
Physics in Medicine & Biology
     

TOPICAL REVIEW • OPEN ACCESS

4D image reconstruction for emission tomography
To cite this article: Andrew J Reader and Jeroen Verhaeghe 2014 Phys. Med. Biol. 59 R371

 

View the article online for updates and enhancements.

You may also like
A generative adversarial network (GAN)-
based technique for synthesizing realistic
respiratory motion in the extended cardiac-
torso (XCAT) phantoms
Yushi Chang, Zhuoran Jiang, William Paul
Segars et al.

-

Application of adaptive kinetic modelling
for bias propagation reduction in direct 4D
image reconstruction
F A Kotasidis, J C Matthews, A J Reader
et al.

-

Target volume and motion position
evaluation of four-dimensional cone-beam
CT: comparison with 4D-CT using dynamic
thorax phantom
Yasuhiro Doi, Yoshinobu Shimohigashi,
Yohei Yotsuji et al.

-

This content was downloaded from IP address 18.119.192.79 on 21/05/2024 at 08:54

https://doi.org/10.1088/0031-9155/59/22/R371
https://iopscience.iop.org/article/10.1088/1361-6560/ac01b4
https://iopscience.iop.org/article/10.1088/1361-6560/ac01b4
https://iopscience.iop.org/article/10.1088/1361-6560/ac01b4
https://iopscience.iop.org/article/10.1088/1361-6560/ac01b4
https://iopscience.iop.org/article/10.1088/0031-9155/59/20/6061
https://iopscience.iop.org/article/10.1088/0031-9155/59/20/6061
https://iopscience.iop.org/article/10.1088/0031-9155/59/20/6061
https://iopscience.iop.org/article/10.1088/2057-1976/ab1054
https://iopscience.iop.org/article/10.1088/2057-1976/ab1054
https://iopscience.iop.org/article/10.1088/2057-1976/ab1054
https://iopscience.iop.org/article/10.1088/2057-1976/ab1054


R371

Physics in Medicine & Biology

4D image reconstruction for emission 
tomography

Andrew J Reader1,2 and Jeroen Verhaeghe3

1  Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical 
Engineering, King’s College London, St. Thomas’ Hospital, London, UK
2  Brain Imaging Centre, Montreal Neurological Institute, McGill University, 
Montreal, Canada
3  Molecular Imaging Centre Antwerp, University of Antwerp, Antwerp, Belgium

Received 20 March 2014, revised 30 May 2014
Accepted for publication 24 June 2014
Published 31 October 2014

Abstract
An overview of the theory of 4D image reconstruction for emission tomography 
is given along with a review of the current state of the art, covering both positron 
emission tomography and single photon emission computed tomography 
(SPECT). By viewing 4D image reconstruction as a matter of either linear or 
non-linear parameter estimation for a set of spatiotemporal functions chosen 
to approximately represent the radiotracer distribution, the areas of so-called 
‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are 
unified within a common framework. Many choices of linear and non-linear 
parameterization of these functions are considered (including the important case 
where the parameters have direct biological meaning), along with a review of 
the algorithms which are able to estimate these often non-linear parameters from 
emission tomography data. The other crucial components to image reconstruction 
(the objective function, the system model and the raw data format) are also 
covered, but in less detail due to the relatively straightforward extension from 
their corresponding components in conventional 3D image reconstruction. The 
key unifying concept is that maximum likelihood or maximum a posteriori 
(MAP) estimation of either linear or non-linear model parameters can be achieved 
in image space after carrying out a conventional expectation maximization (EM) 
update of the dynamic image series, using a Kullback-Leibler distance metric 
(comparing the modeled image values with the EM image values), to optimize the 
desired parameters. For MAP, an image-space penalty for regularization purposes 
is required. The benefits of 4D and direct reconstruction reported in the literature 
are reviewed, and furthermore demonstrated with simple simulation examples. 
It is clear that the future of reconstructing dynamic or functional emission 
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tomography images, which often exhibit high levels of spatially correlated noise, 
should ideally exploit these 4D approaches.

Keywords: image reconstruction, positron emission tomography, single 
photon emission computed tomography

(Some figures may appear in colour only in the online journal)

1.  Introduction

Positron emission tomography (PET) and single photon emission computed tomography 
(SPECT) provide a powerful array of capabilities for functional and molecular imaging in the 
human body, through detection of trace concentrations of radioactively-labeled compounds 
within any chosen volume of interest. Emission tomography reveals functional processes rel-
evant to a range of fields which are of great importance to human health, such as neurol-
ogy (Herholz et al 2004, Jones and Rabiner 2012), oncology (Muehllehner and Karp 2006) 
and cardiology (Mc Ardle et al 2012), and there is considerable versatility arising from the 
growing array of radioactively-labeled compounds (called radiotracers) which are in exis-
tence and also under development (Schirrmacher et al 2013). Example radiotracers for PET 
include water ([15O]H2O) for imaging blood flow, fluorodeoxyglucose ([18F]FDG) for imag-
ing glucose metabolism, and neurotransmitter-specific ligands (e.g. [11 C]raclopride) for 
imaging receptors in the brain. For SPECT, examples include [99mTc]HMPAO (exametazime) 
for imaging blood flow in the brain, [99mTc]sestamibi for myocardial perfusion imaging and  
[99mTc]MDP (methylene diphosphonate) for bone imaging. PET and SPECT are complemen-
tary to magnetic resonance imaging (MRI), and with the increasing establishment of simulta-
neous PET-MR imaging (Judenhofer et al 2007, Schlemmer et al 2008, Delso et al 2011), the 
powerful capabilities of PET are now becoming available in combination with the anatomical 
and functional imaging capacities of MR (such as functional MRI (fMRI)).

Both PET and SPECT usually involve intravenous administration of a radiotracer to the patient 
or research participant being studied, followed by external detection of the high-energy photons 
which are emitted from the distribution of the radiotracer within the body. The chemical sensitivity 
of PET and SPECT is very high (nanomolar or even picomolar concentrations of a radiotracer can 
be imaged and quantified), but there are however sensitivity limitations for detecting the high-energy 
photons, with often well below 5 percent of the total emitted photons being detected. Consequently, 
the number of photons detected by the scanners is typically in the range of 104 - 109 counts (depend-
ing on the study type and duration), which is low when compared to the count levels encountered 
in conventional non-dynamic transmission computed tomography (CT) for anatomical imaging.

It is the relatively limited number of photons detected in PET and SPECT, combined with 
the desire to reconstruct 3D images (with anything in the range of ~643 to ~2563 image values), 
which means that noise in the 3D images is often, by far, the dominant concern for emission 
tomography. This has led not only to hardware developments to improve detection sensitivity, 
but also to developments in the algorithms used to reconstruct these images. It has now been 
amply demonstrated that the choice of reconstruction algorithm can have a significant impact 
on image quality (e.g. Comtat et al 1998), and extensive research over more than two decades 
into emission tomographic 3D image reconstruction methods has resulted in noise reduction and 
even resolution improvements (Rahmim et al 2013) via statistical iterative image reconstruc-
tion techniques (Leahy and Qi 2000). These iterative methods permit more accurate system and 
statistical modeling of the count-limited emission data to be incorporated into the reconstruc-
tion algorithm. Nonetheless, even with these advances in 3D reconstruction, the problem of 
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limited photon counts persists, and in particular is exacerbated when dynamic emission imaging 
is carried out, as the limited counts are divided among many different time frames (figure 1). In 
dynamic emission imaging the time course of the 3D radiotracer distribution after injection is 
sought, so that biologically useful parameters can be estimated from these time courses (such as 
blood flow, metabolic rates or binding potentials). Conventionally this involves independently 
reconstructing 3D time-frame images followed by post-reconstruction temporal modeling or 
kinetic fitting, in order to estimate kinetic and functional parameters within voxels (known as 
parametric imaging) or within regions of interest (ROIs). The noise in the 3D image frames 
can lead to unnecessarily high noise levels (and even bias) in the final fitted parameters, and 
sometimes the kinetic modeling can even fail. Ideally the noise distribution in the reconstructed 
3D images, which is spatially-correlated and can also be object dependent, should be accurately 
accounted for in such post-reconstruction analyses. However, for the frequently-used iterative 
image reconstruction algorithms these noise distributions are rarely known precisely, being 
dependent on the number of iterations employed and other reconstruction parameters.

It is in this context that one of the recent surges of research interest in the field of recon-
structing images from PET or SPECT data has occurred: the area of fully 4D image reconstruc-
tion. These 4D reconstruction approaches, which will be reviewed in this article, seek to reduce 
the aforementioned problems of limited counts in dynamic emission tomography by incorpo-
rating a model of the temporal behavior of the radiotracer directly into the image reconstruction 
algorithm. These models are usually chosen to provide physiologically-meaningful constraints 
within image reconstruction, and as a special case the kinetic model which is normally used on 
a post-reconstruction basis can itself be placed within the reconstruction algorithm. Often these 
temporal models use far fewer parameters to describe the time-course of the radioactive distri-
bution compared to the number of time frames. For example, 3 coefficients or kinetic parameters 
can be used to describe a time-activity curve (TAC) instead of 26 distinct time frame samples. 
This reduction in the number of parameters to estimate, and the corresponding constraints 
the temporal models impose on the TACs during the image reconstruction process, deliver 
notable noise reduction in the time series of 3D images obtained. Nonetheless, it is important 
to note that the conventional independent-frame reconstruction approach is often followed by 
post-reconstruction fitting of the TACs which also provides noise reduction, but any benefits 
of TAC constraints during reconstruction are lost and furthermore accurate post-reconstruction 
modeling of the noise in the TACs can be difficult as previously mentioned. In contrast, if fully 
4D reconstruction uses the kinetic model which is normally applied after reconstruction within 
the reconstruction, it has the advantage of estimating the end-point kinetic parameters directly 
from the raw data. This means the known noise-model of the raw emission data (which is often 
modeled extremely well as a space-time dependent Poisson process) is accurately accounted 
for when estimating the final parameters, sometimes offering variance and even bias reduction 
compared to post-reconstruction fitting of independently reconstructed images.

It is also worth mentioning at this point that in particular for SPECT imaging, fully 4D recon-
struction offers the additional advantage of accounting for the changing activity distribution 
during a single rotation of the SPECT camera (Gullberg et al 2010). This is an important feature 
because whenever the activity distribution changes during the course of camera rotation, incon-
sistent projection data will be obtained (e.g. the projections taken at 0 degrees are not consistent 
with the projections taken a few moments later at 90 degrees, due to the dynamically changing 
activity distribution in the field of view (FOV)). Inconsistent projection data can lead to biases in 
the reconstructed images when the changing activity is not taken into account during the recon-
struction. Emission tomographs which collect all projection data simultaneously (as is most 
typically the case with PET scanners) do not of course have this problem of inconsistent projec-
tions, but can nonetheless still benefit from the noise reduction available with 4D reconstruction.
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2.  Brief overview of statistical image reconstruction

To lay a foundation for the current review of 4D reconstruction in emission tomography, it is 
beneficial to briefly review the key concepts of statistical image reconstruction, which apply 
whether it is 2D, 3D, 4D or even 5D/6D reconstruction (5D and 6D applies when respiratory 
and/or cardiac gating is used in addition to dynamic 3D imaging, (e.g. Verhaeghe et al 2007)). 
We are concerned here with statistical image reconstruction, rather than analytic reconstruc-
tion methods such as filtered backprojection. Analytic methods, generally speaking, have less 
accurate models of the imaging system than statistical image reconstruction, but the noise in 
the reconstructed images can be relatively easily calculated (e.g. Watson 2009). There are five 
key components to be considered for statistical image reconstruction: i) the parameters to be 
estimated, ii) the form of the acquired data, iii) the forward model, iv) the objective and v) the 
algorithm. These five components are implied in the 3D reconstruction review by Lewitt and 
Matej (2003).

At its core, all image reconstruction is concerned with spatially-localized parameter esti-
mation, so it is important to start with a clear definition of the parameters which are being 
sought. Once the desired parameters have been chosen, the format of the acquired raw PET 
or SPECT data needs to be carefully considered, as in general the required parameters do not 

Figure 1.  Noise in dynamic 3D imaging (4D tomography). The raw emission data may 
be in list-mode format, or more conventionally stored as sinograms or projections for 
each time frame. A time series of 3D images is reconstructed, and time-activity curves 
(TACs) can be extracted for a voxel or region of interest (ROI), so that a kinetic model 
can be fitted to find functional parameters. Nine illustrative time frame images (out of 17, 
covering 60 min of a [18F]flumazenil PET scan) are shown along with the 17 point TACs. 
Central sagittal slices of every other frame (i.e. frames 1, 3, 5, …, 17) of the 3D frame 
reconstructions are shown, demonstrating the elevated noise levels at the short time sam-
pling intervals (the earlier, shorter frames, are noisier). The voxel-level TAC, due to noise, 
demonstrates an erratic time course of radiotracer concentration which is physiologically 
implausible. Depending on the study type, there may be up to 30 or more separate time 
frames, with frame durations ranging from a few seconds up to many minutes (in this 
figure the frame duration is represented by the width of the grey vertical lines).
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directly relate in a one-to-one fashion with the measured data. A typical choice for the param-
eters is the mean radioactive concentration in each voxel in the FOV of the scanner, whereas 
instead the measurements are a set of sinograms, projections or list-mode data. We therefore 
need to describe the mapping from the parameters of interest (e.g. the mean radioactive con-
centration in each voxel) to the space in which the acquired data were acquired. This mapping, 
which should accurately capture the physics of radioactive emissions as well as the scanner’s 
response, is often broadly referred to as the forward model, or the system matrix, as will be 
seen further below. A simple example is the discrete 3D x-ray transform (Defrise et al 1995), 
which takes line integrals through an object represented by voxels to deliver sets of 2D paral-
lel projections (so the discrete x-ray transform maps voxel values to projection data values). 
Having clearly defined the parameters which are sought, and how these map to the acquired 
data format, we then need to decide on the objective function (also known as the cost function). 
The objective function defines the way in which we do, or do not, require the estimated param-
eters to agree with the measured data. For example, one might require the forward projection 
of the voxel values to agree with the measured sinograms by requiring the sum of the square 
difference between each forward projected value and each measured value to be minimized 
(a least squares objective). Finally an algorithm is needed which is capable of generating esti-
mates of the desired parameters which are in accordance with the chosen objective function.

All of these aspects, summarized in figure  2, will be explored in detail in turn, with a 
specific focus on the topic of 4D image reconstruction and the current state of the art in the 
field, for both PET and SPECT imaging. As will be seen however, the crucially different 
components needed in 4D reconstruction primarily relate to the parameters to be estimated, 
and the algorithms used to achieve this. Therefore the primary focus will be on those two core 
components in reconstruction, with less emphasis on the objective, data and system model, as 
these latter aspects remain relatively unchanged for 4D reconstruction and hence the current 
reviews of 3D statistical image reconstruction (such as those by Lewitt and Matej (2003), Qi 
and Leahy (2006) and Reader and Zaidi (2007)), already provide excellent coverage. Note 
further that there are many 4D data processing methods, which in a strict sense are not really 
4D reconstruction methods at all (e.g. preprocessing of sinogram data through use of principal 
components analysis (Razifar et al 2006), factor analysis and related techniques (Wernick 
et al 1999), and filtering methods (e.g. Turkheimer et al 2003, McLennan and Brady 2009)) 
and so are not the focus of this review of 4D reconstruction. Such alternative 4D data process-
ing methods are already reviewed by others in previous reviews of 4D reconstruction (see 
Tsoumpas et al 2008a, Rahmim et al 2009).

Finally, many motion correction strategies also fall under the category of 4D or higher 
dimensional image reconstruction, but the vastly growing volume of work on motion-cor-
rected and/or gated reconstruction (e.g. Li et al 2006) is beyond the scope of this review. 
Nonetheless, genuinely 4D reconstruction methods with simultaneous motion estimation (i.e. 
not ad hoc inter-reconstruction or post-reconstruction motion estimation methods) are now 
emerging (e.g. Jacobson and Fessler 2006, Grotus et al 2009).

One final point to note for this section is the acquired data format. Emission tomography 
reconstruction algorithms have often required the data to be in sinogram or projection format, 
whereby each event (a pair of coincidence photons in PET, or a single photon in SPECT) is 
histogrammed into a projection bin, with each projection data bin approximately associated 
with a line of response (LOR) through the scanner FOV. However, with increasing informa-
tion now being measured for each event (e.g. photon detection positions, arrival times and 
energies), the use of projection data format becomes increasingly sub-optimal. As an exam-
ple, for dynamic imaging, an entire projection data set is needed for each time frame (a time 
sampling interval), so that not only is considerable storage required for multiple time frames, 
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but furthermore there is loss of information as events within a certain time sampling interval 
are grouped together. The same applies spatially: events can be grouped into the same projec-
tion bin through use of axial spans (Fahey 2002), leading again to information loss. For this 
reason list-mode data can be both more efficient and more accurate (see e.g. Parra and Barrett 
1998, Reader et al 1998), whereby each event with all its attributes (position, time, energy, 
and for example the time of flight (TOF) estimate for PET, or for example the gantry position 
for rotating SPECT systems) is simply recorded sequentially in a file. Both dynamic sinogram 
data and list-mode data can be used for 4D image reconstruction.

3.  Representations of radioactivity distributions in 3D and 4D

3.1.  3D case

At the heart of 3D reconstruction is a parameterized model of the spatial distribution of the 
radioactive concentration in the scanner FOV. A typical example in PET imaging would be 
the distribution of the radiotracer [18F]FDG in the human brain. One can model, or represent, 
the 3D radioactive distribution as a function f of position r = [x y z]T in the FOV by summing 
a limited number of j=1…J spatial functions bj(r):

∑θ θ=
=

( )rf b r( ; ) ;
j

J

j j

1

� (1)

where each function is parameterized by its own unique parameter vector θj, consisting of  
p=1…P parameters. In general, each spatial function θ( )b r;j j  may itself also consist of one or 

Figure 2.  The five core components in image reconstruction, shown in five boxes. The 
parameters are used to generate a representation of the emitting radioactive distribu-
tion in the FOV, which is then forward modeled to deliver a model of what the mean 
measured data would be for such a distribution. The objective function assesses the 
agreement of the noisy measured data with this model of the mean data (possibly also 
assessing agreement with prior knowledge), and an algorithm then updates the param-
eters in a way which will lead to an improvement in the agreement required by the ob-
jective function. Components 1 and 5 (in italics) require significant changes compared 
to 3D reconstruction in order to achieve fully 4D (and ‘direct’) image reconstruction.
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more functions of linear or non-linear parameters. The overall parameter vector θ on the left 
hand side of equation (1) is therefore a JP-dimensional vector, composed of P-dimensional 
subvectors θj, one for each spatial function bj. Image reconstruction then involves estimating 
P parameters for each one of the J spatial functions in (1).

The common practice in 3D emission tomography is to predefine the precise size, shape 
and position of the spatial functions used in equation (1) before image reconstruction, and we 
will refer to this fixed collection as a set of j=1…J spatial basis functions ϕj(r). This leaves 
image reconstruction with the task of only finding a scaling parameter (i.e. the coefficient) θj 
for each of the predefined functions ϕj(r). In this case, with only one parameter per spatial 
function, P=1, equation (1) simplifies to

∑θ θ ϕ=
=

f r r( ; ) ( )
j

J

j j
1

� (2)

An example of equation (2) would be to predefine a set of various volumes or regions of inter-
est, and to use these as the spatial basis functions. However, by far the most widely-used case 
is to simplify still further, by using predefined functions that are shifted copies of each other:

∑θ θ ϕ= −
=

f r r r( ; ) ( )
j

J

j j

1

� (3)

where the dependency of ϕ on j is no longer present, as the uniqueness of each spatial basis 
function ϕ is now only its particular fixed position in 3D space, specified by rj. In equa-
tions (1)–(3) the spatial functions can possibly overlap with one another in space, but the typi-
cal choice of ϕ, as illustrated in figure 3, is the pixel (for 2D reconstruction) or the voxel (for 
3D reconstruction). For these cases ϕ is a 2D or 3D rectangle function:

ϕ Π− = −r r r r( ) ( )j j� (4)

with positions rj chosen to avoid overlap of any of the J functions. With this choice of spatial 
basis function the overall representation of the radioactive distribution is in effect captured by 
the vector of parameters θ, merely a list of numbers which are arranged for display purposes 
into a 3D array of values to form a grey scale image (see again figure 3). Whilst the pixel 
or voxel are common, many other spatial basis functions have been proposed, as of course 
there are infinitely many 3D object representations available. Some examples include spheri-
cally symmetric basis functions (‘blobs’) (Lewitt 1992), or as mentioned, choosing regions 
of interest (ROIs). If one knows a priori the precise regions and locations in the radioactive 
distribution which are of interest, then these can be used as spatial basis functions, for direct 
estimation of the radioactive concentration contained in those regions (Carson 1986). Note 
that even for that case, just as for 3D voxel or ‘blob’ functions, just one coefficient param-
eter θj is required for each spatial basis function, as the model of equation (2) still applies. 
Equations (2)–(4) cover the majority of models in the 3D reconstruction literature, and these 
are all examples of linear parameter estimation, as the parameters being estimated are merely 
coefficients which scale the amplitudes of predefined basis functions. However, more gener-
ally, one should not insist on such a simplification, and instead use equation (1) which allows 
parameters to be estimated which not only specify the coefficient (amplitude) of the spatial 
basis functions, but which also specify the shape of the spatial functions. This generalization 
will help a great deal with a unified understanding of 4D image reconstruction in emission 
tomography, as in 4D tomography choosing more general temporal functions has great utility. 
To illustrate the point for 3D spatial functions, equation (1) could be used to describe the 3D 
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radioactive spatial distribution as a collection of 3D Gaussian functions, each function having 
P=5 parameters contained in the subvector θj = [θj1 θj2 θj3 θj4 θj5]T:

θ θ
θ θ θ

θ
= −

− + − + −⎛

⎝
⎜

⎞

⎠
⎟( )b

x y z
r; exp

( ) ( ) ( )
j j j

j j j

j
1

2
2

3
2

4
2

5
� (5)

Use of equation (5) means we are no longer seeking to estimate just the coefficient θj1 of the 
spatial function, but furthermore its position [θj2 θj3 θj4]T in the 3D FOV along with its width 
(proportional to the variance) θj5. In static image reconstruction in 2D and 3D, the general-
ity of equation  (1), with the example case of equation  (5), has remained largely ignored. 
However, for 4D reconstruction where such a generalization has great utility in the temporal 
domain, this is far from the case.

A final point to note for this section is that any given representation of the distribution of the 
radiotracer will have approximations compared to the unknown true distribution. Consideration 
of the issues involved with representations of functions of continuous variables is dealt with 
rigorously and at length in Barrett and Myers (2004), and an excellent overview of 3D spatial 
basis functions for emission tomography reconstruction is contained in Lewitt and Matej (2003).

3.2.  4D case

The aforementioned generalized representations for 3D reconstruction help to clarify the cur-
rent state of the art in 4D image reconstruction for emission tomography. First, we will extend 
the general 3D object representation equation (1) to now include the time dimension:

Figure 3.  Left: 2D object representation using a J × 1 vector of parameters θ in conjunc-
tion with a choice of basis function ϕ(r). In the example static case a 2D rectangle func-
tion (pixel) is used as the spatial basis, and each pixel has a coefficient θj to represent 
the level of radiotracer concentration within that pixel-sized region of the FOV. Right: 
for the dynamic 2D case a 3D rectangle function is used as an example spatiotemporal 
basis (pixel with extension into time as a third dimension). In this case a JP × 1 vector 
θ is needed, which can be organized as either i) being composed of subvectors θj, with 
each subvector containing P parameters (in this example P matches the number of time 
frames T, and θj can be interpreted directly as a TAC for pixel j) or ii) being composed 
of subvectors [θ]p, with each subvector being a parametric image (in the example each 
such subvector is a time-frame image composed of J pixels). The illustration extends 
naturally to the case of voxels and dynamic 3D imaging. NB: a simplification which is 
widespread in the literature will be adopted after section 3 in this article: voxels will be 
used as the spatial basis functions, so that J=V, where V is the number of voxels.
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∑θ θ=
=

( )f t b tr r( , ; ) , ;
j

J

j j

1

� (6)

In equation (6) the time course, or the dynamics, of the 3D radioactive concentration in the 
scanner FOV is now represented through the use of a 4D function f(r,t), which is a superpo-
sition of j=1…J spatiotemporal functions, each of which has P parameters stored within a 
subvector θj of θ. These functions can in general overlap in space and time. Unlike for the 3D 
case in the previous section, it is far more common to use more than one parameter (P > 1) for 
a given function bj. It is convenient, according to the context, to order and access the elements 
of θ by considering either subvectors θj or subvectors θ θ= ={ }j J[ ] , 1...p jp  (see for example 
figure 3, where these two cases correspond to TACs and image frames respectively). A simpli-
fication of equation (6), assumed by the entire current literature on 4D emission tomography 
reconstruction in PET and SPECT, is to first factorize each spatiotemporal function into a 
fixed choice of spatial basis function ϕj(r) in product with a temporal function Ψ(t;θj).

With the factorization we have:

∑θ θϕ Ψ=
=

( )f t tr r( , ; ) ( ) ;
j

J

j j j

1

� (7)

The spatial basis function ϕj(r) is now scaled by the temporal function Ψ (instead of the 
parameter θj in equation (2)), and hence the parameterization of the spatiotemporal function 
is now incorporated exclusively into the definition of Ψ(t;θj), with ϕj(r) merely indicating the 
spatial volume occupied by Ψ. If the spatial basis functions do not overlap, then the temporal 
function Ψ is in fact the TAC for that given spatial volume. If the spatial basis functions do 
overlap, then the TAC at a given sub-volume in the FOV can be found by summing over all 
the overlapping contributions, as will be shown below. With the factorizing simplification of 
equation (7), all 4D reconstruction methods in the literature proceed to focus exclusively on a 
specific parameterization of the temporal function Ψ. The parameterization of Ψ(t;θj) with P 
parameters can be written more explicitly as:

θΨ Ψ θ θ θ=( ) ( )t t; ; , , ...,j j j j j jP1 2� (8)

The goal will be to estimate these P parameters for each and every temporal function indexed 
by j, to find the whole JP-dimensional parameter vector θ. With this vector, one can then form 
the 4D radioactive distribution via equation (7).

For representation in computer memory the 4D continuous model of equation (7) will be 
discretized and the following vector notation can be used

∑ ∑θ θ ϕ Ψ θ θϕ Ψ= = =
= =

⎡⎣ ⎤⎦( ) ( )ff[ ( ) ] ( ) [ ]vt vt
j

J

jv j
jt

j

J

jv jt j

1 1

� (9)

where the vector f is a time-series (t=1…T frames) of 3D images (v=1…V voxels) contained 
in a VT-dimensional vector f. Each element of f is a sample of the 4D continuous radioactivity 
concentration modeled by (7), averaged over the time interval represented by time frame index 
t, and averaged over the sub-volume represented by voxel index v. The spatial functions ϕ may 
of course not be voxels, and so the JV-dimensional vector ϕ contains all the v=1…V voxel-
volume samples of each of the j=1…J spatial basis functions ϕj(r). The JT-dimensional vector 
Ψ contains the t=1…T time-frame samples of all the j=1…J temporal functions θΨ t( ; )j j .

With this discretization scheme both f and Ψ can be linear or non-linear functions of θ, but when f 
is evaluated and sampled for all v=1…V and all t=1…T for a particular parameter vector θ, the time 
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series of images contained in f can then be operated on by a conventional linear forward model (sys-
tem matrix), irrespective of whether a linear or non-linear parameterization of f was used. For this 
reason we have deliberately defined equation (9) in terms of vectors rather than matrices, in order to 
preserve the use of matrices for system modeling in section 5 below. Sampling f prior to applying the 
system model may be sub-optimal for some choices of ϕ (such as ‘blobs’), but this pre-discretization 
approach is highly practical for implementation of 4D image reconstruction algorithms.

One final point to note is the special simplified case used in the majority of the 4D literature, 
where non-overlapping pixels or voxels are used for ϕ, such that each voxel-volume sample v 
corresponds directly to a single basis function ϕj(r). This means that the indices v and j are equiva-
lent, J and V are equivalent, and ϕ=1 within the voxel volume. Therefore the temporal function Ψ 
can be directly interpreted as the TAC in a given voxel (where a voxel can be labeled by v or j):

θ θ θΨ= =( ) ( )f f( )vt jt j jt j� (10)

With this direct association of a unique TAC modeled by θj with each unique voxel j, we 
can obtain a set of P parametric images, with each parametric image given by the subvector 
[θ]p={θjp, j=1…J}. Thus estimation of the JP–dimensional (or equivalently VP-dimensional) 
vector θ can also be referred to as parametric image reconstruction. For the remainder of this 
review we will focus our attention on this simplified and widely-used case of employing non-
overlapping voxels.

4.  Parameterization of 4D radioactivity distributions

4.1.  Linear parameterization

A common choice of parameterization of the temporal function Ψ is the linear case, using the 
parameters θ to define scale factors. The parametric images are therefore coefficient images, 
[θ]p, one for each of the p=1…P temporal basis functions. The conventional case of separate 
time-frame 3D reconstructions corresponds to using temporally-shifted rectangle functions 
Π(t) as the basis functions:

∑θΨ θ Π=
=

( )t t; ( )j j

p

P

jp p

1

� (11)

In equation (11) there are the same number of parameters (P) as there are total time frames 
(T), and the p=1…P rectangle basis functions each cover unique non-overlapping time sam-
pling intervals (see table 1), with start and end times such that the entire time duration of the 
scan is covered. The start and end times of each rectangle function are chosen according to 
the expected temporal dynamics of the emission data, and it is common to have up to 20 or 30 
such frames to cover 60 min of data.

Less trivial temporal basis functions can be chosen to describe the temporal function, but 
still using a linear parameterization:

∑θΨ θ=
=

( )t B t; ( )j j

p

P

jp p

1

� (12)

This linear case, equation (12) combined with equation (7), actually covers a significant por-
tion of the current 4D image reconstruction literature. The key difference between a large 
number of the 4D reconstruction methods is in the precise choice of the temporal basis 
functions B(t) (e.g. from splines (Nichols et al 2002) through to basis functions related to 
radiotracer kinetics (Wang et al 2008)) along with the number P of these functions to use.  
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Table 1.  Review of choices of temporal functions B(t) for 4D reconstruction which 
require only a linear parameterization (simple scale factor for each function), along 
with how many such functions are used (i.e. the number of parameters, P, per temporal 
function Ψ). T is the number of time frames one seeks to reconstruct.

Temporal basis B(t) 
and number, P, used

Comments, 
references

Temporal basis B(t) 
and number, P, used

Comments, references

Rectangle functions, P = T

 
0 20 40 60

0

0.5

1

Time

No physiological 
meaning, no noise-
reduction.

Standard independent 
frame 3D 
reconstruction.

Patlak basis functions, 
P = 2

0 20 40 60
0

0.5

1

Time

Finding the coefficients provides 
direct estimates of the functional 
parameters θ1 = c and θ2 = Ki.

Input function CPL(t) needed.

B1 = CPL(t); ∫= ′ ′B C t dt( )
t

2
0

PL

(Wang et al 2008),
(Tsoumpas et al 2008b),
(Tang et al 2008, 2010),
(Angelis et al 2011b)

Wavelets, P < T

 
-10 0 10

-1

-0.5

0

0.5

1

Time

No physiological 
meaning, noise-
reduction only.

(Verhaeghe et al 2008)

Logan basis functions, 
P = 2

 
0 20 40 60

0

0.5

1

Time

Provides direct estimates of the 
functional parameters θ1 =DV 
and θ2 = c, or θ1 = DVR if a 
reference region rather than 
input function used.

=B C t( )1 PL ; = −B
d

dt
C t( )2 PL

(Rahmim et al 2012)

Splines, P < T

 
0 20 40 60

0

0.5

1

Time

No physiological 
meaning, noise-
reduction only.

(Nichols et al 1999),
(Reutter et al 2000),
(Nichols et al 2002),
(Li et al 2007),
(Verhaeghe et al 2007)

Decaying exponential 
basis functions, P > T

0 20 40 60
0

0.5

1

Time

Predetermined logarithmically-
spaced decay constants.

(Hebber et al 1997)

Data-derived basis 
functions, P < T

No physiological 
meaning, noise-
reduction only. Based 
on non-negative 
matrix factorization. 
(Reader et al 2006a), 
(Sitek et al 1999, 
2000, 2001).

Spectral-analysis basis 
functions, P > T

  0 20 40 60
0

0.2

0.4

0.6

0.8

1

Uses the input function or 
a data-derived surrogate 
generating function.

Can be implemented as an 
alternating joint estimation of 
coefficients and the generating 
function.

(Reader et al 2007),
(Verhaeghe et al 2010),
(McLennan and Brady 2010)

Singular vectors from a 
filtered backprojection 
reconstruction, P < T, or, 
ROI TACs from population 
data, P < T

First case has 
no physiological 
meaning.

(Matthews et al 1997)

Orthogonalized 
exponential basis 
(spectral analysis)

 
0 20 40 60

-0.4

-0.2

0

0.2

0.4

Time

First few left singular vectors 
of the exponential functions 
convolved with the input 
function (singular vectors 
shown only).

(Maltz 2000) (Maltz 2001)
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Table 1 provides an overview of the 4D image reconstruction literature for this very popular 
linear parameterization case of using (12) in conjunction with (7).

Considering table 1 there is an important distinction of two categories of linear temporal 
basis functions: those that do, and those that do not have a direct link with biological/func-
tional parameters of interest to medical imaging. The cases that do not have such an interpreta-
tion can only really be viewed as a means of limiting noise in the temporal data by imposing 
correlations between the various time points in the data, and after reconstruction there will 
still often be the need to perform a kinetic analysis to estimate actual biological parameters of 
interest, such as the distribution volume (DV), binding potential (BP) or the tracer influx rate 
(Ki). Reviews of these biological and functional parameters of interest are given in Bentourkia 
(2007) and in Innis et al (2007), and are not the focus of this present review. Note that post-
reconstruction estimation of kinetic parameters can result in bias issues if the reconstruction 
algorithm does not permit negative values (Reilhac et al 2008, Verhaeghe and Reader 2010).

If the basis functions are just a means of reducing noise, then one could also consider the 
alternative approach of limiting noise through appropriate definition of the objective function 
(e.g. using temporal roughness penalties) for the reconstruction task, as will be covered in 
section 6 below. It is an interesting observation that for 3D reconstruction the use of different 
objective functions (which include a spatial roughness penalty, (e.g. Hebert and Leahy 1989)) 
has proven to be a more popular approach to noise reduction than changing the spatial basis 
functions (e.g. use of blobs, sieves (Snyder and Miller 1985) and even ROIs). In contrast, the 
current 4D literature reveals the opposite trend: relatively little emphasis on temporal penal-
ties, with instead a large emphasis on changing the temporal basis functions. Conceivably, the 
best approach would be to combine spatiotemporal penalties in the objective function with an 
appropriate choice of parameterized spatiotemporal functions, but this remains an interesting 
area of research which has not really been addressed in the literature thus far.

Returning to the case of basis functions which do have a direct functional / biological 
interpretation, there are three main choices of temporal basis functions with a linear param-
eterization, as shown in table 1. These correspond to the cases of Patlak, Logan and spectral 
analysis, as will be described in detail below. When such functions are used one is implicitly 
carrying out direct kinetic parameter estimation. This means the parameters found by the 
reconstruction algorithm directly from the raw emission data will be the end-point biological 
measures of interest, without the need for any further processing (unlike the case for merely 
noise-reducing basis functions). Here the word ‘direct’ means the avoidance of an additional 
fitting stage after reconstruction (post-reconstruction processing often introduces approxima-
tions in modeling the noise in the images), it does not mean the estimation is non-iterative.

An important component used by these functionally meaningful basis functions is an input 
function, or alternatively a reference function. The input function, which will be denoted by 
CPL(t) in this review, refers to the concentration of free and intact radiotracer in the arterial 
plasma, as a function of time. It is of fundamental importance as one normally needs to know 
both the input CPL(t) to a system (the system being biological tissue in our case) as well as 
the output from the system (which is the TAC Ψ(t) in our case), if any information about the 
system itself is to be inferred. The presence of the radiotracer in the arterial plasma provides 
the input supply for tissue to be able to take up the tracer. The tissue will then either allow 
the tracer to be readily returned to the blood, bind the tracer (reversible binding) or somehow 
(e.g. metabolically) trap the tracer in the tissue (irreversible binding). However, measuring the 
input function is an involved and invasive process, and for this reason reference tissue methods 
(Lammertsma and Hume 1996, Gunn et al 1997) have been devised. In this latter case, the 
uptake of radiotracer in a tissue of interest is assessed relative to a reference tissue, so as to 
infer functional / biological parameters of interest in the tissue, provided that the behaviour of 
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the reference tissue is indeed a good reference (e.g. provided that it is known a priori that the 
reference tissue contains little or no capacity for any form of binding of the tracer, whilst at 
the same time having the same degree of non-specific binding as the target tissue of interest).

4.1.1.  Patlak basis functions.  For the case of modeling irreversible uptake of the radiotracer 
into a tissue, Patlak devised a linear model (Patlak et al 1983, Gjedde 1995) relating any time 
activity curve C(t) to the tracer influx constant Ki:

∫
= + >

′ ′

C t

C t
K

C t dt

C t
c for t t

( )

( )

( )

( )
     i

t

ss
PL

0

PL

PL

� (13)

where the format of equation (13) is designed to allow a conventional linear regression with 
slope Ki and offset c. In effect the TAC can be modeled by our parameterized temporal func-
tion Ψ as the sum of just two basis functions (Tsoumpas et al 2008b):

∫∑θΨ θ θ θ= = + >
=

′ ′( )t B t C t C t dt for t t; ( ) ( ) ( )      j j

p

jp p j j

t

ss

1

2

1 PL 2

0

PL� (14)

where tss is the time at which the steady state is reached, CPL(t) is the input function, and the 
two coefficients, θj1 and θj2, of the two basis functions, can be relabeled as c and Ki respec-
tively. The radiotracer net influx rate constant Ki has particular significance: for example when 
the PET radiotracer [18F]FDG is used, it is proportional to the glucose metabolic rate. In 
table 1 it is shown that, to date, at least four distinct research groups have implemented direct 
estimation of Ki through use of these Patlak basis functions (Wang et al 2008, Tsoumpas et al 
2008b, Tang et al 2010, Angelis et al 2011b).

4.1.2.  Logan basis functions.  The Patlak approach only applies to radiotracers with essen-
tially irreversible uptake in tissue. A similar approach to Patlak was devised by Logan (Logan 
2000) for reversible uptake of tracers (e.g. radioligands binding to neuroreceptors). However, 
in its original form the Logan method does not constitute a linear model for a TAC. Nonethe-
less, linear forms based on the Logan approach have been devised and used as basis functions 
to permit direct kinetic parameter estimation (Wang and Qi 2013)

⎡
⎣⎢

⎤
⎦⎥θΨ θ θ= + − >( )t C t

d

dt
C t for t t; ( ) ( )      j j j j ss1 PL 2 PL� (15)

where the derivative of the input function CPL(t) after the steady state time tss is negative, and 
so the right most term in parentheses is a positive basis function, such that θj1 and θj2 can be 
directly interpreted as the distribution volume (DV) and the negative of the intercept c of a 
Logan plot respectively. The DV has a useful physiological interpretation as being the level 
to which tissue concentrates the radiotracer relative to the blood at equilibrium (so a DV of 
2 means the tracer is twice as concentrated in the tissue as in the blood). This is pertinent for 
imaging of receptors in the brain, and the model finds use for example in PET, in modeling 
the binding of [11 C]raclopride to available D2/D3 receptors, so that images of DV allow one 
to infer the levels of endogenous dopamine (which competes with raclopride for binding to 
D2/D3 receptors). The one example in the literature of direct use of Logan-derived basis func-
tions for direct reconstruction is Rahmim et al (2012), but in that work an integrated form of 
equation (15) is used.
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4.1.3.  Spectral analysis basis functions.  A widespread model for the uptake of a radiotracer 
into tissue for PET and SPECT is that of compartmental modeling (see figure 4). By consider-
ing the transfer of the radiotracer between the blood and the tissue, and transfer between bound 
and unbound states within the tissue, one can devise a set of differential equations describing 
the time course of radiotracer concentration in the tissue. The solution to these equations turns 
out to be a convolution of the input function with a sum of exponentials (with the number of 
exponential functions related to the number of compartments in the model (Gunn et al 2001)).

The so-called spectral analysis model (Cunningham and Jones 1993) exploits this solu-
tion by using a set of exponential functions which cover all plausible tissue behaviours. The 
method makes no assumptions of reversible or irreversible uptake, and models the TAC as 
a large collection of basis functions, each of which is an exponential with a different decay 
constant convolved with the input function:

∑θΨ θ β= −⊗
=

⎡⎣ ⎤⎦( )( )t C t t; ( ) expj j

p

P

jp p
1

PL� (16)

where ⊗ denotes convolution. From this it is easy to compute K1 as simply the sum over all 
the coefficients of the basis functions, with DV found by summing the coefficients with each 
one divided by its respective decay constant β. If appropriate Ki can also be found (see for 
example Meikle et al (1998)).

4.2.  Non-linear parameterization

Returning to equation (8), we can of course also consider a non-linear parameterization of 
the temporal function Ψ, which is very useful for kinetic modeling, as many functional / bio-
logical parameters of interest are in fact non-linear. The most commonly encountered kinetic 
models for the dynamically changing radiotracer distribution at a given location in the scanner 
FOV are shown in figure 4. All these models are captured by one general expression:

θΨ θ θ θ θ θ= + ⊗( ) ( )t C t C t h t; ( ) ( ) ; , , ...,j j j j j j jP1 1 2 2 3 4� (17)

Figure 4.  Kinetic modeling in emission tomography, using compartmental models. 
CN(t) and CS(t) are the concentrations of the tracer in the non-specifically bound / non-
displaceable (N) compartment and the specifically bound (S) compartment of the tissue 
respectively. See table 3 for definitions of all other terms.

Voxel in reference region, TAC 

Voxel in region with specific uptake, TAC 

Voxel in reference region, TAC Ψ (t) = CRF(t)

Voxel in region with specific uptake, TAC Ψ (t) 

K’1

C

Arterial blood

CPL(t)

CN

k’2

K1

CNCN

k2

(t)N(t)

N(t) CS(t)

k3

N(t) CS(t)

k4



Topical Review﻿

R385

Phys. Med. Biol. 59 (2014) R371

Just as equation (12) expressed a general form of spatiotemporal basis which covers a signifi-
cant portion of the 4D reconstruction literature (linear parameterization), so also equation (17) 
expresses a general form which covers the vast majority of the remaining cases (non-linear 
parameterization) in the 4D reconstruction literature.

Equation (17) indicates that the overall TAC at a position in the scanner FOV is composed 
of a spatially-invariant TAC C1(t) (which in all known models is either the time-course of 
radiotracer concentration in the whole blood CWB(t) or else a reference function CRF(t)) added 
on to a convolution of a second TAC C2(t) convolved with a tissue response function h(t). This 
second TAC, in all known models, is either the input function CPL(t) or the reference func-
tion CRF(t). The tissue response function in essentially all currently devised models is either 
one exponential or a sum of exponential functions. Table 2 summarizes the literature for the 
important case of equation  (17) (with table 3 providing definitions of terms), showing the 
models used for each spatially localized TAC in the FOV. Figure 5 shows an example TAC 
from this model.

4.3.  Special cases of TAC models

4.3.1.  Joint estimation methods (linear models).  An approach which strictly comes under the 
category of using basis functions to denoise the reconstruction, but which is inspired by the 
physiologically known processes of radiotracer uptake, is to jointly estimate both the coeffi-
cients for a set of temporal basis functions as well as a discrete function which resembles the 
input function.

The model is inspired by spectral analysis (see previous section 4.1.3.), by predefining a 
fixed number of p=1…P exponential basis functions, each with a fixed decay constant βp, 
where for each exponential basis function we need to find a coefficient image [θ]p. However, 
in addition, we need to find a discretely sampled ‘generating function’ (which can be viewed 
as a surrogate for the unknown input function), which is defined by its values at a fixed number 
N of time points. Hence we need to estimate P parameters for each voxel, giving a total of JP 
parameters to find, as well as an additional N parameters (the generating function, just as the 
input function, is assumed to be the same for all voxels). Therefore, the TAC for a voxel is 
modeled by:

⎡⎣ ⎤⎦∑θ θΨ θ β= −⊗
=

( )( )t C t t; ( ; *) expj j

p

P

jp p
1

GF� (18)

where CGF(t) is the generating function (parameterized by N values contained in the parameter 
vector θ*), as described in Verhaeghe and Reader (2013), based on the idea of Reader et al 
(2007). The approach is to alternate between estimation of the coefficient images and estima-
tion of the generating function, by holding the generating function constant and then the coef-
ficients constant during each estimation respectively.

This work has led on to improved methods for direct kinetic parameter estimation reliant 
on joint estimation of a reference TAC as well as kinetic parameters (Wang and Qi 2009b). 
Related methods, even more ambitious than the above, seek to estimate the true arterial input 
function which has physiological meaning (Yetik and Qi 2006).

4.3.2.   Factorization approaches (linear models).  Other joint-estimation methods, that esti-
mate both coefficient images as well as a set of temporal basis functions directly from the 
data (i.e. fully data derived, not imposing the constraint of a convolution of a generating 
function with decaying exponentials), can be considered as matrix factorization methods. 
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Such factorization has been considered as part of the 4D image reconstruction in Reader et al 
(2006a) and Sitek et al (2001). Note as mentioned before that there are many factorization 
approaches in the literature, but the focus here is on methods that have been incorporated into 
true 4D image reconstruction algorithms.

To describe these methods it is convenient to use the voxel-spatial basis function model given 
previously by equation (10) in combination with a discretization of equation (12) to obtain:

∑θ θΨ θ= =
=

f B( ) ( )jt jt

p

P

jp pt

1

� (19)

Table 3.  Definition of terms for the kinetic models described in table 2.

Term Definition

K1 Rate constant for transfer of tracer from plasma to tissue (mL.min-1. cm-3)
k2 Rate constant for return of tracer from tissue to blood (min-1)
k3 Rate constant for transfer of tracer from free to bound compartment (min-1)
k4 Rate constant for transfer of tracer bound to free compartment (min-1)
Fv Fractional volume of blood in the tissue
K’1 Rate constant for transfer of tracer from plasma to reference tissue  

(mL.min-1. cm-3)
R1 Ratio of the delivery in the tissue region of interest compared to that in the 

reference region (ratio of influx, K1/K’1 sometimes referred to as RI)
BPND Binding potential - the ratio of the concentration of radioligand in the 

tissue to that of the reference region at equilibrium
CWB(t) Time-variant concentration of tracer in the arterial blood (including plas-

ma and blood cells) (Bq.mL-1)
CPL(t) Time-variant concentration of tracer in plasma, the “input function”  

(Bq.mL-1)
CRF(t) Time-variant concentration of tracer in reference tissue region (Bq.mL-1)

Figure 5.  Example TAC generated from the non-linear model for the case of 3 tis-
sue compartments, showing the components that are added to generate the over-
all TAC. The components are = F C ta ( )v WB1 , θ θ= − ⊗ −F C t ta (1 ) ( ) exp[ ]v PL2 3 4 , 

θ θ= − ⊗ −F C t ta (1 ) ( ) exp[ ]v PL3 5 6  and θ θ= − ⊗ −F C t ta (1 ) ( ) exp[ ]v PL4 7 8 .
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where B={Bpt} is a PT-dimensional vector holding the temporal samples t = 1…T for each of 
the p = 1…P temporal basis functions (usually P < T). Hence the discrete f(θ) is decomposed 
into coefficient images [θ]p for each of the p = 1…P temporal basis functions, [B]p. These two 
components are treated as unknowns so that both θ and B are estimated, usually in an alternat-
ing fashion by holding one constant whilst estimating the other, and vice versa.

The differences between the various implementations lie in i) the constraints on the vectors 
θ and B, ii) the cost function to quantify the approximation of the true object by equation (19) 
and iii) the algorithm used to find the two components. In Reader et al (2006a) the Kullback-
Leibler distance objective is optimized using an EM type algorithm, so that all components of 
θ and B are inherently non-negative, which in itself also provides noise reduction. In Sitek et al 
(2001) a quadratic penalty for negative elements in θ and B is added to a least-squares objective 
that was optimized using a conjugate gradient method. It is important to note that the estimated 
basis functions are not unique and are not physiologically meaningful. Therefore the decompo-
sition should only be seen as a means to reduce noise in the final spatiotemporal image.

4.3.3.  Shape constraints.  A somewhat different approach to using a pre-defined or esti-
mated temporal parameterization is to consider conventional rectangle basis functions but 
to additionally introduce a shape constraint so that the final TAC is either just decaying, just 
increasing or else increasing up until a given time point (or interval) where the peak value is 
reached, after which the TAC is only allowed to decay. This approach was primarily devel-
oped for SPECT and has been termed the dSPECT (Bauschke et al 1999, Celler et al 2000, 
Farncombe et al 2001, Blinder et al 2004) but the approach can be applied to PET imaging as 
well. Different implementations also differ in cost function and optimization strategy.

4.3.4.  Joint estimation and mixed models.  An interesting mixed example of combining lin-
ear with non-linear parameterization in SPECT has been presented by Reutter (Reutter et al 
2005). This approach combines a B-spline model for some regions (i.e. using the model of 
equation (12) with splines) with a one-tissue compartment model parameterization (a model 
like equation (17)) for the others, and furthermore seeks to estimate the input function and the 
region boundaries from the projections.

5.  System model

Having taken care to define the parameters of interest which represent the 4D spacetime radio-
tracer distribution in the FOV, we now move on to consider how this parameterized object 
representation is imaged by a PET or SPECT scanner. The process of modeling the physics 
of radioactive emissions from the radiotracer distribution, along with how these emissions are 
detected and processed by the tomograph, constitutes the process of system modeling. This 
is also known as the forward model in the field of inverse problems, where, in general, one 
ultimately seeks to obtain some approximate inverse of this model, in order to estimate param-
eters representative of the object which gave rise to the measured data. Whilst system model-
ing can be based on the object representation function f of the continuous variables r and t, 
we will focus on system modeling for the VT-dimensional vector f(θ), which is the space-time 
discretization of the representation f(r,t;θ) of the 4D radiotracer distribution.

In statistical image reconstruction the system model is required to model the mean or the 
expectation of the measured emission data for a given object vector f, where, for 4D, f is a 
time-series of 3D images. For the majority of emission tomographs the space of the meas-
urements, whether noisy or not, can be regarded as an IT-dimensional vector space. The I 
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dimensions typically correspond to the number of distinct sinogram bins (including the time-
of-flight bins if appropriate), and T corresponds to the number of time samples or frames. So 
for dynamic imaging one needs to map the VT-dimensional f (a time series of images) to a 
space of IT dimensions (a time series of sinograms, for example). As will be seen below, this 
will be achieved using a very large IT × VT matrix, called the system matrix.

Whilst we have an infinite number of choices for the modeling and parameterization of f 
(via θ and the spatiotemporal functions chosen) we are in contrast necessarily constrained by 
the scanner hardware in terms of modeling the mean of the measured data. In effect, there are 
for most scanners only a finite number of possible event types that can be detected. For exam-
ple, there are only a finite number of discrete sinogram bins for a given scanner, with each bin 
being sensitive to a particular weighted volume of the FOV, defined by a sensitivity function. 
Both list-mode data and sinogram / projection data can be regarded in this same way, as there 
will nearly always be a finite precision (effectively a sampling interval) for any measured 
event. We will denote the dynamic measured data for an emission tomograph by a single vec-
tor m, of IT dimensions, which can be regarded as a time-series of I-dimensional subvectors, 
each subvector being a dataset from a static acquisition.

Any given component mit of the total measured data vector m has a time index t, corre-
sponding to a time sampling interval of start time ts, and end time te, with duration Δt. This 
could be anything from 1 ms (e.g. the high resolution research tomograph (HRRT) PET scan-
ner (de Jong et al 2007) records list-mode data to within 1 ms time sampling) to 60 min (e.g. a 
non-dynamic acquisition, collecting a static set of sinograms). However, in the following we 
will focus on the commonly used case of matched time sampling intervals for both f and m.

Assuming that the emission tomography scanner can be represented by a system matrix  
A = {ait,vt}IT × VT operating on this vector f, we will model the mean of m by a vector q:

θ θ ρ= +q Af( ) ( )� (20)

where ρ={ρit}IT is a model or estimate of any background component not accounted for by A 
(such as randoms, or scatter). Each component of q is given by

∑θ θ= + ρq a f( ) ( )it
v

it vt vt it,� (21)

With the practical pre-discretization of f used here (i.e. using f(θ) rather than f(r,t;θ)) the 
system matrix A contains elements ait,vt specifying the intersection of each voxel volume v 
at time t with each potentially time-dependent sensitivity function ξit(r) associated with each 
data element i. This models the probability that a radioactive emission from within a given 
voxel v, during time sampling interval t, gives rise to a measured count in an element it of the  
IT-dimensional data space for the same time sampling interval t. A common example of ξit(r) 
would be a tube or line of response through the FOV, so that ait,vt gives the intersection of a 
tube or line of response i, at a time t with a voxel v at time t. This permits a practical and fast 
on-the-fly calculation of the elements of matrix A, avoiding the phenomenal storage require-
ments, using methods such as the Siddon algorithm to calculate intersection lengths of lines 
with voxels (Siddon 1985, Zhao and Reader 2003). But more advanced models of the scanner 
geometry (Markiewicz et al 2005), resolution (Panin et al 2006, Kotasidis et al 2011) and even 
photon scatter (Markiewicz et al 2007) can in principle be included in A. Furthermore, a com-
monly adopted simplification when implementing (21) for 4D imaging is to use exactly the 
same system matrix for every time frame, so that ait,vt is obtained simply by ai,v, but note the 
important need to account for radioactive decay (see equations (22) and (23) below).

However system models should in general account for scanner responses varying with 
time, which can occur for many reasons, including i) scanner motion (e.g. camera rotation in 
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some SPECT systems), and ii) the total activity in the FOV changing with time, as scanners 
do not respond in a strictly linear fashion to such changes, due to limitations in scanner instru-
mentation/electronics. Even if only rarely done to date, incorporating a time-varying A into 
4D reconstruction is not conceptually difficult to do.

Notice that the system modeling equation  (20) presented here for 4D reconstruction is 
more general than conventional modeling in 3D image reconstruction, as f can be either a 
linear function of θ (such as a discretization of (12)) or a non-linear function of θ (such as a 
discretization of (17)) whilst nonetheless preserving a linear forward projection model.

More realistic system models often use the simple line intersection model as just part of 
the system matrix. One proceeds, stage by stage, to model what happens with the radioactive 
emissions from the approximate representation f(θ). For PET, the system matrix A is normally 
factorized into a resolution modeling component (e.g. a convolution matrix H to model posi-
tron range (Reader et al 2003)), a geometric detection probability component (e.g. the discrete 
x-ray transform which performs line integrals, X), and normalization, attenuation and radio-
active decay components (diagonal matrices N, L and D respectively), A=LNXHD, giving:

θ θ=q LNXHDf( ) ( )� (22)

The diagonal matrix D, modeling radioactive decay, can also be modified to account for frame 
length variations in the temporal sampling of f. Finally any background components such as 
the model of the mean of the time-dependent scatter and random events (for PET) are added 
on:

θ θ ρ= +q LNXHDf( ) ( )� (23)

Of course, the above system model for PET can easily be extended to account for time of 
flight, primarily by modifying the matrix X to hold time-of-flight kernels rather than lines, 
to project into different time-of-flight sinogram bins. For SPECT the attenuation cannot be 
handled by a diagonal matrix, and the discrete x-ray transform is also too approximate: it is 
necessary to account for depth-dependent sensitivity functions of the collimator holes, and 
depth-dependent attenuation factors in the system model (Zeng et al 1991).

As mentioned at the beginning of this section, the system model concerns the mean, or the 
expectation, of the data obtained from the overall emission tomography measurement process. 
Conceptually, the mean data can be regarded as what would be obtained by repeating precisely 
the same noisy emission scan a very large number of times and then taking the average of 
these independent data set realizations. The count limited effects of a single scan, resulting in 
noisy measured data, are not modeled in the system model, but are dealt with statistically in 
the objective function, covered in the next section for the 4D reconstruction context.

6.  Objective functions for 4D reconstruction

The objective function for image reconstruction describes the goal for the parameter estimation 
process: how should the estimated parameters agree, or not, with the actually measured emission 
data m? The objective functions for 4D image reconstruction remain relatively unchanged from 
the 3D cases, and are simply extended in the obvious way to include the time dimension. For both 
4D PET and SPECT imaging, the probability of obtaining mit counts in data bin i at time index t if 
on average there are μit counts for that data bin, is well modeled as a Poisson distribution:

μ
μ μ

=
−

!( )m
m

Pr
exp[ ]

it it
it it

m

it

it

� (24)
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In image reconstruction, we are modeling the mean counts μit in bin i at time index t by qit(θ) 
as described in the previous section, so we can now find the probability of obtaining measured 
mit counts in data bin i at time t for a given parameter vector θ:

θ
θ θ

=
−[ ] [ ]

m
q q

m
Pr( )

exp ( ) ( )

!
it

it it
m

it

it

� (25)

Now, to find the parameters of interest θ, we can define the likelihood of θ given the fact that 
mit occurred by:

θ θ=l m m( ) Pr( )it it� (26)

and so we need to find a θ which maximizes this likelihood. However, we have of course many 
more measurements than just one mit for one data bin, so we can define the likelihood of a 
given parameter vector θ given the entire measured data vector m by:

∏∏θ
θ θ

λ =
−

= =

[ ] [ ]q q

m
m( )

exp ( ) ( )

!
t

T

i

I
it it

m

it1 1

it

� (27)

where it is assumed that the integer number of counts in each element of the measured data vec-
tor m are all independent of one another, hence the product of the individual probabilities. The 
objective of the reconstruction is therefore to maximize λ with respect to the parameter vector 
θ, where any given θ defines a 4D radiotracer distribution f and therefore also a mean data 
vector q by the system model of the previous equation (20), q(θ)= Af(θ)+ρ. It is much simpler 
for optimization purposes to consider the natural logarithm of equation (27), the Poisson log-
likelihood, and to ignore the constant term which is independent of the parameters:

∑ ∑θ θ θλ = −
= =

( )m q qmln ( ) ln ( ) ( )
t

T

i

I

it it it
1 1

� (28)

which will attain its maximum at the same value of θ as for (27) since the logarithm is a 
monotonically increasing function. It is very useful to note at this point that the Poisson log-
likelihood (28) is related to a distance measure known as the Kullback-Leibler (KL) distance 
(Barrett and Myers 2004):

∑ ∑θ
θ

θ θλ= + − = − +
= =

⎛

⎝
⎜

⎞

⎠
⎟D m

m

q
q m constm q m( , ( ) ) ln
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( ) ln ( ) .KL

t

T

i

I

it
it

it
it it

( )

1 1

�

(29)

Therefore maximizing the Poisson log-likelihood (28) is equivalent to minimizing the KL 
distance (29):

θ θλ =
θ θ

Dm m qargmax ln ( ) argmin ( , ( ) )KL( )
� (30)

As will be seen later, the KL distance is an extremely important measure of agreement between 
two vectors, as in fact both Poisson maximum likelihood and penalized likelihood estimation 
of linear or non-linear choices of parameters θ from tomographic emission data can legiti-
mately be achieved in image space provided this distance measure is used. The key, as will be 
shown, is the use of an EM tomographic image update f(EM) (in place of the noisy measured 
data m in (28)) for fitting the modeled f(θ), using the KL distance as the objective. We will 
come back to this in the next section.

A commonly reported problem with seeking an estimate of θ which maximizes (28) (i.e. 
the maximum likelihood estimate of θ), is that with a noisy measured vector m, the estimate 
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of θ is also noisy. It should first be noted that this frequently reported problem presupposes 
a choice of space and time functions and a parameterization θ of the radiotracer distribu-
tion such that noisy solutions are even permitted. This does not have to be the case, and in 
fact one can select spatiotemporal functions which implicitly limit the representations of 
the radiotracer distribution f(r,t) to a subspace which permits only smooth reconstructions 
(analogous to the method of sieves for the purely spatial case, (Snyder and Miller 1985)). If 
for example one chooses regions or volumes of interest as the spatial basis functions, with 
a positivity constraint on θ, then the reconstructed image can only consist of these uniform 
regions, no matter how noisy the data are, such that the famous ‘night sky’ images cannot 
even be obtained. Likewise, if temporally extensive temporal basis functions are chosen with 
a positivity constraint on the coefficients of these functions, it is impossible to obtain visually 
noisy TACs.

Nonetheless, a popular approach to noise reduction has been to keep a choice of spatiotem-
poral functions which does permit very noisy reconstructions (representations of f(r,t)), and 
instead to place restrictions on the parameter vector θ by regularizing the objective function. 
Therefore instead of seeking just to maximize the likelihood (the ML estimate of θ) one can 
use a maximum a posteriori (MAP) objective. In this case one includes the presumed prob-
ability of any given θ:

θ θβ= − U

Z
Pr( )

exp[ ( ) ]
� (31)

where Z is a normalizing constant which can be ignored since we will subsequently only be 
concerned with maximization with respect to θ, and β is the regularization parameter, control-
ling the level of importance of the prior (β=0 implies no prior probability, all θ being equally 
probable). U is any function which gives a large value for parameter vectors θ which are 
deemed improbable, and low values for vectors θ which one presumes to be more probable, 
based on prior knowledge of what should be expected from a PET or SPECT scan. A common 
choice is to define U as an energy function, as will be described below. Using this probability in 
product with the likelihood gives what is known as the posterior probability of the parameters 
θ, given m:

∏ ∏θ
θ θ θ

λ
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The log of the posterior probability is therefore given by

∑ ∑θ θ θ θλ β= − − +
= =

( )m q q U constmln ( ) ln ( ) ( ) ( )MAP

t
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it it it
( )

1 1

� (33)

Equation (33) is known variously as the Poisson log-posterior or the penalized Poisson log-
likelihood, and from the previous discussion can also be seen as the negative of a penalized 
KL distance (to within a constant).

There are countless possibilities for the choice of U, primarily viewed as an energy func-
tion, and the reader is referred to the 3D image reconstruction literature for consideration of 
example choices for 3D spatial regularization (see for example the review of Qi and Leahy 
(2006)). Temporal penalties have also been proposed, such as penalizing differences between the 
reconstructed TAC and its best compartmental model fit curve (Kadrmas and Gullberg 2001), as 
well as Gibbs priors (Lee et al 2005, Gravier et al 2006). In fact for direct parametric image recon-
struction some interesting possibilities arise (Wang and Qi 2012, Wang and Qi 2013): one can 
regularize according to an energy function defined by the activity images f(θ) and/or regularize 
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according to an energy function defined by the parametric images [θ]p  =  {θjp, j=1…J} for 
p=1…P, as will now be explained.

First, the basic form of the energy term used for 4D parametric reconstruction, when using 
voxels and regularizing by the activity, is given by Kamasak et al (2005), Wang and Qi (2012), 
Rakvongthai et al (2013):

∑ ∑ ∑θ θ θΨ Ψ= −
= = ∈

( )( )U w( ) ( )
t

T

j

J

l N

jl jt j lt l

1 1

2

j

� (34)

where the total energy is given by the weighted (wjl) sum over the neighbourhood Nj of every 
voxel j=1…J, summing the square difference between the activity at voxel j, and the activi-
ties at voxels l within the neighbourhood of voxel j. More generally one can use a function 
T to transform the parameter vector θj for a given voxel j into one of the kinetic parameters 
(for example, mapping θj to obtain k4, as shown in table 2 for the 2 TCM model). This allows 
regularization of the kinetic parametric images as well

∑∑∑θ θ θ= −
= = ∈

( )( )U w( ) ( )
p

P

j

J

l N

jl jp j lp l

1 1

2

j

T T� (35)

With equations (34) and (35) it is important to realize that the relative weighting of the energy 
term will matter: one might need to assign more weight to parametric images which are known 
to suffer from more noise, such as the microparameters k2 and k4. Also, as mentioned, both 
parametric and activity based regularization are simultaneously possible.

With regard to the choice of weighting factors wjl, all the work on 3D regularization can be 
applied, such as in particular the use of MR images as anatomical priors which can guide the 
choice of these weighting factors, as proposed by Bowsher for 3D reconstruction (Bowsher 
et al 1996). Tang et al as well as Bousse et al applied a modified version of the Bowsher prior 
to use MR regularization in direct parametric image reconstruction (Tang et al 2008, 2010, 
Bousse et al 2012).

Despite the attraction of MAP estimation, the ML objective still remains popular primarily 
because many implementations never seek an actual ML estimate, but rather an incompletely con-
verged reconstruction which often has a more desirable signal to noise ratio than the ML estimate.

7.  Algorithms for 4D image reconstruction

An iterative image reconstruction algorithm seeks to improve a given parameter vector estimate 
θ(k) such that when the estimate is used to generate a 4D image f(k) and subsequently mapped 
by A to give a model of the mean data q(k), q(k) agrees in a better way with the measured data 
m. For Poisson data this better agreement is specified by obtaining a new estimate θ(k+1) which 
reduces the KL distance between m an q(k), as was seen in the previous section. Now, since the 
parameters being estimated are often non-linear for 4D reconstruction, the algorithms require a 
more comprehensive coverage for the 4D case, as most 3D reconstruction algorithms for emis-
sion tomography are limited to a completely linear relationship between θ and q.

7.1.  ML and MAP estimation for linear parameters

We nonetheless start with the case of linear parameter estimation, as this corresponds to using 
any of the temporal basis functions previously given in table  1, representing a significant 
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portion of the 4D literature. For these cases, conventional 3D iterative image reconstruction 
algorithms can be readily adapted, just by modifying the linear forward model to account 
for the choice of spatiotemporal basis functions. One of the most popular 3D iterative image 
reconstruction algorithms in PET and SPECT is the expectation maximization (EM) algo-
rithm (Dempster et al 1977, Shepp and Vardi 1982) used to find ML estimates of θ. Its popu-
larity can be understood due to the extreme simplicity of its implementation and its robust 
performance, often delivering visually appealing images if not run to the point of convergence 
(see for example Angelis et al (2011a)). For 3D reconstruction, with the parameter vector θ 
corresponding directly to 3D image voxel values, f(θ) = θ, the ML-EM algorithm is given by:

θ θ=+
A 1

A
m

q
k

k

T
T

k
( 1)

( )

( )� (36)

where vector division and multiplication is taken to be component-wise. The model of the 
mean accounts for a model or estimate of the mean scatter and random events, contained in ρ:

θ ρ= +q Ak k( ) ( )� (37)

Practical implementation of (36) is relatively straightforward. A current 3D image estimate 
θ(k) is forward projected by A to give q(k), the ratio of the measured data m to q(k) is backpro-
jected by AT to give an image which is used, after first dividing by the sensitivity image AT1 
(a backprojection of unit data), to multiplicatively update θ(k). This sequence of steps provides 
a new estimate θ(k+1).

For the 4D case with linear parameters to estimate (such as all the cases shown in table 1), 
equation (36) can be adapted in an obvious way:

θ θ=+
B A 1

B A
m

q
k

k

T T
T T

k
( 1)

( )

( )� (38)

with

θ ρ= +q ABk k( ) ( )� (39)

Hence the main difference for 4D reconstruction with linear parameters compared to 3D 
reconstruction is the use of a matrix B = {bvt,vp}VT × VP containing the time-sampled temporal 
basis functions for every voxel volume. The size of matrix B is considerable, but it is nearly 
always simplified by assuming the temporal basis functions to be identical for every voxel, 
such that bvt,vp = bt,p. The measured data vector in equation (38) now contains elements for 
every time point ( = mm { }it ), and hence the forward model is required to generate time-
dependent estimates of q. This 4D MLEM approach has been widely used, starting in the late 
1990s with (Matthews et al 1997), and continuing with many others more than a decade later 
(Tsoumpas et al 2008b, Hong and Reader 2008). All the cases in the literature shown in table 1 
can be used with equation (38). However, the method can be computationally demanding: if 
the temporal basis functions cover all time frames, then the entire dynamic data is implicated 
in each and every image update, and furthermore convergence can be extremely slow for non-
orthogonal basis functions, such as the two Patlak temporal basis functions.

In contrast, the nested EM method, proposed by Wang and Qi (2010) and based essentially 
on the original work of Carson and Lange (1985), is more computationally straightforward to 
implement. It consists of two far less demanding stages which separate the tomographic part 
of the problem from the image-space based part of the problem. First, the current estimate of 
the parameters θ(k) is used to form the current 4D image according to:

θ θ=f B( )k k( ) ( )� (40)
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Then a provisional EM update for each and every 3D image frame is obtained:

θ
θ ρ

=
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A 1

A
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( )EM
k
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T
T

k
( )

( )

( )� (41)

where it is important to note that B does not appear in (41), and the comparison to the regu-
lar 3D ML-EM update equation (36) should be clear. Equation (41) accounts for the tomo-
graphic system model A and the measured data m to deliver a provisional 4D image update 
fEM. Finally, a simple image-space update can be carried out to obtain a new estimate of the 
parameters:

θ θ
θ

=+
B 1

B
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f( )
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k

T
T EM

k

k
( 1)

( ) ( )

( )� (42)

Equation (42) can be viewed as an image-space EM algorithm: the noisy data are now 
given by fEM (where the fEM image accounts for the tomographic data and the system model), 
and the ‘model of the mean’ now only needs to be concerned about the image-space model, 
without concern about the tomographic component. This greatly aids implementation.

Not only do equations  (41) and (42) separate the image model from the tomographic 
model, they are also much more memory efficient and practical to implement than the fully 
4D version of MLEM (equation (38)). Only a time series of images, rather than a full time-
series of projection data, needs to be handled in memory for finding the coefficients of the 
temporal basis functions, and remarkably the results are equivalent to the more demanding 
equation (38), under the modest requirement that the system matrix A be time-invariant. Proof 
of this equivalence can be seen by substituting (41) into (42):
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which requires A to be the same for all time frames in order to equal (38). The image-space 
update equation (42) can be applied more than once, in order to provide acceleration if desired.

Not only can the EM algorithm be easily adapted to a 4D version, but also least-squares 
methods are just as readily adapted, such as for example the simultaneous algebraic recon-
struction technique (SART) (Andersen and Kak 1984). As for EM, one simply uses a 4D 
system model rather than a 3D one:
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where λ is an optional relaxation parameter (λ=1 in the original version). SART can offer 
potential benefits as it does not have the non-negativity constraint of the EM algorithm, a 
constraint which can be viewed both as beneficial (reducing noise in low count regions) and 
detrimental (introducing bias in low count regions). Nonetheless, due to the popularity of EM, 
even versions of EM which permit negative values have been proposed in the literature. The 
two main examples are NEG-ML (Nuyts et al 2002, Grezes-Besset et al 2007) and AB-EM 
(Byrne 1998, Verhaeghe and Reader 2010), which Rahmim et al picked up specifically for 
use in 4D reconstruction (Rahmim et al 2012) so as to permit necessary negative values when 
using the Logan basis functions for reversibly binding radiotracer kinetics.

Of course, in addition to the above examples, other 3D reconstruction algorithms have also 
been modified for 4D in a similar fashion, including the preconditioned conjugate gradient 
algorithm (PCG) (Wang et al 2008, Rakvongthai et al 2013), for accelerated convergence. In 
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fact the nested EM algorithm itself has also been further accelerated through use of conjugate 
gradients (Wang and Qi 2010).

It is interesting to note at this point that, in the same spirit as the nested EM algorithm, MAP 
estimation has also been previously proposed as an image-space operation, providing parameter 
updates expressed in terms of the EM update image fEM. A popular and simple example of this, 
though not theoretically robust, is the one step late (OSL) EM MAP algorithm (Green 1990):

θ
θ
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+ ′β

+
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1 ( )
k EM

k

k
s

( 1)
( )

( )� (45)

where Uʹ is the partial derivative of the energy function evaluated at the current estimate of 
the parameters (hence OSL, with a well-known choice being the so-called median root prior 
(Alenius and Ruotsalainen 1997)), and s is the sensitivity image defined by a backprojec-
tion of unit data, AT1. This OSL method has itself been applied to fully 4D reconstruction 
(Tsoumpas et al 2013).

Many other MAP estimation methods implicitly or explicitly use the EM update image to 
achieve updates of the parameters via image space. Examples include the very early method 
of Levitan and Herman (1987), generalized EM (Hebert and Leahy 1989) and the more robust 
approach of DePierro (1995). All these approaches use image-space updates which require s 
and fEM but without need of the tomographic data m, and hence one can increasingly appreci-
ate the great utility of the EM update image.

7.2.  Non-linear parameters

Since non-linear parameter estimation in 3D emission tomography image reconstruction has 
been largely overlooked, there have been no 3D reconstruction algorithms ready and wait-
ing for simple adaptation to 4D non-linear parameter estimation. Specialized algorithms have 
needed to be developed. Given the necessity of these developments for 4D reconstruction, there 
is now in fact scope for transfer of methodology in the opposite direction: 4D non-linear esti-
mation methods (to be described below) can serve to increase the generality of 3D image recon-
struction algorithms for emission tomography. In fact this has already started for the example of 
resolution modeling with conventional linear parameter estimation, where exploitation of a 4D 
method has allowed advances to be made in a nested 3D method (Angelis et al 2013).

In the following coverage one key methodology proposed for PET will be focused on, as 
in principle it can be applied to any of the TAC models previously described, whether linear 
or non-linear, and also applies to temporal, spatial or spatiotemporal parameters. The method 
is essentially a nested EM approach, but with an image-space update that accommodates non-
linear parameters. The principles of the method date back to 1985, to an algorithm proposed 
by Carson and Lange named ‘EMPIRA’ (the EM parametric image reconstruction algorithm, 
(Carson and Lange 1985)). However, no concrete results were shown in that work, nor in the 
slightly earlier pioneering work for compartmental kinetic parameter estimation from dynamic 
time of flight PET data (Snyder 1984). An implementation of the original 1984 work of Snyder 
was explored more recently (Schottlander et al 2006), but unfortunately without use of any 
tomographic system model and hence again no concrete results. Returning to EMPIRA, oth-
ers, e.g. Chiao et al (1994), did recognize the potential of the EMPIRA approach, even using 
the method to estimate ROI boundaries. The principles of the 1985 EMPIRA method have, 25 
years later, been independently proposed afresh, two years apart, by two key research groups 
in this area: Matthews et al (2010) and Wang and Qi (2012), the latter group referring to their 
method as OTEM (optimization transfer EM). Curiously a similar situation occurred with the 
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widespread EM algorithm for 2D and 3D reconstruction, which was proposed independently 
by two groups (Shepp and Vardi 1982) and (Lange and Carson 1984), also two years apart!

Whilst the first appearance of the method about to be presented with demonstrated concrete 
results was in 2010, an identical (but not statistically-derived) nested EM image-space fitting 
approach was nonetheless proposed even earlier in 2006 (Reader et al 2006b).

The method proceeds in two key stages, with the two stages forming a cycle which is iterated.

Stage 1: An EM-type update of the images from the raw measured data.  Starting with a 
given estimate of the parameters θ(k), which in the current context are taken as kinetic param-
eters (but of course, this is not a requirement), the corresponding time series of 3D images 
f(θ(k)) (e.g. a TAC for every voxel) is created from those parameters. The PET or SPECT for-
ward model A is then applied to generate the estimate of the mean measured data, Af(θ(k)), for 
use in a conventional EM-type update:
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Equation (46) is as simple to implement as the well-established MLEM algorithm applied 
individually to each 3D image frame to generate an intermediate dynamic (4D) image update. 
In the original EMPIRA proposal of Lange and Carson in 1985, this update step is in effect 
obtained by combining equations (8) and (10) in that article (where also a time dependent 
system matrix A is permitted).

Stage 2: Image space fitting of the parameters.  Stage two involves updating the parameters, 
θ(k+1), by finding parameter values which fit the EM update image series obtained from equa-
tion (46). Just as the regular MLEM algorithm seeks a maximum of the Poisson log-likelihood, 
equivalent to minimizing the KL distance, so also a sensitivity-image weighted KL distance is 
now used in the image space fitting. We will keep this as a maximization problem, given by:

∑θ θ θ= −
θ
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vt
EM
k

vt

( 1) ( )
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where the maximization considers all VT samples in the discrete 3D image time series. The 
link with the previously described KL distance in (28) and (29) is clear, but with the sub-
stitution of the EM-type dynamic updated image fEM in place of the measured data and the 
non-linear modeled f in place of the linearly modeled q. Equation (47) corresponds to equa-
tion (11) in Carson and Lange’s 1985 article, and it does not necessarily have to be maxi-
mized, so long as an increase is however achieved. The link with the nested EM algorithm for 
linear parameter estimation is clear: equation (41) corresponds to (46), and the image-space 
EM update (42) increases the objective function of (47).

Having carried out stage 2, stage 1 is then repeated using the new parameter estimates. 
Note that due to the use of non-linear parameters, convergence to a local maximum only is 
assured. Figure 6 illustrates the 2 stage process.

These two stages, which are essentially identical in three independent publications from 
1985, 2010 and 2012, constitute a powerful framework for estimation of non-linear parameters 
in emission tomography, whether 2D, 3D, 4D or of even higher dimensions. Having identified 
the common framework, it is worth mentioning again some useful distinctions in the independ-
ent proposals: i) the Lange and Carson (EMPIRA) 1985 derivation explicitly accommodates a 
time-dependent system matrix, ii) the Wang and Qi 2012 derivation (OTEM) explicitly includes 
a MAP (rather than just ML) objective function, and iii) the Matthews et al 2010 proposal sug-
gests an approximate least squares approach to solving (47) as will be described below.
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Finally, if regularization is required, then this can be incorporated in the image-space fitting 
via a modification as follows:

∑θ θ θ θβ= − −
θ

+ ⎡⎣ ⎤⎦( ) Us f f fargmax ln ( ) ( ) ( )k

vt
EM
k

vt

( 1) ( )
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which is effectively a non-linear generalization of the linear-modeled generalized EM for 
MAP estimation (Hebert and Leahy 1989).

7.3.  Approaches to implementation

We can now review various implementations for stage 2, as this constitutes the more challeng-
ing step, with stage 1 involving nothing more complicated than a series of conventional 3D 
EM image updates.

7.3.1.  Linear model.  Reverting back briefly to the use of linear θ parameters: in this case the 
objective of equation (47) can of course be maximized through iterative use of an EM-type 
algorithm, with its linear forward model. This approach actually corresponds to the nested 
EM algorithm. One can proceed with as many or as few image-space EM updates as desired, 
recalling that equation (47) does not necessarily have to be maximized, before updating again 
from the raw measured tomographic emission data (equation (46)). So the task specified by 
equation (47) is achieved by:
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Figure 6.  Illustration of one iteration of the two stage process for fully 4D or direct 
parametric image reconstruction in emission tomography, based on the methods of 
Carson and Lange (1985), Matthews et al (2010) and Wang and Qi (2012). In stage two, 
the maximizing of the negative KL distance should be weighted by the time-dependent 
sensitivity images, but this is not necessary for TAC fitting at the voxel level with a 
time-invariant system matrix.
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where the general model f(θ) has been replaced by an explicitly linear model, matrix B operat-
ing on the parameter vector θ.

7.3.2.  Non-linear models.  For non-linear parameters θ, which is the primary concern here 
for kinetic parameter estimation, a number of options have now been proposed and practically 
implemented in the literature for the stage 2 optimization.

The first approach is to use a weighted least squares approximation (Matthews et al 2010). This 
is motivated by examining the form of the objective function (47) – it corresponds to minimizing 
the KL distance measure which also naturally arises from the Poisson log-likelihood, as was shown 
in equations (27) to (29). Given that a Poisson distribution for a sufficiently large mean value can be 
well approximated by a Gaussian (with matching mean and variance) then one could, as an alterna-
tive to the KL distance, use a Gaussian log-likelihood. This corresponds to a least squares distance, 
weighted by the modeled mean. However, the modeled mean depends on the very estimate being 
sought, so instead the estimate from the previous iteration is used for the weights in the weighted 
least squares (WLS) objective (hence it can be referred to as ‘one step late’):
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where, as usual, vector multiplication (including squaring) and division is understood to 
be component-wise. The benefit of this approach is that existing non-linear weighted least 
squares algorithms can be used to solve (50), as an approximate alternative to solving (47). 
For example the generalized linear least squares (GLLS) method has been successfully applied 
(Angelis et al 2014, Kotasidis et al 2012). An alternative approximation would be to use f(k)

EM 
instead of f(θ(k)) for the weights.

In contrast, Wang and Qi tackle the stage 2 non-linear optimization of equation  (47) 
directly, using a modified Levenberg Marquardt algorithm (Marquardt 1963, Wang and Qi 
2012) and other earlier work, picking up the proposal of EMPIRA, also used the method of 
Marquardt (Chiao et al 1994).

Of course, many other algorithm options exist for the problem of maximizing equation (47), 
with for example a Newton-Raphson approach as originally suggested for this problem by Carson 
and Lange in 1985 (Carson and Lange 1985), and very recent work on 4D reconstruction has 
proposed using an EM-inspired preconditioned gradient ascent approach (Rahmim et al 2014).

It is interesting to note that prior to their 2012 OTEM work, Wang and Qi had previ-
ously proposed another algorithm (Wang and Qi 2009a), which used paraboloidal surrogate 
functions for the penalized log-likelihood. Since their paraboloidal surrogates method was 
surpassed by their OTEM method (which is identical in principle to the method previously 
proposed by Matthews et al and covered above), we do not consider it further here. An excel-
lent review of OTEM compared to the paraboloidal surrogate method is given in Wang and Qi 
(2012), where it is also compared with the one step late approximation shown in equation (50).  
A further review is available in their review article (Wang and Qi 2013).

We will now move on to consider a derivation of the above two stage approach to non-linear 
parameter estimation for PET and SPECT, showing how the non-linear image-space update arises 
naturally from a so-called complete data framework, which will be covered in the next section. Before 
doing so, we briefly note here that there are other recent examples of algorithms which also handle 
the non-linear parameter estimation problem through a complete data description, also using EM. 
Specifically, the very first and original work of Snyder (Snyder 1984), the work of Yan et al (2012) 
and more recently that of Su et al (2013). One particular choice of complete data for the EM frame-
work, and how it results in the image-space objective function given by (47), will be presented next.
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7.4.  Derivation of the EM approach for non-linear parameters

The aforementioned algorithms rely heavily on the EM framework. Given the scarcity of 
derivations of the EM algorithm in the literature for both PET and SPECT, it is beneficial for 
this review to provide not only a derivation of the EM framework for the 4D case, but also for 
the case of non-linear parameters. The derivation given here is in the original spirit of the EM 
algorithm, which has its origins in an intuitive approach for problems in areas such as genet-
ics, and which was subsequently shown to have theoretically appealing properties (Dempster 
et al 1977, Laird 2010).

In essence one first designs a set of data which would make the parameter estimation prob-
lem very simple indeed. These data are referred to as complete data, and there are often many 
ways in which these data can be formulated, according even to the creativity of the researcher. 
Good examples in the field of 4D image reconstruction for the case of kinetic parameter esti-
mation can be seen in the work of Schottlander et al (2006) (who followed the approach of 
Snyder (1984)) and Yan et al (2012) (who devised a novel formulation of complete data). The 
key point is to formulate a complete data set that makes the problem very simple to solve. The 
EM approach then alternates between two key steps: expectation, and then maximization. The 
expectation step involves generating a complete dataset (formally the conditional expectation 
of the complete data), based on a current estimate of the parameters (θ(k)) and based on the 
actual measured data (m). The maximization step involves using this generated complete data 
set (which, remember, has been deliberately designed to make the optimization very simple), 
to find a new estimate of the parameters which optimizes the desired objective (e.g. which 
maximizes the likelihood). With the new estimate of the parameters, the expectation step can 
then be applied again to create new complete data, the objective function maximized again, 
and so on. Note that this EM framework is a special case of a more general approach known 
as optimization transfer. In optimization transfer one seeks to optimize a simpler (surrogate) 
objective function, which when optimized yields a parameter estimate which is closer to maxi-
mizing (or minimizing) the actually desired objective function. In this context, the EM method 
uses the conditional expectation of the complete data Poisson log-likelihood as a surrogate 
function for the measured data Poisson log-likelihood, as will be seen below.

The reason for needing a method like EM is that a closed form solution for finding the 
maximum of the Poisson log-likelihood (for the case of estimating many parameters θ from 
many measurements m) is not possible for any realistic choice of the system matrix A. So, 
how can we make it easier to find the maximum of the Poisson log-likelihood, when our 
parameters to estimate are the mean number of emissions from each voxel for each time 
frame, and all we have is the number of counts in each sinogram bin for each time frame? 
Well it turns out that the maximum likelihood estimate can be found in one very simple step 
if we were to be in possession of a Poisson-distributed complete data set, = zz { }ivt , which 
indicates exactly how many counts (z) detected in sinogram bin i came from voxel v at time 
index t. If we had a dataset like that, then it is easy to show that maximizing the Poisson 
log-likelihood is achieved by just summing the appropriate counts for each voxel, and then 
normalizing for the number of contributions using the sensitivity image.

Imagine for now that we do have access to such a complete data set (we will deal with the 
fact that don’t have this data later on). First it is useful to relate the designed complete data to 
the actually measured data mit (which can now be called ‘incomplete data’). Since zivt is like 
having counts in a single sinogram bin i with individual labels indicating which voxel v they 
came from, we can relate them back to mit just by summing over all the voxels which contrib-
uted to sinogram bin i at time frame t:
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It then follows that the mean of mit, which we model by equation (21) (here we will ignore ρ), is
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and so the model of the mean of a complete data element zivt is given by:

θ=z a f ( )ivt it vt vt,� (53)

Now, we will re-write the Poisson posterior probability (previously given in equation (32) for 
the incomplete data mit) using the complete data:
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The log-posterior for the complete data is therefore (ignoring the constant terms which will 
not affect the subsequent maximization with respect to θ):
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At this point we note that in the majority of the literature a linear model is assumed for fvt(θ), 
and equation (55) is therefore relatively easy to maximize for a given element of θ by setting 
the partial derivative equal to zero and solving. When β = 0 the solution is very simple (which 
was the whole point of using complete data), but for non-zero β either a quadratic needs to be 
solved (e.g. Levitan and Herman 1987, Depierro 1995) or else a previous estimate of θ needs 
to be used in U (e.g. the one step late method (Green 1990)).

However, before going further, we recall that we don’t actually have the desired complete data z.  
This is where the EM method comes in. In the expectation step we generate an estimate of the 
complete data, based on the measured data m and a current estimate of the parameters θ(k). In 
essence, by claiming to know already the parameters θ, and having the data m, it is straightfor-
ward to find what the corresponding elements of z would have to be. Specifically, we can come 
up intuitively with the following ratio (see the explanation in figure 7), which requires that the 
complete-data fractionation of the incomplete data be equal for both the noisy components (left 
hand side of the below equation) and the modeled mean components (right hand side of the below 
equation):
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As figure 7 demonstrates, by knowing the decomposition of the mean of each element qit of 
the incomplete data, we can apply exactly the same fractionation to each element mit of the 
noisy incomplete data to obtain an estimate of zivt:
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Alternatively, equation (57) can be seen as taking the noisy number of counts mit for a sino-
gram bin i at time t, and dividing these counts amongst all the possible voxels which could 
have contributed to mit. These intuitive perspectives on forming an estimated complete dataset 
are entirely consistent with the intuitive origins of EM. However, formally, (57) is the con-
ditional expectation of the complete data, given θ(k) and m, and it should be noted that (57), 
being a conditional expectation, is unlikely to deliver an integer value for a given zivt.

Now we have all the components for EM. The conditional expectation of the complete data 
for the current parameter estimate θ(k) (equation (57), (E-step)) as well as a forward model that 
can model the mean of the complete data (equation (53)) for any choice of θ. Hence, param-
eters θ for the forward model are sought so as to maximise the objective function of equation 
(55) (M-step), which is relatively easy to do with complete data.

By substituting the conditional expectation of the complete data (57) into our complete-data 
objective function (55) we obtain:
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It is helpful to note, in terms of the terminology used in the literature, that equation (58) can 
be considered either as i) the conditional expectation of the complete data log-likelihood (log-
posterior probability for β > 0), or ii) the complete data log-likelihood (posterior probability) 
using the conditional expectation of the complete data given θ(k) and m. Noting that the second 

Figure 7.  Graphical explanation of how to obtain expected complete data z (for the case 
of just 3 voxels), given an example measured number of counts m for a bin i, and under 
the assumption that the estimate of the parameters, θ(k), is correct. The complete data 
decomposes the measured incomplete data into its constituent parts, indicating which 
voxel v gave rise to which counts in bin i. By examining the fractionation of the model 
mean counts, qit, one can apply the very same fractionation to the actual measured 
counts to obtain an expected, usually non-integer, z.
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term in the brackets on the right hand side of (58) is independent of θ (and so is a constant 
that will not affect the value of θ which maximizes (58)) and factoring out the time-dependent 
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Equation (59) contains a ratio term which will be recognizable as the very well-known EM 
image reconstruction update, using the current image estimate f generated from θ(k) (whether 
via a linear or non-linear model):
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where equation (57) has been used to obtain the right hand side of (60). Given the centrality of 
(60) to much of the 3D image reconstruction literature, and hence its widespread adoption in 
both PET and SPECT image reconstruction, we will specially label it as the EM update image:
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where (EM) has been placed in superscript to allow subscript indices to be shown, but the image 
is the same as the vector f EM

k( ) . Equation (61) provides a time series of 3D EM image updates, 
and the regular time-independent 3D EM update is found for the special case of discarding 
the time frame index t. For most cases in the literature the image fvt(θ) is given directly by the 
contents of θ, but importantly in this formulation fvt(θ) could be that simple or indeed a far more 
involved function of non-linear parameters θ. Hence we can now rewrite equation (59) as:
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vt vt
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,
( ) ( )

�

(62)

This indicates that we can obtain an improved parameter estimate θ(k+1) by maximizing (62)

∑ ∑θ θ θ θ θβ= − −
θ

+

= =

⎡⎣ ⎤⎦s f f f Uargmax ( )ln[ ( ) ] ( ) ( )k

t

T

v

V

vt vt
EM k

vt vt
( 1)

1 1

( ) ( )

�

(63)

which is none other than the previous equation (48), where we have identified the time-depen-
dent sensitivity images as:

∑=
=

s avt

i

I

it vt

1

,
� (64)

To within a constant, the function being maximized in equation (63) is the conditional expecta-
tion of the dynamic complete data Poisson log likelihood (or log posterior if β > 0). It can also be 
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viewed as a surrogate function in optimization transfer terminology- optimizing (63) is simpler 
than directly optimizing the incomplete data version of the Poisson log posterior probability. 
Furthermore, the function being maximized in (63) is recognizable, by comparison with the 
previous equations (28) and (29), as none other than the negative of the KL distance between the 
modeled image fvt(θ) and the regular tomographic EM update image f (EM)

vt. This is an extremely 
important result, that has in effect been shown a number of times by many researchers in the 
literature already, dating back to Carson in 1985. As such, equation (63) is a very general and 
powerful formulation for 4D / direct image reconstruction in PET and SPECT imaging, unifying 
much of the EM literature in both 3D and 4D PET, as demonstrated in table 4.

The following important observations about the generalized equation  (63) (with (61) or 
(46)) and links to the reconstruction literature need to be made:

	 1)	Both ML and MAP estimation are covered by equations (63) and (61), for a linear or 
non-linear parameterization of the time-series of images f(θ), accommodating also a 
time-variant sensitivity image. Carson’s EMPIRA accommodates time-dependent sensi-
tivity images (Carson and Lange 1985), which can be required for SPECT.

	 2)	When β = 0 and when f is the most simple linear case of θ θ=f( )k k( ) ( ), then fEM is the one 
step maximizer θ +k( 1) of (63), meaning that just regular MLEM is carried out for each 
time frame, as would be expected. When β > 0, the generalized EM MAP formulations 
developed in the 1980s and 1990s are obtained (see Qi and Leahy (2006)).

	 3)	When β = 0 and a general linear model of f(θ) is used, such as θ θ=f B( )k k( ) ( ), then the 
EM algorithm can iteratively be applied to progressively and monotonically decrease the 
KL distance of (63). This is the nested EM method for 4D (Wang and Qi 2010) or 3D 
(Angelis et al 2013).

	 4)	Equation (63) is completely free from any tomographic aspect: just a time series of 
sensitivity images and a time series of regular 3D EM updates are needed. This has 
considerable practical significance. The system model, the huge time-series of Poisson 
distributed acquired data, along with the estimates of scatter and randoms, do not even 
appear in equation (63), since they are all handled by the regular EM update of (46). This 
conveniently isolates any non-linear aspects, and any regularization (MAP) requirement, 
into just an image-space fitting process requiring minimization of a KL distance.

7.5.  Model-specific algorithms

The aforementioned approach based on an EM framework is a relatively straightforward and 
adaptable method in the literature for non-linear parameter estimation in emission tomogra-
phy. Nonetheless, other methods have been proposed (notably Kamasak et al (2005), Yan et al 
(2012), and more recently Su et al (2013)), but with the caveat that they have been presented in 
model specific form—for specific choices of the non-linear parameters θ. The method of Yan 
et al relies on a 1 tissue compartment model, and the method of Kamasak et al is presented 
for a 2 tissue compartment model and uses a coordinate descent method, although the method 
should be equally applicable to any non-linear model. Excellent reviews of these methods are 
already given in (Wang and Qi 2013).

7.6.  Early methods developed for SPECT

In terms of practical implementations for estimating non-linear parameters directly from 
SPECT projection data, pioneering work was in fact carried out in the 1990s (Zeng et al 1995, 
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Huesman et al 1998, Reutter et al 1998, Gullberg et al 1999). In these early approaches, the 
one tissue compartmental model is used to describe the activity concentrations. The model of 
the projection data therefore depends on the kinetic parameters ( Fv, K1 and k2) for every j-th 
basis function. To reduce the dimensionality only a limited number of spatial basis functions, 
typically 4, were used (effectively corresponding to ROIs of different tissue regions). For 
example 13 parameters (4 regions × 3 kinetic parameters, and a background scaling factor) 
were estimated from the projection data in Zeng et al (1995), Huesman et al (1998), Reutter  
et al (1998). The weighted sum of square differences between modeled and measured data is 
then minimized using standard optimization strategies (e.g. the Newton-Raphson method was 
used in Reutter et al (1998)). However these approaches have not been applied to large scale 
problems (e.g. voxel-level / parametric methods) and represent rather specially developed 
cases for SPECT. A model with two exponentials was used by Limber et al (1995), for direct 
parametric reconstruction into a very limited number of pixels.

8.  Simple simulation examples

In this section a simple simulation example is presented to illustrate the benefits of the 4D 
reconstruction method reviewed in the previous section. The simplified imaging system  
(figure 8) consists of just 5 projection data bins (I=5) and there are 26 time frames (T=26). The 
spatial basis functions chosen are 4 pixels (J=V=4), with 26 time frames of varying duration to 
cover 3450 s. For conventional reconstruction (with a post-reconstruction estimation of kinetic 
parameters) this corresponds to a TAC defined by 26 parameters estimated for each pixel (so 
P=26). For direct reconstruction this will be reduced, as explained below, to finding just 3 
parameters (P=3) to define the TAC at each pixel. To simulate idealized data, two different 
system matrices were considered for relating the 4 pixels to the 5 data bins, a sparse matrix AS 
and a denser matrix AD:

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
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⎥
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= =A A
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0 1 0 1
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1 0.5 1 0.5
0.5 1 0.5 1
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0.5 0.5 1 1

S D� (65)

Figure 8.  Spatial relation between the 4 pixel values f1, f2, f3, f4 and the 5 projection 
bins q1, q2, q3, q4 and q5, assuming a simple line integral model. Note that each projec-
tion bin contains 26 time frames, and the overall goal is to estimate kinetic parameters 
in the 4 pixel locations.

f1 f2

f3 f4

q4

q5

q3q1 q2
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Note these I × J system matrices are used for each time frame of data, so the system is assumed 
to not change with time. With the more densely populated matrix AD there will be far more sig-
nificant spatial noise correlations in the reconstructed image, which is potentially a key benefit 
of direct reconstruction methods as these correlations are usually ignored in post-reconstruction 
kinetic analysis. Four ground truth TACs were generated, one for each pixel, based on the SRTM, 
with choices of (R1, k2, BP) given by: (0.87, 0.27, 3.72), (0.90, 0.35, 2.52), (0.84, 0.17, 1.8)  
and (0.80, 0.3, 4.02), respectively. The reference region TAC was based on one obtained from 
a real [11 C]raclopride scan, and the first set of SRTM parameters (0.87, 0.27, 3.72) was like-
wise based on a fit to the striatal region of a real [11 C]raclopride scan.

Four main simulations were then performed, corresponding to the use of the two different 
matrices AS and AD, and the use of two noise levels (low noise data, so that the reconstructed 
pixel TACs resemble ROI TACs from a real full size dynamic 3D reconstruction, and high 
noise data, so that the reconstructed TACs resemble single pixel TACs from a full size recon-
struction, figure 9). For each simulation the ground truth TACs were forward projected by 
the system matrix, and Poisson noise was introduced. A total of 500 realizations of noisy 
data were considered for each case. The data were then reconstructed into 4 pixels of 26 time 
frames using i) a conventional approach (considering up to a total of 160 iterations of MLEM, 
followed by post-reconstruction kinetic fitting to find the binding potential, BP, for each pixel) 
and using ii) the direct reconstruction approach (equations (46) and (47) given in the previ-
ous section). The kinetic fitting for both the post-reconstruction approach as well as the direct 
approach used a 1 gigabyte dictionary of TACs, generated for a range of sample R1, k2 and BP 
values. A given pixel TAC fj={fjt, t=1…T} was fitted by considering each possible modeled 
TAC g from the dictionary, simply evaluating the objective function for each g. So the fitted 
values for pixel j are found according to the maximum value of this objective:
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However, whilst this dictionary approach is fine for single post-reconstruction kinetic fitting, 
it was not found suitable for the direct reconstruction method, as very small changes in the 
pixel TACs result in identical dictionary fits, meaning that the direct algorithm can no longer 
effectively update the TACs and the kinetic parameter estimates. For this reason a line search 
in each of the three kinetic parameters was also performed, within the range of the dictionary 
precision, so as to permit subtle changes in the fit parameters.

Explicitly then, the direct reconstruction proceeded as follows:

	 1.	Uniform image initialization (all TACs set to 1 for all pixels)
	 2.	One regular EM-type update of the TAC values (independent frame EM updates) based 

on the measured data (equation (61))
	 3.	Fitting of the TACs based on the objective function in equation (66) (equation (63) with 

β = 0, and time-invariant sensitivity) 
	 4.	Using the fitted TACs as the new TAC values for the 4 pixels
	 5.	Looping back to step 2

Figure 10 shows the root mean square error in the BP estimates for all pixels, for the four main 
simulations. As might be expected, the direct reconstruction method offers increasing levels 
of error reduction as noise in the data increases (where it is important to note that for a fixed 
count level, use of a denser system matrix increases noise in the reconstructed images, and 
so direct reconstruction offers benefits for this case also). An interesting point to note is that 
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for low noise (and low spatial noise correlations) the direct method essentially matches the 
conventional method, when using the same objective function for the kinetic fitting.

9.  Performance benefits of 4D: brief summary of results from the literature

We now consider the benefits of 4D reconstruction compared to conventional 3D methodol-
ogy as reported in a variety of implementations from the literature. The literature is diverse 
in terms of the simulation studies performed to assess these methods, in terms of different 
levels of statistical quality of the emission data (number of counts in the list-mode or projec-
tion data), the particular radiotracer and distribution considered, the voxel/pixel/ROI sizes, the 
particular parameters estimated and the algorithm used. Despite this diversity and all these 
differences, most research articles do nonetheless have the common goal of comparing fully 
4D or direct kinetic parameter estimation with the conventional method of independent-frame 
reconstruction followed by post-reconstruction kinetic modeling. In this section we present 
typically reported levels of reduction in error (root mean square error (RMSE), mean absolute 
error (MAE)) or the typical levels of reduction in standard deviation (SD) for a given level of 

Figure 9.  Example reconstructed TACs (joined crosses) in the four pixels and example 
fits (continuous solid line, based on equation (66)) for the two noise levels considered 
and for the two system matrices considered. Note that the TACs in the pixels are cor-
rected for frame length and calibrated to give Bq/mL, but the raw counts in the five 
projection bins are not corrected for frame length.
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bias compared to the case of conventional methodology. It is of course important to note that 
these different metrics reflect different performance parameters (RMSE and MAE encompass 
both noise and bias, whereas SD indicates only noise). Therefore the performance differences 
between 3D and 4D reconstruction presented in this section are not necessarily directly com-
parable between publications, but do nonetheless allow relative claims of improvement to be 
compared.

Figure 11 summarizes the reported benefits for the PET literature. The results include lin-
ear parameter estimation (Tsoumpas et al 2008b, Wang et al 2008, Matthews et al 2010, 
Tang et al 2010, Verhaeghe et al 2010, Rahmim et al 2012) and non-linear parameter esti-
mation (Kamasak et al 2005, Wang and Qi 2009b, Wang and Qi 2012, Yan et al 2012, Su et 
al 2013, Gravel and Reader 2013). The work by Matthews et al (2010) considers simulated  
[11 C]diprenorphine brain data and reports on RMSE reduction for the macro-parameters K1 
and DV estimated with direct reconstruction using a spectral analysis model. The performance 
improvement of direct reconstruction compared to conventional indirect reconstruction is 
compared after 400 iterations in the figure. (Kamasak et al 2005) reports on direct parametric 
reconstruction using a full two-tissue compartmental model. Simulated [11 C]raclopride brain 
data is presented where the direct reconstruction provides a reduction in normalized RMSE in 
the parameters K1-k4 as well as in BP and DV. The errors in BP and DV estimated from the full 
two-tissue compartmental model were even lower compared to using the linear Logan graphi-
cal model simplification applied after reconstruction. (Wang and Qi 2009b) considers the sim-
plified reference model and SD versus bias trade off curves are shown for simulated brain data 
with the tracer [11 C]DASB, so figure 11 reports a typical SD reduction at fixed bias. In (Wang 
and Qi 2012) the spatial background standard deviation versus ROI mean value is shown 
for the DV ratio (DVR) using the SRTM for real brain data with the tracer [11 C]SCH23390.  

Figure 10.  Root mean square error (RMSE) for BP estimates in the four pixels, as a 
function of iteration for MLEM with post-reconstruction kinetic modeling (Post BP) 
and for the direct MLEM method (Direct BP). The four main simulation cases are 
shown (low noise and high noise, low (sparse matrix) and high (dense matrix) levels 
of spatial correlations in the reconstructions). 500 realizations were generated for each 
simulation.
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In Yan et al (2012) the one-tissue compartmental model is used for direct 4D parametric 
reconstruction of simulated data with kinetics corresponding to the tracer [11 C]P943, and 
the averaged reduction in the coefficient of variation (COV) for K1, k2 and DV is reported 
in figure 11. The greater COV reduction was found for the lowest count levels, as would be 
expected. Note also that their reported noise reductions were in some cases accompanied by a 
simultaneous bias reduction. Rahmim et al (2012) report COV reduction for simulated brain 
data using the Logan linear model for [11 C]raclopride. Results of direct parametric recon-
struction of the Ki macro-parameter using the linear Patlak model and simulated brain data for 
[18F]FDG can be found in Tsoumpas et al (2008b) (averaged reduction in RMSE is shown in 
figure 11), Tang et al (2010) (reduction in normalized standard deviation is shown) and Wang 
et al (2008) (reduction in standard deviation is shown in figure 11). The reduction in MAE for 
post-reconstruction Patlak graphical analysis after 4D reconstruction using spectral analysis 
basis functions for simulated brain [18F]FDG data can be found in Verhaeghe et al (2009). 
Finally figure 11 also includes results for heart imaging with [13 N]NH3 (Su et al 2013) and 
also results from simulated [11 C]raclopride data for the HRRT brain PET scanner (Gravel and 
Reader 2013).

In summary, these broad-ranging evaluations report error reductions in the range of 20% 
to 80%, in all cases showing at least some benefit arising from 4D or direct reconstruction. 
The benefits are of course largely dependent on the noise level and noise correlations in the 
reconstructed data under consideration in each case, as in fact benefits can become negligible 
in the presence of high count data (as indicated in the simple simulations in the previous sec-
tion) or for large ROIs. To complement the summary of improvements shown in figure 11, 
figure 12 shows example images of the visual improvement in image quality obtained with 
4D reconstruction compared to conventional post-reconstruction modeling. Finally, figure 13 
demonstrates the progressive advantages of improved modeling for parametric Ki images: 
from regular 3D OSEM, to inclusion of resolution modeling, to introducing data-derived 
temporal basis functions (Reader et al 2006a) and then finally with the use of data-derived 
spectral-analysis basis functions proposed in Reader et al (2007).

10.  Conclusions and future directions

Fully 4D and direct parametric image reconstruction methods can reduce the impact of noisy 
PET or SPECT emission data on end-point parameter estimates. The techniques presented 
in this review emphasize the direct use of the raw PET or SPECT data, for which the pri-
mary advantage is that the noise model is well known to be Poisson, contrary to the case 
of post-reconstruction parameter estimation methods which often approximate the unknown 
noise distribution of the images being fitted. The direct methods not only use more accurate 
noise modeling, but also implicitly account for spatial noise correlations and impose the tem-
poral modeling constraints throughout the iterative reconstruction procedure. Furthermore, 
the methods are not limited to kinetic parameter estimation, but in fact virtually any post-
reconstruction parameter estimation task can be converted to a direct parameter estimation 
task, thereby correctly modeling the noise in the raw data. Conceptually, direct linear or non-
linear parameter estimation is not difficult to implement, thanks to the two stage process now 
proposed by multiple researchers in the field. This nested methodology conveniently sepa-
rates the linear tomographic problem from the potentially non-linear image-space modeling 
problem. Provided the KL distance measure is used as the objective function for the image-
space modeling (i.e. for the fitting of the parameterized model to a current 3D EM image 
update), then the parameter estimation can be appropriately performed with full account for 
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the Poisson-distributed emission data. Of course though, this parameter fitting does need to 
be carried out for each and every EM update, rather than just once in the case of post-recon-
struction fitting.

To handle list-mode data, rather than sinogram or projection data, the nested method pre-
sented in this review would need to use a list-mode EM algorithm for the 3D image frames 
update in stage 1 of the method (for example the early work on list-mode EM by (Parra and 
Barrett 1998) and (Reader et al 1998)) rather than a projection-data based EM algorithm (the 
example shown in figure 6 of this review). The future will see not only direct use of raw PET 

Figure 11.  Summary of reported relative benefits of 4D or direct reconstruction com-
pared to conventional independent-frame reconstruction with post-fitting of the images. 
Results from 12 papers in terms of reduction in standard deviation (for a given bias) 
or the reduction in root mean square error (or broadly comparable error measure) are 
shown, including linear and non-linear parameter estimation methods.

Figure 12.  Example parametric images for FDG PET imaging from the literature using 
simulated data. Left: parametric images for the Patlak intercept, c, when using conven-
tional 3D OSEM reconstruction with 8 iterations (16 subsets) and then post-fitting and 
when using data-derived spectral analysis basis functions for 4D OSEM reconstruction 
with 40 iterations and then post-fitting. Right: direct 4D reconstruction using Patlak 
basis functions for FDG (Tsoumpas et al 2008b), shown for the same number of OSEM 
iterations (480 iterations, 12 subsets) for both 3D and 4D.
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and SPECT data, whether in projection data format or list-mode format, but probably also 
direct use of raw simultaneously-acquired MR data. This will allow dual-modality tracers and 
contrast agents to be used in a single scanning session, combining both data streams in algo-
rithms to estimate directly the parameters of interest. The reconstruction will therefore be able 
to incorporate information on subject anatomy and motion, along with cardiac and respiratory 
motion, generating 5D or 6D images. There is even scope for estimating the motion from the 
acquired data, including motion fields amongst the parameters to be estimated during image 
reconstruction. Also, with the noise reduction achieved by direct methods, it is conceivable 
that these methods can aid signal separation for more ambitious multi-radiotracer PET and/
or SPECT studies, which when further combined with MR contrast agents and even multi-
parametric MR imaging (e.g. Ma et al (2013)) could provide interesting potential for near 
simultaneous imaging of a useful range of physiological and anatomical parameters.

However some possible concerns with direct parameter estimation methods for PET and 
SPECT have been identified. Firstly, if a model is inappropriate then errors can occur which 
exceed those of a post-reconstruction estimation approach, as in 4D and direct reconstruc-
tion the errors propagate to other regions in the image throughout the iterative reconstruc-
tion procedure. Nonetheless, there is promising work indicating this can be accounted for 
through use of residual modeling terms (Kotasidis et al 2014). A further concern might be 
the assessment of the fit quality of a given kinetic model: often in post-reconstruction kinetic 
parameter estimation one has estimates of the fit quality, but direct methods do not implicitly 
deliver this information. The work of Kamasak et al (2014) has started to address this issue, 
essentially exploiting a backprojection of the difference between the measured sinograms and 
the kinetically modeled sinograms. Given these possible concerns, the significance of the end 
point impact on actual studies will also be necessary to evaluate in order to see if the benefits 

Figure 13.  Progressive visual improvement in post-fitted parametric image quality 
(for the tracer influx Ki) arising from improved spatial and then improved temporal 
modeling for real FDG PET data. HRRT list-mode data from a 60 min [18F]FDG (184 
MBq) study of a probable Alzheimer’s patient was reconstructed and then post-fitted 
for Ki at the voxel level for four methods, using a population input function. From left 
to right: conventional independent frames 3D OSEM, 3D OSEM with resolution mod-
eling (point spread function (PSF) modeling), 4D OSEM with basis functions estimated 
from the data, and finally 4D OSEM using a data-derived surrogate input function with 
spectral analysis basis functions. The core components of the dynamic EM reconstruc-
tion algorithm used for the HRRT list-mode data (with scatter and randoms corrections, 
attenuation and normalization, resolution modeling kernel and subsets) are detailed in 
previous work (Reader et al 2006a). The last two columns correspond to using the two 
cases previously presented in the penultimate row of table 1.
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outweigh any possible drawbacks. Recent work has indicated that the benefits under certain 
conditions (e.g. [11 C]raclopride imaging (Gravel and Reader 2013)) are relatively modest 
compared to other study types. Yet even if the end point benefits of these 4D and direct estima-
tion methods are not always substantial (there is clear variation in the level of benefit reported 
in the previous figure 11), in general provided the modeling is accurate, they can only serve 
to help, since they represent the theoretically correct way of performing many tasks which are 
currently carried out on a post-reconstruction basis. They can even apply, for example, to such 
apparently straightforward tasks as post-reconstruction image registration (Gravel et al 2013).
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