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Abstract
Modern quantum optics encompasses a wide field of phenomena that are either related to the
discrete quantum nature of light, the quantum wave nature of matter or light–matter interactions.
We here discuss new perspectives for quantum optics with biological nanoparticles. We focus in
particular on the prospects of matter-wave interferometry with amino acids, nucleotides,
polypeptides or DNA strands. We motivate the challenge of preparing these objects in a
‘biomimetic’ environment and argue that hydrated molecular beam sources are promising tools
for quantum-assisted metrology. The method exploits the high sensitivity of matter-wave
interference fringes to dephasing and shifts in the presence of external perturbations to access
and determine molecular properties.

Keywords: matter waves, biomolecular quantum optics, quantum assisted metrology

(Some figures may appear in colour only in the online journal)

1. Matter-wave interferometry: from the foundations
of physics to biomolecule metrology

The wave-particle duality is often seen as the basis of modern
quantum mechanics since our best non-relativistic description
of nature, the Schrödinger equation, was strongly inspired by
wave mechanics even before Louis de Broglie’s hypothesis
[1] was experimentally confirmed [2, 3]. Matter-wave physics
has become an essential part of modern physics and the basis
for fast evolving technologies using electrons, neutrons,
atoms and even complex molecules as quantum probes.

The wave nature of electrons rules atomic, molecular and
condensed matter physics as well as chemistry in a rather
obvious way because it influences all interatomic bonds. Also
biology is affected by matter-wave phenomena on the small
scale, when enzymatic activities are driven by electron [4, 5]
and proton tunneling [6] or when the energy transport in light
harvesting complexes depends on exciton coherence over
single-digit nanometer distances [7, 8].

Diffraction of neutrons became a powerful tool for con-
densed matter research [9] and neutrons were the first neutral
quantum particles to serve in matter-wave interferometers for
tests of fundamental quantum physics [10, 11].

Atom diffraction was seen as early as in 1930 by Ester-
mann and Stern [12] but atom optics became a research field
only 50 years later [13–20]. With the advent of laser cooling
[21–23] the field has rapidly grown and quantum degenerate
atomic gases [24, 25] are nowadays used around the world,
also in advanced matter-wave sensors [26, 27]. Several
research groups are currently developing atom interferometry
into a reliable technology for ultra-sensitive force measure-
ments [28–31] with applications in geodesy, prospection of
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natural resources, inertial navigation and tests of quantum
physics at the interface to general relativity [32, 33] and
cosmology [34].

Diffraction and interference of small molecules began
with the surface diffraction of H2 in 1930 [12]. In the mid-90s
diffraction of small helium clusters [35], Mach-Zehnder
interferometry of Na2 [36] or Ramsey-Bordé interferometry
of I2 [37] and SF6 [16] opened new avenues for molecular
quantum optics. Recently, it even became possible to prepare
Bose–Einstein condensates of diatomic molecules [38, 39].

Considering this progress, it is natural to ask how to
extend quantum optics to ever more massive and complex
objects [40]. In response to this challenge the first diffraction
of C60 fullerenes [41] triggered the development of new
interferometer schemes [42–44], advanced diffraction ele-
ments [45–47] and new detection methods [48–50] for mat-
ter-wave interferometry with macromolecules. A plenitude of
recent experiments demonstrated the wave nature of more
than two dozens of different organic molecules and molecular
clusters, with masses ranging between 300 and beyond
10 000 amu [51], and de Broglie wavelengths of
l = 0.3 5 pm.dB – The transverse coherence typically covers
several hundred nanometers over coherence times up to the
millisecond scale. This suggests that the capability of modern
experiments has reached a state where interferometry with
biologically relevant nanomaterials is becoming feasible,
including for instance vitamins and amino acids, peptides,
proteins, nucleotides or RNA/DNA strands.

2. Motivation of quantum interferometry with
biologically relevant molecules

We see a five-fold motivation for quantum coherence
experiments with biological nanoparticles:

2.1. The intellectual challenge

Since we have seen quantum interference with complex
organic molecules, the question arises if we can use similar
techniques for matter of biological relevance, maybe even on
objects that carry the code for self-replication. If that can be
done, what are the prospects for the delocalization of quantum
systems that are capable of sustaining life on the microscale?
This question was taken to the extreme in Erwin Schrö-
dinger’s thought experiment of a cat in a quantum super-
position of being dead and alive.

Matter-wave interferometry with biomolecules mimics
Schrödinger’s cat, when we replace the state of ‘dead-and-
alive’ by the state of a molecule being ‘left-and-right’ in an
interferometer with macroscopically distinct arms. One might
argue that the delocalization of a composite system differs
from Schrödinger’s thought experiment by the lack of
entanglement. The cat analogy is, however, justified for N
atoms strongly tied into a single molecule: When they
coherently pass a double slit, they realize a mode entangled
with the vacuum y µ ñ ñ + ñ ñN N00 ,L R L R| | | | | i.e. a coherent
superposition of two situations, where all N atoms of the same

molecule are passing the left while the right opening remains
empty and vice versa. It has been a matter of debate whether
such single-particle states should be identified with entan-
glement. One may however argue, that these states can in
principle be mapped onto an entangled two-particle state,
which can be used in tests of Bell’s inequalities [52] and
macrorealism [53, 54]—even if the practical implementation
of this feat still represents a substantial challenge.

The cat experiment can be approximated by a many-body
system of high mass, high internal complexity, elevated
temperature and eventually biological functionality. These
criteria are increasingly well fulfilled by amino acids
(  ´m 2 10 amu2 ) and vitamins <m 10 amu ,3( ) polypep-
tides and short DNA strands (3×102–6×103 amu), pro-
teins (104–106 amu) and long RNA or DNA sequences up to
viroids and plasmids >m 10 amu ,5( ) leading to viruses
(m∼106–107 amu) and eventually bacteria >m 10 amu8( )
or bigger entities.

2.2. Nanotechnology made by nature

Even 90 years after the formulation of Schrödinger’s quantum
mechanics it is still a matter of debate, whether the apparent
absence of quantum superposition in our macroworld is suf-
ficiently explained by quantum decoherence [55–60]. Other
hypotheses suggest amending the theoretical description by
nonlinear terms, which are often associated with spontaneous
[61–63] or gravitationally induced wave function collapse
[64–66]. Quantum interference experiments with very mas-
sive particles are a viable approach to test such ideas [40, 67–
69]. However, they often require freely propagating neutral
particles beams and generating them has remained a challenge
until today. We propose to exploit nature’s capability in
assembling and preselecting functional units such as proteins
or DNA with an amazing accuracy and reproducibility, also
for quantum optics experiments. The transfer of these units
into sufficiently intense molecular beams is one of the key
challenges of such studies and the present work describes in
particular progress and perspectives around this question.

2.3. Decoherence

Matter-wave physics even with viruses or bacteria would not
necessarily address the role of quantum mechanics ‘in biol-
ogy’ because living objects usually interact with their
environment. In living organisms this seems to restrict matter
delocalization to sub-nanometer and sub-nanosecond time
scales [8]. Quantum optics may, however, reveal insights into
the role of conformation and structure of biomolecules for
their coupling to the environment. The interaction between a
quantum particle and its environment is one of the principle
path-ways to classical appearances. Even though emission or
collision processes must also be described by quantum phy-
sics, their sheer number in a complex many-body system and
the impossibility to track them all in an experiment, may
effectively wash out all phases that distinguish quantum from
classical phenomena [55, 59, 60, 70]. In comparison to
homogeneous nanoparticles or clusters, biomolecules are
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complex many-body systems with a broad range of electric,
magnetic, optical and structural properties that render quant-
um decoherence studies intriguing.

2.4. Interference-assisted measurements of (bio)molecular
properties

Modern interferometers [68] (figure 1) generate nanoscale
fringes of molecules. As the position of these molecular
‘rulers’ can be shifted by external perturbations and because
fringe shifts can be read with nanometer accuracy, matter-
wave interferometers are sensitive tools for molecule
metrology. Their classical analogs, i.e. three-grating deflect-
ometers have been successfully used in gravimetry before
[71]. The position sensitivity of such classical instruments
increases with decreasing grating period. When the grating
period becomes smaller than l=d L ,dB and the distance L
between two gratings is comparable to the Talbot length, such
instruments natively operate in the quantum regime. Simi-
larly, deflectometers in the time domain that use three pulsed
photo-depletion gratings, become genuine quantum devices

as soon as the pulse separation time is comparable with the
Talbot time T d m h.2 Both conditions, in position space
and in the time domain, ensure that the molecular coherence
function is delocalized by more than one grating period of the
second grating.

2.5. Interference-assisted metrology in a biomimetic
environment

In all molecule interference experiments to date, the quantum
particles have been isolated in a high vacuum to protect them
from position-resolving interactions with their environment
[70]. We here suggest packaging biomolecules in their own
microcosmos, pictorially speaking to provide a ‘natural
habitat’ for Schrödinger’s cat. We ask in particular whether
biomolecules can experience quantum delocalization while
being immersed in a biomimetic environment, i.e. while being
multiply hydrated in a small water cluster. This is of particular
interest for quantum-assisted measurements on molecules of
biological relevance where the addition of water may allow to

Figure 1. Prospects for quantum interference-assisted molecule metrology. (A) The Kapitza–Dirac–Talbot–Lau interferometer [43] consists
of three gratings with a fixed mutual distance L. It has been successfully applied to numerous organic molecules, also in quantum-assisted
metrology [68, 79]. (B) OTIMA interferometry [44] uses three retro-reflected nanosecond pulsed photo-depletion gratings to realize three
absorptive masks that remove molecules from the antinodes of the grating. The pulsed nature of the grating structure allows suppressing
various dispersive phase shifts and opens a window to time-resolved metrology. In both cases, metrology relies on the fact that matter-wave
physics leads to the formation of molecular density patterns on the nanoscale. Interaction of the delocalized molecules with electric, magnetic
and optical fields or collisions with directed atoms and molecules will shift these fringes. This is depicted in (A) by a deflector electrode and
by a running light wave in (B). The high sensitivity of these instruments derives from the fact that even minuscule perturbations—as for
instance imparted by single photons interacting with single molecules—shift the matter-wave fringes by an amount that is readily resolved.
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elucidate the influence of the solvent on conformation, fold-
ing or spectral properties.

In the following we sketch recent experimental progress
and a conceivable roadmap towards quantum experiments
with biomolecules in a biomimetic environment. We note that
the technological challenges for molecules up to about
m<3000 amu are different from those around m
;104−105 amu. The lower mass range is already accessible
using vaporization into a noble gas and VUV photoionization
[72]. In this mass range, precision experiments are particu-
larly relevant because they can be compared with advanced
computational studies. In contrast to that, molecular beam
methods for neutral high-mass proteins and DNA strands, as
required for high-contrast matter-wave interferometry, are still
at an early experimental stage.

Section 3 introduces the Vienna molecule interferometers
and their use in quantum-assisted metrology. Section 4 dis-
cusses open challenges in the physical chemistry of amino
acids and polypeptides and identifies a number of intriguing
questions that shall become accessible in molecule inter-
ferometry. Section 5 demonstrates the feasibility of sources
that can deliver biomolecules of interest in a high vacuum
environment under conditions compatible with current matter-
wave interferometers—also with the potential for hydration.
Section 6 concludes, with an additional perspective on
interference experiments with high-mass biomolecules.

3. State of the art and perspectives in quantum-
assisted molecule deflectometry

Quantum-assisted molecule metrology is based on the idea
that matter-wave interferometry can transform extended
molecular beams into a nanoscale patterns. Shifts of this
fringe pattern in the presence of external fields can be probed
by sampling the molecular beam with an absorptive mask of
commensurate period [73] or even be seen using nanoscale
imaging [49].

The interferometers at the University of Vienna consist of
three gratings positioned in a near-field arrangement, named
after Henry F. Talbot and Ernst Lau. It was first proposed
[74, 75] and implemented for atoms [76, 77] by John Clauser
and realized in our group for macromolecules in different
variations: first as Talbot–Lau interferometer with three
mechanical gratings (TLI) [42, 78], as Kapitza–Dirac–Tal-
bot–Lau interferometer (KDTLI) with a central phase grating
[43, 73] and recently as optical time-domain matter-wave
interferometer (OTIMA) with three optical gratings [44]. All
three variants contain three periodic structures (see figure 1)
to prepare spatial molecular coherence (G1), to impose
quantum diffraction (G2) and to probe the emerging mole-
cular interference pattern (G3).

Even for initially incoherent molecular beams, each slit
in G1 confines the molecular location to an extent that the
ensuing momentum uncertainty spreads the coherence func-
tion over at least one grating period in G2. For that to happen,
G1 needs to be absorptive, which can be realized by a

nanomechanical mask (KDTLI) or by using a photo-depletion
grating (OTIMA) [46, 79].

In figure 1 and due to our present interest in biomolecules
we limit our discussion to the KDTLI and OTIMA design,
where G2 is realized as a standing light wave. When the
molecules arrive at the second grating each molecule is
delocalized and interacts with more than one antinode of G2.

The subsequent free evolution of the wave function leads
to the formation of a periodic pattern of the molecular density,
i.e. a set of interference fringes which can be sampled in
comparison with the transmission mask G3 [43]. The fringe
spacing is d 79 nm (in OTIMA) and d 266 nm (in
KDTLI) and can be resolved with an accuracy that is pri-
marily determined by signal-to-noise, in practice to better
than 5% of the grating period. Both of these instruments can
be operated with de Broglie wavelengths down to about
´ -3 10 m13 in their current setting in the Vienna labora-

tories. This corresponds for instance to the value of the 15
amino acid polypeptide gramicidin D or a DNA strand with
three base pairs ( m 1800 amu) entrained in a cold super-
sonic noble gas jet at 600 m s−1.

Higher masses and more complex biomolecules will
become accessible if the beam is slow [80] or the inter-
ferometer is stretched. Narrower fringe periods can be
achieved when the gratings are positioned in a fractional
Talbot order [81] and when the grating slit width is reduced to
a small fraction of the grating period.

Measurable fringe shifts may already be imposed by
subtle external perturbations: non-polar or floppy polar
molecules of electric susceptibility c a= + á ñd k Tx Bel

2 will
experience a lateral force cµ ⋅ EF Eelx x( ) that depends on
the internal molecular structure—characterized by the polar-
izability a, the projected dipole moment dx and the micro-
canonic molecular temperature T—as well as the local electric
field E [82, 83].

Molecular matter-wave interferometers have already
provided new information on electrical, optical and structural
properties [82–89]. Similar applications are envisaged in the
presence of magnetic fields for molecules with magnetic
dipole moments or aromatic compounds with high magnetic
susceptibility. Even the momentum recoil imparted by the
absorption of a single photon onto a fraction of all molecules
will change the interference pattern measurably [85, 90].
Combining these elements may also enable new studies on
photo-isomerization and photochemistry of biomolecules,
also in a hydrated environment.

4. Prospects for interference-assisted metrology on
hydrated biomolecules

The influence of hydration on the structure and dynamics of
biomolecules in the gas phase has recently attracted much
attention in biophysical chemistry [91–96]. The addition of
water molecules to amino acids or peptides enables studies on
the transition between molecular structures in the gas phase
and in solution. How many water molecules are needed to
cause that transition depends on many details [97–99].
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The addition of water can also stabilize non-canonical
tautomers of single nucleic bases [100–102]. This mechanism
has been discussed as a source of spontaneous mutations in
DNA [103]. The effect of hydration on the conformation
space of flexible molecules has been studied for amino acids
[104, 105], neurotransmitters [106–108], sugars [109–111],
and oligonucleotides [112–114]: it may reduce the number of
conformations even down to a single conformer [106] but it
may enable new conformations, too [115].

Hydration effects in the folding of small peptides have
been investigated using infrared spectroscopy [113, 116, 117]
and for larger peptides structural transitions in the gas phase
are often inferred from the number of absorbed water mole-
cules and collision cross sections [93]. Solvation may also
have a strong influence on the electronic structure of amino
acids [118] and the excited state dynamics of DNA bases
depend critically on solvation [119, 120]. We here discuss
how to address some of these questions also in matter-wave
interferometry.

4.1. Molecular beam deflection

Early work in physical chemistry has shown the power of
classical deflectometry in the analysis of oligopeptides [121–
124]. This idea can be extended to quantum deflectometry,
which is less invasive because it can operate with higher
spatial resolution and weaker electric fields. This is for
instance interesting for studies of the transition between
alpha-helices, beta-sheets and random coils in alanine-rich
peptides, where the stability depends on the applied electric
field and the internal temperature [125, 126]. Such peptides
form stable helices in the liquid phase, but their gas phase
structure still requires elucidation. The addition of water
molecules may foster the transition to the helix and water
molecules between different binding sites may restrict the
number of conformations to a single one. This stabilization of
a specific conformer in water will influence the measurement
of the molecule’s electric dipole moment and become visible
in interferometric deflection studies.

4.2. Single-photon recoil spectroscopy

For various molecules of biological relevance, the electronic
structure is little known when they are isolated in the gas
phase. It is not easily accessed by conventional methods,
especially when the absorption cross sections are small. In
such cases, the absorption of a single-photon by only a
fraction of all molecules in the beam already modifies the
interference fringes and thus reveals the absorption cross
sections. This interference-assisted absorption measurement
has already been demonstrated to work for very dilute
molecular samples and it is even applicable to particles that
do not fluoresce [85, 90]. Such measurements have the
potential to identify states and transition strengths eventually
also in systems that undergo fast internal relaxation processes.

The conformational state of gas phase biomolecules is
usually characterized by vibrational or rotational spectroscopy
[127] which sheds light on the molecule’s surrounding,

solvation or conformation. We suggest that IR spectroscopy
can also be realized in matter-wave interferometry, if the
transverse delocalization of the wave function is comparable
to the IR wavelength.

4.3. Perspectives for a dehydrating matter-wave beam splitter

The single-photon-induced removal of one or several H2O
molecules from a hydrated compound may also become the
basis for a diffraction grating, as shown in figure 2. It would
act in close analogy to the photo-induced fragmentation
grating, which has recently been experimentally demonstrated
for weakly bound van der Waals clusters [47]. It can be useful
in cases where other single-photon effects fail to deplete the
molecular beam [44]. This may prove beneficial for experi-
ments with polypeptides and oligonucleotides, only few of
which have so far been successfully photo-ionized at acces-
sible laser wavelengths above 157 nm [128].

The photo-depletion process may be triggered or com-
pleted by a single UV or VUV photon. For large particles
with high heat capacity we propose that sufficient heat can be
provided in a two-stage process, where the absorption of a
single photon in the antinode of a UV laser grating transfers
each molecule to an electronically excited state where it may
be heated by an intense infrared running wave. The frag-
mentation of excited state molecules in CO2 laser light has
recently been successfully demonstrated [129]. Position
selectivity can be achieved if the absorption cross sections of
the vibrationally cold ground state and the hotter excited state
differ by more than two orders of magnitude. Since water
molecules are bound by hydrogen bonds, they should be
emitted and cool the molecule before it breaks any covalent
bond. Dehydration shall therefore be explored as a potentially
effective beam depletion mechanism—and therefore poten-
tially general matter-wave beam splitter. This requires that the
fragmentation recoil removes the depleted molecules from a
molecular beam that is typically collimated to about one
milliradian.

Figure 2. Proposed beam splitter based on the dissociation of
biomolecular water clusters. Clusters which pass by the antinodes of
the standing light wave can be electronically excited by a single UV
photon (1) while those which move through a node remain in their
electronic ground state (2). An intense running wave IR laser beam
can selectively induce the dissociation of excited state molecules
when it is sufficiently far-detuned with respect to the vibrational
frequencies of the electronic ground state.

5

Phys. Scr. 91 (2016) 063007 Invited Comment



4.4. Dehydration decoherence?

In all these envisaged experiments the combined system of a
molecule and its water adducts must remain stable during its
transit through the interferometer. The thermal evaporation of
a single water molecule would be sufficient to lose the
molecule from the beam or to encode which-path information
and decoherence. In practice, however, the reemission of
water even from room temperature molecules is restricted to
the sub-nanosecond scale and thus only possible in the source
region [130]. At later times, the evaporation rate is governed
by the absorption of blackbody radiation. ESI studies found
[131] rates of 0.05–0.1Hz, which is well compatible with the
expected coherence times for protein interferometry
(10−4

–10−2 s).

5. Cold beams of biomolecules and biomolecular
clusters

5.1. Seeded jet expansion sources

In order to prepare matter-wave assisted metrology experi-
ments, we are particularly interested in intense sources for
biomolecules in the mass range of up to 3000 amu. While
thermal sources are still suitable for some small biomolecules,
most of all larger biomolecules tend to fragment upon
extended heating. This can be circumvented by short-pulse
laser desorption. As shown in figure 3, we here explore both
methods and couple them to the adiabatic expansion of a
noble gas, which provides the required cooling to keep the
molecules intact and to allow for the formation of peptide–
water clusters, too.

In figure 3(A) the molecules are heated inside the small
capsule sealed onto an Even-Lavie valve [132]. A 20 μs long
gas jet expands into high vacuum to form a molecular beam
that has enabled OTIMA interferometry with clusters of
anthracene [44], hexafluorobenzene and vanillin [47]. We
here extend the source to the use of hydrated biomolecular
clusters and show in figure 4(a) that (Vanillin)n H O m2( )
clusters can readily be generated, at least up to the double
pentamer.

In order to extend the mass range to large polypeptides
we use pulsed laser desorption (1064 nm) [122, 133, 134]
from a glassy carbon wheel, as shown in figure 3(B). The
wheel can be continuously coated in high vacuum with any
biomolecule of interest [135]. The excess desorption energy is
removed in fast collisions with the expanding noble gas,
where the molecules are pushed to velocities up to 600 m s−1

by room temperature argon atoms. State of the art molecule
interferometry is currently compatible with de Broglie
wavelengths down tol = 0.3 pm.dB The adiabatic cooling is
therefore still compatible with particles up to 2000 amu at
room temperature or up to 4000 amu in cryogenic gases. This
covers peptides in the range of 8–15 amino acids, such as for
instance the family of linear gramicidins, indolicidin, brady-
kinin and others.

The time-of flight mass spectra of clusters of tryptophan
(Trp) and indolicidin are shown in figures 4(b) and (d). The
peptides and amino acid clusters are detected by single-pho-
ton ionization using light of a fluorine laser emitting at
157 nm. Such vacuum ultraviolet radiation is well-suited for
tryptophan-rich polypeptides, since among all 20 natural
amino acids only some conformers of tryptophan exhibit an
ionization energy of less than 7.89 eV.

Figure 3.Molecular beam sources. (A) Small biomolecules can be evaporated thermally and co-expanded in a supersonic noble gas jet. This
leads to well-directed beams with high forward velocities and temperatures low enough for efficient clustering of biomolecules and water
adsorbates. (B) For less volatile particles, such as polypeptides or proteins the interaction with the heating source needs to be kept short.
Nanosecond laser desorption into the supersonic jet proves powerful in getting such species isolated and as small clusters into a directed
molecular beam: The transfer from the sample supply slide (1) to the desorption wheel (2) is made via a soft felt wheel. The glassy carbon
wheel (2) turns at about 1 Hz to expose a fresh sample spot for every laser shot. The desorbed molecules are injected into a noble gas beam
emerging from a cold pulsed valve (3). The molecules are cooled in the gas expansion and form clusters with water inside a 40 mm long
collision channel (4).

6
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Figure 4. (a) Hydrated clusters of vanillin, generated in free supersonic noble gas expansion. Here the intensity of the pure n=2 cluster
drawn in red is artificially reduced by a factor of 0.5. The inset shows up to the m=5 water cluster. (b) Pure tryptophan clusters (Trpn,,
n=1–30) and (c) their respective water clusters (Trpn(H2O)m) can be prepared by thin-film laser desorption into a noble gas jet. The inset in
(c) illustrates this for the n=3, m=0–4 cluster. The same method is capable of producing beams of polypeptide monomers and their water
clusters as shown for (d) indolicidin [136] and (e) multiply hydrated gramicidin D [137]. The asterisks in (c) and (d) denote spurious sample
fragments and impurities.
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Water clusters can be formed by mixing the polypeptide
with water in a collision channel. We find that water clusters
up to the H2O pentamer are well seeded. Tryptophan is easily
decorated by up to the water pentamer figure 4(c), as required
for the studies proposed in section 4. The 15-amino acid
peptide gramicidin can be coated with more than 20 water
molecules, as shown in figure 4(e).

5.2. Size-selected water clusters in interferometry?

Seeded gas expansion sources are powerful tools, as they
deliver rather intense and directed molecular beams. How-
ever, they generate clusters only with statistical control over
the number of water adducts. Although standard mass
detectors could easily detect the attachment of a single water
molecule, water can also be detached in parallel to the
ionization process in the mass detector itself. The detection
laser scrambles the mass distribution if the deposition of
excess energy leads to the evaporation of water molecules.
This effect can be minimized and in some cases eliminated by
single-photon or resonantly enhanced multi-photon ioniz-
ation [138].

Differentiating between the sources of fragmentation—in
the source, in free flight or in the detector—is a general
challenge of physical chemistry. Matter-wave interferometry
may help in clarifying these questions, as long as the number
of decay pathways is small [87]. Since modern inter-
ferometers can accept a broad distribution of wavelengths one
can then, therefore, still deduce information about the dif-
ference between hydrated and anhydrated particle.

Hydrated beams are well compatible with electric or
magnetic deflectometry in conservative fields.

Photo-induced dehydration needs, however, to be con-
sidered in recoil spectroscopy because the absorption process
results in heating and possibly subsequent fragmentation/
dehydration. For small molecules or multi-photon spectroscopy
this can be a decoherence mechanism if the absorbing mole-
cules remain in the detected molecular beam. However, such
decoherence may also be exploited as a spectroscopic signature,
if one can reference the spectroscopy signal to the molecular
interference pattern in the absence of the exciting light. Finally
for large molecules, the heat capacity and density of states are
expected to become sufficiently large for fast internal energy
relaxation processes to dominate over dehydration.

6. Perspectives for quantum optics with high-mass
biomolecules

Our discussion so far was focused on challenges and promises
with biomolecules up to about 3000 amu. In this mass range,
sources have become practically available and they will soon
enable new experiments at the interface between quantum
optics and biophysical chemistry. For proteins or DNA
strands in the mass range of 104–105 amu, pulsed laser des-
orption is still a viable launching method, but if we aim at de
Broglie wavelengths above 10−13 m and lasting coherence we
also require low internal temperatures (below 80 K) and low

velocities (several 10 m s−1). This goal may be achieved by
advanced buffer gas cooling methods [139, 140] but it is still
an experimental challenge.

Alternatively, one may consider singly charged ions as
precursor particles. Charged particles are also easily
manipulated and guided using ion optics. While matrix-
assisted laser desorption ionization produces pulsed beams of
dominantly singly charged particles, electrospray ionization
(ESI) generates continuous beams of highly charged species.
Charge reduction techniques [141] then need to be combined
with continuous quadrupole mass filtering to generate a
monodisperse ion beam. Mass-selectivity in the source is
particularly important when the detector lacks this capability
in favor of much higher sensitivity. This is for instance the
case in single molecule fluorescence detection [49].

Cold, slow and even hydrated particles may be generated
in reactions with a cold buffer gas. The exploration of this as
well as the subsequent neutralization still requires future
studies, but photo-detachment is a promising candidate for
soft neutralization in many cases.

Many developments in the field are very challenging and
potentially very rewarding. Existing matter-wave inter-
ferometers are already capable of operating with organic
molecules composed of more than 800 atoms. Quantum
optics with biomolecules is now about to generalize this
capability to a new class of particles to shed new light on
fundamental questions of physics and to prepare advanced
measurements at the interface to biophysical chemistry.
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