Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

To cite this article: Lin Chen et al 2013 Phys. Med. Biol. 58 1663

View the article online for updates and enhancements.

Related content
- Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast
 L Chen, J M Boone, C K Abbey et al.
- Evaluation of the BreastSimulator software platform for breast tomography
 G Mettivier, K Bliznakova, I Sechopoulos et al.
- Development of a patient-specific two-compartment anthropomorphic breast phantom
 Nicolas D Prionas, George W Burkett, Sarah E McKenney et al.

Recent citations
- A novel method for quantification of beam’s-eye-view tumor tracking performance
 Yue-Houng Hu et al
- Quantitative evaluation of anatomical noise in chest digital tomosynthesis, digital radiography, and computed tomography
 D. Lee et al
- Model observer design for multi-signal detection in the presence of anatomical noise
 Gezheng Wen et al

Delta^4 Discover
The innovative Delta^4 Discover is the only transmission detector ensuring precision in dose delivery and patient safety. Optimal workflow with the utmost in confidence, accuracy and flexibility is now available through the most efficient transmission detector available. Rely on Delta^4 Discover.

Innovative and Efficient QA
www.delta4family.com
Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

Lin Chen¹, Craig K Abbey² and John M Boone¹,³,⁴

¹ Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
² Department of Psychology, University of California Santa Barbara, Santa Barbara, CA, USA
³ Department of Radiology, University of California Davis, Davis, CA, USA
⁴ Author to whom any correspondence should be addressed.

E-mail: john.boone@ucdmc.ucdavis.edu

Received 19 November 2012, in final form 21 January 2013
Published 19 February 2013
Online at stacks.iop.org/PMB/58/1663

Abstract

Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function ($NPS(f) = \alpha f^{-\beta}$), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with $p < 0.001$ in all cases. The value of β was also found to be associated with patient age and breast...
diameter, parameters both related to breast density. In all associations between other parameters, lower values of β were associated with increased breast cancer detection performance. Specifically, lower values of β were associated with lower breast density, higher detectability index, higher sensitivity, and lower fractal dimension values. While causality was not and probably cannot be demonstrated, the strong, statistically significant association between the β metric and the other more widely used parameters suggest that β may be considered as a surrogate measure for breast cancer detection performance. These findings are specific to breast parenchymal patterns and mass lesions only.

(Some figures may appear in colour only in the online journal)

Introduction

The detection of breast cancer using medical imaging technology is the primary screening approach for breast cancer in most developed countries. While mammography has been the primary screening tool for a number of decades, other modalities such as breast tomosynthesis, breast ultrasound, and breast MRI are also used clinically in various settings for breast cancer screening. Breast CT (bCT) is also being evaluated at a number of institutions around the world for its potential role in breast cancer screening (Mettivier et al 2011, Weigel et al. 2011). As with all medical imaging procedures, the probability of detecting breast lesions in medical images is related to the signal-to-noise ratio (SNR) of the lesion. Sources of noise for x-ray based modalities include x-ray quantum noise, but in the last decade it has become increasingly evident that the anatomical noise of the normal breast parenchyma plays an important role in potentially obscuring the visibility of a breast lesion. While overall noise amplitude is important, the spectral frequency of the noise as characterized by the noise power spectrum also plays an important role in the detectability of a lesion.

Burgess (Burgess et al 2001a), Bochud (Bochud et al 1999), and others (Heine et al 1999) have defined the total noise power spectrum, \(NPS_t(f) \), as the sum of the anatomical noise power spectrum, \(NPS_a(f) \), and the quantum noise power spectrum, \(NPS_q(f) \):

\[
NPS_t(f) = NPS_a(f) + NPS_q(f)
\]

The quantum noise power spectrum is a fundamental analytical tool in detector design, development, and assessment, and has been used extensively in the evaluation of x-ray based medical imaging systems (Yang et al 2008, Miéville et al 2012). The anatomical noise power spectrum has been discussed in a more limited manner (Bochud et al 1999, Metheany et al 2008). It has been observed by Burgess (Burgess 1999, Burgess et al 2001b) and others (Bochud et al 1999, Météaney et al 2008) that the anatomical noise power spectrum has a reasonable adherence to a power law, for example:

\[
NPS_a(f) = \alpha f^{-\beta}
\]

This observation is consistent with the broader literature in vision science, where the noise power spectrum of many natural scenes also obeys a power law relationship (Field 1987, Burton and Moorhead 1987, Tolhurst et al 1992, Ruderman 1994, van der Schaaf and van Hateren 1996).

The primary objectives of this study were to evaluate the parameter β in equation (2), in terms of how it relates to other breast cancer detection performance metrics. In a previous
investigation, we demonstrated that the value of β differed between breast imaging modalities including digital mammography, breast tomosynthesis, and bCT (Chen et al 2012). Burgess et al (2001b, Burgess and Judy 2007) suggested that the value of β was a measure of breast cancer detection performance, and they predicted that smaller values of β would result in better screening performance. In Metheany et al (2008), an analytical derivation demonstrated that the value of β for tomographic imaging, β_{CT}, was related to that of two-dimensional mammography, β_{mammo}, by the relationship:

$$\beta_{\text{CT}} = \beta_{\text{mammo}} - 1 \quad (3)$$

The validity of the relationship given in equation (3) was recently demonstrated experimentally (Heine and Velthuizen 2002, Chen et al 2012).

There are two important classes of lesions that can lead to the identification of breast cancer, soft tissue or mass lesions, and microcalcifications. While microcalcification detection is a key element in any breast cancer screening environment, the current investigation is mainly focused on the detectability of mass lesions.

Methods

Patient selection

In addition to initial volunteers, patients with positive mammographic findings (BIRADS 4 or 5) were recruited for imaging with bCT, and informed consent was obtained under several IRB approved protocols at our institution. A total of 216 participants, 214 patients and 2 volunteers, who ranged in age from 35 to 80 (mean 54 years, $\sigma = 9.5$ years), were enrolled and included in this analysis. bCT images were acquired immediately prior to scheduled breast biopsy (except for the two volunteers, who did not have biopsies). The vast majority of patients had both breasts imaged—the breast which contained the suspicious region (the affected breast), as well as the unaffected breast. Because this study focuses on the anatomical noise in the background and not signal characteristics, only images of the unaffected breast were included to avoid any bias due to the influence of lesions. Overall, a total of 185 single breast data sets were used in this analysis. Excluding the four breast data sets from the two volunteers, the BIRADS breast densities of the remaining 181 women were fatty (10.8% [20]), 25.4% (47) were scattered, 40.0% (74) were heterogeneous, and 21.6% (40) were extremely dense.

Imaging systems

Two dedicated bCT scanners were developed at our institution for the purpose of studying the potential of bCT for cancer detection. The technical details of these scanners have been described previously (Lindfors et al 2008). Briefly, both scanners were designed to image the breast with the patient prone on the table top, with the breast to be imaged hanging through a hole in the table. Under the table, a CT gantry is rotated using a combined servomotor, bearing, and angle encoder system (Kollmorgen, Radford, VA). An x-ray tube (Comet AG, Flamatt, Switzerland) and indirect detection CsI-based flat panel detector (PaxScan 4030CB, Varian Medical Systems, Palo Alto, CA) were rotated $>360^\circ$ around the pendant breast, acquiring >500 projection images. Most CT systems use a full 360° rotation around the object being scanned when that is possible; cardiac and other rapid scanning applications are an exception to this. Full 360° rotation is important in cone beam scanners including the bCT system. Patients were imaged using 80 kV, with the x-ray tube current (mA) selected based on the breast cup size such that the mean glandular dose of the bCT scans was approximately equal to
that of two-view mammography for each woman. The procedure was performed during breath hold, and required approximately 17 s. A cone-beam filtered backprojection CT reconstruction algorithm (Feldkamp et al 1984, Kak and Slaney 1988) generated \(512 \times 512\) bCT images using a Shepp–Logan filter. Each reconstructed image was calibrated to Hounsfield units. The average slice thickness in the natively reconstructed coronal images was 0.23 mm \((\sigma = 0.041\) mm\), and ranged from 0.18 to 0.41 mm per slice. Pixel dimensions of the coronal images ranged from 0.20 to 0.44 mm, depending on breast size, with an average pixel dimension of 0.35 mm \((\sigma = 0.035\) mm\) in coronal images.

bCT segmentation

An automatic method for image segmentation was developed for the bCT images (Packard and Boone 2007, Nelson et al 2008, Packard et al 2012). For each bCT volume data set, the first and last acceptable coronal bCT images were manually identified and tallied as part of the segmentation process. This manual step avoided artifactual images in the posterior breast (including the elimination of implants from the considered field of view), and avoided the nipple anteriorly. The voxels corresponding to air were identified by simple thresholding. A 2-means clustering algorithm was used to segment glandular and adipose tissues based on the image histogram. The estimation process was performed iteratively in conjunction with a seven-point 3D median filter applied to the breast volume. Iteration completed when the glandular fraction estimate converged. The adipose tissue in each slice was flattened by a 2D parabolic correction and smoothed by an adaptive smoothing algorithm. Skin was segmented using the high SNR air/tissue interface. For each bCT data set, the voxels were segmented into five categories: air, adipose tissue, glandular tissue, chest-wall and skin. The volume glandular fraction (VGF) of the breast was computed using (Yaffe et al 2009, Huang et al 2011):

\[
VGF = \frac{V_{\text{glandular}}}{V_{\text{glandular}} + V_{\text{adipose}}} \times 100\%
\]

(4)

\(V_{\text{glandular}}\) and \(V_{\text{adipose}}\) correspond to the total volume of voxels marked through the segmentation process as glandular and adipose voxels, respectively.

The segmented breast images were also useful in estimating the breast effective diameter (Huang et al 2011). The breast effective diameter was computed as \(D_{\text{eff}} = 2\sqrt{A/\pi}\) for each CT image, where \(A = N\Delta^2_{\text{pix}}\), and where the number of pixels in each image in which there was either adipose or glandular tissue was \(N\), and \(\Delta_{\text{pix}}\) was the pixel dimension. The effective breast diameter at the chest-wall, \(D_{\text{chest-wall}}\), was determined by averaging the diameters of the first five posterior coronal images adjacent to the manually segmented posterior border.

Assessment of parameter \(\beta\)

The NPS\(_a(f)\) of each breast data set was evaluated using 1000 region of interests (ROIs) in the coronal view, at randomly selected \((x, y)\) locations and at randomly selected slice \((z)\) locations. A rejection method was used to insure that all ROIs were located within the breast anatomy on the image. The ROI was placed on the image based on random-number generated position values, and all pixels in the ROIs were evaluated to assure that none were positioned outside the breast, based upon the segmented images. Once a ROI was determined to be within the breast parenchyma, it was marked graphically on the breast image. Human visional assessment for the ROIs was used to further assure that proper ROI positioning was achieved. For each \(64 \times 64\) pixel ROI, the mean Hounsfield unit was subtracted to obtain zero-mean ROIs of anatomical noise. A 2D Hanning window function \((H(r) = 0; r > \frac{1}{2} s, H(r) = \frac{1}{2} + \frac{1}{2} \cos(2\pi r/s), \text{elsewhere})\) was applied to suppress spectral leakage. NPS\(_a(f)\) were estimated
by averaging the magnitude squared of the 2D fast Fourier transform from the ROIs. ROIs were selected as a 64 \times 64 pixel matrix, with corresponding dimensions on the bCT images ranging from 13.0 to 28.1 mm in side length for the coronal view. The 2D NPS, denoted as NPS(f_x, f_y) was computed by 2D Fourier transform for each ROI, and the mean noise power spectrum, \text{NPS}_a(f), was determined by averaging the NPS from the 1000 ROIs in each volume data set. The one dimensional anatomical noise power spectrum, NPS_a(f), was computed by radially averaging the 2D NPS(f_x, f_y) by using \(f_r = \sqrt{f_x^2 + f_y^2} \), with frequency bins of 1/50th of the Nyquist frequency.

In order to compute \(\alpha \) and \(\beta \) in equation (2), the natural logarithm of both NPS_a and \(f_r \) was computed, and linear regression was performed on the log/log data to obtain \(\alpha \) and \(\beta \). To avoid NPS anomalies at low frequencies and to avoid the influence of quantum noise at high frequencies (Metheany et al. 2008, Burgess et al. 2001b), the linear regression procedure was performed iteratively, iterating over a range of low frequency endpoints \(f_1 \) and over a high frequency range of endpoints \(f_2 \). The optimal frequency window (from \(f_1 \) to \(f_2 \)) was selected for each NPS_a(f) as that which maximized \(R^2 \), and the values of \(\alpha \) and \(\beta \) were then recorded for each breast data set. Other studies (not reported) have demonstrated that the effects of quantum noise, including the influence of the reconstruction kernel, are found above the high-frequency threshold \(f_2 \), with negligible influence on the value of \(\beta \).

The impact of slice thickness was assessed in this investigation. In addition to assessing the noise power for thin section bCT images (0.23 mm average thickness), the bCT data sets were averaged to produce thick section (44.3 mm average thickness) ‘projection’ images. Previous studies (Chen et al. 2012) showed that integrating the inherently thin bCT images produced anatomical noise metrics (\(\beta \)) similar to projection mammograms and tomosynthesis images.

Association between \(\beta \) and age or breast diameter

Age (in years) was recorded for all patients. The relationship between \(\beta \) and age was assessed across a number of age categories: age (patient percentile) \(< 40\) (6.5%), 41–43 (5.9%), 44–46 (9.7%), 47–49 (13.5%), 50–52 (7.6%), 53–55 (13.5%), 56–58 (12.4%), 59–61 (9.2%), 62–64 (7.0%), 65–67 (5.4%), 68–70 (2.7%), and \(\geq 71\) (6.5%). The age and \(\beta \) in each category were independently averaged. In addition, 158 breast datasets had both breast diameter (at the chest-wall) and \(\beta \) calculated. Data were binned as breast diameter (patient percentile): \(< 10\) cm (7.0%), 10–11 cm (9.5%), 11–11.5 cm (8.2%), 11.5–12 cm (8.2%), 12–12.5 cm (10.8%), 12.5–13 cm (8.2%), 13–13.5 cm (10.1%), 13.5–14 cm (11.4%), 14–14.5 cm (5.7%), 14.5–15 cm (7.6%), 15–15.5 cm (8.9%), >15.5 cm (4.4%). Similarly, both breast diameters and \(\beta \) were independently averaged in each category for comparison.

bCT detectability simulation

An observer performance model was developed previously (Packard et al. 2012) to simulate the computer observer detection performance in bCT images. For each bCT volume (512 \times 512 \times N voxels, N ranged from \sim 200 to 512 depending on breast size), simulated spherical mass lesions of diameter 1, 2, 3 and 5 mm were generated and randomly inserted within the breast parenchyma. Projections of the bCT data containing the lesion were generated from the reconstructed bCT data sets, in the coronal, sagittal and axial planes. Using signal-known-exactly model observer methodology, the receiver operating characteristic (ROC) curve was determined on the projected images of various thicknesses, using a pre-whitened matched filter (PWMF) based model observer. The details of this study were reported.
1668 LC h e n et al previously (Packard and Boone 2007, Packard et al 2012). Briefly, for the given projection thickness, viewing plane, and breast volume, 500 ROIs of 64 × 64 pixels with simulated lesions and 500 ROIs ‘non-lesions’ were sampled with the PWMF to produce a set of 1000 responses, from which the ROC curve was generated. The area under the ROC curve (AUC) and the sensitivity at a specificity of 95% were evaluated from the computed ROC curves (Packard et al 2012, Lindfors et al 2008).

Under the general assumption of a two-alternative forced-choice study, the proportion of correct responses, Pc, is equivalent to AUC. This is monotonically related to the detectability index (Barrett and Myers2004)

\[d_A = \sqrt{2\Phi^{-1}(P_c)} = 2\text{ERF}^{-1}(2\text{AUC} - 1) \]

where \(\Phi^{-1} \) is the inverse cumulative normal function and \(\text{ERF}^{-1} \) is the inverse error function. In this study, the dependence of \(\beta \) is presented in terms of the detectability index \(d_A \), understanding that this is a surrogate measure of observer performance.

Fractal dimension

To calculate the fractal dimension, the conventional box-counting technique (Boone et al 1998, Cargill et al 1991) was adopted. The fractal dimension \(D \) was calculated from the slope of \(\log[A(\varepsilon)] \) versus \(\varepsilon \) as:

\[D = 2 - \frac{\Delta \log[A(\varepsilon)]}{\Delta \log(\varepsilon)} \]

where \(A(\varepsilon) \) is the surface area of a ROI with an effective pixel size \(\varepsilon \). For a given ROI, the surface area \(A(\varepsilon) \) was calculated as:

\[A(\varepsilon) = \sum_{x,y} \varepsilon^2 + \sum_{x,y} \varepsilon(|i_e(x, y) - i_e(x, y + 1)| + |i_e(x, y) - i_e(x + 1, y)|) \]

where \(i_e(x, y) \) corresponds to the Hounsfield unit at pixel \((x, y)\). In this study, the same ROIs were used for the \(\alpha \) and \(\beta \) calculations. For each 64 × 64 pixel ROI, different effective pixel sizes were synthesized by averaging adjacent pixels. Accordingly, five pairs of \(A(\varepsilon)/\varepsilon \) values were obtained from binning \(1 \times 1, 2 \times 2, 4 \times 4, 8 \times 8, \) and \(16 \times 16 \) pixels for each ROI, and then linear regression was used to determine the slope of \(\log(A(\varepsilon)) \) versus \(\log(\varepsilon) \), in order to calculate the fractal dimension \(D \). Each calculation iterated over the 1000 ROIs for each breast (as previously described), and the fractal dimension was determined by averaging the fractal dimension over all ROIs for each bCT data set.

Results

Figure 1 illustrates an example of determining the value of \(\beta \) from breast anatomy, for thin slice images. Figure 1(b) shows the averaged two dimensional NPS. Radial averaging extracted the 1D NPS, which was plotted on a log-log axis as a function of radial spatial frequency \(f_r \), as shown in figure 1(c). The 1D NPS curve was generated by averaging the frequency points in the 2D NPS (figure 1(b)) into 50 different bins, from \(f = 0 \) to the Nyquist frequency. Previous research has shown that the NPS_\text{a} dominates in the low frequency region of the NPS, while quantum noise dominates at the highest frequencies. The dots (●) in figure 1(c) represent the NPS_{\text{a}}(f) data, and the power-law relationship was computed over a defined frequency range. For the images illustrated in figure 1, the maximum \(R^2 \) was obtained at a frequency range from 0.08 mm^{-1} to 0.45 mm^{-1}, and the corresponding \(\beta \) was computed as 1.86 for this illustrative data set. For all 185 breast image datasets included in this investigation, the frequency bounds

...
Figure 1. The experimental method for computing the noise power spectrum is illustrated graphically. (a) One thousand regions of interest are placed on each breast volume data set, and two-dimensional ROI’s are extracted. (b) After detrending and Hanning filter application, the two-dimensional Fourier transform is computed resulting in the 2D noise power spectrum. (c) The NPS is radially integrated, producing a one-dimensional plot of the NPS as a function of spatial frequency. A subsection of this data is used for the computation of β. (d) As described in the text, upper and lower frequency windows were used to identify the most linear portion of the anatomical NPS, based upon R^2. The values of α and β were computed in this region for each breast data set.

For each breast, the values of β were varied slightly, all spanning the frequency range from 0.04 to 0.61 mm$^{-1}$. The R^2 measured across all the breasts averaged to >0.990 in all cases. The average value of β for all the 185 breast image sets was 1.96 on bCT coronal plane, with a standard deviation of 0.46.

The value of β was assessed for the thick, projection views in a similar manner. Due to limitations in identifying the thicker projection data, 105 data sets were used for the projection image cases in the axial view, which corresponds roughly to the cranial caudal mammographic projection. The average value of β corresponding to thick projections was 3.15, with a standard deviation of 0.50.
The values of β, computed from the thin section coronal bCT data sets, were characterized statistically in terms of their association with VGF, patient age, and diameter of breast. There were 159 breast image datasets having both VGF and β calculated in common (figure 2), and β is observed to increase as a function of $\log_e(\text{VGF})$, with an R^2 of 0.35. To determine if there was a statistically significant relationship between β and $\log_e(\text{VGF})$, regression analysis was performed testing the null hypothesis that the overall slope is zero. The p-value was computed ($p < 0.0001$) under T-test, which suggests that the slope of the linear regression line (β versus $\log_e(\text{VGF})$), differs significantly from 0. Therefore, there is a strong statistical association between these two parameters.

Similar analyses were performed between age and β, and between breast diameter (measured at the chest-wall) and β. Figure 3(a) illustrates the age-dependent trend of β, and figure 3(b) illustrates the relationship between breast diameter and β. Error bars in each plot correspond to one standard deviation. Linear regression results are shown on each figure, with R^2 reported as 0.41 across age and β (figure 3(a)), and 0.75 across breast diameter and β (figure 3(b)). Statistical evaluation of the slope of these two regression lines showed high statistical association between age and β ($N = 185$ breasts, $p = 0.0027$), and also between breast diameter and β ($N = 158$ breasts, $p = 0.00011$). These p-values also suggested that a linear relationship between the parameters is plausible.

Detectability index values were generated from computer observer experiments which placed simulated spherical tumors of different sizes as 1, 2, 3 and 5 mm into real breast backgrounds measured using bCT. The relationship between β and the detectability index were estimated using both thin section images and thick projection images. Figures 4–7 illustrate the relationship between β and detectability index with tumor diameters of 1, 2, 3, and 5 mm, respectively. The (a) component of figures 4–7 correspond to thin section (bCT) coronal images, and the (b) component of these figures demonstrate the relationships for thick projection images (mammogram-like) for the axial projection. Cases with AUC = 1 and a corresponding detectability index of ∞ were excluded. Table 1 shows the number of data sets used, the R^2 value, and the p-value generated for each lesion diameter (1, 2, 3, and 5 mm) and for the thin and thick section images. Figures 4–7 along with table 1 demonstrate that there is
The value of β is plotted as a function of patient age, where 12 different categories were used to smooth the data. Increasing age corresponds to a reduction in breast density, which corresponds to an increase in sensitivity and a decrease in the measured value of β. (b) The value of β is plotted as a function of breast diameter at the chest wall, $D_{\text{chestwall}}$. Increasing breast diameter is generally associated with increasing patient obesity, lower breast density, and again a reduction in β is seen.

Table 1. This table shows the number of data sets, the correlation coefficient, and the associated P value for both thin sections (corresponding to bCT images) and thick sections (corresponding to mammogram-like images), as a function of computer-simulated lesion diameter. In all cases, the slope of each figure is significantly different from zero, indicating that the trend between increasing detectability and decreasing beta is significant.

<table>
<thead>
<tr>
<th>Lesion diameter (mm)</th>
<th>Thin sections ($t \sim 0.23$ mm)</th>
<th>Thick projections ($t \sim 44.8$ mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>R^2</td>
</tr>
<tr>
<td>1</td>
<td>127</td>
<td>0.2466</td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td>0.3171</td>
</tr>
<tr>
<td>3</td>
<td>121</td>
<td>0.3006</td>
</tr>
<tr>
<td>5</td>
<td>107</td>
<td>0.2421</td>
</tr>
</tbody>
</table>
Figure 4. (a) The detectability index for 1 mm diameter computer-simulated tumors is shown as a function of β. Increased detectability is associated with lower values of β based upon these data. These data represent the bCT thin section data. (b) Again, the detectability index is illustrated as a function of β, with higher detectability being associated with lower values of β. These data are for the (thick) projection images, which are computed by averaging bCT slices together. These trends illustrate that lower values of β correspond to increase detection performance for mammogram-like images.

a strong statistical relationship between the detectability index (defined in equation (5)) and β. In all comparisons, $p < 0.0001$.

The AUC is a traditional measure of detection performance in imaging science, however in clinical breast imaging radiologists tend to limit their operating points to a specific region on the ROC curve corresponding to a compromise between sensitivity and call-back rate (which is strongly related to specificity given the low disease prevalence). This operating point is approximately near the 95% specificity point, corresponding to a call-back rate of 5%. Thus, for this analysis, the sensitivity at the 95% specificity parameter was computed to estimate the approximate sensitivity for breast cancer screening using the PWMF observer.

The relationship between β and sensitivity at 95% specificity is shown in figures 8–11 for simulated lesion diameters of 1, 2, 3, and 5 mm, respectively. For these analyses, there were 130 breast data sets used for thin section images (shown in the (a) component of these figures) and there were 105 breast data sets used for thick projection images. The lower number of data sets
Figure 5. (a) The detectability index for 2 mm simulated lesions is illustrated as a function of β, again illustrating a negative slope which indicates that lower values of β correspond to higher detectability levels. These data are for thin section bCT images. (b) These data are for thick section projection images, and also show that lower values of β correspond to improved detection performance.

Table 2. This table illustrates the parameters associated with the fit between sensitivity at 95% specificity and β. Across four computer-simulated lesion diameters, for both thin sections and thick sections, there was a significant difference between the slope of the relationship and zero.

<table>
<thead>
<tr>
<th>Lesion diameter (mm)</th>
<th>Thin sections ($t \sim 0.23$ mm)</th>
<th>Thick projections ($t \sim 44.8$ mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$R^2 = 0.1790$ P-value <0.0001</td>
<td>$R^2 = 0.1642$ P-value <0.0001</td>
</tr>
<tr>
<td>2</td>
<td>$R^2 = 0.2011$ P-value <0.0001</td>
<td>$R^2 = 0.2044$ P-value <0.0001</td>
</tr>
<tr>
<td>3</td>
<td>$R^2 = 0.1598$ P-value <0.0001</td>
<td>$R^2 = 0.2702$ P-value <0.0001</td>
</tr>
<tr>
<td>5</td>
<td>$R^2 = 0.1209$ P-value <0.0001</td>
<td>$R^2 = 0.3522$ P-value <0.0001</td>
</tr>
</tbody>
</table>

for the thick projection images were due to the elimination of some data sets (corresponding to small breasts) because a thick projection was not possible. Linear regression was performed and R^2 values are reported in table 2.
Figure 6. (a) This figure, shown for thin section CT images with 3 mm simulated lesions, demonstrate the trends illustrated in the prior two figures. (b) This figure corresponds to projection images with 3 mm simulated lesions, and also illustrates the reduction in detectability index as β increases.

The R^2 values between β and sensitivity (at 95% specificity) reach a maximum for the 2–3 mm tumor diameters for the thin section images. Since the simulation model used a PWMF with excellent detection performance (Packard et al 2012), for larger tumors (as diameter \rightarrow 5 mm) many of the AUC values reached 1.0 for the thin section (bCT) data sets, and this horizontal line of accumulation at sensitivity $= 1.0$ can be seen for the 2, 3, and 5 mm lesion diameters in figures 8(a), 9(a), and 10(a), respectively. This asymptotic behavior in the individual sensitivity values resulted in a decrease in R^2 for the larger diameter lesions.

Using the same ROIs as for the computation of β, we also computed the fractal dimension, and this relationship is shown in figure 12. The slope of the linear regression line was significantly different from zero ($p < 0.0001$), indicating a definite association between these two parameters. Increasing fractal dimension was associated with decreasing β. This is consistent with the work of Caldwell (Caldwell et al 1990), Boone (Boone et al 1998), and others, which showed that increasing fractal dimension is correlated with a reduction in breast density, implying an improvement in detection performance. Thus, the association of increasing fractal dimension with decreasing β gives additional evidence that lower values of β are associated with improved cancer detectability.
Discussion

Burgess (Burgess et al 2001b), Bochud (Bochud et al 1997, 1999), and others (Tischenko et al 2005) have suggested that β, a parameter calculated from the anatomical noise power spectrum, is a metric which relates to the detectability of mass lesions in breast images. Specifically, it has been shown that lower values of β are associated with better detection performance. In this study, the goal was to establish a relationship between β and other known parameters which are associated with breast cancer detection performance. In short, the fundamental question addressed by this study is, ‘Does β matter?’.

In Metheany et al (2008) a relationship between thin slice breast images (bCT) and thicker projection images (mammograms) was derived analytically, demonstrating that theoretically, the value of β for bCT images is less than that of mammographic images by one: $\beta_{\text{CT}} = \beta_{\text{mammo}} - 1$ (equation (3)). This derivation, which exploited the dimensionality of the images, showed that thin slice images should have lower values of β than thicker projection images, but does not address the detection performance issue directly. The theoretical prediction was validated by experimental measurement (Chen et al 2012).
Figure 8. (a) The sensitivity at 95% specificity is illustrated using simulated tumors, as a function of β. Demonstrating a similar trend to the detectability index, lower values of β are correlated with higher measures of sensitivity based upon computer-simulated lesions. These data are for thin section CT images. (b) The same trend as in (a) is seen here, for projection (mammogram-like) images.

In this current study, the value of β was associated with a number of parameters which are known to correlate with breast cancer detection performance. In figure 2, the association between β and VGF is illustrated, where lower values of β correspond to lower VGFs. Any clinical breast imager fully appreciates from their clinical experience the important role that breast density plays in the sensitivity of breast cancer detection, and this has been borne out in a number of publications as well (Fajardo et al 1988, Pisano et al 2005). While this relationship does not prove that lower values of β yield higher detection performance, it does demonstrate with high statistical significance that lower values of β are associated with lower glandular fractions, which in turn are known to be associated with better detection performance.

Figure 3(a) shows that as patients get older, the value of β decreases. This observation can be understood in the context of breast density, since breast density is known to decrease with increasing age. Similarly, figure 3(b) illustrates that lower values of β are associated with larger breast diameters, and again, larger breast diameters are associated with over-weight and obese patients, with breast parenchymal patterns of lower density.
Association between power law coefficients of the anatomical noise power spectrum

Figure 9. (a) The sensitivity at 95% specificity is illustrated for 2 mm simulated lesions as a function of β. Here, the sensitivity in many of the data sets approach 100%, as indicated by the grouping of data points horizontally at sensitivity = 1.0. Lower values of β are associated with improvements in sensitivity for these thin section bCT images. (b) For thick section images, similar trends are seen as in the case for the thin section bCT images.

The detectability index (figures 4–7) was shown to be highly associated with the value of β; that is, higher detectability index values correspond to lower values of β. This is illustrated in figures 4–7 for simulated lesions of different diameters. These data also show the associations for both thin section and thick section breast images, and the trends in β and detection performance are consistent across thin and thick breast images. It is also observed that for similar values of β, thin section images have higher detectability indices than the thick section images, showing a potential different performance level between thin images (bCT) and thicker projection (mammogram-like) images. All the associations between increased detectability index and decreased β were highly significant.

Figures 8–11 illustrate the relationship between sensitivity (at 95% specificity) and β. While the sensitivity metric tended to saturate at unity for the larger simulated breast lesion diameters, the trend demonstrating the decrease in sensitivity with an increase in the value of β was significant for both thin and thick section images, and for lesions ranging from 1 to 5 mm in diameter.
Figure 10. (a) This figure illustrates the reduction in sensitivity as a function of increasing β, for simulated mass lesions of 3 mm in diameter for thin section bCT images. (b) This figure illustrates, for thicker projection images, that decreasing sensitivity occurs at higher values of β.

The relationship between β and fractal dimension (figure 12) is not surprising, and decreasing values of β are associated with increased fractal dimension, which in turn is associated with lower breast density (Caldwell et al. 1990, Boone et al. 1998) and higher theoretical breast cancer detection levels.

In this work, the value of β has been demonstrated to be associated with numerous parameters which are well-known to be related to breast cancer detection performance. Most intuitively, breast density is highly associated with β, strongly suggesting by inference that lower values of beta correspond to increased detection performance in breast imaging. Breast density is one of the most highly discussed parameters which influence cancer detection performance in the literature, and it is also well appreciated by all radiologists who read breast images. The detectability index as well as diagnostic sensitivity determined from computer observer studies using a PWMF were also shown to correlate with statistical significance to lower values of β.

While an association between parameters is not proof of causality, the fact that β is associated with four semi-independent parameters (i.e. breast density, the detectability index, sensitivity, and the fractal dimension) which relate to breast cancer detectability is a convincing
Figure 11. (a) This figure illustrates that sensitivity decreases as a function of increasing β, for simulated mass lesions of 5 mm in diameter for thin section bCT images. (b) This figure illustrates, for thicker projection images, that decreasing sensitivity occurs at higher values of β.

Figure 12. As recognized by a number of authors, the value of β is related mathematically to the fractal dimension. This figure shows that lower fractal dimension is associated with higher values of β.
demonstration of this hypothesis. In all cases, improved breast cancer detection performance is associated with a decrease in the value of β. The association between these parameters was demonstrated using linear regression techniques, however earlier theoretical analysis (Metheany et al 2008) also demonstrated from a first-principles argument that lower values of β correspond to increased breast cancer detection performance.

Conclusions

In this investigation, images of the breast generated using dedicated breast CT technology were used to evaluate mathematical descriptors which are thought to relate to breast cancer detectability. This study focused on mass lesions, and is not relevant to microcalcification-based lesions of the breast. The breast CT data sets were used intrinsically (thin section images), and were also integrated to produce thick section images that are typical of mammography. While there are significant differences between integrated breast CT images and actual mammograms, previous studies have demonstrated that the value of β for mammograms and integrated (thick section) breast CT data are very similar (Chen et al 2012). Using a number of computer-generated parameters including breast density, detectability index, sensitivity, and fractal dimension, the results of this investigation demonstrate conclusively that there is a strong association between lower values of β and parameters which are known to correlate with increased cancer detection performance. We summarize, based upon these statistically significant findings, that the value of β—a value derived from a power law fit to the anatomical noise power spectrum—can be considered as a surrogate measure of breast cancer detection performance. While causality has not and probably can never be demonstrated, the strong correlations and theoretical underpinnings of these relationships are unambiguous.

Acknowledgments

This work was funded in part by a grant from the NIH (R01 EB002138) and from a contract from Hologic Corporation (Bedford, MA).

References

Burgess A E, Jacobson F L and Judy P F 2001a On the difficulty of detecting tumors in mammograms Int. Conf. on Information Processing in Medical Imaging ed M Insana and R Leahy (Berlin: Springer)
Burgess A E, Jacobson F L and Judy P F 2001b Human observer detection experiments with mammograms and power-law noise Med. Phys. 28 419–37
Association between power law coefficients of the anatomical noise power spectrum

Packard N and Boone J M 2007 Glandular segmentation of cone beam breast CT volume images Proc. SPIE 6510 651038

Van Der Schaaf A and Van Hateren J H 1996 Modelling the power spectra of natural images: statistics and information Vis. Res. 36 2759–70

