the feeding term J,(R), proportional to 
the amplitudes of the incident electron beam and of the initial molecular state, 
which is responsible for the generation of the resonance through electron capture 
by the target molecule. For processes such as associative detachment, where there 
is no incident electron current, the nuclear wave equation (9.10) still holds, with 
Jn(R) replaced by zero. An alternative form of the feeding term in (9.10) can be 
derived from the equations satisfied by QF and Y,t. (It is here that the use of Y,t 
rather than Y',* is essential.) This form, in terms of surface amplitudes q5iLn(~o, R) 
in the incident channel, is given by Bardsley et al. (1964, 1966 b) who also obtain a 
more general form for the nuclear wave equation, valid when more than one elec- 
tronic resonance is important. 

In  order to solve the nuclear wave equation (9.10), we shall assume that the 
lifetime of the resonant molecular ion is short compared with its rotational periods. 
In  practice this is usually the case. One may then neglect the kinetic energy of the 
rotational motion in (9.10) compared with the vibrational and electronic energies. 
This amounts to keeping the molecular axis fixed during the lifetime of the complex 
and treating the rotations classically by averaging over all initial orientations of the 
molecular axis. This is equivalent to averaging over initial and summing over final 
angular momentum states of the system. Restricting ourselves to diatomic mole- 
cules, for which most theoretical work has been done, we may then replace R by R, 
the internuclear distance. We now put 

where the argument k, has been added to show the dependence of .$, and J, on the 
relative orientation of the incident electron beam and the molecular axis, now held 
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fixed. The  nuclear wave equation (9.10) then becomes 

(9.12) 

where M is the reduced mass of the nuclei. 
The  way in which equation (9.12) describes dissociative attachment can be 

understood from figure 15. The  nuclei are initially vibrating in the potential 
E L ~ ( R )  with wave function <,(R). As a result of electron capture at internuclear 
distance RE, the nuclei start to move in the modified potential WJR) with the wave 

T u r n i n q  point  I o n  becomes s t a b l e  
a q a i  n s t e I ec t r o n  
e m i s s i o n  i L 

I D e c a y i n q  req ion I 

\ r h 

R 

[# (R I  i n i t i a l  nuc lear  
wave  f u n c t i o n  

Figure 15.  Potential energy curves and nuclear wave functions in dissociative attachment. 
The final wave function is schematic only. (From Bardsley et  al. 1966 b.) 

function [ J R ,  k,) which has a decaying amplitude for RE 6 R 6 R, due to the 
possibility of the autoionization, leaving the nuclei in an excited state or the ground 
state of the potential E,N(R). Depending on the lifetime of the resonance, the nuclei 
may separate to a distance R, without autoionization having occurred. This corre- 
sponds to dissociative attachment. For R greater than the stabilization distance R, 
electron emission is no longer energetically possible, the width rn  vanishes and 4, 
oscillates with a constant amplitude which determines the dissociative attachment 
cross section. 

The nuclear wave equation (9.12) describes the nuclear motion in terms of a 
complex local potential. Most previous applications have been of this form. I t  has 
been pointed out by Bardsley (1968 a) that this equation is only applicable if the 
energy of the scattered electron is large compared with the vibrational spacings of 
the negative ion complex. For processes at thermal energies, such as dissociative 



Resonant scattering of electrons by molecules 503 

recombination, this is not the case and a description in terms of a non-local potential 
is required (Bardsley 1968 a, O’Malley 1967 b). 

9.2. Solution of the nuclear wave equation 

function G,(R, R’) which satisfies 
I n  order to solve the nuclear wave equation (9.12) we introduce the Green 

(9.13) ( - + W,(R) - E G,(R, R’) = 6(R - R‘). 2 M  dR2 

- 
F r a n c k - C o n d o n  r e q i o n  

R 

F r a n c k - C o n d o n  r e q i o n  
Figure 16. Potential energy curves E,“(R) and E,@) of the target ground state and of the 

resonant state respectively. (a) E >  &(CO). (b)  E <  E,(co). 

The solution of (9.12) is then given by 

t,(R kB) = lWdR’ G,(R, R’) Jn(R’, kp). (9.14) 
0 

Physically two different situations arise according as to whether 

E +%w, ( R  = CO) = & ( A  = CO) 

i.e. according as to whether dissociation can or cannot occur at the energy E of the 
system. The  potential energy curves for the two cases are illustrated in figure 16. 
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Correspondingly, the Green function satisfies different boundary conditions at 
infinity : outgoing-wave boundary conditions for E > E,(co) and bound-state 
boundary conditions for E <  E,(so). The boundary condition at the origin is 
G,(O, R’) = 0 in both cases. 

Let uIn(R) and uIIn(R) be solutions of (9.13) with the right-hand side replaced 
by zero and satisfying the same boundary conditions at R = 0 and R = CO respec- 
tively as G,(R, R’). The Green function is then given by 

(9.15) 

where the denominator is a constant independent of R ,  and R ,  and R, are respec- 
tively the greater and the lesser of R and R‘. 

The expression (9.15) for the Green function is generally valid. However, if 
E < E,@) and E,(R) possesses a minimum, as illustrated in figure 16(b), it may be 
convenient to use a different form. For in this case the vibrational states of the 
nuclei, moving in the resonance potential W,(R), will give characteristic structure 
to the elastic and inelastic scattering cross sections. Let u,(E’, R) be the complete 
set of real eigenfunctions, with eigenvalues E’, satisfying 

(9.16) 

and the boundary conditions u,(E‘, 0) = 0 ;  u,(E’, R)  is a bound state or standing 
wave for E’ 5 E,(m), respectively, at R = 03. From (9.13) one finds directly that 

(9.17) 

where cE, stands for summation over the discrete spectrum (E’ < E,,(co)) and 
integration over the continuous spectrum (E’ > E,(o~)). Equation (9.17) is exact. 
In  practice it is of use if it can be approximated by retaining only a few terms of the 
discrete spectrum and dropping the continuum contribution. 

10. Dissociative attachment 
10.1. The CYOSS section for dissociative attachment 

We now consider the process of dissociative attachment which may occur when- 
ever one of the atoms of the target molecule possesses a stable negative ion. In  this 
case there will exist resonant states which have the correct asymptotic form to 
describe dissociative attachment. In particular, for nuclear separations R greater 
than the stabilization distance R,  the complex becomes stable against electron 
emission. We shall assume that at a given energy only one electronic resonance 
state is of importance for this process. The  mechanism of this process was de- 
scribed in $ 9  (see figure 15). It depends exclusively on the resonance and ignores 
the non-adiabatic terms in the Hamiltonian which, in general, make only a small 
contribution to the dissociative attachment process. The  resonance process has 
been considered by Bardsley et al. (1964, 1966 b), Chen (1963, 1966 b) and O’Malley 
(1966). The  last two authors use the projection operator formalism and also consider 
direct and non-adiabatic transitions. 
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Equation (9.14) for &(R, k,) gives the outgoing current for R+m. The  total 
dissociative attachment cross section uDA is then given by 

(10.1) 

where we have included the correct statistical spin factors. (S ,  and S, are the spins 
of the resonant and initial target states.) kK/M and kk,/m are the velocities of the 
emitted negative ion and of the incident electron, and the operation Jdk,/47r 
averages over all orientations of the molecular axis relative to the unit vector k, 
which defines the direction of incidence of the electron beam. 

In  order to calculate uDA from (10.1) we require the solution of the nuclear wave 
equation. This is given by equations (9.14), (9.15) and expression (9.10), or some 
alternative form, for the feeding term J,(R, kp). I n  practice one will have to solve 
this equation numerically. But the physical features are well displayed in an 
approximate analytic solution which uses the WKB approximation and assumes 
that the resonance is narrow. The  cross section (10.1) then becomes (Bardsley 
et al. 1966 b) 

with 

and 

(10.2) 

(10.3) 

(10.4) 

The  summations in (10.4) are with respect to the orbital angular momentum 
quantum number, and its x component, of the incident electron. The  distances 
R,, R, and RE, shown in figure 15, are the stabilization distance, the equilibrium 
separation of the nuclei in the initial state xp of the target molecule and the classical 
turning point of the resonance potential defined by E = E,(RE). a is the vibrational 
amplitude of the initial nuclear wave function c,, and 

(10.5) 

denotes the slope of the resonance potential at the turning point.? u(R), in (10.2), 
is the relative velocity of the nuclei at separation R. 

The  two factors in equation (10.2) have a simple interpretation. ucap is the 
capture cross section for formation of the resonant negative ion (this will be shown 
below) and the exponential factor, called the survival factor, represents the proba- 
bility that the negative ion survives from its formation at nuclear separation RE till 

f The notation has been slightly changed compared with Bardsley et al. (1966 b). The 
quantities now denoted by a,  R, and RE, were previously called 01-~’2, R, and R, respectively. 
I t  should also be noted that the definition of a is slightly different from that used by 
Herzenberg and Mandl (1962). 
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stabilization occurs at separation R,. This interpretation follows from the fact that 
dR/v(R) is the time taken by the nuclei to separate from R to R + dR while r,(R)/ti 
is the decay rate at this separation. The  representation of uDA as a product of two 
factors with the above interpretation is not restricted to this approximate analytic 
solution but is always possible if the rotational energy is neglected in the nuclear 
wave equation. It is therefore convenient to write 5 D A  approximately in the form 

(10.6) 

where ucap represents a capture cross section, T is the time the nuclei take to slide 
apart from RE to R, and Fn is a corresponding mean total autoionization width. 

Equation (10.4) for r0(RE) has the form of a partial width for capture by (or 
decay into) the initial molecular state. The  capture width r0 and the total auto- 
ionization width rn  are the same only if the incident channel is the only open 
channel. But in general they may be of quite different magnitudes. This can lead 
to interesting effects of a small dissociative attachment cross section (small entrance 
width I?,) but a wide resonance none the less (decay to excited states). This happens 
for the 10 ev resonance of H,-. 

Since 2W,a represents the variation of E,(R) over the range of the nuclear 
ground-state oscillations, the term l?o(RE)/2Wlu in (10.3) is the fraction of time 
during which electron capture by the target molecule into the resonant state can 
occur. Hence we interpret (10.3) as the capture cross section for formation of the 
negative ion. The  main energy dependence of uDA comes from the exponential 
factor in ucap, which leads to a Gaussian peak centred at E = En(Ro) and of width 
(at half-height) ZW, a(log 2)'/2. This width should not be confused with the width of 
the electronic resonance. 

The  dependence of CJDA on the reduced nuclear mass M leads to very interesting 
isotope effects. The  most important effect arises from the survival factor. Since the 
forces which different isotopes experience are the same, the nuclear velocities v(R) 
are proportional to M-'/Q. Hence the separation time T ,  and therefore the exponent 
of the survival factor (10.6), will be proportional to Mlh. This can lead to very large 
isotope effects, the heavier isotope having the smaller cross section. This isotope 
effect of the survival factor was first predicted by Demkov (1965). ucap also leads 
to isotope effects since the vibrational amplitude a which occurs in two places in 
(10.3) is proportional to M-l/4. The occurrence of a in the Gaussian in (10.3) has 
two effects. It leads to an isotope dependence for the width of the cross section 
peak and for the magnitude of the cross section which is of the same form, 
exp (const. J M ) ,  as that of the survival factor. At the peak energy the constant is 
positive, leading to an enhanced cross section for the heavier isotope. For the 
survival factor the exponent is always negative, Because of this identical depen- 
dence, it may be difficult to apportion the exponential isotope dependence between 
these two effects. I n  general the isotope effects resulting from the Gaussian factor 
are small but these effects may become important in the case of 'vertical onset', 
i.e. if the threshold energy for dissociative attachment is much larger than the peak 
energy E,(R,). This is probably the explanation of the observed isotope effect in the 
14 ev peak for H,, HD and D,, and it is probably also relevant for the 3.75 ev peak 
in H, (O'Malley 1966) which will be discuded in $10.2. Finally, the vibrational 
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amplitude a in the denominator of (10.3) makes uoap proportional to M1/4 which is 
again a weak effect. 

The effect of the centrifugal term in the nuclear wave equation on dissociative 
attachment has been studied by Chen and Peacher (1967). It would appear not to 
produce any significant effects except at very low energies. 

The formalism for dissociative attachment which has here been described 
applies, with appropriate changes, to the very similar process of dissociative 
recombination (Bates 1950, Bardsley 1968 b). The  dissociative recombination 
coefficient CY is defined as the product of the dissociative recombination cross section 
UDR with the electron velocity zle, averaged over the Maxwellian velocity distribution 
of the electrons at the electron temperature T,  i.e. in terms of the electron energy 
E = +mve2 

CY = (ul)R(E)7I'e) 
= { 23 .)'Ia /uDR(E) exp (g) E dE. 

mn(kT)  (10.7) 

In  the remainder of this section we shall give examples of dissociative attachment 
which illustrate the various features which we have discussed. 

10.2. Dissociative attachment in H ,  at low energies 
I n  $3.1 we discussed the H,- resonance at about 3 ev which has the structure 

( 1 s ~ ~ ) ~  (2pu,) ,Xu+. The curves for the potential energy and width were shown in 
figuies 3, 11 and 4. In  the Franck-Condon region of the H, ground state this 
resonance can autoionize leading to vibrational excitation (0 11.3). But dissociative 
attachment may also occur provided it is allowed energetically. Since the threshold 
for dissociative attachment is 3.75 ev, it follows from figures 3 or 11 that the 
electron capture must take place to the left of the Franck-Condon region leading to a 
vertical onset for the dissociative attachment cross section uDA. Precisely this shape 
has been observed by Schulz and Asundi (1965, 1967). Their results for H, are 
shown in figure 17. Schulz and Asundi measured uDA for H,, HD (in this case the 
D- current was measured) and D, and obtained peak values of 1.6 x 
and 8 x 10-24 cm2 respectively, all peaks occurring at  3.75 ev. The  smallness of 
these cross sections is a consequence of the short lifetime of this broad shape 
resonance. Their relative magnitudes are in excellent agreement with the isotope 
dependence: uDA cc exp (const. d M ) ,  discussed in Q 10.1, with a negative constant, 
i.e. the survival factor outweighs the Gaussian exponential. Schulz and Asundi 
attribute the whole isotope effect to the survival factor but we do not believe that a 
definite conclusion is possible on the basis of existing experimental and theoretical 
results. 

1 x 

10.3. Dissociative attachment in H ,  near 10 e v  
The cross section for dissociative attachment in H, was first measured by 

Khvostenko and Dukel'skii (1957) and Schulz (1959). More recently, measure- 
ments in H,, H D  and D, have been reported by Rapp et aE. (1965) whose results 
are shown as the broken curves in figure 18, the continuous curves being the 
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theoretical results of Bardsley et al. (1966 b). (These were obtainedfrom a numerical 
integration of the nuclear wave equation and not from the approximate analytic 
treatment on which we shall base our discussion.) These results were obtained 

Figure 17. Cross section for H- formation from H, at low energies. (Width of electron energy 
distribution at half-maximum about 0.1 ev:) (From Schulz and Asundi 1967.) 

x Io-2o 2.0 

1.6 

Figure 18. Cross section for dissociative capture in H,, HD and D,. Fu.. curves, calcL,,tions 
by Bardsley et al. (1966 b); broken curves, experimental results by Rapp et al. (1965). 
(From Bardsley et al. 1966 b.) 

assuming that this process proceeds via the 10 ev ,Zg+ resonance of H,- (Bardsley 
et al. 1966 a), discussed in $6.1. The  potential energy curve and width of this 
resonance are shown in figures 9 and 10, while figure 11 shows a more recent 
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potential energy curve of Eliezer et al. (1967). From these potential energy curves 
one can conclude that the isotope effect observed by Rapp et al. is exclusively due 
to the survival factor in equation (10.6) giving a mean autoionization width 
r , ~  0.8 ev. The  observed magnitude of the peak cross section in H, then deter- 
mines the capture width, equation (10.4), as Fc(R0) N 0.004 ev. (This width becomes 
much larger for R greater than about 3 A.U.  ; see $ 6.1.) These results are consistent 
with the (lsu,) ( 2 ~ 0 , ) ~  ,Zg+ structure of this resonance and the fact that, according 
to Bardsley et al. (1966 a), its potential energy curve lies above the repulsive 
(lsa,) (2paJ 3Cu+ state of H, for not too large nuclear separations R. Hence decay 
to this state of H, can easily occur making a large contribution to F,. On the other 
hand, in the Franck-Condon region the resonance contains only a small component 
of the H, ground state, resulting in a small capture width Fc(R0). 

The  calculations of Eliezer et al. make the potential energy curve of the ,C,+ 
resonance cross the 3&+ state of H, in the Franck-Condon region as shown in 
figure 11. Decay to the 3Cu+ H, state can now occur only to the left of this cross- 
over leading to a reduction in F,. This is consistent with the results of Bardsley 
et al. (1966 b), who had to scale the calculated total decay width by a factor 0.54 
to obtain agreement with experiment. Eliezer et al. attribute the dip which is 
observed in the dissociative attachment cross sections at 11-2 ev to a threshold effect 
resulting from this new decay channel 3&+ opening up at this energy. 

Recently Dowel1 and Sharp (1968) have reported structure in the dissociative 
attachment cross section of H, in the energy range 11*2-12.5 ev. Eliezer et al. 
conjecture that this is due to an interference effect between the 10 ev H,- resonance 
and the two higher-lying ,E,+ resonances of H,- discussed in $4.3 (see figures 7 and 
11) which at these energies lie close together. They furthermore attribute the peak 
observed at 14 ev in dissociative attachment (see figure 18) to these resonances. 

10.4. Dissociative attachment in hot 0, 
A strong temperature dependence, in the range 300 O K  to 2000 OK, for the 

position, width and magnitude of the cross-section peak for dissociative attachment 
in 0, has been observed (Fite and Brackmann 1963, Fite et al. 1965). The  circles in 
figure 19 show these experimental results for 300 O K  and 2100 O K  while the con- 
tinuous curves are the theoretical results of O’Malley (1967 a), to be discussed 
below (see this paper by O’Malley for a discussion of the normalization of these 
curves). 

Demkov (1965) qualitatively interpreted this temperature dependence as due to 
the contributions from the different vibrational states of 0,. Detailed calculations 
by O’Malley (1967 a) of the dissociative attachment cross section for vibrationally 
and rotationally excited 0, confirmed this. The  surprisingly large effect is due to 
the sensitivity of the survival factor in equation (10.6). This is illustrated in figure 20 
which shows schematically the potential energy curves of the 0, ground state and of 
the 0,- resonance. Let us consider dissociative attachment from the vibrational 
ground state vo = 0 and the excited vibrational level a > 0. The  effective threshold 
energies for dissociative attachment from these levels correspond to the ordinates 
AA’ and BB’. This explains the shift to lower energies and the broadening of the 
cross-section peaks for the higher vibrational states. Furthermore, the minimum 
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separation time T (BS) for the nuclei to slide apart from the initial separation (at B) 
to the stabilization distance R, (at S) for the excited state zi > 0 is shorter than the 
corresponding time T (AS) for the ground state vo = 0. Hence the survival factor 
will be smaller for dissociation from the ground state uo = 0 than from an excited 
state v > 0 which explains the larger cross sections at higher temperatures. O’Malley 

x Io-’*2.0 
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Figure 19. Dissociative attachment cross section in Os at 3000 OK (curve A), 2100 OK (curve B) 
and 300 OK (curve C). The  circles are the experimental points of Fite et al. (1963, 1965). 
The full curves are the theoretical results of O’Malley (1967 a). 

A 

% = O  A‘ 

Figure 20. Schematic diagram of the potential energy curves of the O2 ground state and of 
the 02- resonance. 

has calculated the dissociative attachment cross section in this way allowing for the 
Boltzmann distributions, at different temperatures, over the vibrational and rota- 
tional levels of 02, and for the energy spectrum of the electron beam used by Fite 
et al. The  agreement shown in figure 19 between theory and experiment shows that 
this interpretation of the temperature dependence is correct. As expected, 
O’Malley’s calculations show that the main effect stems from the excitation of the 
first few vibrational levels while the rotations and the spread in electron energies are 
not very important. 

10.5. Dissociative attachment in methane 
Sharp and Dowel1 (1967) have measured the H- and D- production in dis- 

sociative attachment in CH, and CD, in the energy range 8 to 13 ev and observed 
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the isotope effect 

This is the only case known to us where the cross section of the heavier isotope is 
the larger one. Although the theory developed in $10.1 was for diatomic molecules, 
the form (10.6) for aDA as the product of a capture cross section a,,, and a survival 
factor will clearly hold for any two-body break-up. Assuming that the observed 
process is of this kind, it follows that the observed isotope effect must come from 
ucap and not from the survival factor. It may be of interest to note that an isotope 
dependence a,,, cc M1!4, such as occurs for diatomic molecules, would lead to 
aDA(CD,)/uDA(CH4) = 1.2 in good agreement with the experimental results. 

UDA(CD~) N 1.25 aD_k(CH,). 

10.6. Dissociative attachment in other molecules 
The isotope effect for dissociative attachment in H,O and D,O has been studied 

by Compton and Christophorou (1967), and in the hydrogen halides by 
Christophorou et al. (1968). In  both these cases isotope effects with aDA cc M-'/Q are 
reported. Theoretically this is difficult to understand but Compton and 
Christophorou attribute this to non-adiabatic terms. 

A survey of dissociative attachment, giving many references, will be found in 
the review article by Christophorou and Compton (1967). Further such measure- 
ments have been reported by Grob (1963)) von Trepka and Neuert (1963), Jager 
and Henglein (1966) and Wentworth et al. (1967). 

11. Vibrational excitation 
11.1. Theory of oibrational excitation 

The resonance mechanism is very important for vibrational excitation of 
molecules. I t  can lead to greatly enhanced cross sections and to complex structure 
in these cross sections which would otherwise be difficult to understand. Both 
these effects are due to the severe distortion of the target molecule in a resonance 
process as compared with a direct reaction. 

The theory of vibrational excitation has been considered by Herzenberg and 
Mandl (1962), Chen (1964 a, b) and Bardsley et al. (1966 b). In the last paper a 
general expression is derived for the cross section a(p-+v) for the excitation from 
the initial vibrational state ( ,(R) to the final vibrational state (,(I?). In discussing 
vibrational excitation we shall assume that at a given energy only one electronic 
resonant state is important. This is the usual situation. In  this case the expression 
for the cross section reduces to 

(11.1) 

where the summations are over the orbital angular momentum quantum numbers, 
and their x components, of the incident and scattered electron. IvPn is given by 

34 



512 J.  N .  Bardsley and F. Mandl 

Equations (11.1)-(11.2) follow from the scattered wave Yea, equation (9.9), by 
projecting out a particular final vibrational state &,, except that we have here inserted 
the spin and other factors which would result from a fully antisymmetrized theory. 

A general procedure for evaluating the cross section (11.1)-(11.2) is to use the 
expression (9.15) for the Green function. This form is particularly useful if 
vibrational excitation occurs in competition with dissociative attachment, i.e. if 
E > E,(co) (or other dissociative reactions such as e + AB + e  + A + B). This case 
is illustrated in figure 16(a), but the resonant potential E,(R) could equally be 
purely repulsive. The  magnitude of the vibrational excitation cross section and its 
variation with energy depend on the lifetime E/r, of the resonance and on the 
resonance potential E,(R) since these determine the probability for re-emission of 
the electron and the distortion of the residual target molecule. 

A very different situation arises for the potential energy curves shown in 
figure 16(b), where elastic scattering and vibrational excitation are the only open 
channels and where the resonance potential E,(R) possesses a minimum. The  
nuclei can then oscillate in the resonance potential in different vibrational states 
very much as in a stationary state, provided the lifetime of the complex is long 
enough. I n  this case, we use equation (9.17) for the Green function in (11.2). If we 
assume that r,(R) is a slowly varying function for values of R such that C,(R) is 
appreciable and replace it by a mean value F,, then we can rewrite (11.2) as 

where 

(11.3) 

(11.4) 

This expression can be further simplified since +,"(r0, R) is a slowly varying function 
of R. With a suitable mean value R we can then write 

$un(Yo7 mdR C,(R) un(E', R). 
= k, h,+(k, y o )  !,, (11.5) 

The  last integral is the usual Franck-Condon factor; it is the overlap integral of the 
oscillator wave functions in the potential of the target molecule and of the resonance 
complex. 

The  vibrational excitation cross sections show very different structure depend- 
ing, on the one hand, on the relative time scales of the resonance lifetime E / F ,  and 
the vibrational period l / w  (where Eiw is the vibrational spacing in the resonance 
potential E,(R)) and, on the other hand, on the strength of the coupling of the 
extra electron, i.e. on the force which it exerts on the nuclei. This qualitative 
classification of different rdgimes was derived by Herzenberg and Mandl (1962), 
and we shall now discuss the main features. 

11.1.1. Compound-molecule limit. This situation arises if the lifetime %IF, of the 
resonance is very long compared with the vibrational period ljw in the resonance 
potential : 

rn  4 zw. (11.6) 
- 
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I n  this case the nuclei perform many oscillations while the extra electron is resident 
in the complex. This is the compound-molecule limit, so called in analogy with 
Bohr’s compound-nucleus model. As a consequence of (1 1.6) different vibrational 
states of the resonance do not interfere but correspond to well-separated poles of the 
scattering amplitude (1 1.3). Furthermore, the excitation cross sections for different 
final.vibrationa1 states of the target all have peaks at the same energies. 

The  number of such final states excited and their relative probabilities depend 
on the distortion of the target potential E,iv(R) due to the projectile electron, i.e. on 
the relative shift of the minima of the potential curves EPN(R) and E,(R) (figure 16(b) ) 
and on their curvatures at the minima. The  cases of strong and weak coupling 
correspond to large and small distortion respectively. In  the latter case the oscil- 
lator wave functions un(E’, R) and [,(I?) in (11.5) are nearly the same. As a result 
mainly elastic scattering will occur with only very little vibrational excitation. 

If the coupling is strong one deals, in general, with two very different potential 
energy curves. It follows from (11.3) that transitions will occur via a group of 
compound-molecule levels E’, for which the Franck-Condon factors (1 1.5) with the 
initial vibrational state [,(R) are appreciable, and the transitions will be to those 
final states [,,(I?) which have appreciable Franck-Condon overlap integrals with 
this group of compound molecule states u,(E’,R). Hence a whole group of final 
states [, will be excited, and the partial cross sections c~(p+v)  to different channels v 
will have peaks for the same energies. Each peak corresponds to a particular 
compound-molecule level, and the spacing of these peaks will just be the level 
spacing liw. 

11.1.2. Impulse limit. We now consider the opposite limit 

F, hw. (11.7) 

In  this case the projectile electron hardly stays in the molecule at all. It just gives a 
knock to the nuclei, but the nuclei will hardly have moved during the lifetime of the 
negative ion. Hence this is called the impulse limit. Equation (11.3) still holds but 
is not the most apt expression. It does not display the essential features; different 
resonances now overlap and the peaks in different excitation cross-sections occur 
at different energies. One can obtain a more suitable approximate analytic expres- 
sion by solving the nuclear wave equation (9.12) in time-dependent form, neglecting 
the time dependence of the perturbing potential, due to the projectile electron, 
during the short lifetime of the resonance. In  this way one finds that 

(11.8) 

where we have omitted the electronic matrix element and constant factors. 

omitting .the exponential factors from the time-dependent perturbation 
I n  deriving equation (1 1.8) the use of the impulse approximation amounted to 

(11.9) 
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where 

This is justified provided the R dependence of the perturbing potential 
H, HN + Ep*r( R )  . (1 1.10) 

is mainly linear, for values of R that matter, with only small contributions from 
higher powers of R-R,. In  this case the dominating time dependence of (11.9) 
will be of the form exp ( 5 iw, t ) ,  where w, is the vibrational frequency in the ground- 
state potential EPN(R). In  the impulse limit the lifetime of the resonance, %/!?,, 
will be small compared with 1 /U, so that the exponentials in (1 1.9) may be replaced 
by unity. The  detailed derivation of a somewhat more restrictive form of (11.8) is 
given by Herzenberg and Mandl (1962). 

Limiting situations of weak and strong coupling occur, depending on whether 
the variation of E,(R) - EiY(R) within the Franck-Condon region I R - R, I < a (to 
which the nuclear groundlstate wave function 5, restricts the integration in (11.8)) 
is small or large compared with r,(R) in that region. More precisely, with 

weak and strong coupling are defined by a(R) < 1 and a(R) 9 1 for I R -  R,I < a. 
This interpretation results from the fact that a(R)  is the ratio of v,(R)h/I?,(R), the 
momentum transferred to the nuclei by the projectile in the collision, divided by 
E/2a, the momentum of the nuclear motion in the initial state 

For these limiting cases we can obtain approximate expressions for a(p+v). 
For weak coupling we expand (11.8) in powers of 01. If, for simplicity, we take 
!?,(R) = !?,(Ro) and make the linear approximation vl(R) = vl(R,) within the 
Franck-Condon region, the main contribution to (11.8) comes from {a(R0))”. The  
partial cross section a(p+v) then has a single peak which occurs at energy 
E = E, E ,  + E,(R,) - Eiv(R0), i.e. the peak moves to higher energies as v increases. 
The  peak cross section is proportional to { o ~ ( R , ) } ~ ~ .  Thus there will be mainly 
elastic scattering with the excitation cross sections a(p+v) decreasing rapidly as the 
vibrational quantum number v increases. 

In  the opposite limit of strong coupling a rather drastic approximation leads to 

(1 1 * 12) 

It follows that many vibrational levels will be excited. On account of the oscillatory 
nature of the vibrational wave functions C,, 5, the partial cross sections a(p-+v) will 
possess many peaks which occur at different energies for different channels v (for 
details regarding these limiting cases, see Herzenberg and Mandl (1962)) .  

11 2. Elastic scattering 
In  $11.1 we considered electron scattering which occurs via a resonance. In  

addition the scattering amplitudes will contain a non-resonant component. These 
two components will have different angular distributions and energy dependences 
and will interfere with each other. Now inelastic processes result from a severe 
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distortion of the target and will therefore primarily occur via resonances which 
represent such a distortion. The  elastic scattering will, of course, also display some 
structure due to resonances but, since it will in general also contain a large non- 
resonant component, it is much harder to analyse. Hence inelastic processes are 
particularly useful for studying resonances. 

I n  the remainder of this section we shall give examples of electron-molecule 
scattering where resonances produce structure and where many of the characteristic 
features discussed in $11.1 show up. 

11.3. Vibrational excitation of H, at low energies 
Measurements of the energy dependence of the vibrational excitation cross 

sections of H, in the energy range up to about 8 ev have been reported by Engelhardt 
and Phelps (1963), Schulz (1964) and Erhardt et al. (1968). Figure 21 shows the 
results of the first two groups of authorst and compares them with the calculations 

,/?A* ~ \ +  
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Figure 21. Cross sections for the excitation of the two lowest vibrational states of Ha by 
electron impact. Broken curve, Engelhardt and Phelps 1963 ; crosses, Schulz 1964 
(multiplied by 1.4); full curves, calculations of Bardsley et al. (1966 b). (From 
Bardsley et al. 1966 b.) 

of Bardsley et al. (1966 b) for vibrational excitation via the ,Xu+ resonance of H,- 
discussed in $3.1. The  agreement is seen to be good. These cross sections are a 
factor 15 to 30 larger than ones calculated by Born approximation (Carson 1954). 
On the other hand, Takayanagi (1965), using a distorted wave approximation, 
obtains the right order of magnitude for the D = 1 excitation cross section. This is 
consistent with the description of this H,- state as a ground-state shape resonance 
(see §3.1), i.e. of an electron retained by a centrifugal barrier in the frozen target 
ground state. 

The  cross sections in figure 21 have the features which were described in $11.12 
as typical of the impulse limit and weak coupling. This is consistent with the 
properties of a broad p-wave shape resonance and, in particular, with the resonance 
parameters which follow from the calculation of Bardsley et al. (1966 a) reported in 
$3.1: I',(Ro)2:4.5 ev; K w ~ 0 . 2  ev; 2au,(R,)/F,(Ro)2:+. 

t The results of Schulz have been multiplied by a factor 1.4 to correct for the fact that he 
observed at 70" and assumed s-wave electrons whereas one is dealing with p-wave electrons 
(see below). 
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The  angular distribution of electrons inelastically scattered in exciting the ZI = 1 
vibrational level of H, has been measured by Ehrhardt et al. (1968) for several 
incident electron energies in the range 1.0 to 8.0 ev. The  angular distributions all 
have the same shape, shown in figure 22 for incident electrons with an energy of 
2.5 ev. This is a typical p-wave distribution as is required on account of the parity 
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Figure 22. Angular distribution of electrons inelastically scattered in exciting the ZJ = 1 
vibrational state of H,. Energy of incident electrons 2.5 ev. (From Ehrhardt et al. 1968.) 

and structure of this resonance (see $3.1). They have also measured the elastic 
angular distributions and these vary strongly with energy in the range 0.8 to 3.4 ev. 

11.4. Electron scattering by H, near 12 eV 
The scattering of electrons in the energy range 11 to 13 ev by H, and its isotopes 

has been measured by several groups of workers (Kuyatt et al. 1964, Golden and 
Bandel 1965, Kuyatt et al. 1966, Heideman et al. 1966 b, Menendez and Holt 1966). 
Kuyatt et al. (1966) measured the transmitted current from electrons incident on a 
gas-filled scattering chamber using H,, H D  and D, as targets. They measured the 
current of electrons transmitted in the forward direction without energy loss as a 
function of incident electron energy. (Thus peaks in the transmitted current 
correspond to dips in the total scattering cross section.) In  H, and H D  they 
observed two series of resonances while in D, they found only one series with slight 
indications of a second series. A typical result for H D  is shown in figure 23 while 
columns 1 to 5 of table 1. show the energies of the observed resonance peaks in H,, 
H D  and D,, and state the accuracy of these data. The  absence of a second resonance 
series in D, is due to the smaller vibrational spacing in D, (the spacing is inversely 
proportional to the square root of the reduced mass) which makes observation 
harder, and to the fact that in D, the two series closely overlap. T o  check this last 
point, Kuyatt et al. (1966) predict both series of resonances in D, by scaling the 
vibrational constants for the H, and H D  series. The  resulting series for D, are 
shown in columns 6 and 7 of table 1 and are seen to have a high overlap. 
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Heideman et al. (1966 b) observed the energy dependence of the excitation cross 
sections of the ZJ = 0 and ZJ = 1 vibrational states of the B ~ & +  state of H,. These 

i 
I I I I L 

II 12 
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Figure 23. Transmitted current (without energy loss in forward direction) in HD as a function 
of incident electron energy in ev. (From Kuyatt et  al. 1966.) 

Table 1. The Hz-, HD- and Dz- resonances near 12 ev 
Observed7 Predicted$ Calculated§ 

Column 1 2 3 4 5 6 7 8 9 
H, HD HD D, Dz Dz Ha Ha 

Series 1 2 1 2 - 1 2 1 2 
Hz 

11-28 11 a28 11.28 11.28 11.07 

11.56 11.54 11.48 11.49 11.37 

11.84 11-79 11.69 11 -70 11.66 

12.11 12.02 11.89 11.90 11.93 

12.37 12.27 12.09 12.10 12.19 

12.62 12.49 12*28* 12-29 12.43 

12.86* 12.47" 12.48 12.65 

11.46 11.47 11.47 11.46 

11 a72 11 *70 11.67 11.75 

11.99 11.95 11.86 12-03 

12.27 12.19 12.06 12.3 1 

12.53 12.42 12.25 12.58 

12.77 12*65* 12.44 12.84 

12.97" 12-84" 12.62 13.09 
12.64 12-67 

12.85 12.85 

t Kuyatt et al. 1966. Relative values are estimated to be accurate within 0.01 ev, except those 
with an asterisk which are estimated to be accurate within 0.02 ev. Absolute values are estimated to 
be accurate within 0.1 ev. 

1 Obtained by Kuyatt et al. (1966) from columns 1 to 4 by scaling the vibrational constants. 
9 Eliezer et al. 1967. 
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results are shown in figure 24. The resonance peaks in both these curves occur at 
the same energies. The  spacing of these peaks is the same as that of the trans- 
mission peaks observed by Kuyatt et al. (1966). Both these facts are typical of the 
compound-molecule rkgime, as discussed in $11.1.1. 

I. .- 
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Figure 24. Excitation probability as a function of the incident electron energy for the v = 0 
and v = 1 vibrational levels of the B IC,+ state of H2. (From Heideman et al. 1966 b.) 

The theoretical analysis of these experiments was initiated by Taylor and 
Williams (1965) and greatly improved by Eliezer et al. (1967). The  last authors 
interpreted the two observed series of resonances as the vibrational levels of two 
core-excited Feshbach resonances of H,-, the parent states being the 

and 

states of H,, both resonances being 2C,+ states. These resonances were discussed 
in $4.3 and their potential energy curves and those of their parent states (lying 
above them as required) are shown in figure 7. Columns 8 and 9 of table 1 give the 
vibrational levels of H,- in these two resonance potentials as calculated by Eliezer 
et al. The agreement in the level spacings is very good. I t  is difficult to draw 
any conclusions about the absolute energies of the resonances since the peaks in 
the transmitted current do not necessarily coincide with the positions of the 
resonances. The level spacings of these two resonances are very similar to those 
of their target states, indicating that the extra electron is moving rather far out in 
the molecule and thus does not appreciably modify the nuclear potential. Finally 
we note that the potential energy curves of the two resonant states have very 
different curvatures and displaced minima relative to the corresponding quantities 
of the H, ground state, showing that we are dealing with a strong coupling situation, 
as discussed in $11.1.2 and in agreement with the experimental results of many 
well-developed cross-section peaks. 
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11.5. Electron scattering by N,  near 2 e~ 

The remarkably complex structure of the cross section for vibrational excitation 
of N, by electrons was first observed by Schulz (1962) whose results for the excita- 
tion of the second to eighth vibrational levels, for electrons scattered through 72") 
are shown in figure 25. Subsequently, improved and extended energy spectra for 
elastic and inelastic scattering have been obtained (Schulz 1964, Heideman et al. 
1966a) Schulz and Koons 1966, Andrick and Ehrhardt 1966, Golden 1966, 
Ehrhardt and Willmann 1967). 

r 

v =  7 * 
+/+-+, 

+. +*+.+ ' P I  
01  ' A+%_- I 

E l e c t r o n  enerqy (ev) 

Figure 25. Energy dependence of the cross sections for excitation of the second to eighth 
vibrational levels of N2 by electron impact. Crosses and broken curves, Schulz 1962; 
full curves, Herzenberg and Mandl 1962. The U = 2 curves are normalized to 
give the same magnitude for the first peak. The normalization of the other curves is then 
determined. All curves are on the same scale. (From Herzenberg and Mandl 1962.) 

The  first theoretical analysis of Schulz's curves (figure 25) was carried out by 
Herzenberg and Mandl (1962), who ascribed the observed structure to a resonance 
which, in the notation of 5 11.1, they described by parameters Em(R0)) Fm(R0)) ul(R0) 
using the linear approximation to  obtain E,(R) for other internuclear separations. 
The  spacing of the vibrational levels in the resonance they took equal to that of the 
N, ground state, i.e. 0-3 ev. A numerical solution of the nuclear wave equation then 
gave the vibrational excitation cross sections in terms of these three parameters 
which were determined by optimizing the fit of these theoretical cross sections to 
Schulz's results. The optimum theoretical results are shown as full curves in 
figure 25. Considering the complexity of the data and the fact that the theory 
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contains only three adjustable parameters, the agreement is extremely good. The  
optimum values of the parameters are E,(R,) = 2.3 ev, vl(R,) = 1.2 x lo9 evcm-l 
and Tn(R0) = 0.2 ev. This is of the same order as the vibrational spacing so that 
one is in a situation in between the impulse and compound-molecule limits. 
Nevertheless, the behaviour of the cross sections, shown in figure 25, is reminiscent 
of the impulse limit. J. N. Bardsley (unpublished), using equations (1 1.1)-( 11.5), 
greatly improved the agreement with experiment by also varying the level spacing 
Kiw in the resonance, the best agreement being obtained for Kw = 0.22 ev and 

I I I I -  
O 30 60 90 I20 - 

Scat ter inq anqle (deq) 

Figure 26. Angular distribution of electrons inelastically scattered in exciting the v = 1 
vibrational state of N,. Incident electron energy, 1.9 ev. (From Ehrhardt and Willmann 1967.) 

I?, = 0.16 ev. Very similar results were obtained by Chen (1964 b) using 
Rw = 0.24 ev and r, = 0.15 ev. Chen has improved the agreement between theory 
and experiment further by allowing for anharmonicity effects (Chen 1964 c). He 
has also considered the systematic variation of the Franck-Condon factors (Chen 
1966 c) and rotational excitation via a resonance (Chen 1966 a). 

Ehrhardt and Willmann (1967) have measured the angular distribution in the 
range 0 to 110" for both elastic and inelastic scattering of electrons by N,, for various 
incident electron energies in the range 1-4 to 3.9 ev. I n  the inelastic scattering they 
report angular distributions for the excitation of the vibrational levels v = 1, 3 and 5. 
The  elastic angular distributions are difficult to analyse because of the large non- 
resonant component which they manifestly contain. (This shows up particularly 
well in the energy dependence of the elastic cross sections at fixed angles measured 
by Andrick and Ehrhardt (1966) and by Ehrhardt and Willmann (1967).) Over the 
range 1.4 to 3.9 ev the elastic angular distribution varies drastically. I n  contrast, 
the angular distribution of the inelastic cross sections shows the same general shape 
for the observed energy range 1.9 to 3.1 ev and vibrational states v = 1,3,5. This 
is the behaviour expected from scattering via a resonance. The  angular distribution 
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is largely determined by the structure of the resonance. A typical result of Ehrhardt 
and Willmann is shown in figure 26 which gives the angular distribution at 1.9 ev 
for the excitation of the o = 1 level, This angular distribution is consistent with a 
211g resonance, as discussed in $ 3.2. For such a resonance the extra electron must 
be in a rg state, i.e. it must have even orbital angular momentum 1 with projection 
on to the molecular axis of one unit of angular momentum, i.e. we require 122. 
The simplest such angular distribution for 1 = 2 which one would expect to be 
adequate for a simple structure such as a ground-state shape resonance is in agree- 
ment with the results of Ehrhardt and Willmann (for details, see Bardsley et al. 
1967). As discussed in $3.2, a d-wave resonance produces a quite effective centri- 
fugal barrier which may lead to a comparatively narrow resonance. The  width of 
0.15 to 0.20 ev determined from the energy dependence of the inelastic scattering 
is consistent with this interpretation. 

The  energy and angular dependences of the vibrational excitation cross sections 
of CO near 2 ev have also been measured (Schulz 1964, Ehrhardt et al. 1968). The  
energy dependence is similar to that for N, but corresponds to a somewhat larger 
width. The  angular distribution is predominantly that of p-wave electrons (although 
some d-wave contributions are to be expected and are observed). Both these 
features follow from the fact, discussed in $3.3, that g-u symmetry does not hold 
for CO. Consequently, emission of p-wave electrons is possible. Because of the 
lower centrifugal barrier, compared with d waves, this also results in a larger width. 

12. Non-adiabatic collision processes 
I n  this section we shall examine the consequences of the breakdown of the Born- 

Oppenheimer approximation. The most important effect is the existence of 
nuclear-excited Feshbach resonances, and the treatment of two classes of such 
resonances will be described in $$12.1 and 12.2. For the other two types of 
resonances the non-adiabatic effects will in general be small. Exceptions to this 
may be found in the collisions of thermal electrons with molecules (Bardsley 1968 a). 
Compton and Christophorou (1967) have also suggested that these effects may be 
important in dissociative attachment in water and the hydrogen halides. 

12.1. Vibrationally excited Rydberg states 
The excited vibrational levels of the Rydberg states of molecules often lie above 

the ground-state energy of the corresponding positive ion. I n  this situation the 
states can autoionize through the exchange of energy between electronic and 
nuclear motion in the manner described in $2.3. This autoionization process can 
be described in perturbation theory using the Born-Oppenheimer solutions as 
zero-order wave functions (Berry 1966, Bardsley 1967 b). The  Rydberg states are 
represented by a product of an electronic wave function Y,i and a nuclear function 
Cni. The final state in the decay process, representing an electron being emitted, 
leaving a molecular positive ion, is written as a similar product Y; 5;. 

The perturbation causing the transition arises from those terms in the 
Hamiltonian which are neglected in the Born-Oppenheimer approximation ; that 
is, they are the terms coming from the application of the nuclear kinetic energy 
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operator to the electronic wave function. Thus the matrix element which governs 
the transition is 

This description is analogous to the configuration interaction approach (Dibeler 
et al. 1965). The  resonant width is expressed in terms of this matrix element as 

The  matrix elements V,, have been studied by Berry (1966) and Bardsley 
(1967 b). They conclude that autoionization occurs most readily when transitions 
are possible which involve a change Az; in vibrational quantum number of unity. 
The  autoionization rate decreases rapidly with increasing values of AV. Bardsley 
shows that for a given value of Az; the rate decreases with increasing value of the 
principal quantum number of the Rydberg state. If the effective principal quantum 
number is n* (so that the binding energy is + ( E * ) - ~  A.u.),  the decay rate varies 
approximately as (TZ*)-~. 

Berry and Bardsley were mostly concerned with the Rj-dberg states formed by 
photon impact upon hydrogen molecules. In  this case the outermost electron of the 
Rydberg state will normally have orbital angular momentum 1 of unity. Russek et al. 
(1968) have examined the dependence of the autoionization rate upon 1. They 
show that the lifetimes of states with 1 = 0 should be much longer than those with 
1 = 1. I n  H, and H D  they calculate the lifetimes of some typical states with 1 = 0 
to be between 10-6 and s. Barnett and Ray (1968) have observed neutral 
molecules in beams of H2+, HD- and D2+, and Russeli et al. attribute these to 
Rydberg states with 1 = 0 which are formed in collisioiis with electrons. 

277 I Kv!2‘ 

12.2. Long-lived resonances in polyatomic molecules 
Compton et al. (1966 b) have measured the lifetimes of nuclear-excited Feshbach 

resonances in large molecules and their results are of the order of microseconds 
(see $5.3). They give a simple model for the interpretation of their results. 

They relate the lifetime r of the negative ion to the capture cross section uo 
through the principle of detailed balance : 

where p- is the density of states of the negative ion, po the product of the density 
of states for the incident electron and the neutral molecule, and v is the velocity of 
the incident electron. From this expression one can see that the existence of a 
large density p- of negative ion states will lead to a long lifetime. This density of 
states is determined by the amount of energy available for the nuclear motion of the 
molecule. This energy is the sum of the energy of the incident electron, the electron 
affinity and the zero-point vibrational energy of the negative ion (Rabinowitz and 
Diesen 1959). 

Thus the resonant lifetime can be expressed in terms of the molecular electron 
affinity. Compton et al. use this fact to deduce values for the electron affinities from 
the measured lifetimes and capture cross sections. They obtain the values 0.4 ev 
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for C,H,NO,-, 1.1 ev for (CH,CO),- and 1.1 ev or 1.4 ev for SF,-, depenbing on 
which of two possible sets of experimental results is used. From their comments 
and from the discussion of Klots (1967) it is clear that the electron affinities obtained 
from this simple treatment are at best lower limits and should not be taken too 
seriously. Nevertheless, their calculations show that lifetimes of the order of 
microseconds are reasonable for nuclear-excited Feshbach resonances in such 
complex molecules. 

13. Heavy particle collisions 
The complete discussion of the resonances which occur in the collisions of 

atoms and molecules with each other is not within the scope of this article. We have 
concentrated our attention on resonant states which decay by electron emission, 
and so our main purpose in this section will be to discuss the role of these resonances 
in atom-atom and atom-molecule collisions. However, since our classification of 
resonances may be useful in the more general context we shall briefly discuss 
resonant states which are stable against electron emission in $13.4. 

We shall restrict our attention mainly to atom-atom collisions. We shall 
consider such collisions at energies up to a few kev, for which the perturbed 
stationary state approach can be used (Massey and Smith 1933, Bates et al. 1953, 
Bates 1962). The  method is based on the suggestion of Mott (1931) that the wave 
function of the scattering system should be expanded in terms of the electronic 
states of the molecule which is formed by the colliding atoms. The  success of the 
method is due to the fact that often only a few terms need be retained in this 
expansion. 

One difficulty which arises in the application of this method can be illustrated 
by the example of H-H- collisions. For the molecule H2- at small internuclear 
distances there are no bound states. Hence, if one used only bound electronic 
states in the expansion, then the method could not be applied to these collisions, 
The  solution is clearly that one should include both bound and resonant states in 
the expansion. This procedure will be illustrated in $8 13.1 to 13.3. 

13 .l. Electron detachment in H-H- collisions 
The incorporation of resonant states within the perturbed-stationary-state 

approach greatly facilitates the calculation of electron detachment cross sections. 
We shall briefly describe the calculation following the method used by Bardsley 
(1967 a) and Dalgarno and Browne (1967). Very similar methods have been used 
by Chen (1967) and Herzenberg (1967). 

The motion of the two nuclei can be reduced effectively to one dimension by 
the assumption that they move along classical trajectories. The  detachment cross 
section is then calculated in two stages. First, for each orbit the probability of 
detachment is calculated, and then the result is integrated over all possible orbits.? 

We include in the expansion of the wave function only the two states of H2- 
which for large R lead to the ground states of H and H-. These are the 2&+ 

resonance discussed in § 3.1 and the resonance of $6.1. The  electronic wave 

t For an alternative approach in terms of a partial wave analysis see Herzenberg (1967). 
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functions for these two states will be denoted by x*(q,R) where q denotes the 
coordinates of all three electrons. The  plus and minus signs distinguish the two 
states according to their parity. Their potential energy curves and resonant widths 
will be denoted by E*(R) and I’*(R). The wave function representing the collision 
can then be written 

(13.1) 

Before the collision the coefficients c*(t) are equal in both amplitude and phase. 
After the collision the coefficients will be reduced in amplitude because of electron 
detachment and will be out of phase because of the difference in the two potentials 
E*(R). The  difference in phase affects the charge-transfer cross sections (Bardsley 
1967 a) but the detachment cross section is determined by the reduction in ampli- 
tude. For an orbit with impact parameter p the probability of electron detachment 
is then 

in  which 
= 1 - 4 exp { - 2y+(p)} - 4 exp { - 2y-(p)) (13.2) 

From conservation of energy and angular momentum one finds that 

E*(R)-E*(W))~” E (13.4) 

E is the relative scattering energy, M the reduced mass and Ro* is the distance of 
closest approach. In  terms of this probability the cross section for electron detach- 
ment is 

(13.5) 

At energies of 50 ev and above the classical trajectory for the nuclear motion 
can be approximated by a straight line. Using this approximation Bardsley (1967 a) 
calculated the electron detachment cross sections using the H,- potential curves and 
resonant widths of Bardsley et al. (1966 a). In  figure 27 these results are compared 
with the measurements of Hummer et al. (1960). 

13.2. Associative detachment in H-H- collisions at  thermal energies 
I n  H-H- collisions at energies below 0.7 ev the emission of an electron must be 

accompanied by the formation of a molecule H,. This is of special interest in 
astrophysics (Lambert and Page1 1968). At low energies the nuclear motion cannot 
be assumed to be rectilinear. For impact parameters below a critical value the long- 
range polarization potential produces a spiralling motion, which greatly enhances 
the probability of a close collision (Langevin 1905, Gioumousis and Stevenson 
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1958). If the energy of relative motion is E, then this critical value is ( 2 a / E p  
where a is the polarizability of the hydrogen atom. 

Herzenberg (1967) and Schmeltekopf et al. (1967) have shown that the occur- 
rence of spiralling means that a simple estimate of the associative detachment cross 
section can be made. At thermal energies the only important contributions come 
from the lowest 2,Z;u+ and ?Z,+ states of Hz-. If during collisions at thermal energies 

0 I , I I , I  , , , I  I 
I IO0 1000 loo00 

H- energy ( e v )  ( laboratory coord inates  1 

Figure 27. The cross section for electron detachment in H-H- collisions. Full curve, cal- 
culations of Bardsley (1967 a); 0 experimental results of Hummer et al. (1960). 
(From Bardsley 1967 a,) 

the electrons take up the 2Xu+ configuration the large width of this state means that 
electron emission is almost certain to occur if spiralling takes place. The  contribu- 
tion of the state to the detachment cross section is thus &7(2a/E)l/2. If E is 
expressed in ev this cross section has the value 7E-'/2 x cm2. When averaged 
over a Maxwell distribution of energies this corresponds to a reaction rate of 
1-3 x 

The contribution of the 2X;g+ state of Hz- is more difficult to assess until more 
accurate potential curves are available. It seems probable that its contribution will 
be small at temperatures below 5 0 0 0 " ~  so that the reaction rate will be close to 
1-3 x cm3s-I at these temperatures. The  rate has been measured by 
Schmeltekopf et al. (1967) who find exactly this value. 

The  reaction rate for associative detachment in H-H- collisions has also been 
calculated by Dalgarno and Browne (1967) who do not use the spiralling approxima- 
tion but use the theory described in $13.1 with the H2- potential curves and widths 
of Taylor and Harris (1963) and Bardsley et al. (1966 a). They obtain a rate which 
varies slightly with temperature between 100 O K  and 32 000 OK with maximum and 
minimum values of 1.9 x 

Herzenberg (1967) and Chen and Peacher (1968) have studied the distribution 
of vibrational levels of the molecules formed in associative detachment. They find 
that the large width of the 2Xu+ state of H,- will lead to an inverted population of 
these levels with most molecules being formed in the highest vibrational states. 

Measurements of the rate of associative detachment in other collisions have been 
reported by Fehsenfeld, Ferguson and Schmeltekopf (1966), Moruzzi and Phelps 
(1966) and Fehsenfeld et al. (1966). 

cm3 s-l, independent of the electron temperature. 

cm3 s-l and 1.2 x cm3 s-l. 
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13.3. Ionization in the collisions of two neutral atoms 

A* + B + A +  B++ e (13.6) 
provided that the reaction is energetically possible and that there is an allowed 
optical transition between the states A* and A. This process can be regarded as a 
consequence of configuration interaction. For each internuclear distance R we can 
define wave functions to represent the two configurations A* + B and A + B+ + e and 
so we can define the interaction matrix element I&(R). The  autoionization width 
r(R) can then be expressed as 2.rr I &(R) l 2  (see $7.3). The  ionization cross section 
can then be calculated using the approach of $13.1. 

This method has been used by Katsuura (1965), Smirnov and Firsov (1965), 
Mori (1966), Sheldon (1966) and Watanabe and Katsuura (1967) who all made the 
following two approximations. The  nuclei are assumed to move along straight-line 
trajectories with a constant relative velocity U. Secondly, the interaction matrix 
element is represented by the first term in a multipole expansion 

Large ionization cross sections have been predicted for the process 

(13.7) 

(Watanabe and Katsuura 1967). Here p. is the dipole moment associated with the 
optical transition A+A*, and pE0 is the dipole moment associated with the photo- 
ionization process hv+B-+B++e in which the photon energy is equal to the 
excitation energy E,, of A*. 

Assuming the symmetries IP for A*, and lS for A, Watanabe and Katsuura 
show the ionization cross section to be 

11.2 215 

oi = 13.88(T) . (13.8) 

Katsuura (1965) has previously obtained a similar formula, but with a coefficient 
of 18.14, by assuming that the dipoles p. and pE0 were always orientated along the 
internuclear axis. Equation (13.8) leads to a reaction rate 

(13.9) 

Values of the reaction rates and cross sections for specific cases have been given by 
Watanabe and Katsuura (1967) and Sheldon (1966)t. 

These reactions may be important in magnetohydrodynamic power generators 
and in the gas discharges of gas lasers. Therefore it would be worth while to check 
the approximations involved in this approach. The  long-range interactions between 
the two atoms will cause deviations from the straight-line trajectories and will acceler- 
ate the nuclei as they come together. Ferguson (1962) has suggested that spiralling 
may be important in these collisions and this has not been allowed for in the calcula- 
tions. Secondly, the effect of the departure of the interaction matrix elements from 
the asymptotic form (13.7) should be examined. Bates e t  al. (1967) have calculated 

t Sheldon uses the cross-section formula of Katsuura (1965) instead of equation (13.8) 
and so his results should be multiplied by 0.77. 
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these matrix elements for H-H collisions and find the asymptotic approximation 
to be valid only for R > 4 A.U. 

Bates et al. (1967) and Bell et al. (1968) have calculated the ionization cross 
sections for collisions involving metastable atoms, for which the approximation 
(13.7) is not valid. They find that spiralling is very important in such collisions. 

13.4. Electronically stable resonances 
It is not essential that resonances occurring in heavy particle collisions should be 

able to emit electrons. For example, in a collision of two atoms a resonance can 
occur by the formation of a temporary (but non-autoionizing) diatomic molecule 
which decays by dissociation. It is also useful to classify these resonances according 
to the mechanism by which the target and projectile are held together. 

Shape resonances can exist in the collisions of any two heavy particles. The  
shape resonances occurring in H-H collisions have been studied extensively 
(Bernstein 1966, Bernstein et al. 1966, Waech and Bernstein 1967). The  positions 
and widths of these resonances have been computed with high accuracy. T h e  
existence of these resonances is due to the combination of the short-range attractive 
interatomic potential and the centrifugal barrier. I n  a general discussion of reso- 
nances in heavy particle collisions Levine (1967) suggests that these resonances may 
be important as intermediate states in the three-body recombination process 

H + H + M + H , +  M. 

Electron-excited Feshbach resonances have been discussed in relation to atom- 
molecule collisions (Wilson and Herschbach 1965, Polanyi 1967). These authors 
show that the reactions of alkali atoms are of particular interest. For example, in 
the collision of a sodium atom with a halogen compound there is a large probability 
that the following reaction will occur 

N a + X R +  Na+X- R-t Na+X-+ R. 

In  this reaction the resonant state is formed by a rearrangement of the electronic 
configuration in which an electron is transferred from the sodium atom to the 
halogen. Wilson and Herschbach have demonstrated that collisions of electrons 
and sodium atoms with molecules have many common features. This observation 
may be of great value in the analysis of resonance formation in atom-molecule 
collisions. 

Nuclear-excited Feshbach resonances may also be important in atom-molecule 
and molecule-molecule collisions. The  resonances in which the kinetic energy of 
the incident particle is absorbed into the rotational motion of one of the particles 
have been discussed by Micha (1967) and Levine et al. (1968). In  both papers model 
potentials are constructed for atom-molecule collisions and Micha chooses his model 
parameters to represent the scattering of xenon by H, and D,. He  shows that the 
rates of formation and decay of the resonances depend mainly on the non-isotropic 
part of the short-range potential between the target and projectile. 

T h e  major goal of the application of resonance theories to heavy particle 
collisions is an analysis of chemical reactions. The  necessary formalism for this has 
been outlined by Nikitin (1.964) and Eu and Ross (1966). 

35 
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14. Conclusions 
One of the most important conclusions to be drawn from this article is that for 

the understanding of a molecular resonance one requires the results of a fairly 
comprehensive set of experiments each furnishing its characteristic information. 
The  reason for this is the comparative complexity of molecular resonances due to the 
interplay of electronic and nuclear motions. Angular distributions provide infor- 
mation about the angular momentum and parity properties of the system. The  
energy dependence of different vibrational excitation cross sections enables one to 
determine the lifetime and the coupling strength of a resonance. One needs elastic 
as well as inelastic data to determine the non-resonant component in the scattering 
amplitude. The  isotope effect in dissociative attachment is invaluable in dis- 
tinguishing total decay width and capture width, thus providing much information 
about open and closed channels and about the structure of a resonance. 

On the theoretical side one has a reasonable qualitative understanding of the 
basic features of the simpler resonant collision processes. With the aid of com- 
puters it is becoming possible to perform more exact calculations, but processes like 
dissociative recombination, occurring at thermal energies, present a challenge. 
There are many oustanding problems about which little is known theoretically. 
These include situations involving several electronic resonances (the structure 
observed by Dowel1 and Sharp (1968) in dissociative attachment in H, near 12 ev 
may be an example of this). The  non-adiabatic (i.e. nuclear-velocity dependent) 
terms deserve more study ; they are important in nuclear-excited resonances and 
may be relevant to the JM-dependent isotope effect reported in dissociative attach- 
ment in water and hydrogen halides. Very little work has been done so far on 
molecular rotations and a generalization of the resonance scattering formalism is 
required for polyatomic molecules. Finally, one might hope that the study of 
resonances in heavy particle collisions may lead to a better understanding of 
chemical reactions. 
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