Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

To cite this article: Arda Körnik et al 2014 Phys. Med. Biol. 59 3669

View the article online for updates and enhancements.
Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

Arda Könik1, Caitlin M Connolly2, Karen L Johnson1, Paul Dasari1,3, Paul W Segars4, P H Pretorius1, Clifford Lindsay5, Joyoni Dey1 and Michael A King1

1 Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
2 Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
3 Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
4 Department of Radiology, Duke University Med. Center, Durham, NC, USA
5 Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA

E-mail: arda.konik@umassmed.edu

Received 10 December 2013, revised 7 May 2014
Accepted for publication 12 May 2014
Published 13 June 2014

Abstract
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were
then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we recorded the position of markers placed on the chest of the volunteers for the body motion studies, which could be used as external motion measurement. Using these phantoms and external motion data, investigators will be able to test their motion correction approaches for realistic motion obtained from different individuals. The non-uniform rational B-spline data and the parameter files for these phantoms are freely available for downloading and can be used with the XCAT license.

Keywords: respiratory and body motion, motion correction, XCAT phantoms, PET, SPECT

(Some figures may appear in colour only in the online journal)

1. Introduction

Patient respiratory and body motions are inevitable during the scan time of emission tomography studies. These motions introduce an additional source of blurring and artifacts to the single photon emission tomography (SPECT) and positron emission tomography (PET) reconstructions due to inconsistent projection data, and a mismatch between emission data and attenuation maps employed for attenuation correction (Alessio et al 2010, McQuaid and Hutton 2008). A number of methods have been developed to detect and correct for body and respiratory motion using emission data (O’Connor et al 1998, Kyme et al 2003, Dawood et al 2008; Gilland et al 2002), or information from external tracking devices (Bloomfield et al 2003, Bruyant et al 2005, Barnes et al 2008, McNamara et al 2009, Buther et al 2009, Mukherjee et al 2009).

The effectiveness of motion correction methods applied to emission tomography can be tested in different ways. Physical phantoms in most cases are rigid (e.g. data spectrum anthropomorphic phantom), and thus do not reflect the true non-rigid nature of patient motion, although relatively flexible phantoms have also been constructed (Fieseler et al 2011). Patient Studies are the ultimate way to test correction methods. However, knowing the ground truth is often not possible. Also, they are expensive to collect and validate. Further, they are only good for existing imaging systems and cannot be used to evaluate a new design. Mathematical phantoms based on simple geometrical constructs provide the ground truth and can be simulated in a computer environment without needing expensive nuclear medicine devices. These phantoms can vary from a simple cylindrical phantom with a cyclic linear motion (Murase et al 1987) to more complicated ones with geometric structures representing human anatomy, such as the widely used mathematical cardiac torso (MCAT) phantom, which was later modified to include cardiac (Pretorius et al 1999) and respiratory motion models (Segars et al 2001). While mathematical phantoms provide quick validations and proof of principles, they are usually far from representing real patient anatomy and motion in detail. A more
advanced approach is to use realistic computerized phantoms based on actual human anatomy and physiology. Commonly, these phantoms are constructed using non-uniform rational B-spline (NURBS) surfaces, which enable accurate representations of complex organ shapes in the segmentation process of the patient images (Lee et al. 2007). In nuclear medicine, the best known and widely used phantom in this category is the NURBS-based cardiac torso (NCAT) (Segars 2001), which is considered as the next-generation MCAT (Tsui and Segars 2009) because of its much more realistic organ shapes that are based on the 3D visible human computed tomography (CT) dataset (Tsui and Segars 2009). The latest generation of these phantoms, the extended cardiac torso (XCAT) phantom (Segars et al. 2008, 2010) provided even more anatomical details. A detailed evolution of these phantoms from MCAT to XCAT was described in (Tsui and Segars 2009), and further extension of the XCAT phantoms for larger populations, which used the same cardiac and respiratory motion mechanics (Segars et al. 2013). Coupled with Monte Carlo tools such as Geant4 application for tomographic emission (GATE) (Jan et al. 2004), simulation of imaging nuclear detectors (SIMIND) (Ljungberg and Strand 1989), and simulation system for emission tomography (Harrison6) or analytical tools to accurately simulate the imaging system, these phantoms have been used to create datasets for studying the effect of motion, and for testing reconstruction algorithms that employ motion correction (Park et al. 2011).

The XCAT phantom provides a realistic representation of the human anatomy and physiological functions including cardiac and respiratory motion models based on real human data. However, the non-rigid body motion that is frequently observed in clinical studies is not included in the standard XCAT phantom. In addition, respiratory motion is limited to a single general trend observed from patient’s CT datasets (Segars et al. 2008), which does not reflect non-rigid organ motion. Several different approaches can be found in the literature to obtain more realistic respiratory motion. For example Mishra et al. (2012), developed a modified version of the XCAT phantom allowing for irregular breathing patterns, which also incorporated lung tumor motion from recorded patient studies. To simulate PET-MR acquisitions in the presence of respiratory motion, Tsoumpas et al. (2011) have created realistic 4D PET image datasets from the segmentation of acquired magnetic resonance imaging (MRI) data directly, without using any intermediary mathematical phantom.

In this investigation, we developed a series of individual-specific XCAT phantoms modeling non-rigid respiratory (14 time frames) and non-rigid body motions (six different postures including baseline) based on MRI acquisitions of volunteers. We also recorded the position of markers placed on the chest of volunteers for usage in simulating external surrogates for the body motion studies, and superior–inferior (SI) displacements of the liver dome for the non-rigid respiratory motion studies. To our knowledge, this is the first time XCAT phantoms were created to model non-rigid body motions, which also included external marker data. In addition, as opposed to a single respiratory motion trend defined by a set of equations provided by the standard XCAT phantom, we created a series of respiratory phantoms from five volunteers. Using these phantoms and the external motion information, investigators will be able to test their body and respiratory motion correction approaches (e.g. motion tracking, respiratory binning, iterative reconstruction, etc.) in various realistic conditions provided by different individuals.

The NURBS and corresponding marker data for these phantoms are freely available for downloading for use by investigators with the XCAT license. Therefore, the users will have the flexibility to change the activity distributions and emission energies for their specific SPECT

or PET simulations. The methods for creating the XCAT phantoms, as well as the details of MRI acquisitions are presented in the next section.

2. Methods

2.1. MRI acquisitions

Under Institutional Review Board (IRB) approval and informed consent, MRI of volunteers was performed with a 3.0-T whole body scanner (Philips Healthcare, The Netherlands) using the built-in quadrature body coil. All scans were performed without the use of contrast agents. During imaging the volunteers were in the supine position with arms over their head as in a classical SPECT cardiac perfusion imaging. Five spherical markers of 2 cm diameter filled with copper sulfate solution were placed on each volunteer’s chest for visualization in the MRI. For body motion studies, these markers were included in the list of structures for which NURBS-surfaces were created. These markers can thus be used to provide external tracking information as could be provided by a visual-tracking system (McNamara et al 2009). The MR images of the torso of each volunteer were acquired in a sagittal orientation employing acquisition parameters of 2D T1-Fast Field Echo, TR/TE = 5.5 ms/3.1 ms and voxel size = 3 mm.

The Navigator method (Ehman and Felmlee 1989) was employed to control/determine the respiratory state during which acquisition occurred. To do this, the Navigator box was centrally placed at the liver and lung boundary, allowing us to track the 1D respiratory motion in the SI direction as shown in figure 1. The Navigator method was used in two different ways in this work. For baseline and body motion studies, MRI was acquired only during end-expiration as determined by having the signal from the Navigator within an acceptance window to minimize any respiratory contribution to the motion. For the respiratory motion studies, MRI was acquired during free breathing, and the recorded Navigator signal was used for the retrospective sorting of the slices into a sequence of respiratory states. The signal from a pneumatic bellows on the abdomen of each patient was also recorded during all MRI.

The next three sub-sections describe the MRI acquisition methods we employed for baseline, body motion, and respiratory motion studies in more detail.
2.2. Baseline (no motion)

As an initial step for both respiratory and body motion studies, we acquired an end-expiration baseline (no motion) MRI state for each volunteer with \(\sim 120\) sagittal slices (thickness: 3 mm) across the torso. The number of slices varied depending on the size of the volunteer. Typically the acquisition took 20–40 min depending on how well the volunteer maintained their respiratory signal within the Navigator acceptance window.

2.3. Body motion

Following the baseline acquisition, several body motion-states simulating clinically noted motions (Mukherjee et al., 2010), were acquired with the same acquisition parameters as described above, except that slices had 3 mm gaps between them to reduce the acquisition time by half. These body motion-states were:

- Axial slide—an approximately rigid-body caudal shift in body position.
- Lateral torso bend—a bend laterally to one side at the shoulder level while maintaining the position of the hips.
- Shoulder twist—a rotation at the shoulder level while maintaining the position of the hips.
- Shoulder stretch—a superior extension of the left arm.
- Side roll—a rolling of the entire torso.

The volunteers maintained their postures for each of these motion-states during each MRI acquisition. In three of the studies, the order of motion states was: shoulder stretch, axial slide, side roll, shoulder twist and lateral bend. In the remaining two studies the order was: shoulder stretch, shoulder twist, lateral bend, side roll and axial slide.

2.4. Respiratory motion

MRI acquisitions for respiratory motion were different from the body motion acquisitions, and were performed with a separate set of volunteers. For each volunteer, between 45 to 52 dynamic MRI acquisitions were performed at \(\sim 50\) slice locations across the torso during free breathing (three studies had 3 mm gaps as in the body motion studies and two studies had no gaps). This provided up to 52 individual sagittal slices at different respiratory time points for each slice location. These slices were then sorted into a complete respiratory cycle (separate bins for inspiration and expiration) using the amplitude signals from the pressure bellow placed on the abdomen (for three volunteer studies) or the displacement of the Navigator marker placed on the dome of the liver (for two volunteer studies). With up to 52 dynamic acquisitions during free-breathing for a given slice position, there were often multiple choices (or sometimes no choice) when retrospective binning was employed to form 3D slice sets for a given amplitude bin. For example, to obtain 14 respiratory frames from a 50 slice \(\times\) 45 dynamics study, 2250 slices were available to fill \(14 \times 50 = 700\) slices. When this slice degeneracy occurred, our algorithm chose the slice with the amplitude value closest to the mid-point in that amplitude bin. The process of retrospective binning of a 50 slice \(\times\) 45 dynamics acquisition is illustrated in figure 2 with seven equally separated amplitude bins, which corresponds to 14 time frames obtained over the respiratory cycle (seven inspiration + seven expiration). Once the MRI slices were sorted into a respiratory cycle forming 4D MRI datasets, they were used to build the 4D XCAT phantoms as detailed in the next section.
Figure 2. Illustration of retrospective binning of 45 MRI acquisitions (dynamic-1 to dynamic-45) of 50 slices across the torso performed during free breathing. Dynamic-N is shown as an example. Sagittal slices were placed into seven equally separated respiratory bins based on the amplitude of their Navigator or bellows signals. These slices are then sorted into inspiration and expiration phases. The sorting of four slices (1, 12, 19 and 48) into bin-1 (end-inspiration), into bin-3 (inspiration and expiration), and into bin-7 (end-expiration) is illustrated. This procedure was followed for all 45 dynamics. When multiple slice candidates occurred for a given slice position and bin, the slice with the amplitude value closest to the mid-point was selected.

2.5. Creating XCAT phantom motion states

The next step after MRI acquisition was to create individual-specific XCAT phantoms using an interactive graphical user interface (GUI) developed by Dr Segars, which allowed the users to manually adapt the NURBS-based structures of the XCAT phantom to the tomographic data (in this case MRI) in axial, coronal and sagittal slices. A portion of the GUI showing the 3D rendering of the NURBS organ surfaces and an axial MRI slice from the baseline acquisition (gapless) with the corresponding NURBS organ outlines overlaid and two of the markers contoured, is presented in figure 3.

The fitting of the XCAT to the MRI was done by first contouring the body shape, followed by scaling the skeleton to match the volunteer’s skeleton, and then shaping each organ to match the MRI data by moving the control points of NURBS. The baseline phantom was built first since the gapless magnetic resonance (MR) images facilitate the fitting process. Then the baseline XCAT phantom was deformed to obtain the motion phantoms using the associated
Figure 3. Shown is a portion of the GUI used to create NURBS-based XCAT phantoms. (Left) 3D rendering of the NURBS organ surfaces and the five spherical markers placed on the chest. (Right) A transverse MRI slice with NURBS organ outlines overlaid and two of the markers contoured. The user forms the NURBS organs and markers by contouring the boundaries in the MRI slices using the orientation and scaling tools (not shown) in the GUI.

volunteer’s MRI data as templates. All the organs were deformed non-rigidly to reflect the true motion of the body, except for the baseline heart, which was transformed rigidly (six degrees of freedom (6-DOF)). For body motion studies, chest markers seen in the MR slices were also included as NURBS structures, as can be seen in figure 3. For the respiratory motion studies, while the marker data was available, we did not segment them as NURBS structures; instead, the 1D-Navigator displacement data and bellows data are available as external measurements.

Finally, using Dr Segar’s licensed program (dxcat1), NURBS data were converted to voxelized activity and attenuation phantoms, based on the user-defined parameters of relative organ concentrations of activity and the energy of the photons emitted.

3. Results

Thus far we have created five body motion XCAT phantoms and five respiratory motion XCAT phantoms from MRI acquisitions of six healthy volunteers (three males and three females). Four of the volunteers participated in both body and respiratory motion studies, which were performed on separate days.

In figure 4, an example body motion study is presented. The first row shows the MRI slices in coronal orientation for the six different postures. The second row shows the corresponding XCAT voxelized slices (overlaid attenuation and emission maps) modeling the 99mTc Sestamibi distribution with the following relative activity concentrations (activity/voxel): left ventricle 75, right ventricle 65, left atrium 50, right atrium 40, liver 75, kidney 75, spleen 75, gall bladder 60, lungs 4, bones 10 and background 10. The third row shows the extent of body motion with respect to baseline (baseline—motion state) of the XCAT attenuation slices. The fourth row shows the rendered images of these phantoms to illustrate the full volumetric body motion. Note that the sternum was made semi-transparent for illustration purposes, and cartilage is absent since it was not modeled in this study as it could not be seen in the MRI slices.
Figure 4. An example XCAT body-motion volunteer study for six different postures. First row: MRI coronal slices. Except for the baseline, all the MRI motion studies have 3 mm gaps between acquisitions of 3 mm thick sagittal slices. Second row: corresponding XCAT coronal slices (attenuation + emission) for a 99mTc Sestamibi distribution. Third row: difference images of attenuation between baseline and motion postures showing the extent of motion with respect to baseline image (first column is empty since baseline–baseline is zero). Fourth row: rendered XCAT phantoms. The sternum is displayed as semi-transparent to allow better visualization of the heart.

For each volunteer study, the extent of motion varied. Using a registration program (Dey et al 2010) we obtained the 6-DOF motion of the heart, liver and spleen with respect to the baseline. The rotation (degree) and translation (mm) values for the five volunteer studies and five motion states are listed in table 1, where right–left (RL), anterior–posterior (AP) and SI directions are indicated with positive–negative signs, respectively. Note that while the volunteers tried to return to their baseline before performing the next motion state, one can expect to see residual motions from previous motion states. This is one of the reasons why, for two of the volunteers, a considerable amount of motion in RL and AP are noted even in the case of the axial slide, which was not the first motion state following the baseline. Also, apart from the residual motion, volunteers might have moved differently from the intended motion.

In figure 5, a volunteer study for respiratory motion (from end-inspiration to end-expiration) is shown. The relatively smooth organ boundaries seen on the MR coronal images (first row) indicate that respiratory amplitude binning of the sagittal slices (acquired at separate times) is in good agreement despite minor imperfections. The trend of respiration can be seen with the aid of the line drawn across the liver dome. XCAT voxelized slices (overlaid attenuation and emission maps) obtained from this retrospectively sorted MR data are shown in the second row, and the difference attenuation images in the third row, where the dark and bright lung contours indicate the SI motion of the liver and heart. The fourth row shows the rendered XCAT phantoms illustrating the volumetric respiratory motion.

A unique respiratory cycle for each volunteer was observed. In figure 6, the SI displacements calculated from the center of mass of the organs (heart, liver, and spleen),
#	Heart	Liver	Spleen													
1	RL	-1.0	-0.2	0.1	3.9	15.1	14.7	16.3	24.8	27.7	5.6	8.5	9.7	3.2	7.7	8.9
AP	2.0	0.3	0.0	2.1	-2.5	-3.9	5.7	-0.7	4.6	4.0	-0.8	3.9	6.1	-1.3	1.9	
SI	-17.0	-15.1	-16.7	-10.9	-16.8	-1.9	-2.3	-8.2	0.7	3.0	-5.8	2.7	-0.1	-1.8	-5.2	
α	0.4	1.7	0.5	1.1	1.4	-0.3	1.1	3.5	-1.1	0.6	1.2	0.4	0.6	0.4	1.0	
β	-0.5	0.2	-0.6	-1.1	-10.9	-4.6	-7.5	-11.4	-4.4	-2.6	-3.6	-0.8	-0.4	-0.5	-0.7	
γ	-0.1	0.2	-0.6	-1.2	-1.7	0.9	-2.7	-3.6	2.1	-2.5	2.5	0.5	-2.6	-3.0	0.8	
2	RL	-0.1	0.1	0.1	19.9	19.7	20.1	18.9	18.6	19.2	1.9	-0.1	0.8	7.9	16.7	21.6
AP	-1.9	0.0	-0.1	-6.0	-11.8	-7.7	0.0	-6.4	-9.8	1.0	-2.3	0.7	3.0	-6.7	10.8	
SI	-3.2	-4.8	-5.0	1.7	2.3	2.3	4.0	0.7	9.5	-1.3	2.6	0.5	7.7	3.1	6.1	
α	0.7	0.0	-0.1	1.2	-0.2	0.0	0.2	0.7	-0.6	1.4	0.0	-0.9	3.3	0.7	1.2	
β	-0.7	-0.1	-0.3	-0.8	-0.7	-0.7	-0.5	-1.4	0.1	-1.0	0.5	0.4	-5.9	-4.3	-2.8	
γ	1.9	0.0	-0.2	-0.7	-1.0	-0.6	-0.1	-2.2	-0.1	-0.8	-0.4	-0.8	-9.2	-8.1	-1.6	
3	RL	3.9	4.1	4.2	22.4	29.3	23.5	8.1	15.4	12.9	7.9	8.1	7.6	3.3	10.1	14.1
AP	-2.1	-2.2	-2.5	-2.0	1.5	4.1	-1.8	1.7	1.6	0.0	0.1	0.1	3.9	1.5	6.1	
SI	-22.1	-21.0	-22.3	6.0	-10.7	9.4	-5.1	-9.3	-7.0	3.9	-2.1	-1.9	-0.1	-12.3	0.6	
α	0.0	0.0	0.0	0.5	0.6	1.8	-4.3	-4.3	-1.6	-0.2	0.1	0.4	0.3	-2.0	0.6	
β	0.7	0.1	0.6	-7.5	-4.9	-3.4	-1.9	-2.0	-0.9	0.5	-0.1	0.3	0.1	4.0	-0.4	
γ	-0.2	-0.3	0.8	0.0	-3.6	2.1	0.1	-0.3	1.1	0.1	-0.6	0.3	-2.5	3.2	0.2	
4	RL	2.4	-0.2	4.5	0.4	-6.6	2.6	2.0	-1.6	1.9	0.0	0.0	0.0	1.4	-11.6	3.6
AP	6.8	9.4	8.9	7.4	8.4	9.6	4.3	5.1	4.3	2.3	2.2	2.3	2.0	2.1	1.1	
SI	-25.9	-25.9	-25.5	-2.6	-18.2	-2.8	-6.7	-3.3	-0.8	-0.7	-0.7	3.3	-6.6	-14.5	4.4	
α	0.6	-0.1	0.3	0.4	0.0	1.0	0.5	0.1	0.5	0.0	-0.2	0.6	0.4	0.0	0.2	
β	-0.7	-0.2	1.1	2.1	1.7	0.1	-0.3	0.4	0.0	0.2	0.0	-0.1	-2.9	-2.8	-1.0	
γ	2.1	2.2	1.1	4.3	4.3	2.0	-0.4	-0.1	0.5	-0.1	-0.3	0.7	4.3	4.5	1.2	
5	RL	-10.1	-9.9	-9.7	-9.0	-8.4	-9.7	-14.1	-15.7	-16.8	-0.1	1.3	2.1	-23.6	-32.4	-27.4
AP	0.0	0.0	0.1	-3.2	0.8	-4.7	-4.4	1.5	-9.3	0.0	-2.1	-0.1	-0.5	6.8	-1.9	
SI	-25.3	-25.0	-25.1	-7.7	-9.3	-9.3	-2.2	-5.3	-3.0	-4.2	-5.2	0.0	-7.8	-6.8	-14.9	
α	0.2	-0.2	-0.1	0.2	-0.7	0.3	0.1	-0.7	-1.0	0.0	-0.4	0.2	0.0	-0.1	-2.3	
β	-0.2	0.0	-0.3	4.3	0.0	0.4	-0.2	-0.4	1.3	-0.2	-0.8	-1.0	4.5	3.9	0.8	
γ	-0.2	-0.1	-0.7	2.1	1.8	0.1	4.4	3.7	-0.5	0.0	-1.4	0.4	5.7	4.4	-1.9	

The 6-DOF motions in mm (bold font) and degrees (regular font) are: RL (translation in right–left), AP (translation in anterior–posterior) and SI (translation in superior–inferior), α (rotation about RL axis), β (rotation about AP axis) and γ (rotation about SI axis). Note that motions are compared to a single baseline to which the volunteer approximately returned after completion of each requested motion. Other than for the first one completed after the baseline study, the motions listed are a mix of the motion requested and volunteers not returning exactly to baseline prior to performing subsequent motions.
Figure 5. An example XCAT respiratory motion volunteer study showing inspiration bins, 1, 3, 5 and 7. First row: MRI slices were acquired in sagittal orientation and sorted into the amplitude bins (coronal slice shown). Combining all the sagittal slices forms the 3D MRI for each time frame, or all together 4D MRI data set. The respiratory trend can be seen with the aid of the blue lines running horizontally across the images. Second row: coronal slices of the XCAT phantoms (attenuation and activity overlaid) obtained from this MRI dataset. Third row: difference images of XCAT attenuation between the first column and first–fourth columns showing the extent of respiratory motion. Fourth row: rendered XCAT phantoms. The sternum is displayed as semi-transparent to allow better visualization of the heart.

as well as volume changes in the left lung (right lung followed a similar trend) for fourteen time frames (start-inspiration to end-expiration) are presented.

4. Discussion

We have created XCAT phantoms based on the individual-specific respiratory and body motions obtained from MRI of volunteers. The body motion phantoms include markers
In our earlier approach, MRI acquisitions were performed with electrocardiogram (ECG) gating to ‘freeze’ the beating heart. However, ECG gating prolonged acquisitions, limiting the number of respiratory cycles that could be acquired. This limited our ability to acquire an adequate number of slices to fill the amplitude bins for the various respiratory states. In addition, volunteers tend to change their respiratory pattern, and potentially perform body motions during prolonged studies (∼40 min), which further complicates the binning process. Also their heart rate typically drifted during the protracted imaging time, further complicating acquisition. We therefore eliminated the ECG gating to increase the imaging sampling rate. With this approach, we managed to obtain an up to four times higher sampling rate, which allowed us to obtain sagittal slices without 3 mm gaps twice as fast. Another improvement in our approach was to use the Navigator marker located at the lung-liver boundary (figure 1). This provides more precise motion information compared to the external measurements obtained from the abdomen bellow as we had previously employed (Konik et al 2012).

A drawback of our method is that manual segmenting is time consuming and requires expert knowledge of human anatomy. Additionally, segmentation in two-dimensional MRI slices and interpolating these into three-dimensional structures can lead to interpolation artifacts. To address these issues, a semi-automated method is being developed (Lindsay et al 2012). However, rib segmentation remains challenging because of the lack of MRI bone...
contrast compared to lung. In addition, cartilage was not included in these models as it cannot be differentiated with our MRI methods. However, the electron density of cartilage and soft tissue are not very different (du Plessis et al 1998). Thus its presence would not alter the attenuation considerably in this region, especially for photon energies higher than 100 keV.

In another study creating non-rigid respiratory motion datasets from MRI acquisitions (Tsoumpas et al 2011), the investigators have generated high-resolution 4D MRI datasets combining the information obtained from dynamic acquisitions (similar to the method described here), and high-resolution static MRI acquisition. The motion fields obtained from the dynamic dataset were applied to the static dataset to obtain a high-resolution 4D MRI dataset, which was then segmented to model PET activity and attenuation distributions to employ in PET-MR simulations. A limitation they mentioned in their method was the absence of bone in the segmentation. In our method, using the existing anatomy of XCAT phantoms, we were able to align the skeleton and the ribs to the MRI slices based on where the blank regions appeared in the MRI slices. For example, rib locations can be identified from the repeating blank regions in coronal MRI slices, shown in the first rows of figures 4 and 5.

We expect that these phantoms will serve as a valuable tool in simulation studies investigating motion correction and registration approaches in PET and SPECT imaging. In fact, they are already being used in different projects among our group members. For example, the body motion phantoms were used in the development of a registration algorithm for cardiac SPECT, employing both primary and scatter windows (Dey et al 2012). In another application, these phantoms were used in SIMIND simulations for the investigation of data-driven body motion correction strategies (Mukherjee et al 2012). The respiratory motion XCAT phantoms can be used for investigating respiratory motion correction approaches in more realistic conditions, where organs move non-rigidly and follow different patterns during inspiration and expiration. Other than motion studies, the baseline phantoms could also be used for simulation applications for anatomical variations in six different individuals.

5. Conclusion

We have developed extended cardiac torso (XCAT) non-rigid body and non-rigid respiratory motion phantoms based on the MRI acquisitions of volunteers, and associated external marker information, which were not available features in the standard XCAT phantoms. Using these phantoms and the external tracking information, investigators will be able to test their motion correction approaches for realistic motion in different individuals. All the data including MRI datasets, non-uniform rational B-spline files, and the parameter files for these phantoms are freely available for downloading and can be used with the XCAT license.

Acknowledgments

This work was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant no. R01 EB001457 and a research grant from Philips Healthcare. The contents are solely the responsibility of the authors and do not represent the official views of the NIBIB or Philips Healthcare. This work is a continuation of investigations previously partially reported at the 2011 SPIE Meeting as: CCM, KA, DPKR, SP, Zheng S, JKL, DI, KMA. Creation of 3D Digital Anthropomorphic Phantoms which Model Actual Patient Non-rigid Body Motion as Determined from MRI and Position Tracking Studies of Volunteers. Proceedings of SPIE

7 Contact Dr AK for the datasets (email: arda.konik@umassmed.edu).
8 Contact Dr PWS for the XCAT license (email: paul.segars@duke.edu).

References

Segars W P 2001 Development of a new dynamic NURBS-based cardiac-torso (NCAT) phantom The University of North Carolina