Corrigendum: Measurement of guided mode wavenumbers in soft tissue–bone mimicking phantoms using ultrasonic axial transmission

To cite this article: Jiangang Chen et al 2013 Phys. Med. Biol. 58 8593

View the article online for updates and enhancements.
Corrigendum: Measurement of guided mode wavenumbers in soft tissue–bone mimicking phantoms using ultrasonic axial transmission

Jiangang Chen1, Josquin Foiret2,3, Jean-Gabriel Minonzio2,3, Maryline Talmant2,3, Zhongqing Su1, Li Cheng1 and Pascal Laugier2,3

1 Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
2 UPMC (Univ Paris 6), Laboratoire d’Imagerie Paramétrique, LIP, F-75005, Paris, France
3 CNRS, UMR 7623, LIP, F-75006, Paris, France

E-mail: jean-gabriel.minonzio@upmc.fr

Received 1 August 2013
Published 19 November 2013
Online at stacks.iop.org/PMB/58/8593

The following corrections should be taken into account:

(1) The sentence ‘where the sign \pm indicates the positive and negative (Ox_3) directions (figure 1)’ after equation (2) should be:

‘where the sign $+$ relates to the quasi-shear (QS) wave. Likewise, the sign $-$ relates to the quasi-longitudinal (QL) wave. The index 1 and 3 relates to the axis (Ox_1) and axis (Ox_3) shown in figure 1.’

(2) The second term of equation (3a) $C_{33}C_{55}$ should be $2C_{13}C_{55}$.

(3) In equations (4a) and (4b) the plate thickness term h should be corrected as the half plate thickness $h/2$. The following sentence ‘with h the plate thickness (figure 1)’ should be added after equation (4a).

Secondly, consider a free transverse isotropic elastic plate of thickness h (figure 1). The direction (Ox_1) is the symmetry axis. Guided waves in the elastic plate are different from their counterparts in the fluid layer as the elastic plate supports the propagation of shear waves. Because the probe works in piston mode and does not excite horizontal shear displacement, only motion in the plane (Ox_1x_3) is considered. Thus a two dimensional approximation can be considered (Dayal and Kinra 1989, Rhee et al 2007). Following previous conditions, the relation between k_3 and k_1 satisfies (Dayal and Kinra 1989, Rhee et al 2007)

$$k_{3_{\pm}}^2 = \left(-M \pm \sqrt{M^2 - 4N} \right)^2 k_1^2,$$

(2)

where the sign \pm indicates the positive and negative (Ox_3) directions (figure 1). The terms M and N correspond to

$$M = \frac{C_{11}C_{33} - C_{33}C_{55} - C_{13}^2 - \frac{\rho \omega^2}{k_1^2} (C_{33} + C_{55})}{C_{33}C_{55}},$$

(3a)
where \(\rho \) is the plate density, \(\omega \) is the angular frequency, and \(C_{11}, C_{33}, C_{13} \) and \(C_{55} \) are the stiffness coefficients of the transverse isotropic plate. Following equation (32) of reference (Rhee et al. 2007), the dispersion equation of the symmetric Lamb modes \(S_n \) can be written as

\[
(C_{33}R_- k_{3-} + C_{13}k_1)(R_+ k_1 + k_{3+}) \sin(k_{3+}h) \cos(k_{3-}h) \\
-(C_{33}R_+ k_{3+} + C_{13}k_1)(R_- k_1 + k_{3-}) \sin(k_{3-}h) \cos(k_{3+}h) = 0, \tag{4a}
\]

Following equation (34) of reference (Rhee et al. 2007), the dispersion equation for the anti-symmetric modes \(A_n \) is obtained by inverting the + and − subscripts inside the parentheses in (4a)

\[
(C_{33}R_+ k_{3+} + C_{13}k_1)(R_- k_1 + k_{3-}) \sin(k_{3-}h) \cos(k_{3+}h) \\
-(C_{33}R_- k_{3-} + C_{13}k_1)(R_+ k_1 + k_{3+}) \sin(k_{3+}h) \cos(k_{3-}h) = 0, \tag{4b}
\]

The corrected version of page 3028 should be:

Secondly, consider a free transverse isotropic elastic plate of thickness \(h \) (figure 1). The direction \((Ox_3)\) is the symmetry axis. Guided waves in the elastic plate are different from their counterparts in the fluid layer as the elastic plate supports the propagation of shear waves. Because the probe works in piston mode and does not excite horizontal shear displacement, only motion in the plane \((Ox_1x_3)\) is considered. Thus a two dimensional approximation can be considered (Dayal and Kinra 1989, Rhee et al. 2007). Following previous conditions, the relation between \(k_3 \) and \(k_1 \) satisfies (Dayal and Kinra 1989, Rhee et al. 2007)

\[
k_{3\pm}^2 = \left(-M \pm \sqrt{M^2 - 4N} \right)^2 k_1^2, \tag{2}
\]

where the sign + relates to the quasi-shear (QS) wave. Likewise, the sign − relates to the quasi-longitudinal (QL) wave. The index 1 and 3 relates to the axis \((Ox_1)\) and axis \((Ox_3)\) shown in figure 1. The terms \(M \) and \(N \) correspond to

\[
M = \frac{C_{11}C_{33} - 2C_{33}C_{55} - C_{13}^2 - \frac{\rho \omega^2}{k_1^2} (C_{33} + C_{55})}{C_{33}C_{55}}, \tag{3a}
\]

\[
N = \frac{\left(\frac{\rho \omega^2}{k_1^2} - C_{11} \right) \left(\frac{\rho \omega^2}{k_1^2} - C_{55} \right)}{C_{33}C_{55}}, \tag{3b}
\]

where \(\rho \) is the plate density, \(\omega \) is the angular frequency, and \(C_{11}, C_{33}, C_{13} \) and \(C_{55} \) are the stiffness coefficients of the transverse isotropic plate. Following equation (32) of Rhee et al. (2007), the dispersion equation of the symmetric Lamb modes \(S_n \) can be written as

\[
(C_{33}R_- k_{3-} + C_{13}k_1)(R_+ k_1 + k_{3+}) \sin(k_{3+}h/2) \cos(k_{3-}h/2) \\
-(C_{33}R_+ k_{3+} + C_{13}k_1)(R_- k_1 + k_{3-}) \sin(k_{3-}h/2) \cos(k_{3+}h/2) = 0, \tag{4a}
\]

with \(h \) the plate thickness (figure 1). Following equation (34) of Rhee et al. (2007), the dispersion equation for the anti-symmetric modes \(A_n \) is obtained by inverting the + and − subscripts inside the parentheses in (4a):

\[
(C_{33}R_+ k_{3+} + C_{13}k_1)(R_- k_1 + k_{3-}) \sin(k_{3-}h/2) \cos(k_{3+}h/2) \\
-(C_{33}R_- k_{3-} + C_{13}k_1)(R_+ k_1 + k_{3+}) \sin(k_{3+}h/2) \cos(k_{3-}h/2) = 0. \tag{4b}
\]
References

Dayal V and Kinra V K 1989 Leaky Lamb Waves in an Anisotropic Plate: 1. An exact solution and experiments
 J. Acoust. Soc. Am. **85** 2268–76

Rhee S H, Lee J K and Lee J J 2007 The group velocity variation of Lamb wave in fiber reinforced composite plate
 Ultrasonics **47** 55–63