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Abstract
In this technical note we propose a rapid and scalable software solution for the 
processing of PET list-mode data, which allows the efficient integration of list 
mode data processing into the workflow of image reconstruction and analysis. 
All processing is performed on the graphics processing unit (GPU), making use 
of streamed and concurrent kernel execution together with data transfers between 
disk and CPU memory as well as CPU and GPU memory. This approach leads 
to fast generation of multiple bootstrap realisations, and when combined with 
fast image reconstruction and analysis, it enables assessment of uncertainties 
of any image statistic and of any component of the image generation process 
(e.g. random correction, image processing) within reasonable time frames (e.g. 
within five minutes per realisation). This is of particular value when handling 
complex chains of image generation and processing.

The software outputs the following: (1) estimate of expected random 
event data for noise reduction; (2) dynamic prompt and random sinograms 
of span-1 and span-11 and (3) variance estimates based on multiple bootstrap 
realisations of (1) and (2) assuming reasonable count levels for acceptable 
accuracy. In addition, the software produces statistics and visualisations for 
immediate quality control and crude motion detection, such as: (1) count rate 
curves; (2) centre of mass plots of the radiodistribution for motion detection; 
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(3) video of dynamic projection views for fast visual list-mode skimming 
and inspection; (4) full normalisation factor sinograms. To demonstrate the 
software, we present an example of the above processing for fast uncertainty 
estimation of regional SUVR (standard uptake value ratio) calculation for a 
single PET scan of 18F-florbetapir using the Siemens Biograph mMR scanner.

Keywords: posistron emission tomography, graphics processing unit, list 
mode, motion detection, projection views, histogramming,  
fast data processing

(Some figures may appear in colour only in the online journal)

1. Introduction

In positron emission tomography (PET) each detected coincidence event (a photon pair) can 
be stored in a list-mode data format using data packets which contain the necessary informa-
tion for subsequent image formation. Each data packet contains information about the nature 
of the event, (i.e. whether it is a prompt or delayed event) and the detector pair address of the 
line of response (LOR) along which a photon pair was detected. Also, detector single rates 
and time markers are stored in dedicated data packets. In this work, we refer to the list-mode 
event packets as containing only the bin address corresponding to a given crystal pair with 
some information about timing and energy of the detected photon pair being lost after event 
positioning.

Storing and processing list-mode data is usually preferred in comparison to sinograms as 
the raw nature of the list-mode preserves all the spatio-temporal information which is partially 
lost using the sinogram format (e.g. it is difficult to correct for motion that occurred within the 
time frame of the sinogram). Also, in some instances where the time of flight (TOF) informa-
tion is available and where the total number of events detected is smaller then the number of 
all possible LORs, list-mode format is more compact (Matej et al 2009).

The purpose of this work is to provide an open source software solution enabling very fast 
list-mode data processing which allows practical and efficient generation of multiple bootstrap 
realisations of image datasets being processed within arbitrarily complex reconstruction and 
analysis chains (Markiewicz et al 2015). Based on these datasets, distributions of any statistic 
can be formed indicating the uncertainty of given parameter of interest which can be used, for 
example, in the quantitative image analysis (Verhaeghe et al 2010) or in the study of discrimi-
native power of amyloid imaging (Herholz et al 2014). Certain properties of such distributions 
can also be found using analytical and fully Bayesian methods on sinogram and list-mode data 
(Barrett et al 1994, Fessler and Rogers 1996, Sitek 2012), however with some approximations 
which may not always hold, especially in cases of further image processing (e.g. spatial image 
registration between MR and PET images, feature extraction and classification). In addition, 
this software enables real-time and concurrent processing used for estimating mean random 
events in each bin, motion detection and generating other informative statistics of the PET 
acquisition.

The presented methodology of data processing can be implemented on most multi-thread-
ing architectures like multi-core CPU and GPU devices. Although, many aspects of the meth-
odology is applicable to multi-threaded CPUs, greater emphasis is put on graphics processor 
units (GPU) as they are optimised for operating on datasets by performing very fast the same 
kernel functions accessing the data elements in a continuous manner (e.g. 3D image ren-
dering). PC microprocessors, on the other hand, are optimised for general computing with 
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random/irregular access to different parts of the data. A multi-threaded execution model was 
used while addressing efficiently the common bottleneck of data transfers between a hard 
disk, the CPU (host) memory and GPU (device) memory. Since image reconstruction and 
analysis can benefit from GPU computing, it seems reasonable to also exploit the computa-
tional powerhouse for processing of list mode datasets. Processing of the list-mode data is per-
formed without perceivable delay relative to data transfer times with the following outcomes:

 • Reduced-noise random event data estimated for each LOR using crystal fan-sums 
obtained from the delayed coincidences (Hogg et al 2002, Panin et al 2007).

 • Static and dynamic sinograms of span-1 and span-11 for random and prompt data (Defrise 
and Kinahan 1998).

 • Multiple bootstrap replications of prompt and random data which are used for generating 
a voxel level distribution of any image statistic for the assessment of noise and uncer-
tainty.

 • Plots of the variation of the centre of the radiodistribution mass due to kinetics and motion 
which involves crude motion detection.

 • Visual inspection of projection views (sagittal and coronal) produced in video format, 
useful for motion detection and for general inspection of data quality.

 • The total count-rate data (also known as the head curve) which reports total prompts, 
randoms and single rates over time.

 • Full normalisation factor sinograms, including detector dead-time correction which is 
based on the measurement of single rates for each detector bucket.

2. Materials and methods

2.1. The GPU device

All the list mode data processing and the subsequent image reconstruction is performed on the 
GPU device. The device used in this work was the NVIDIA Tesla K20 (NVIDIA’s compute 
capability of 3.5) consisting of 5 GB of on-board memory, 13 streaming multiprocessors, each 
with 192 single-precision CUDA cores (2496 in total). All the GPU resources are available 
within the compute unified device architecture (CUDA) platform version 7.0. CUDA kernels 
(CUDA extended C functions) are executed by multiple threads organised into thread blocks 
in which each thread can be identified by three indices (x, y, z) with the maximum total num-
ber of threads per block limited to 1024. Any set of 32 threads (called a warp) is executed in 
parallel. All threads in a single block can share data through the very fast shared memory, 
whereas threads outside given block can share data through the slower but much larger global 
memory. These blocks are further arranged into a 3D grid which can be indexed by three indi-
ces (x, y, z) with the total number of blocks equal to 2147483647.

2.2. Output data

Span-1 sinogram bins are accessed using 30-bit address in each event data packet (Jones 
2013). For axially compressed sinograms of span-11, a look-up table is used to perform axial 
grouping yielding 837 sinograms out of 4084 span-1 sinograms (see table 1). The file size 
of span-1 sinogram is around 1.4 GB, compared to 290 MB for span-11 (with crystal gaps 
included in the sinograms).

P J Markiewicz et alPhys. Med. Biol. 61 (2016) N322
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The output of all the GPU processing remains in the device memory for subsequent image 
reconstruction using a fast forward and back-projector (Markiewicz et al 2014). The sino-
grams can also be written to disk in the ECAT8 file format compatible with the vendor’s 
software for further image reconstruction. For inspection purposes, sinograms in span-1 and 
span-11 can be exported to files in NIfTI format and viewed in most medical image visualisa-
tion software. Currently, the proposed software is dedicated to the PETLINKTM list-mode data 
format and is developed as part of a software platform for Siemens Biograph mMR (Delso 
et al 2011) 3D and 4D PET image reconstruction. It is freely accessible to the community as 
open source, available at http://cmictig.cs.ucl.ac.uk/people/research-staff/pawel-markiewicz

2.3. Concurrent processing

The key to rapid, and essentially real time, processing of the list-mode data on the GPU is the 
division of the whole data into data chunks which are executed independently and asynchro-
nously, starting with the first data chunks transferred to the GPU. The list-mode data is divided 
into chunks on the host with a predefined number of list mode data packets processed by each 
thread. Furthermore, for 60 min florbetapir brain scan, for which the list-mode file size aver-
ages around 10 GB, such a division is even more justified in cases where the device memory 
is not large enough to deal with all the data at once.

The division into smaller data chunks enables overlapping GPU kernel execution, with 
data transfers from disk to the CPU memory, and from the CPU memory to the GPU mem-
ory. For this to happen, firstly, the GPU device has to be capable of concurrent data copy 
and execution (NVIDIA 2015). Secondly, the overlapping can be managed only through 
multiple CUDA streams (sequences of operations issued by the host for execution on the 
device). Thirdly, the CPU memory from which the transfer to the GPU device memory 
occurs, has to be pinned memory which is page-locked memory (as opposed to host data 
which is pageable by default) acting as a buffer from which only the device can access the 
data (Harris 2012a, 2012b).

To each CUDA stream, one list-mode data chunk L[n], of approximate size of 50 MB, is 
reserved for transferring and processing. In the used GPU device there are S  =  32 possible 
streams meaning that the device can concurrently execute a maximum S kernel launches with 
overlapped memory transfers of S data chunks. The overlapping is shown in figure 1 where 
after transferring the first data chunk (n  =  1) by the host-to-device engine and stream s  =  0, 
asynchronous kernel execution of data chunks processing begins. Once the processing of a 
data chunk within any given stream is finished the stream can be reused again for reading 
from disk and copying to the memory for further processing until all data chunks N are pro-
cessed. In addition to concurrent execution, an advantage of using streams is that they can be 
interleaved.

Table 1. Siemens Biograph mMR sinogram dimensions for maximum ring difference 
MRD  =  60.

Native mMR sinogram dimensions

Span Projection bins Views Sinograms

Span-1 344a 252 4084
Span-11 344a 252 837

a The bins are interleaved between two different angular views.
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2.4. CUDA workflow of list-mode data processing

The whole workflow for reading, transferring and processing of the list-mode data is depicted 
in figure 2. The data chunks L[n] are read to a buffer (pinned memory) of modifiable size 
chosen for optimal performance for a given CPU/GPU setup (in this work it was 1.5 GB). The 
buffer is further divided into S chunks corresponding to the maximum number of concurrent 
streams. The first S chunks are read from disk to the buffer before the concurrent data trans-
fer to the device memory and overlapping kernel execution is launched. Each data chunk is 
processed by a grid of 10 blocks, each containing 256 threads (this can be modified for fine 
tuning), with 22 local registers per thread, giving rise to 100% occupancy of all the streaming 
multiprocessors. The next data chunks are read and processed within the for loop once any 
of the previous stream becomes available again. To achieve seamless processing of the whole 
dataset, stream synchronisation is used for constant influx of new list mode data chunks ready 
for execution. The host is notified about finished processing in any stream by the use of a 
callback function which reads next data chunk from the disk. Once data chunk L[n] is read 
to the buffer, a flag is set notifying the launcher that the next data chunk is ready in b[s] for 
processing by a free stream s.

2.5. Estimation of random event data

The random coincidences in each sinogram bin are measured through the delayed time win-
dow method. However, this measurement is usually very noisy potentially having an adverse 
effect on the reconstructed image (Hogg et al 2002). The noise can be reduced using variance 
reduction methods exploiting the model for random data in the LOR formed between crystals 
i and j:

τ=R S S2 ,ij i j (1)

where τ is the coincidence time window, Si and Sj are the singles rates at the two crystals. Since 
the measured delayed window data can be described using Poisson statistics, the expected val-
ues of random data in any LOR can be found using the maximum likelihood (ML) approach 
with the model for the expected data in (1). Therefore, the log-likelihood function becomes:

( ) { ( ) }
J
∑ τ τ= −
∈

L r S S S SS
1

2
log 2 2 ,

i j
ij i j i j

, i

 (2)

where rij is the measured delayed data between crystals i and j, and Ji is the set of opposing 
crystals j which are in coincidence with crystal i. In order to enable simultaneous update of 
all crystal single rates Si, the method of Panin et al (2007) was adopted, where the single 
rates are separated by the use of a surrogate function, which is formed using the inequality 

⩽ ( )+S S S Si j i j
1

2
2 2 . Maximising the surrogate leads to the update equation for iteration (k  +  1):

Figure 1. Time-line of overlapped transfer and kernel execution of list-mode data using 
CUDA S streams, each asynchronously processing list-mode data chunk k. The stream 
number is depicted in orange boxes with the data chunk number in the white boxes. For 
large list-mode data files K  >  S.

transfer of data chunk k

kernel execution of chunk k

k = 0 k = 1 k = 2 k = S k=S+1

k = 0 k = 1 k = 2 k = S k=S+1

time

 0  1  2 S  0

 0  1  2 S  0
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The terms in the numerator of equation (3), J∑ ∈ rj iji
, are the fan sums of all random events 

recorded along those LORs which are formed by crystal i and opposing crystal J∈j i. The fan 
sums are found on the fly when processing the delayed events via decomposition of the sino-
gram address into ring and crystal indices for each delayed event. The events are then accumu-
lated for static or dynamic time frames in crystal maps of fan sums (figure 3, right) using the 
CUDA atomic add operator to avoid rare but possible race conditions. The way the fan sums 
are found is shown in figure 3(left) for the transaxial plane and crystal i with a corresponding 
mark on the crystal map of unrolled ring of detectors (right figure).

The sum over single rates in the denominator of equation  (3) has to be found for each 
crystal and any iteration k. To ensure fast sum calculations (reductions) inter-thread com-
munication is exploited by the use of shuffle instructions introduced in the Kepler architec-
ture (NVIDIA 2012). The shuffle instructions permit exchanging variables within a warp  
(a group of 32 threads executed in parallel). Such variable sharing is significantly faster when 

Figure 2. Workflow of the list-mode data processing. The list-mode data is read in data 
chunks L[n] to host buffer (pinned memory) b[s]. Each stream s is continually checked 
in the for loop for its availability together with the availability of new data chunk in b[s]. 
When a stream and data chunk are available, the chunk is concurrently copied to the 
device while other chunks are being processed. By the end of kernel execution of data 
chunk L[n], the next data chunk is read from disk and made available for transfer and 
execution on the device.

list-mode data L

for n in [0...N]:

concurent (streamed) 
data transfer and
kernel execution

0 S

N0

if data chunk b[s] is ready and 
stream[s] free: 

asynchronously copy data to 
device and launch kernel

callback: 
stream[s] finished.

read next chunk L[n+S] to 
buffer b[s]

set flag: b[s] is ready for 
stream[s]
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0 s S

0 s S
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for processing any longer
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b[n], n = 0...S

set flag: b[s] is ready for process-
ing by stream[s]
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performing reductions as it reduces the use of shared memory and additional synchronisation 
(see NVIDIA (2015)).

The reductions are first performed axially for 64 rings by two CUDA warps for a given 
transaxial position, and then the next 64 axial crystals for another fixed transaxial position. 
This process of reduction is repeated until all transaxial positions are considered. Shared 
memory is used for further reducing the above partial warp sums. The use of shared memory 
is however limited to a block of 1024 threads and a for loop is used to cover all crystal rings 
(there are less than 20 000 crystals in coincidence with any other opposing crystal). Once an 
estimate of the single rates has been found for each crystal, a sinogram of expected random 
events may be formed based on equation (1).

2.6. Bootstrap replications

Within each CUDA thread, the kernel can also generate a number of statistical realisations of 
the list-mode data through non-parametric bootstrap resampling with replacement from a chosen 
pool of prompt and delayed events (Markiewicz et al 2015). The random access to the memory 
due to the bootstrap resampling causes some drop of kernel performance (the list-mode data 
processing rate of 0.47 GB s−1 drops to 0.42 GB s−1). The random access to the memory can 
be avoided, leaving the performance unaffected, if parametric bootstrap is used instead with 
parameter λ = 1 for each recorded event (Haynor and Woods 1989). The size of the resampling 
pool depends on the chosen grid of blocks and threads which deals with each data chunk L[k] , 
and in this work it was around 4500 events resampled by each thread using the NVIDIA CUDA 
Random Number Generation library (cuRAND). The resampled events are histogrammed on the 
fly in the device kernel. Note that for successive bootstrap replications the list mode data chunks 
are not read from the disk but from the cache memory making the processing considerably faster 
by removing the bottleneck of disk access for reading the list-mode data.

It is worth noting, that the division into data chunks is also necessary for generating boot-
strap replicates of the list-mode datasets (Markiewicz et al 2015). Through such division all 
the dynamics recorded in the LM dataset are preserved including the correspondence between 
all the time tags, prompt, delayed events and time-varying detector single rates tags.

2.7. Dynamic projection view analysis

In addition to the above histogramming, for visual inspection purposes, the CUDA kernel 
rebins the data on the fly to direct and cross sinograms through the single slice rebinning 

Figure 3. Fan sums of the measured delayed events. Left: transaxial view of the fan 
sums for crystal i and the opposing crystals iJ  creating the fan on the ring of 56 detector 
blocks. Right: two crystal maps of fan sums for a brain scan with the bed in the field 
of view (top right) and for a germanium phantom without the bed (bottom right). The 
crystal map can be viewed as the unrolled ring of detectors.
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(SSRB) method (Daube-Witherspoon and Muehllehner 1987), which enables using time 
frames of 12 s or similar with reasonable statistics for axial views (sagittal and coronal). 
This allows the short dynamic frames of the sagittal and coronal views to be exported to a 
video which can be used for a quick quality control of the acquired data. The duration of 
the frames may vary and can be independent from the dynamic time frames used for kinetic 
analysis.

Based on the above SSRB projection data, it is also possible to get crude motion detection 
and estimates of the displacement through the use of the centre of projection distribution mass 

( )Ct
z  according to:

( ) ∑=C
P

p z
1

,t
z

t i

I

it i (4)

where Pt is the total number of prompts detected in a time frame t, I is the total number of 
direct and cross sinograms (I  =  127) after SSRB, pit is the number of events recorded in sino-
gram i in time frame t and zi is the axial coordinate of the ith sinogram. Note that due to the 
low statistics in short time frames the centre of mass is limited to the axial direction (z).

2.8. Histogramming

The prompt and delayed events are histogrammed to corresponding sinogram bins with vary-
ing axial angular grouping. In span-11, five or six (depending on the position within the FOV) 
positive and negative segment numbers are combined, thus significantly reducing the number 
of sinograms (see table 1).

Fast atomic add operations are used for histogramming to avoid race condition in case 
when two CUDA threads are accessing the same sinogram bin for updating the bin value 
(nevertheless, it is very unlikely to get such conflicts and hence the performance is not signifi-
cantly affected). The static sinogram bin values are well represented by 16-bit integer values, 
however, the atomic operations use 32-bit or 64-bit integers only. Hence the 32-bit word is 
divided into two parts, with the lower part used by prompt events and the higher part being 
used by the delayed events. For dynamic sinograms it is enough to represent each sinogram 
bin by just 8 bits, thus, two prompt and two delayed bins are accumulated and stored in one 
32-bit word. Nevertheless, such compressed sinogram with 30 dynamic frames will not fit into 
5 GB of memory and therefore histogramming is performed separately in two batches of 15 
sinogram frames each.

Total count-rate curves are calculated and stored for each second of acquisition including 
total prompts and delayed events. Singles rates are extracted from dead-time tracking packets 
which are reported for each detector bucket consisting of two detector blocks transaxially.

2.9. Detector dead time and normalisation.

In any realistic detection process, there is always a minimum amount of time called the dead 
time that is required between two separate events so that they will be recorded as two distinct 
events. Therefore, the efficiency of detector i due to dead time will be dependent on the detec-
tor count rate (Casey et al 1996), i.e.:

/( )( )
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where Si is the block single rate, tp and tnp are the paralysing and non-paralysing components 
(they are constant for all detector rings) obtained from the component-based normalisation file 
written out by the scanner for each acquisition . The single rates Si are measured and reported 
in the list-mode data for each detector bucket which consists of two detector blocks transaxi-
ally. In total there are 224 buckets (   ×28 transaxially 8 axially).

Sinograms of normalisation factors are calculated if the file with normalisation comp onents 
is provided. The efficiency εb for a given LOR is decomposed into components including (1) 
geometric factors, ( )ε b

g , (2) crystal interference, ( )ε b
i , (3) crystal efficiencies ( )ε i

e , (4) axial effects 
(which include axial block and geometric factors for span-11), ( )ε b

a , (5) paralysing (tp) and non-
paralysing (tnp) dead time parameters (see equation (5)), leading to

( ) ( ) ( ) ( ) ( ) ( ) ( )=ε ε ε ε ε ε ε ε .b b b b i j i j
g i a e e dt dt (6)

2.10. Brain scan example

The processing of the list-mode data is shown on an example of real brain scan of 
[18F]-florbetapir, acquired dynamically for 50 min on the Siemens Biograph mMR PET-MR 
scanner resulting in 8 GB list-mode data file. Simultaneously to the PET acquisition, T1 
weighted MR images were acquired which were used for regional segmentation of the PET 
image after spatially registering the MR image to the PET image. To obtain SUVR values 
in different grey matter regions, the regions have to be normalised to the average uptake in 
cerebellar grey matter. Note that despite the data is acquired simultaneously, there is need for 
spatial registration due to small patient movements. It is very likely that motion will occur 
between the T1 weighted acquisition at the beginning of the 50 min scan and the last 10 min, 
which are used in the list-mode processing and bootstrapping.

3. Results and discussion

3.1. Estimation of random events

The use of simultaneous update algorithm (Panin et al 2007) with 10 iterations of the algo-
rithm expressed by (3) makes it possible to find the estimated random sinogram for any span 
in 0.5–0.6 s using CUDA implementation. This timing is particularly useful for generating 
multiple bootstrap replications where all list-mode events are resampled and the whole pro-
cess of random estimation is repeated for each realisation independently.

Figure 4 shows two plots of sinogram profiles of measured and estimated random events 
of the 10 min of the [18F]-florbetapir scan. The left plot shows a profile for one direct sino-
gram row while the right plot shows the same profile but for all direct and oblique sinograms 
summed up for better statistics of the measured data, indicating considerable noise reductions 
with no significant bias.

3.2. Estimating SUVR uncertainties using the bootstrap

The ten minute list mode data was resampled with B  =  100 bootstrap realisations. Due to the 
fast bootstrap data generation it was possible to investigate the noise properties of individual 
components (e.g. random data estimation, image co-registration, etc) of the imaging pipeline 
for SUVR estimation. Grey matter cerebellum was used as a reference region for the SUVR 
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calculations after co-registration (Modat et al 2014) of T1 weighted image to each bootstrap 
PET image and propagation of regions of interest from the parcellated T1 weighted image 
(Cardoso et al 2012) to the PET native space. Image reconstruction was performed using the 
ordinary Poisson ordered subsets expectation maximisation algorithm (OP-OSEM (Comtat 
et al 2004)) within the off-line version of the Siemens Healthcare reconstruction software 
which was made available for this project. Each bootstrap histogramming took less than 2 
seconds with additional 0.5 s used for estimating the mean random sinograms. The total time 
for each bootstrap SUVR realisation took four minutes, which included image reconstruction 
and co-registration.

Figure 5 presents standard error images in red with resampling performed for the 
delayed events separately (figure 5, left) in addition to the full resampling of delayed and 
prompt events (figure 5(A), middle). The distributions (uncertainties) of the SUVR for the 
region of cingulate gyrus (an important region in the study of Alzheimer’s disease) were 
generated for the two cases of delayed and prompt resampling and shown in figure 5(B) 
below. As can be seen, the noise effects of delayed events are significantly reduced due to 
the noise reduced ML estimation of the randoms events. Also noted is the greater impact 
of prompt count statistics compared to the delayeds due to the fact that random events 
have smoother spatial representation and their variance is reduced through the ML esti-
mate method). An example direct random data sinogram is shown in figure  6 with the 
corresponding standard error sinogram generated through the bootstrap resampling. Such 
resampling of all events in list mode data has been shown useful in estimating the effect of 
18F florbetapir dose reduction on classification between Alzheimer’s diseased subjects and 
elderly controls, although the image co-registration was performed only for the original 
PET scans (Herholz et al 2014).

It has to be noted that the derived uncertainties through bootstrapping are estimated sam-
pling errors caused by limited number of recorded events. Hence, the uncertainties are likely 
to be underestimated due to other effects, which bootstrap resampling cannot model such 
as errors in event positioning from detector readouts, normalisation, attenuation, scatter and 
any other systematic errors. These systematic errors, however, can be estimated through real 
phantom scans and Monte Carlo simulations. Furthermore, for reasonably accurate variance 
estimates it has to be ensured that the original dataset has high enough number of recorded 

Figure 4. Sinogram profiles for measured and estimated random events (left) and a sum 
over all sinograms for the same sinogram profile location (right).
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counts for each resampling time frame while keeping the time frames short enough to account 
for radiotracer dynamics (Lartizien et al 2010, Markiewicz et al 2015).

3.3. Visual inspection of dynamic projection views

The inspection is performed for the whole duration of the scan (50 min) with time resolu-
tion of 12 s per frame (the duration can be changed) for which two projection views, sagit-
tal and coronal, are extracted based on the SSRB method. The frames are then converted to 
video format together with the count-rate curves and a time marker making fast skimming 
through the list-mode data for quality control very straightforward. When the list-mode data 
is processed for dynamic reconstruction with variable duration time frames, the projection 
views for each frame are also exported to a video. The videos are available online for two 
cases (see figure  7): with considerable motion (https://vimeo.com/129831136 and https://

Figure 5. Estimated uncertainties at voxel levels (row A) of 10 min PET scan of [18F] 
Florbetapir. The standard deviation images are shown in red while in grey the mean 
values which are almost identical to the original image (not resampled) are shown. 
In row (B) are plotted histograms of the SUVR for the whole cingulate gyrus when 
bootstrap sampling is performed on the random (left) and prompts and random (right) 
events. The SUVR values with the standard deviations are also given.
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Figure 6. Measured delayed event sinogram (right), reduced variance estimate of 
sinogram random events (middle) and corresponding uncertainties (standard errors) 
estimated by the bootstrap (left).
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vimeo.com/129831482) as well as with no or little motion (https://vimeo.com/129830997 and 
https://vimeo.com/129830998).

3.4. Total count-rate and centre of projection mass

Figure 7 shows the count-rate curves (head curves) of prompts and delayeds per second as 
well as the centre of projection mass curves for the whole scan duration (50 mins) and for two 
brain scans: with minimal and considerable motion. Note that effect of motion is detected 
earlier in the centre of mass curve (case ‘B’) than in the count-rate curve on which the motion 
has some effect too. Nevertheless, motion detection and some quantification are rather crude 
and serve as an indicator only. This method of mass centre has its limitations due to poor sta-
tistics in short time frames used for motion detection and currently it is limited to axial direc-
tion only. Also, interpretation of the centre of mass curve may be more difficult for non-rigid 
motion. However, this can be further refined, for example, by adopting the method of PCA on 
short time frame sinograms (Thielemans et al 2013).

3.5. Histogramming and detector normalisation

The prompt and delayed event sinograms for span-1, span-11 and full span are obtained and 
stored in the device memory in a compressed integer. No difference in performance was 
observed for different spans. They can be copied to the CPU memory, decompressed and 
stored to disk in the ECAT or NIfTI file format. Since the number of sinograms for dynamic 
studies is too large for 5 GB of device memory, the dynamic sinograms are found in two GPU 
kernel batches.

It has been observed that the biggest bottleneck of the histogramming process is the disk 
access to read the list-mode data. It is anticipated that any CPU or GPU implementations 
would equally suffer from this bottleneck. Therefore, it is advisable to use the transfer time for 
many other useful calculations like motion detection, random event estimation. If the whole 

Figure 7. Example of count-rate (bottom) and centre of projection mass (top) 
curves for two cases: (A) a brain scan with little motion and (B) brain scan with 
considerable motion. Note that the motion effect is detected earlier in the centre of 
mass than in the count-rate curves. Also note that the centre of mass is given for the 
axial component only (z) due to poor statistics in the short time frames considered 
for motion detection.
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list-mode data is transferred to CPU memory, the processing is done at 0.47 GB s−1, otherwise 
the rate is limited by the disk access.

With the scanner’s normalisation components provided in a binary file, it is possible to 
output span-11 normalisation sinogram (axial components for span-1 are not provided). The 
necessary detector single rates are extracted from the list-mode data for each detector bucket 
and are used for determining bin dead-time efficiencies (figure 8 shows ×28 8 buckets of 
unrolled detector ring with a direct sinogram of dead-time normalisation factors). The whole 
normalisation sinogram is calculated in less than 0.5 s.

4. Conclusion

The presented workflow of list-mode data processing enables very efficient generation of 
prompt sinogram, estimation of random event sinograms, crude motion detection and other 
useful list-mode statistics such as the head curve. All the processing is done concurrently while 
transferring the data from disk and the CPU memory to the device memory. The presented 
methodology is also applicable to multi-core CPU implementations, however the optim isation 
of some parameters would have to be different. Also, the presented software can be used 
with PET scanners using PETLINKTM data format, however currently without the support for 
time of flight acquisitions, which will be added later. Such rapid processing is very helpful in 
fast creation of bootstrap realisations and multiple image reconstructions providing valuable 
insight into distribution of any statistic (e.g. the SUVR) or can be used in the development 
of new correction and reconstruction algorithms by investigating their average performance 
based on many random realisations. Such fast list-mode processing can also be advantageous 
for list-mode image reconstruction and data compression. The software using the presented 
workflow will be made available as open source.
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