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Abstract
Some recent results concerning a particle confined in a one-dimensional box with moving walls
are briefly reviewed. By exploiting the same techniques used for the 1D problem, we investigate
the behavior of a quantum particle confined in a two-dimensional box (a 2D billiard) whose
walls are moving by recasting the relevant mathematical problem with moving boundaries in the
form of a problem with fixed boundaries and time-dependent Hamiltonian. Changes of the shape
of the box are shown to be important, as it clearly emerges from the comparison between the
‘pantographic’ case (same shape of the box through the entire process) and the case with
deformation.
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1. Introduction

Over the decades, several authors have dealt with the problem
of physical systems with moving boundaries, both in quantum
field theory, especially in connection with the Casimir effect
[1, 2], and in the context of quantum mechanics, for example,
in connection with the Fermi problem of a quantum bouncer
[3]. Over the years, several works appeared studying the
problem of particles confined in a box with moving walls [4–
8], sometimes focusing on boundaries having specific shapes
[9–11]. The study of this kind of problems is relevant to
several conceptual aspects of quantum mechanics, from the
analysis of the semiclassical limit of a quantum (chaotic)
system [12–15] to the incoming of geometric phases [16], and
it is connected with the derivation of analytical solutions of
the dynamics of systems governed by such mathematically
complicated potentials as delta functions [17]. The interest in
such a class of problems is present in different physical sce-
narios and can lead to intriguing applications. For example, in
the field of cavity quantum electrodynamics appeared a study

of the implications of small displacements of the mirrors on
the dynamics of an atom interacting with the cavity modes
[18]. On the other hand, cooling techniques of trapped par-
ticles based upon exploitation of expanding boxes have been
proposed [19]. Furthermore, the study of two particles in a
box with moving boundaries has been recently presented, and
the relevant results suggest the idea of an effective interaction
between the particles induced by their common interaction
with the moving walls [20]. The problem of many particles in
a box with moving walls (possibly in higher dimensional
situations) has also been treated, especially in connection with
shortcuts to adiabaticity and in the context of Bose–Einstein
condensates [21, 22].

In this paper, we firstly review some recent results con-
cerning the dynamics of a particle confined in a one-dimen-
sional box, pointing out the delicate mathematical aspects of
this class of problems and presenting an approach to over-
come the relevant difficulties [8]. Secondly, on the basis of
this approach, we report on the analytical study of a wide
class of problems of a single particle in a two-dimensional
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box whose walls are moving. In fact, following the way paved
in [9] for a 2D elliptical billiard and in [8] for a 1D box, we
transform the original problem of a system with changing
boundaries into the problem of a system with fixed bound-
aries governed by a time-dependent Hamiltonian. Generally
speaking, resolution of dynamical problems in the presence of
time-dependent Hamiltonians is a hard task; hence complete
or partial analytical solutions are known only in special cases,
for example, in the adiabatic limit [23] or in the presence of
periodical potentials [24–26]. In most cases, perturbation
theory [27–30] or numerical methods [31–33] are the only
effective ways to solve such problems.

In our case, we will exploit the standard perturbation
approach in order to bring to light some new effects. We will
show that the very novelty in the study of 2D and 3D pro-
blems with respect to the one-dimensional case is the role of
the shape of the moving box, which is obviously absent in the
one-dimensional case. In fact, for two- and three-dimensional
boxes, we can consider two classes of problems: on the one
hand the ones that we dub as ‘pantographic’, where the
dimensions of the box change but its shape remains invariant;
on the other hand the cases where the shape (and possibly the
dimensions) of the box changes, meaning that we are in the
presence of ‘deformation’ of the contour. We start our ana-
lysis by constructing the framework of the most general case
of a 2D box undergoing dilation and deformation, then we
proceed by specializing our analysis to the pantographic case
and eventually we present a perturbative treatment of the
problem where the shape of the boundary is only slightly
modified (small deformations). Though in [10] and [11] three-
dimensional dilating domains have been considered, the role
of deformation has not been treated in such works. On the
contrary, in [9] an elliptical billiard is analyzed whose axes
have time-dependent lengths, focusing in particular on the
case where the lengths of the axes are oscillating at a given
frequency, and then numerically evaluating the dynamics of
the particle in the moving box. Albeit the authors succeed in
going through many details, their analysis is strictly related to
a specific geometry. Our work is different since we aim at
describing the very more general situation wherein the shape
can be modified in any possible way, provided the domain is
kept as a star domain. In fact, we will write down the relevant
general equations and will study them under the assumption
that the deformation can be considered as a perturbation. On
this basis, we will evaluate the time evolution through the
standard approach in a specific case (a circle which is
deformed to an ellipse).

The paper is organized as follows. In the next section we
summarize some recent results related to the one-dimensional
problem, also presenting the general approach of [8] (which is
analogous to that of [9]) that we will use through the entire
paper. In section 3 we introduce the problem of a two-
dimensional box whose border is changing, defining the two
classes of pantographic changes and changes with deforma-
tion. In section 4 we study the pantographic case, while in
section 5 we use perturbation theory to study the effects of
deformation of the border of the box. Finally in section 6 we

provide some conclusive remarks and very briefly discuss the
extension of the results to the three-dimensional case.

2. Summary of previous results: the one-
dimensional problem

2.1. General framework

A (free) non-relativistic quantum particle of mass 0μ >
confined in a certain domain  is formally described by the
usual (free) particle Hamiltonian in the space region corre-
sponding to the box,

H
2

, (1)
2

2
μ

= − 

imposing suitable boundary conditions in such a way that H is
self-adjointing. One of the possibilities is that the wave
function of the particle is vanishing in the border of the box
( )∂ :

r r( ) 0, . (2)ψ = ∀ ∈ ∂

Now, if the domain  is not static, there is a nontrivial
technical problem in the resolution of the Schrödinger
equation related to the fact that we have to solve a differential
equation in a Hilbert space that is continuously changing, so
that, for example, the time derivative of the wave function is
not well defined in the border of the box. Indeed, if r0 is a
point of the border at time t td+ , which does not belong to
the border at time t, then the quantity

t t t tr r( ( , d ) ( , )) d0 0ψ ψ+ − is meaningless. According to
the approach in [8], this difficulty can be overcome by
enlarging the domain of definition of the Hamiltonian in such
a way that the operator acts as the usual (free) particle
Hamiltonian in the space region corresponding to the box and
is zero elsewhere (i.e., in the complement ̄ ):

H
2

0. (3)
2

2 ¯ μ
= − ⊕

Of course, the condition expressed by equation (2) that the
wave function of the particle vanishes in the border of the box
will be kept. In this way, the wave function turns out to be
properly defined for any r, being zero out of the box. Though
the most natural choice for the extension of the Hamiltonian
would be to put the operator equal to infinity out of the box
(which is also a better description from the physical point of
view), we stress that here the main reason for extending the
Hamiltonian operator is that we want to extend the wave
function out of the box. Now, since the wave function is
already vanishing out of the box because of the boundary
conditions, any extension of the Hamiltonian would be fine,
in the sense that the specific choice of the form of the operator
out of the box is irrelevant to the dynamical description of the
system. Therefore, we have decided to exploit the simplest
mathematical extension.

In order to better treat the dynamical problem associated
with equation (3), we can map it to the problem of a particle
in a fixed domain, say 0 , governed by a suitable effective

2
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time-dependent Hamiltonian, Heff :

H H 0, (4)eff ¯0 0 = ⊕

r r( ) 0, . (5)0ϕ = ∀ ∈ ∂

This passage can be done through the action of a suitable
unitary operator.

2.2. The one-dimensional box

Reference [8] studied the case of a particle in a one-dimen-
sional box when both of its walls are moving, each one with
its own velocity; stated another way, the size of the box is
changing and at the same time the center of the box is
moving. For the sake of simplicity, we will summarize the
results when the center of the box is quiet, so that the particle
domain is Rx Rx[ 2, 2]0 0 = − , with R the dilation dimen-
sionless parameter. This problem is then mapped to the one
related to the box delimited by x x[ 2, 2]0 0 0 = − . The
relevant transformation is given by the unitary operator U
such that

x U x R Rx( ) ( )( ) ( ). (6)1 2ϕ ψ ψ= =

Under this transformation, the original Hamiltonian,

H
x2

0, (7)
2 2

2
¯ μ

= − ∂
∂

⊕

is replaced by the new generator of the time evolution:

H
R x

R

R
x

2
i

˙ 1

2
0. (8)

x

2

2

2

2
¯0 0

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ 

μ
= − ∂

∂
+ + ∂

∂
⊕ 

The price to pay to obtain static boundaries is to make the
Hamiltonian explicitly time-dependent. In particular, in this
case we have obtained that the kinetic energy in the new
picture is that of a particle with changing mass (as an effect of
the presence of the dilation parameter R in the denominator).
Moreover, the particle is subjected to an additional energy
term, the one proportional to R R˙ , which is nothing but UUi ˙ †,
i.e., the generator of the dilation. It is worth noting that among
the two terms, only the first one preserves the physical
meaning of energy of the particle, being the result of a unitary
transformation of the original energy operator. The second
term instead is relevant only for determining the dynamics of
the particle in the new picture.

Now, since the term x x∂ does not commute with the
operator x

2∂ , the kinetic energy of the particle is not conserved
during the process. The relevant energy rate equation, which
generalizes and improves the result present in [34], is:

E t
R

R
t t˙ ( )

˙

2
(1 2, ) ( 1 2, ) . (9)

2

3

2 2⎡
⎣⎢

⎤
⎦⎥μ

ϕ ϕ= − ′ + ′ −

This interesting formula shows that the change of energy
is determined by the contact between the particle and the
walls. One could think that a natural generalization of this
would still be valid in a two- or three-dimensional context.
This is what will be shown in the next section, together with
some specific properties that have no analogies in the
1D case.

3. A quantum particle in a two-dimensional box

In order to start our analysis of a two-dimensional problem,
let us consider the case in which the domain of the wave
functions is a star domain lying on a plane and delimited by a
curve γ. We recall here that a region S of n is said to be a star
domain if there exists a point x S0 ∈ such that x S∀ ∈ the
segment x x(1 )0λ λ+ − , for [0, 1]λ ∈ , lies in the interior of
S. Assume that the curve describing the walls of the box can
be represented by the following equation:

r ( ), [0, 2 ], (10)γ θ θ π= ∈

where the origin of the polar coordinates is the center (or one
of the possible centers) of the domain. Here the one-to-one
correspondence between r and θ is guaranteed by the property
of the domain to have a star shape. The region delimited by γ
is expressible as S P r r{ ( , ) ( ), [0, 2 ]} θ γ θ θ π= = ∣ ⩽ ∈γ .
The boundary conditions on the wave function r( , )ψ θ are
expressible as:

( ( ), ) 0, [0, 2 ]. (11)ψ γ θ θ θ π= ∀ ∈

The domain Sγ can be mapped to another domain
( S P r r{ ( , ) ( ), [0, 2 ]0 θ η θ θ π= = ∣ ⩽ ∈η ) by the trans-
formation U acting as follows:

s U s R sR
R

( , ) ( )( , ) ( ) ( ( ), ),
( ) ( ) ( ). (12)

ϕ θ ψ θ θ ψ θ θ
θ γ θ η θ

= =
=

Such transformation is unitary. Indeed,

s s s s

R sR sR s s

r r r r

( , ) ( , ) d d

( ) ( ( ), ) ( ( ), ) d d

( , ) ( , ) d d . (13)

S

S

S

1
*

2

2
1
*

2

1
*

2

∫
∫
∫

ϕ θ ϕ θ θ

θ ψ θ θ ψ θ θ θ

ψ θ ψ θ θ

=

=

η

η

γ

If the boundary is moving, we have that the curve γ changes
and then the function R depends on t, R t( , )θ . Now, for the
2D problem of a confined particle, we have:

H
p

2 2
, (14)

2 2
2

μ μ
= = − 

r r r r

1 1
, (15)2

2

2 2

2

2

⎛
⎝⎜

⎞
⎠⎟

θ
= ∂

∂
+ ∂

∂
+ ∂

∂

( )U r
R t

r R t( , )
1

( , )
( ( , ), ), (16)†ϕ θ

θ
ϕ θ θ=

U

t
r

t
U r

t
R t rR t

R t rR t

R t rR t rR t

R t rR t

rR t rR t

d

d
( , )

d

d
( )( , )

d

d
[ ( , ) ( ( , ), )]

˙ ( , ) ( ( , ), )

( , ) ˙ ( , ) ( ( , ), )

˙ ( , )[ ( ( , ), )

( , ) ( ( , ), ) , (17)

1

1

⎜ ⎟⎛
⎝

⎞
⎠

⎤⎦

ψ θ ψ θ

θ ψ θ θ

θ ψ θ θ
θ θ ψ θ θ

θ ψ θ θ
θ ψ θ θ

=

=

=
+

=
+

3
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where kψ is the derivative with respect to the k-th argument.
Then,

( )U

t
U r

U

t R t
r R t

R t

R t
r r r

R t

R t
r

r
r

i
d

d
( , ) i

d

d

1

( , )
( ( , ), )

i
˙ ( , )

( , )
( , ) ( , )

i
˙ ( , )

( , )
1 ( , ),

(18)

†

1

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

ϕ θ
θ

ϕ θ θ

θ
θ

ϕ θ ϕ θ

θ
θ

ϕ θ

=

= +

= + ∂
∂

 





UHU r U
r r r

r R
r R

rR r
r

R r
r

r R
r

R R r
r

R R R r r
r

R R r
r

R r
r

R R r r
r

( , )
2

1

1 1
( , )

2

1
( , )

1
( , )

1
( , )

1 1 1
( , )

1 1 1 1
( , )

2 1 1
( , )

1
( , )

2 1 1
( , ) ,

(19)

†
2 2

2

2

2

2

2

2 2

2

2

2 2

2

2 2

2

2

2 2

2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤

⎦
⎥⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭

ϕ θ
μ

θ
ϕ θ

μ
ϕ θ ϕ θ

θ
ϕ θ ϕ θ

ϕ θ

θ
ϕ θ

ϕ θ

θ
ϕ θ

= − ∂
∂

+ ∂
∂

+ ∂
∂

= − ∂
∂

+ ∂
∂

+ ∂
∂

+

+ + ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

∂
∂

θθ

θ θ θ

θ

θ

θ





where the subindex θ means derivative with respect to θ. It is
worth mentioning two technical aspects relevant to the
previous equations. First, note that the wave functions ψ
and ϕ are assumed to be time independent. Indeed, they are
not meant as solutions of the Schrödinger equation, but as
generic elements of the Hilbert spaces to which they belong.
We just use them to make explicit the action of the operators
considered earlier. Second, when we perform θ-derivatives,
we have to take care of the twofold dependence on θ of the
wave function due to both the ‘natural’ θ-dependence and the
possible additional θ-dependence due to the action of U orU†.
For example, U r R R r( , ) [ ( , )]† 1 1ϕ θ ϕ θ∂ = ∂θ θ

− − , where R in
general is a function of θ.

The effective Hamiltonian associated with the problem in
the fixed domain—H UHU UUi ˙eff

† †= +  —is rather
involved, due to the deformation of the boundary. In fact,
such Hamiltonian can be considered the sum of three terms:

H H H H , (20)eff 1 2 3= + +

H
R2

, (21)1

2

2
2

μ
= − 

H
R

R
r

r
i

˙
1 , (22)2 ⎜ ⎟⎛

⎝
⎞
⎠= + ∂

∂


H
R R r

R R R r r

R R r R r

R R r r

2

1 1 1

1 1 1 1

2 1 1 1

2 1 1
. (23)

3

2

2

2

2

2 2

2

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎡

⎣
⎢⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤

⎦
⎥⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭

μ

θ

θ

= −

+ + ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

∂
∂

θθ

θ θ θ

θ θ

θ



It is worth noting that when the relation between the
moving domain  and the static domain 0 is pantographic,
which means that they have the same shape, the function
R t( , )θ does not really depend on θ and all the terms in H3

vanish. On the contrary, if there is a deformation of the
domain, Rθ is nonzero and H3 is nonvanishing.

We interpret and address the terms in H3 as deformation
terms. The remaining contributions, in the case R 0=θ , give
what we call the pantographic Hamiltonian (well defined in
the beginning of the next section). In this situation, the term
H1 can be interpreted as the Hamiltonian of a particle with a
varying mass, while H2 is the dilation term. It is important to
note that in the presence of deformation H H1 2+ depends on
θ, hence giving rise to additional deformation terms. In fact,
all the terms in H3 are associated with deformation, but there
are deformation terms that do not belong to H3. This will be
clearer in section 5 where the problem of deformation will be
treated extensively. Instead, in the next section we will con-
sider only pantographic changes of the domain, hence
assuming R 0=θ and H 03 = .

4. The pantographic case

We call the pantographic Hamiltonian the operator

H r
r2

i
˙

1 ,

0, (24)

p

2

2
2 ⎜ ⎟⎛

⎝
⎞
⎠

μλ
λ
λ

λ

= − + + ∂
∂

∂ =

λ

θ

 

i.e., the remaining part of the Hamiltonian in the absence of
deformation, provided R t t( ) ( )λ= .

In such a case, the pantographic Hamiltonian governs the
dynamics of the particle in the picture associated with the
fixed domain 0 . In this simplified situation it is possible to
deduce a rate equation for the energy of the particle and to
derive the exact dynamics in the special case of the constant
speed of the walls.

4.1. The energy rate equation

Let us now consider the energy rate equation in the two-
dimensional pantographic case. In the original picture (with
moving walls), the average energy of the system is given by
E t H( ) ψ ψ= 〈 ∣ ∣ 〉, so that in the picture with static walls such
average energy is given by the mean value, over the state ϕ∣ 〉,

4
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of the operator UHU H H†
1 3= + in equation (19), from

which we have to cancel the deformation terms, hence
obtaining UHU H†

1= .
The energy rate equation is then given by:

( )

E t
t

H

i
H H H H H

˙ ( )
d

d

˙ , (25)

1

2 1 2 1 1

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

=

= − +


with

H
R

R
˙

˙
. (26)1

2

3
2

μ
= 

It is just the case to mention that the operator

H
R

R
r

r

R

R
r

r
i

˙
1 i

˙ 1

2
, (27)2 ⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠= + ∂

∂
= + ◦ ∂

∂
 

where A B AB BA( ) 2◦ = + is the Jordan product of the
operators A and B, has the domain

{ }( ) ( )( )D H f r
r

f r L, ( , ) , (28)2
1 2 2 2 θ= ∈ ∂

∂
∈ 

while the product H H2 1 has the domain

{ }( ) ( )D H H f f r r, ( ) 0 . (29)2 1
3

0 0  = ∈ = ∀ ∈ ∂

Here we denoted with 1 the first Sobolev space, i.e.,
f L f L( ) { ( ) ( )}1 2 2 2 2 2 = ∈ ∣ ′ ∈   , and with 3 the third

Sobolev space, i.e., the space of square integrable functions
with the square integrable third derivative.

After introducing A r r≡ ∂ , we can write the rate equation
for the energy in the following way:

E t
R

R
r A

A r

˙ ( )
˙

2
*(1 )

(1 ) * 2 * d d . (30)

2

3
2

2 2

0

⎡⎣
⎤⎦



 

∫
μ

ϕ ϕ

ϕ ϕ ϕ ϕ θ

= +

+ + +



Since the following relations hold, A,⎡⎣ ⎤⎦ ⃗ = − ⃗ ,

A, 22 2⎡⎣ ⎤⎦ = − , A A* * 2 *2 2 2  ϕ ϕ ϕ ϕ ϕ ϕ= − ,

A A* * 2 *2 2 2  ϕ ϕ ϕ ϕ ϕ ϕ= − , the terms inside the square
brackets of equation (30) can be rearranged as

( )· * *  ϕ ϕ ϕ ϕ⃗ ⃗ − ⃗ + A* 2ϕ ϕ + A *2ϕ ϕ .

Now, on the basis of the Gauss–Green theorem and the
fact that the wave function vanishes on the boundary, we can
assert that the divergence does not contribute to the integral in
equation (30). Therefore, we reach the equation

( )E t
R

R
r A A r˙ ( )

˙

2
* * d d . (31)

2

3
2 2

0

 ∫
μ

ϕ ϕ ϕ ϕ θ= +

By exploiting the Leibniz rule we obtain

( ) ( ) ( )A A A* · * * · ( )2    ϕ ϕ ϕ ϕ ϕ ϕ= ⃗ ⃗ − ⃗ ⃗ and

( ) ( )( )A A A* · * · ( *)2    ϕ ϕ ϕ ϕ ϕ ϕ= ⃗ ⃗ − ⃗ ⃗ , which,

using again the Gauss–Green theorem, allow us to further

rearrange the energy rate equation as:

(
( )

( )
( )

( )

( )

E t
R

R
r A

A r

˙ ( )
˙

2
* · ( )

· * d d . (32)

2

3
0

⎟⎞⎠

 

 

∫
μ

ϕ ϕ

ϕ ϕ θ

= − ⃗ ⃗

− ⃗ ⃗



Since A A A A( ) ,⎡⎣ ⎤⎦    ϕ ϕ ϕ ϕ ϕ⃗ = ⃗ + ⃗ = ⃗ + ⃗ , we get

( )E t
R

R
r A

r

˙ ( )
˙

2

2 d d . (33)

2

3
2

2

0

⎡⎣
⎤⎦





∫
μ

ϕ

ϕ θ

= − ∥ ⃗ ∥

− ∥ ⃗ ∥



Moreover, integration by part of the first term in the square
brackets gives

rA r r r

d r

r r

d d d d

2 d d , (34)

r
r

r

r

2 2 2

0

2
2 2

0

( )

2

0

0

⎡⎣ ⎤⎦

 









∫ ∫ ∫

∫
∫

ϕ θ ϕ θ

θ ϕ

ϕ θ

∥ ⃗ ∥ = ∂ ∥ ⃗ ∥

= ∥ ⃗ ∥

− ∥ ⃗ ∥

θ

π η θ

=

=

and we eventually get

( )E t
R

R
r˙ ( )

˙

2
d . (35)r

2

3 0

2
2 2

( )∫
μ

θ ϕ= − ∥ ⃗ ∥ ∣
π

η θ=


It is easy to see that this is the natural 2D extension of the
contact term that appears in the one-dimensional case,
according to the analysis developed in [8].

4.2. The case of a uniformly moving domain

Let us consider now the special case of a pantographic change
with walls moving at constant velocity, which means
R t1 κ= + . In this situation we are able to completely solve
the dynamics of the system by generalizing the results in [4].

Assume that a solution of the time-dependent Schrö-
dinger equation is given by a state with the following form:

r e r( , ) ( , ), (36)n
P r t

n
i ( , )nϕ θ χ θ=

where P t r t( ) ( )n n
2α β= + is a polynomial of r with time-

dependent coefficients and nχ is a solution of the eigenvalue

problem E(2 ) n n n
2 2μ χ χ− = , with L, [ ]n n

2
0ϕ χ ∈ ,

( ( ), ) ( ( ), ) 0n nϕ η θ θ χ η θ θ= = .
We will show that for a suitable choice of nα and nβ one

finds a solution of the Schrödinger equation. In fact, since

P
P

r
r rr

r
P

r
r

P
r

P

r

P

r

ˆ 2 ˆ,

2 ,

1
4 ,

n
n

n

n
n

n
n n

n

2

2
2

2





α

α

α

=
∂
∂

=

∂
∂

=

=
∂
∂

+
∂
∂

=

the Schrödinger equation,

Hi 0, (37)t effϕ ϕ∂ + =
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expressible as,

( )( ) ( )P
R

P P

P

r r

R

R

R

R
r

P

r

R

R
r

r
e

˙
2

i

2i i
˙

˙
i

˙
0, (38)

n n n n

n n
n n

n
n

n P

2

2
2 2

2

i n

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

 



χ
μ

χ

χ
χ χ

χ
χ

− + −

+
∂
∂

∂
∂

+ −

+
∂
∂

−
∂
∂

=

 



 

leads to,

( )r
R

r

E

R

R

R

R

R
r e

R

P

r

R

R
r

r
e

˙ ˙
2

4i 4

i
˙

2
˙

i
i

˙
0. (39)

n n n n

n
n n

P

n n P

2
2

2
2 2

2
2 i

2

2
i

n

n

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

α β
μ

α α

α χ

μ
χ

− − + −

− − +

+
∂
∂

−
∂
∂

=

  

 

 

By imposing the coefficient of rnχ∂ ∂ equal to zero, one gets

RR
2

˙ . (40)nα μ α= ≡


By substituting this result in the coefficient of nχ and
imposing it to be zero, one gets:

E

R
RRr˙

2
¨ 0 (41)n

n

2
2⎜ ⎟⎛

⎝
⎞
⎠β μ− − − =

which, in the case R̈ 0= , gives rise to the solution:

E

R s
s(0)

( )
d . (42)n n

t n

0 2∫β β= −


The solution of the Schrödinger equation in the original
domain  is given by

( )r t R t t r R

r R

( , , ) exp i ( ) i ( )( )

( , ). (43)

n n

n

1 2ψ θ β α

χ θ

= +
×

−

Note that nβ depends on the eigenvalue En associated to the
state nχ , while nα is the same for all nχ s.

Therefore one has

( )

( )

r t r t r r

R e r R r R r r

e s s s s

( , , ) ( , , ) d d

( , ) ( , ) d d

( , ) ( , ) d d .

(44)

k l

t t
k l

t t
k l kl

*

2 i ( ) ( ) *

i ( ) ( ) *

l k

l k

0







∫
∫

∫

ψ θ ψ θ θ

χ θ χ θ θ

χ θ χ θ θ δ

=

= =

β β

β β

− −

−

Then, the kψ s are an orthonormal set. Moreover, they
constitute a basis. To prove this statement, consider the fol-
lowing. It is immediate to prove that since r( , )kχ θ s are a

basis for L [ ]2
0 then R r R( , )k

1χ θ− s are a basis for L [ ]2  —

in both cases with the appropriate boundary conditions. Now,
given any function in r L( , ) [ ]2 ξ θ ∈ satisfying the
boundary condition R( ( ), ) 0ξ η θ θ = , one can consider the

function e r( , )t r Ri ( )( )2ξ θα− and expand it, at time t, in terms of

the R r R( , )k
1χ θ− s as follows:

e r c r R

c e R r R

( , ) ( , )

˜ ( , ), (45)

t r R

k

k k

k

k
t

k

i ( )( )

i ( ) 1k

2 ∑

∑

ξ θ χ θ

χ θ

=

=

α

β

−

−

and then,

r c e e R r R

c r t

( , ) ˜ ( , )

˜ ( , , ), (46)

k

k
t r R t

k

k

k k

i ( )( ) i ( ) 1k
2∑

∑

ξ θ χ θ

ψ θ

=

=

α β −

which completes the proof that the kψ s are a basis.

5. Perturbative treatment of deformations

In this section we try to analyze the case in which deforma-
tions are present. We will concentrate on small deformations,
since they can be treated with a standard time-dependent
perturbation approach.

5.1. General framework

Assume R t t f t( , ) ( )[1 ( , )]θ λ ϵ θ= + , where ϵ plays the role
of a deformation parameter ( 0ϵ = means that no deformation
is present). In view of a perturbative treatment, we first
assume that f t( , )θ is a smooth function and that 1ϵ ≪ (in
the end of this section we comment on such assumptions).
Then we consider series expansions of all relevant functions
truncated to the first order in ϵ: R f(1 2 )2 2λ ϵ≈ −− − ,
R R f˙ ˙ ˙1λ λ ϵ≈ +− , R f(1 )1 1λ ϵ≈ −− − , R f1 1ϵλ∂ ≈ − ∂θ θ

− − ,
R f2 1 1 2ϵλ∂ ≈ − ∂θ θ

− − . Consequently, we evaluate the first-order
terms of the total Hamiltonian Heff :

( )H
f

O
2

, (47)1

2

2
2

2

2
2 2 

μλ
ϵ

μλ
ϵ= − + + 

( )

H r
r

f r
r

O

i
˙

1

i ˙ 1 , (48)

2

2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

λ
λ

ϵ ϵ

= + ∂
∂

+ + ∂
∂

+





( )

( )

( )

( )

( )

H f
r r r

f
r r r

O

f f

r r r
O

2

1 1

2
1 1

2
2

1 1
, (49)

3
2

2
2

2

2
2

2
2 2

2
2

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

ϵ λ
μ

θ θ
ϵ

ϵ
μ

λ
θ

ϵ

= − − ∂ + ∂
∂

+ ∂ ∂
∂

+ ∂
∂

∂
∂

+

= ∂ + ∂ ∂
∂

× + ∂
∂

+

θ

θ

θ θ

−

−
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so that the zeroth-order Hamiltonian is H Heff
(0)

p= λ, as defined
in equation (24), while the first-order terms are gathered as

( )

H f f r
r

f f
r r r

i ˙ 1

2
2

1 1
. (50)

eff
(1)

2
2 2

2
2 2

2
⎜ ⎟

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎫⎬⎭

ϵ
μ

λ

μ
λ

θ

= + + ∂
∂

+ ∂ + ∂ ∂
∂

+ ∂
∂θ θ

−

−

 



Since 1ϵ ≪ , we can start by considering the panto-
graphic dynamics with dilation function t( )λ as the unper-
turbed dynamics, and then slightly correct the solutions of the
pantographic problem to obtain a first-order approximation of
the solutions of the problem with small deformation. In fact,
by applying the standard time-dependent perturbation theory
approach [35], after introducing the unitary operator Up such
that U H Ui t p p p∂ = λ , we get:

( )

t U U t U s H s U s s

O

( ) ( ) 1 i ( ) ( ) ( )d

(0) , (51)

t
†

p
0

p
†

eff
(1)

p

2

⎡
⎣⎢

⎤
⎦⎥∫ψ

ψ ϵ

= −

× +



where U is the previously introduced unitary transformation
that maps the moving domain into the static one and where
we have exploited the fact that (0) (0)ϕ ψ∣ 〉 = ∣ 〉. Moreover,
by introducing unity operators we get the following:

}

}

( )

( )

( )

t a t t

U s UU H s UU U s

a s O

a t a

s U H s U s s

t O

a t a

s H s s s

t O

( ) (0) ( ) i ( )

(0) ( ) ( ) ( )

(0) (0) d

(0) ( ) i (0)

( ) ( ) ( ) d

( )

(0) ( ) i (0)

( ) ( ) ( ) d

( ) , (52)

t

t

t

0
p
† †

eff
(1) †

p

2

0

†
eff
(1)

2

0
eff
(1)

2

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎧
⎨
⎩

∫

∫

∫

∑ ∑

∑

∑ ∑ ∑

∑ ∑ ∑

ψ ψ ψ

ψ

ψ ϵ

ψ

ψ ψ

ψ ϵ

ψ

ϕ ϕ

ψ ϵ

= −

×

× +

= −

×

× +

= −

×

× +

σ
σ σ

σ
σ

σ

σ
σ σ

σ
σ σ

σ σ
σ

σ σ

σ

σ
σ σ

σ σ
σ

σ σ

σ

′
′ ′

′
′

′

′
′

′







where σ and σ′ denote suitable sets of quantum numbers, and
a (0) (0) (0)ψ ψ= 〈 ∣ 〉σ σ .

It is necessary to stress here the importance of evaluating
the action of U exactly in order to prevent violation of the
boundary conditions.

Moreover, at this stage, it is worth spending some words
about the validity of our perturbation treatment itself, since
one could wonder whether all the neglected terms of the
Hamiltonian and the discarded terms in the perturbative
expansion are really negligible. A positive answer is based on
the treatment of boundary perturbation shortly reported in
[36], where the problem of a ‘free’ particle in a box whose

shape is slightly modified is introduced. According to Kato,
provided the deformation is ‘small’ and ‘smooth,’ Taylor
expansion of the eigenvalues and eigenvectors is justified and
perturbation treatment is legitimated. In our case, we have
two additional ingredients: (a) a dilation is also considered,
not simply a deformation, and (b) the perturbation is time
dependent; but none of these two elements introduces sig-
nificant differences. In fact, the presence of the dilation
implies that the condition of ‘smallness’ is strictly fulfilled
provided t f t( )sup ( , ) 1ϵλ θ ≪θ t∀ , while the ‘smoothness’ is
guaranteed by the smoothness of the deformation function
f t( , )θ with respect to θ. Finally, the time dependence
implies the presence of a transport term ( UUi ˙ † ), whose
structure in the specific case gives rise to the dilation term
( r( )(1 )rα θ∝ + ∂ ), and again, following the line of [36] it
turns out that, under the assumption of smooth and small
deformation, one easily shows that this additional term does
not compromise the possibility of Taylor-expanding the
eigensolutions and resorting to perturbation treatment.

5.2. The case of an elliptical box

As an example, let us consider a circular box that expands and
squeezes, becoming an ellipse.

The moving and static domain are:

{ r r r t g t( , ): ( ) (1 ( )cos ),

[0, 2 ]}, 1, (53)
0 θ λ ϵ θ

θ π ϵ
= ⩽ −

∈ ≪

{ }r r r( , ): , [0, 2 ] , (54)0 0 θ θ π= ⩽ ∈

where t( )λ and g(t) are suitable functions such that (0) 1λ =
and g (0) 0= (at t = 0, the domain  coincides with 0 ), and
g(t) tends toward unity (after the value of g(t) stabilizes, the
shape of  does not significantly change). Here ϵ is the
asymptotic value of the eccentricity of the time-changing
ellipse, and since it is much smaller than unity then we get:

R t
t

f t
t f t

f t g t

( , )
( )

1 ( , )
( )[1 ( , )],

( , ) ( )cos , (55)

θ λ
ϵ θ

λ ϵ θ

θ θ

=
−

≈ +

=

H g

g r
r

g

r r r

cos

i ˙ cos 1
2

cos 2 sin
1 1

. (56)

eff
(1)

2
2 2

2
2

2
⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ϵ
μ

λ θ

θ
μ

λ

θ θ
θ

=

+ + ∂
∂

−

× + ∂
∂

+ ∂
∂

−

−



 

Let us consider the case in which the gross evolution (the
pantographic one) is associated with the uniformly dilating
box—this means t t( ) 1λ κ= + —since in this case we know
the solution of the relevant pantographic problem. Moreover,
let us assume a smooth form for the function g, for example,
g t e( ) 1 t= − γ− .
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The energy eigenvalues and stationary states of a quan-
tum particle confined in a circle of radius r0 are given by [37]:

E
r

a
2

, (57)mn mn

2

0
2

2

μ
= 

( )A J k r e m(2 ) , , (58)mn mn m mn
m1 2 iχ π= ∈θ− 

where Jm(x) is the Bessel function of m-th order, amn is the n-
th zero of Jm, and

k
E a

r
k

a

r

2 ( )
, (59)mn

mn mn
mn

mn2
2

2

0
2

0

μ
= = ⇒ =



( )A rJ k r rd . (60)mn

r

m mn
0

2
1 20

⎜ ⎟⎛
⎝

⎞
⎠∫=

−

It is very useful to note that in this case we have for the
matrix element s H s s( ) ( ) ( )mn m neff

(1)ϕ ϕ〈 ∣ ∣ 〉′ ′ , the selection rule
m m 1= ′ ± . In appendix we give the explicit expressions of
the matrix elements involved in the perturbative treatment.

The selection rule is useful both as a simplification in the
evaluation of the dynamics and as a warranty of the stability
of the perturbation treatment in this case. In fact, among the
terms in equation (56) there are unbounded operators invol-
ving the variable r (they are r 2− and r r

1∂− ), but due to the
behavior of the Bessel functions close to zero (J r r( )m

m∼
when r 0→ ), the only divergent matrix elements of the
operators involving the radial variable are those between two

J0s: rJ k r J k r r( ) ( )dn n
0

1

0 0 0 0∫ ′ . Now, since such Bessel func-

tions correspond to the same angular momentum
(m m 0= ′ = ), the condition m m 1= ′ ± is not fulfilled and
the relevant matrix element of Heff

(1) is zero. Therefore Heff
(1) is

‘effectively bounded’, in spite of the presence of unbounded
operators related to the radial part.

In the following, we show some numerical calculations
of the transition probabilities associated with specific initial
conditions. We first consider the initial state

t( 0) 0,1ψ ψ∣ = 〉 = ∣ 〉 (the ground state), so that, at first order in
the eccentricity, only transitions to states n1,ψ∣ 〉± are allowed.
In particular, in figure 1 we show the transition probabilities
to the states n1,ψ∣ 〉 with n 1, 2, 3, 4= . Due to the specific

structure of the initial state and of the states of the basis, the
transition probabilities to n1,ψ∣ 〉 and n1,ψ∣ 〉− are equal. More-
over, in figure 2 we show some of the transition probabilities
evaluated assuming 2,1ψ∣ 〉 as the initial condition.

6. Discussion

In this paper we have extended the technique of [8] to the
cases of two-dimensional boxes. We have first of all reviewed
the results related to the one-dimensional problem, and then
we have studied in depth the case of a ‘free’ particle confined
in a two-dimensional box by mapping such problem to the
one of a particle in a fixed domain but governed by a time-
dependent Hamiltonian.

The two-dimensional problem reveals an important ele-
ment of novelty with respect to the one-dimensional case,
which is the role of the shape of the box (and its changing)
through the whole process. In fact, the time-dependent
Hamiltonian governing the dynamics of the particle in the
picture associated to a fixed boundary is the sum of several
terms, many of which disappear when the boundary of the
box changes its dimensions but not its shape (we have
addressed this situation as the pantographic case). This has
allowed us to single out two classes of 2D problems
depending on the presence of deformations of the contour of
the box.

On the one hand we have shown that in the absence of
deformation, the results obtained in the one-dimensional case
can be naturally extended. For example, the rate equation for
the energy is just what one could guess starting from the rate
equation of the energy in the one-dimensional moving box.
Moreover, the time evolution of the particle in the case of
uniformly moving boundaries is the very natural extension of
the one-dimensional counterpart.

On the other hand when we consider deformation of the
boundary, the situation becomes more complicated and the
previously reported analogies to the one-dimensional case are
no longer valid. In fact, the additional terms of the Hamilto-
nian coming from the deformation of the contour make the

Figure 1. Populations of the states 1,1ψ∣ 〉 (green bold solid line), 1,2ψ∣ 〉
(red bold dashed line), 1,3ψ∣ 〉 (blue solid line), and 1,4ψ∣ 〉 (black
dashed line) when the initial state is 0,1ψ∣ 〉. Here the time is expressed

in 1κ− units, 1= , 0.05ϵ = and 5γ κ= .

Figure 2. Populations of the states 3,1ψ∣ 〉 (green bold solid line), 3,2ψ∣ 〉
(red bold dashed line), 1,1ψ∣ 〉 (blue solid line), and 1,2ψ∣ 〉 (black
dashed line) when the initial state is 2,1ψ∣ 〉. Here the time is expressed

in 1κ− units, 1= , 0.05ϵ = , and 5γ κ= .
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resolution of the relevant dynamical problem very difficult.
We have then used an approach based on perturbation theory
assuming the pantographic Hamiltonian as the unperturbed
one, and the deformation terms, which play the role of per-
turbation, are assumed to be small enough. On this ground,
we have shown that deformation of the boundary is respon-
sible for transitions between pantographic states, which would
not occur otherwise.

In order to conclude our analysis, we want to briefly
comment on the fact that the methods and results reported for
the 2D case can be easily extended to the case of a particle in
a three-dimensional box. Indeed, in the 3D pantographic case,
after performing the passage to the static boundary picture,
the generator of time evolution turns out to be again the sum
of the kinetic energy of a varying-mass particle and a dilation
term very similar to the two-dimensional one. The complete
dynamical solution that one can obtain when the velocity of
the boundary is constant and the general energy rate equation
(valid for any time dependence of the velocity of the walls)
are the very natural extensions of the two-dimensional
counterparts. Finally, if one considers also the presence of
deformation, this can be treated perturbatively by following
the same approach previously developed. Obviously, every
calculation is more cumbersome, since it involves more terms
than in the two-dimensional case.
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Appendix. Matrix elements for the perturbative
treatment

In this appendix we give the explicit result of the evaluation

of the matrix elements of Ĥeff
(1)

for a circular box that is
deformed to an elliptical box and expanded.

Since

H H H Hˆ ˆ ˆ ˆ , (A1)eff
(1)

1
(1)

2
(1)

3
(1)= + +

with obvious notation, we give separately the matrix elements
of the three operators:

( )

( )

H s s

F t W

F t W F t

W k F t W

( ) d

2 ( )

( ) 2 ( )

( ) , (A2)

t

mn m n m m m m

mn m n mn m n

mn m n mn m n mn m n

mn m n m n mn m n mn m n

0
1
(1)

, 1 , 1

;
(2)

;
(2)

;
(3)

;
(3)

;
(2)

;
(4) 2

;
(1)

;
(2)

⎡⎣

⎤⎦

∫ ϕ ϕ ϵ δ δ= +

× ×

+ × +

× − ×

′ ′ ′+ ′−

′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

( )

H s s

F t W F t

W F t W

( ) d

( ) ( )

( ) , (A3)

t

mn m n

m m m m

mn m n mn m n mn m n

mn m n mn m n mn m n

0
2
(1)

, 1 , 1

;
(4)

;
(1)

;
(5)

;
(3)

;
(4)

;
(4)

⎡⎣
⎤⎦

∫ ϕ ϕ

ϵ δ δ= +

× × +

× + ×

′ ′

′+ ′−

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

H s s

m m

F t W

F t W

( ) d

(1 2 ) (1 2 )

( )

( ) , (A4)

t
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m m m m

mn m n mn m n

mn m n mn m n

0
3
(1)

, 1 , 1

;
(1)

,
(1)

,
(2)

,
(2)

⎡⎣ ⎤⎦
⎡⎣

⎤⎦

∫ ϕ ϕ

ϵ δ δ= + ′ + − ′

× ×

+ ×

′ ′

′+ ′−

′ ′ ′ ′

′ ′ ′ ′

where:

[ ]F t
g s

s
i s s a( )

2

( )

( )
Exp ( ) d , (A5 )mn m n

t

m n
mn

;
(1)

2

0 2∫μ λ
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[ ]F t i g s
s

s
i s s b( ) ( )

˙ ( )

( )
Exp ( ) d , (A5 )mn m n

t

m n
mn

;
(2)

0
∫ λ

λ
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[ ]F t g s s i s s c( ) ( ) ˙ ( )Exp ( ) d , (A5 )mn m n

t

m n
mn

;
(3)

0
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i
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;
(4)
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;
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W A A J k r
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;
(1)

0

0

⎜ ⎟⎛
⎝

⎞
⎠

∫=

× + ∂
∂

′ ′ ′ ′

′ ′ ′
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